Lecture 8 First-order logic
 Syntax and semantics

Print version of the lecture in Logic and Proof
presented on 15 May 2019
by Dr Christoph Haase
First-order logic can be understood as an extension of propositional logic. In propositional logic the atomic formulas have no internal structure-they are propositional variables that are either true or false. In first-order logic the atomic formulas are predicates that assert a relationship among certain elements. Another significant new concept in first-order logic is quantification: the ability to assert that a certain property holds for all elements or that it holds for some element.

1 Syntax of First-Order Logic

The syntax of first-order logic is defined relative to a signature. A signature σ consists of a set of constant symbols, a set of function symbols and a set of predicate symbols. Each function and predicate symbol has an arity $k>0$. We will often refer to predicates as relations. Typically we use letters c, d to denote constant symbols, f, g to denote function symbols and P, Q, R to denote predicate symbols. Note that the elements of a signature are symbols; only later will will we interpret them as concrete functions or relations. Independent of the signature σ we also have a countably infinite set of variables $x_{0}, x_{1}, x_{2}, \ldots$.

Definition 1. Given a signature σ, the set of σ-terms is defined by structural induction as follows:

- Each variable is a term.
- Each constant symbol is a term.
- If t_{1}, \ldots, t_{k} are terms and f is a k-ary function symbol then $f\left(t_{1}, \ldots, t_{k}\right)$ is a term.
The set of formulas is defined inductively as follows:
- Given terms t_{1}, \ldots, t_{k} and a k-ary predicate symbol P then $P\left(t_{1}, \ldots, t_{k}\right)$ is a formula.
- For each formula $F, \neg F$ is a formula.
- For each pair of formulas $F, G,(F \vee G)$ and $(F \wedge G)$ are both formulas.
- If F is a formula and x is a variable then $\exists x F$ and $\forall x F$ are both formulas.

Atomic formulas are those constructed according to the first rule above. The atomic formula $P\left(t_{1}, \ldots, t_{k}\right)$ is read " t_{1}, \ldots, t_{k} are in relation P ". The symbol \exists is called the existential quantifier. The formula $\exists x H$ is read "there exists x, H ". The symbol \forall is called the universal quantifier. The formula $\forall x H$ is read "for all x, H ". A general first-order formula is built up from atomic formulas using the Boolean connectives and the two quantifiers. If a formula F occurs as part of another
formula G then F is called a subformula of G. We assume that the quantifiers bind more tightly than any of the Boolean operators, e.g., $\forall x F \wedge G$ denotes the formula $(\forall x F) \wedge G$.

One important measure of the complexity of a formula F is its quantifier depth, which is denoted $\operatorname{qd}(F)$. We define this by induction on F as follows. Atomic formulas have quantifier depth 0 ; given formulas F and G,

$$
\begin{aligned}
\operatorname{qd}(\neg F) & :=\operatorname{qd}(F) \\
\operatorname{qd}(F \wedge G)=\operatorname{qd}(F \vee G) & :=\max (\operatorname{qd}(F), \operatorname{qd}(G)) \\
\operatorname{qd}(\exists x F)=\operatorname{qd}(\forall x F) & :=\operatorname{qd}(F)+1 .
\end{aligned}
$$

Example 2. Consider a signature with a single binary relation symbol R. Since there are no constant symbols or function symbols, the only terms are variables. An example of a formula is

$$
\forall x \forall y \forall z(R(x, y) \wedge R(y, z) \rightarrow R(x, z)) .
$$

This formula expresses that R is a transitive relation.
Example 3. Consider a signature with a constant symbol 0, unary function symbol s, and unary predicate symbol E. Terms over this signature include the ground terms (i.e., variable-free terms) $0, s(0), s(s(0)), \ldots$ as well as terms that mention variables, such as $s(x)$. An example of a formula is $E(0) \wedge \forall x(E(x) \leftrightarrow \neg E(s(x)))$.

Sometimes we write function symbols and predicate symbols infix to improve readability:
Example 4. Consider a signature with a constant symbol 1, binary function symbol + , and a binary relation symbol $<$, both written infix. Then $x+1$ is a term and $\forall x(x<(y+1))$ is a formula.

In a formula $\exists x G$ we say that G is the scope of the quantifier $\exists x$. The scope of an occurrence of the universal quantifier is defined similarly. An occurrence of a variable x in a formula F is bound if that occurrence is within the scope of either $\exists x$ or $\forall x$. An occurrence that is not bound is said to be free. Note that the same variable can occur both bound and free in a given formula, e.g., variable x occurs both bound and free in the formula $P(x) \wedge \exists x P(x)$. A formula with no free variables is said to be closed or a sentence. The formulas in Examples 2 and 3 were closed, whereas the formula in Example 4 has a free variable y.

