
Lecture 8
First-order logic
Syntax and semantics

Print version of the lecture in Logic and Proof

presented on 15 May 2019

by Dr Christoph Haase

8.1
First-order logic can be understood as an extension of propositional logic. In

propositional logic the atomic formulas have no internal structure—they are propo-
sitional variables that are either true or false. In first-order logic the atomic for-
mulas are predicates that assert a relationship among certain elements. Another
significant new concept in first-order logic is quantification: the ability to assert
that a certain property holds for all elements or that it holds for some element.

1 Syntax of First-Order Logic

The syntax of first-order logic is defined relative to a signature. A signature σ
consists of a set of constant symbols, a set of function symbols and a set of
predicate symbols. Each function and predicate symbol has an arity k > 0. We
will often refer to predicates as relations. Typically we use letters c, d to denote
constant symbols, f, g to denote function symbols and P,Q,R to denote predicate
symbols. Note that the elements of a signature are symbols; only later will will we
interpret them as concrete functions or relations. Independent of the signature σ
we also have a countably infinite set of variables x0, x1, x2,

Definition 1. Given a signature σ, the set of σ-terms is defined by structural
induction as follows:

• Each variable is a term.
• Each constant symbol is a term.
• If t1, . . . , tk are terms and f is a k-ary function symbol then f(t1, . . . , tk) is a

term.

The set of formulas is defined inductively as follows:

• Given terms t1, . . . , tk and a k-ary predicate symbol P then P (t1, . . . , tk) is a
formula.
• For each formula F , ¬F is a formula.
• For each pair of formulas F,G, (F ∨G) and (F ∧G) are both formulas.
• If F is a formula and x is a variable then ∃xF and ∀xF are both formulas.

Atomic formulas are those constructed according to the first rule above. The
atomic formula P (t1, . . . , tk) is read “t1, . . . , tk are in relation P ”. The symbol ∃ is
called the existential quantifier. The formula ∃xH is read “there exists x, H”. The
symbol ∀ is called the universal quantifier. The formula ∀xH is read “for all x, H”.
A general first-order formula is built up from atomic formulas using the Boolean
connectives and the two quantifiers. If a formula F occurs as part of another

1

formula G then F is called a subformula of G. We assume that the quantifiers
bind more tightly than any of the Boolean operators, e.g., ∀xF ∧ G denotes the
formula (∀xF) ∧G.

One important measure of the complexity of a formula F is its quantifier depth,
which is denoted qd(F). We define this by induction on F as follows. Atomic
formulas have quantifier depth 0; given formulas F and G,

qd(¬F) := qd(F)

qd(F ∧G) = qd(F ∨G) := max(qd(F), qd(G))

qd(∃xF) = qd(∀xF) := qd(F) + 1.

Example 2. Consider a signature with a single binary relation symbol R. Since
there are no constant symbols or function symbols, the only terms are variables.
An example of a formula is

∀x∀y ∀z (R(x, y) ∧R(y, z)→ R(x, z)) .

This formula expresses that R is a transitive relation.

Example 3. Consider a signature with a constant symbol 0, unary function symbol
s, and unary predicate symbol E. Terms over this signature include the ground
terms (i.e., variable-free terms) 0, s(0), s(s(0)), . . . as well as terms that mention vari-
ables, such as s(x). An example of a formula is E(0) ∧ ∀x(E(x)↔ ¬E(s(x))).

Sometimes we write function symbols and predicate symbols infix to improve
readability:

Example 4. Consider a signature with a constant symbol 1, binary function symbol
+, and a binary relation symbol <, both written infix. Then x + 1 is a term and
∀x(x < (y + 1)) is a formula.

In a formula ∃xG we say that G is the scope of the quantifier ∃x. The scope of
an occurrence of the universal quantifier is defined similarly. An occurrence of a
variable x in a formula F is bound if that occurrence is within the scope of either
∃x or ∀x. An occurrence that is not bound is said to be free. Note that the same
variable can occur both bound and free in a given formula, e.g., variable x occurs
both bound and free in the formula P (x)∧∃xP (x). A formula with no free variables
is said to be closed or a sentence. The formulas in Examples 2 and 3 were closed,
whereas the formula in Example 4 has a free variable y.