We will consider one important variant of first-order logic as described above, namely first-order logic with equality. This variant admits equality as built-in binary relation symbol. Thus, regardless of the signature, we admit $t_{1}=t_{2}$ as an atomic formula for all terms t_{1} and t_{2}.

2 Semantics of First-Order Logic

The semantics of formulas of first-order logic is given in terms of σ-structures.
Definition 5. Given a signature σ, a σ-structure (or assignment) \mathcal{A} consists of:

- a non-empty set $U_{\mathcal{A}}$ called the universe of the structure;
- for each k-ary predicate symbol P in σ, a k-ary relation

$$
P_{\mathcal{A}} \subseteq \underbrace{U_{\mathcal{A}} \times \cdots \times U_{\mathcal{A}}}_{k} ;
$$

- for each k-ary function symbol f in σ, a k-ary function,

$$
f_{\mathcal{A}}: \underbrace{U_{\mathcal{A}} \times \cdots \times U_{\mathcal{A}}}_{k} \rightarrow U_{\mathcal{A}} ;
$$

Figure 1: An undirected graph

- for each constant symbol c, an element $c_{\mathcal{A}}$ of $U_{\mathcal{A}}$;
- for each variable x an element $x_{\mathcal{A}}$ of $U_{\mathcal{A}}$.

The above definition treats constant symbols and variables identically. However a key difference is that the interpretation of variables can be overwritten. Given a structure \mathcal{A}, variable x, and $a \in U_{\mathcal{A}}$, we define the structure $\mathcal{A}_{[x \mapsto a]}$ to be exactly the same as \mathcal{A} except that $x_{\mathcal{A}_{[x \mapsto a]}}:=a$.

Often one specifies a structure as a tuple consisting of a set, some relations, some functions and some constants. For example, ($\mathbb{N},<, 0$) denotes the structure with universe \mathbb{N}, binary relation $<$ (understood as the usual order on \mathbb{N}) and constant 0 . Note though that this convention does not specify which values are assigned to variables.

We define the value $\mathcal{A}(t)$ of each term t as an element of the universe $U_{\mathcal{A}}$ inductively as follows:

- For a constant symbol c we define $\mathcal{A}(c):=c_{\mathcal{A}}$.
- For a variable x we define $\mathcal{A}(x):=x_{\mathcal{A}}$.
- For a term $f\left(t_{1}, \ldots, t_{k}\right)$, where f is a k-ary function symbol and t_{1}, \ldots, t_{k} are terms, we define $\mathcal{A}\left(f\left(t_{1}, \ldots, t_{k}\right)\right):=f_{\mathcal{A}}\left(\mathcal{A}\left(t_{1}\right), \ldots, \mathcal{A}\left(t_{k}\right)\right)$.
We define the satisfaction relation $\mathcal{A} \models F(\mathcal{A}$ satisfies F, or \mathcal{A} models F) between a σ-structure \mathcal{A} and σ-formula F by induction over the structure of formulas.

1. $\mathcal{A} \models P\left(t_{1}, \ldots, t_{k}\right)$ if and only if $\left(\mathcal{A}\left(t_{1}\right), \ldots, \mathcal{A}\left(t_{k}\right)\right) \in P_{\mathcal{A}}$.
2. $\mathcal{A} \models(F \wedge G)$ if and only if $\mathcal{A} \models F$ and $\mathcal{A} \models G$.
3. $\mathcal{A} \models(F \vee G)$ if and only if $\mathcal{A} \models F$ or $\mathcal{A} \models G$.
4. $\mathcal{A} \models \neg F$ if and only if $\mathcal{A} \not \models F$.
5. $\mathcal{A} \models \exists x F$ if and only if there exists $a \in U_{\mathcal{A}}$ such that $\mathcal{A}_{[x \mapsto a]} \models F$.
6. $\mathcal{A} \models \forall x F$ if and only if $\mathcal{A}_{[x \mapsto a]} \models F$ for all $a \in U_{\mathcal{A}}$.

If we are working in first-order logic with equality then we additionally have
7. $\mathcal{A} \models t_{1}=t_{2}$ if and only if $\mathcal{A}\left(t_{1}\right)=\mathcal{A}\left(t_{2}\right)$.

While the function and predicate symbols in a signature can be interpreted as arbitrary functions and predicates in a given structure, the equality symbol is treated as a "built-in", and is always interpreted as equality.
Example 6. An undirected graph can be considered as a σ-structure for the signature σ with one binary relation symbol E, where E is interpreted as the edge relation. For example, the graph shown in Figure 2 can be represented by a structure \mathcal{A} with universe $U_{\mathcal{A}}=\{1,2,3,4\}$ and irreflexive symmetric binary relation

$$
E_{\mathcal{A}}=\{(1,2),(2,3),(3,4),(4,1),(2,1),(3,2),(4,3),(1,4)\}
$$

The following sentence asserts that edge relation is irreflexive and symmetric:

$$
\forall x \neg E(x, x) \wedge \forall x \forall y(E(x, y) \rightarrow E(y, x))
$$

Figure 2: Automaton accepting all strings in which each q is followed by some p.

This sentence is satisfied by the structure in Figure 2 ,
The following sentence expresses that every pair of nodes are connected by a path of length 3 .

$$
\forall x \forall y \exists z_{1} \exists z_{2}\left(E\left(x, z_{1}\right) \wedge E\left(z_{1}, z_{2}\right) \wedge E\left(z_{2}, y\right)\right) .
$$

This sentence is not satisfied by the structure in Figure 2.
Exercise 7. Let signature σ comprise a single unary relation symbol P and let \mathcal{A} be the assignment with $U_{\mathcal{A}}=\{0,1\}$ and $P_{\mathcal{A}}=\{1\}$. Does \mathcal{A} satisfy the sentence

$$
\forall x_{1} \ldots \forall x_{n}\left(P\left(x_{1}\right) \rightarrow\left(P\left(x_{2}\right) \rightarrow\left(P\left(x_{3}\right) \rightarrow \ldots \rightarrow\left(P\left(x_{n}\right) \rightarrow P\left(x_{1}\right)\right) \ldots\right)\right)\right) ?
$$

Have you seen this question before?
Example 8. Consider a signature σ with one binary relation symbol $<$. A totally ordered set satisfies the following sentences in first-order logic with equality:

1. Irreflexivity: $\forall x \neg(x<x)$.
2. Transitivity: $\forall x \forall y \forall z((x<y \wedge y<z) \rightarrow x<z)$.
3. Trichotomy: $\forall x \forall y(x<y \vee y<x \vee x=y)$.

The structures $\left(\mathbb{Z},<_{\mathbb{Z}}\right),\left(\mathbb{Q},<_{\mathbb{Q}}\right)$ and $\left(\mathbb{R},<_{\mathbb{R}}\right)$ all satisfy the above sentences.
Example 9. Let $w=w_{0} w_{1} \ldots w_{n-1}$ be a finite string over an alphabet $\{p, q\}$. Consider a signature σ with a binary relation symbol $<$ and unary predicate symbols P and Q. We can see w as a σ-structure \mathcal{A} whose universe $U_{\mathcal{A}}$ is the set $\{0,1, \ldots, n-1\}$ of positions in $w,<_{\mathcal{A}}$ is the usual order on $U_{\mathcal{A}}, P_{\mathcal{A}}=\left\{i: w_{i}=p\right\}$ is the set of positions in which letter a occurs and likewise $Q_{\mathcal{A}}=\left\{i: w_{i}=q\right\}$ is the set of positions in which letter b occurs.

The sentence $F=\forall x(P(x) \rightarrow \exists y(x<y \wedge Q(y)))$ is satisfied by a string precisely when every letter p is followed by a letter q. It is easy to see that the set of finite strings that satisfy F is precisely the language of the automaton in Figure 2. In fact for any sentence F over this signature, the set of strings satisfying F defines a regular language.

A first-order formula F over signature σ is satisfiable if $\mathcal{A} \models F$ for some σ structure \mathcal{A}. If F is not satisfiable it is called unsatisfiable. F is called valid if $\mathcal{A} \models F$ for every σ-structure \mathcal{A}. Given a set of formulas \mathcal{S} we write $\mathcal{S} \models F$ to mean that every σ-structure \mathcal{A} that satisfies \mathcal{S} also satisfies F. The same relations exist among these notions as in propositional logic, e.g., F is unsatisfiable if and only if $\neg F$ is valid.

Exercise 10. Consider a signature σ with constant symbol 0 , unary function symbol s, and unary predicate symbol P. Is the σ-formula $P(0) \wedge \forall x(P(x) \rightarrow$ $P(s(x))) \wedge \exists x \neg P(x)$ satisfiable?

3 Reasoning by Induction on Terms and Formulas

Often proofs about first-order logic involve induction on the structure of terms and formulas. We give the following simple lemma by way of example.