We will consider one important variant of first-order logic as described above,
namely first-order logic with equality. This variant admits equality as built-in bi-
nary relation symbol. Thus, regardless of the signature, we admit t1 = t2 as an
atomic formula for all terms t1 and t2.

2 Semantics of First-Order Logic

The semantics of formulas of first-order logic is given in terms of σ-structures.

Definition 5. Given a signature σ, a σ-structure (or assignment) A consists of:

• a non-empty set UA called the universe of the structure;
• for each k-ary predicate symbol P in σ, a k-ary relation

PA ⊆ UA × · · · × UA︸ ︷︷ ︸
k

;

• for each k-ary function symbol f in σ, a k-ary function,

fA : UA × · · · × UA︸ ︷︷ ︸
k

→ UA;

2

1 2

3 4

Figure 1: An undirected graph

• for each constant symbol c, an element cA of UA;
• for each variable x an element xA of UA.

The above definition treats constant symbols and variables identically. However
a key difference is that the interpretation of variables can be overwritten. Given a
structure A, variable x, and a ∈ UA, we define the structure A[x 7→a] to be exactly
the same as A except that xA[x 7→a]

:= a.
Often one specifies a structure as a tuple consisting of a set, some relations,

some functions and some constants. For example, (N, <, 0) denotes the struc-
ture with universe N, binary relation < (understood as the usual order on N) and
constant 0. Note though that this convention does not specify which values are
assigned to variables.

We define the value A(t) of each term t as an element of the universe UA induc-
tively as follows:

• For a constant symbol c we define A(c) := cA.
• For a variable x we define A(x) := xA.
• For a term f(t1, . . . , tk), where f is a k-ary function symbol and t1, . . . , tk are

terms, we define A(f(t1, . . . , tk)) := fA(A(t1), . . . ,A(tk)).
We define the satisfaction relation A |= F (A satisfies F , or A models F)

between a σ-structure A and σ-formula F by induction over the structure of for-
mulas.

1. A |= P (t1, . . . , tk) if and only if (A(t1), . . . ,A(tk)) ∈ PA.
2. A |= (F ∧G) if and only if A |= F and A |= G.
3. A |= (F ∨G) if and only if A |= F or A |= G.
4. A |= ¬F if and only if A 6|= F .
5. A |= ∃xF if and only if there exists a ∈ UA such that A[x 7→a] |= F .
6. A |= ∀xF if and only if A[x 7→a] |= F for all a ∈ UA.

If we are working in first-order logic with equality then we additionally have

7. A |= t1 = t2 if and only if A(t1) = A(t2).
While the function and predicate symbols in a signature can be interpreted

as arbitrary functions and predicates in a given structure, the equality symbol is
treated as a “built-in”, and is always interpreted as equality.

Example 6. An undirected graph can be considered as a σ-structure for the sig-
nature σ with one binary relation symbol E, where E is interpreted as the edge
relation. For example, the graph shown in Figure 2 can be represented by a struc-
ture A with universe UA = {1, 2, 3, 4} and irreflexive symmetric binary relation

EA = {(1, 2), (2, 3), (3, 4), (4, 1), (2, 1), (3, 2), (4, 3), (1, 4)} .

The following sentence asserts that edge relation is irreflexive and symmetric:

∀x¬E(x, x) ∧ ∀x∀y (E(x, y)→ E(y, x))

3

start

q

p

p

q

Figure 2: Automaton accepting all strings in which each q is followed by some p.

This sentence is satisfied by the structure in Figure 2.
The following sentence expresses that every pair of nodes are connected by a

path of length 3.
∀x ∀y ∃z1 ∃z2 (E(x, z1) ∧ E(z1, z2) ∧ E(z2, y)).

This sentence is not satisfied by the structure in Figure 2.

Exercise 7. Let signature σ comprise a single unary relation symbol P and let A
be the assignment with UA = {0, 1} and PA = {1}. Does A satisfy the sentence

∀x1 . . . ∀xn(P (x1)→ (P (x2)→ (P (x3)→ . . .→ (P (xn)→ P (x1)) . . .))) ?

Have you seen this question before?

Example 8. Consider a signature σ with one binary relation symbol <. A totally
ordered set satisfies the following sentences in first-order logic with equality:

1. Irreflexivity: ∀x¬(x < x).
2. Transitivity: ∀x∀y ∀z((x < y ∧ y < z)→ x < z).
3. Trichotomy: ∀x∀y (x < y ∨ y < x ∨ x = y).

The structures (Z, <Z), (Q, <Q) and (R, <R) all satisfy the above sentences.

Example 9. Let w = w0w1 . . . wn−1 be a finite string over an alphabet {p, q}. Consider
a signature σ with a binary relation symbol < and unary predicate symbols P and
Q. We can see w as a σ-structure A whose universe UA is the set {0, 1, . . . , n− 1} of
positions in w, <A is the usual order on UA, PA = {i : wi = p} is the set of positions
in which letter a occurs and likewise QA = {i : wi = q} is the set of positions in
which letter b occurs.

The sentence F = ∀x(P (x) → ∃y (x < y ∧ Q(y))) is satisfied by a string precisely
when every letter p is followed by a letter q. It is easy to see that the set of finite
strings that satisfy F is precisely the language of the automaton in Figure 2. In
fact for any sentence F over this signature, the set of strings satisfying F defines
a regular language.

A first-order formula F over signature σ is satisfiable if A |= F for some σ-
structure A. If F is not satisfiable it is called unsatisfiable. F is called valid if
A |= F for every σ-structure A. Given a set of formulas S we write S |= F to mean
that every σ-structure A that satisfies S also satisfies F . The same relations exist
among these notions as in propositional logic, e.g., F is unsatisfiable if and only if
¬F is valid.

Exercise 10. Consider a signature σ with constant symbol 0, unary function
symbol s, and unary predicate symbol P . Is the σ-formula P (0) ∧ ∀x(P (x) →
P (s(x))) ∧ ∃x¬P (x) satisfiable?

3 Reasoning by Induction on Terms and Formulas

Often proofs about first-order logic involve induction on the structure of terms and
formulas. We give the following simple lemma by way of example.

4

Lemma 11 (Relevance Lemma). Suppose that A and A′ are σ-assignments with the
same universe and identical interpretations of the predicate, function, and constant
symbols in σ. If A and A′ give the same interpretation to each variable occurring free
in some σ-formula F then A |= F if and only if A′ |= F .

Proof. We first show by induction on terms that if A(x) = A′(x) for each variable x
occurring in a term t occurring in F then A(t) = A′(t).

Base cases: If t is either a constant symbol or a variable then A(t) = A′(t) by
assumption.

Induction steps: For f a k-ary function symbol we have:

A(f(t1, . . . , tk)) = fA(A(t1), . . . ,A(tk))
= fA′(A(t1), . . . ,A(tk)) (since fA = fA′)

= fA′(A′(t1), . . . ,A′(tk)) (induction hypothesis)

= A′(f(t1, . . . , tk)) .

We now show by induction on formulas F that if A and A′ agree on the free
variables in F then A |= F if and only if A′ |= F .

Base cases: Let F = P (t1, . . . , tk) be an atomic formula. By assumption, A(x) =
A′(x) for any variable x appearing in some term ti. Then

A |= P (t1, . . . , tk) iff (A(t1), . . . ,A(tk)) ∈ PA
iff (A(t1), . . . ,A(tk)) ∈ PA′ (Since PA = PA′)

iff (A′(t1), . . . ,A′(tk)) ∈ PA′ (by the above result for terms)

iff A′ |= P (t1, . . . , tk) .

Induction steps: We omit the inductive case for the Boolean connectives. We
just give the cases for the universal quantifier (the existential quantifier is similar).

A |= ∀xF iff A[x7→a] |= F for all a ∈ UA
iff A′[x7→a] |= F for all a ∈ UA′ (induction hypothesis)

iff A′ |= ∀xF

Notice that a variable occurring free in F is either identical to x or it already occurs
free in ∀xF . Thus A[x 7→a] and A′[x 7→a] agree on the free variables of F and we may
indeed apply the induction hypothesis above.

A special case of the relevance lemma is that if F is a closed formula and A and
A′ are assignments that only differ on the interpretation of variables, then A |= F
if and only if A′ |= F . For this reason we sometimes don’t bother to specify the
interpretation of variables when describing assignments in first-order logic.

5

	Syntax of First-Order Logic
	Semantics of First-Order Logic
	Reasoning by Induction on Terms and Formulas