Lemma 11 (Relevance Lemma). Suppose that \mathcal{A} and \mathcal{A}^{\prime} are σ-assignments with the same universe and identical interpretations of the predicate, function, and constant symbols in σ. If \mathcal{A} and \mathcal{A}^{\prime} give the same interpretation to each variable occurring free in some σ-formula F then $\mathcal{A} \models F$ if and only if $\mathcal{A}^{\prime} \models F$.

Proof. We first show by induction on terms that if $\mathcal{A}(x)=\mathcal{A}^{\prime}(x)$ for each variable x occurring in a term t occurring in F then $\mathcal{A}(t)=\mathcal{A}^{\prime}(t)$.

Base cases: If t is either a constant symbol or a variable then $\mathcal{A}(t)=\mathcal{A}^{\prime}(t)$ by assumption.

Induction steps: For f a k-ary function symbol we have:

$$
\begin{aligned}
\mathcal{A}\left(f\left(t_{1}, \ldots, t_{k}\right)\right) & =f_{\mathcal{A}}\left(\mathcal{A}\left(t_{1}\right), \ldots, \mathcal{A}\left(t_{k}\right)\right) \\
& =f_{\mathcal{A}^{\prime}}\left(\mathcal{A}\left(t_{1}\right), \ldots, \mathcal{A}\left(t_{k}\right)\right) \quad \text { (since } f_{\mathcal{A}}=f_{\mathcal{A}^{\prime}} \text {) } \\
& =f_{\mathcal{A}^{\prime}}\left(\mathcal{A}^{\prime}\left(t_{1}\right), \ldots, \mathcal{A}^{\prime}\left(t_{k}\right)\right) \quad \text { (induction hypothesis) } \\
& =\mathcal{A}^{\prime}\left(f\left(t_{1}, \ldots, t_{k}\right)\right) .
\end{aligned}
$$

We now show by induction on formulas F that if \mathcal{A} and \mathcal{A}^{\prime} agree on the free variables in F then $\mathcal{A} \models F$ if and only if $\mathcal{A}^{\prime} \models F$.

Base cases: Let $F=P\left(t_{1}, \ldots, t_{k}\right)$ be an atomic formula. By assumption, $\mathcal{A}(x)=$ $\mathcal{A}^{\prime}(x)$ for any variable x appearing in some term t_{i}. Then

$$
\begin{aligned}
\mathcal{A} \models P\left(t_{1}, \ldots, t_{k}\right) & \text { iff }\left(\mathcal{A}\left(t_{1}\right), \ldots, \mathcal{A}\left(t_{k}\right)\right) \in P_{\mathcal{A}} \\
& \text { iff } \left.\quad\left(\mathcal{A}\left(t_{1}\right), \ldots, \mathcal{A}\left(t_{k}\right)\right) \in P_{\mathcal{A}^{\prime}} \quad \text { (Since } P_{\mathcal{A}}=P_{\mathcal{A}^{\prime}}\right) \\
& \text { iff } \quad\left(\mathcal{A}^{\prime}\left(t_{1}\right), \ldots, \mathcal{A}^{\prime}\left(t_{k}\right)\right) \in P_{\mathcal{A}^{\prime}} \quad \text { (by the above result for terms) } \\
& \text { iff } \quad \mathcal{A}^{\prime} \models P\left(t_{1}, \ldots, t_{k}\right) .
\end{aligned}
$$

Induction steps: We omit the inductive case for the Boolean connectives. We just give the cases for the universal quantifier (the existential quantifier is similar).

$$
\begin{aligned}
\mathcal{A} & =\forall x F \text { iff } \mathcal{A}_{[x \mapsto a]} \models F \text { for all } a \in U_{\mathcal{A}} \\
& \text { iff } \mathcal{A}_{[x \leftrightarrow a]}^{\prime} \models F \text { for all } a \in U_{\mathcal{A}^{\prime}} \quad \text { (induction hypothesis) } \\
& \text { iff } \mathcal{A}^{\prime} \models \forall x F
\end{aligned}
$$

Notice that a variable occurring free in F is either identical to x or it already occurs free in $\forall x F$. Thus $\mathcal{A}_{[x \mapsto a]}$ and $\mathcal{A}_{[x \mapsto a]}^{\prime}$ agree on the free variables of F and we may indeed apply the induction hypothesis above.

A special case of the relevance lemma is that if F is a closed formula and \mathcal{A} and \mathcal{A}^{\prime} are assignments that only differ on the interpretation of variables, then $\mathcal{A} \models F$ if and only if $\mathcal{A}^{\prime} \models F$. For this reason we sometimes don't bother to specify the interpretation of variables when describing assignments in first-order logic.

