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7.1

1 The compactness theorem

In this lecture we prove a fundamental result about propositional logic called the
Compactness Theorem. This will play an important role in the second half of the
course when we study predicate logic. This is due to our use of Herbrand’s Theorem
to reduce reasoning about formulas of predicate logic to reasoning about infinite
sets of formulas of propositional logic.

Before stating and proving the Compactness Theorem we need to introduce one
new piece of terminology. A partial assignment is a function A : D → {0, 1}, where
D ⊆ {p1, p2, . . .} is a set of propositional variables. The set D is called the domain
of A and is denoted dom(A). Given partial assignments A and A′, we say that A′

extends A if dom(A) ⊆ dom(A′) and if A(pi) = A′(pi) for all pi ∈ dom(A). Sometimes
we refer to partial assignments simply as assignments.

Recall that a set of formulas S is satisfiable if there is an assignment that
satisfies every formula in S. For example, the set of formulas

S = {p1 ∨ p2, ¬p2 ∨ ¬p3, p3 ∨ p4, ¬p4 ∨ ¬p5, . . .}

is satisfied by the assignment A such that A(pi) = 1 if i is odd and A(pi) = 0 if i is
even.

Theorem 1 (Compactness Theorem). A set of formulas S is satisfiable if and only
if every finite subset of S is satisfiable.

Proof. One direction of the theorem is obvious: if S is satisfiable then every finite
subset is certainly satisfiable. The non-trivial direction is the converse.

Let S be a set of formulas such that every finite subset of S is satisfiable. Say
that a partial assignment A is good if it satisfies any formula F ∈ S that only
mentions propositional variables in the domain of A. We first observe that for
each n ∈ N there is a partial assignment A with dom(A) = {p1, p2, . . . , pn} that
is good. To see this, consider the subset S ′ ⊆ S consisting of all formulas that
mention only propositional variables p1, p2, . . . , pn. Now S ′ may be an infinite set,
but it only contains finitely many formulas up to logical equivalence since there
are only finitely many formulas on propositional variables p1, p2, . . . , pn up to logical
equivalence (22

n

formulas to be precise). Since all finite subsets of S are satisfiable
we conclude that S ′ is satisfiable by some partial assignment A with dom(A) =
{p1, p2, . . . , pn}. By construction such an assignment is good.

The central idea of the proof is to construct a sequence of good partial assign-
ments A0,A1,A2, . . . such that dom(An) = {p1, . . . , pn} and An+1 extends An for each
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n. We construct the An in sequence, starting with A0, and maintaining the follow-
ing induction hypothesis:

there are infinitely many good partial assignments that extend An. (∗)

For the base step we define A0 to be the assignment with empty domain. Since
there is a good assignment with domain {p1, . . . , pn} for every n, there are infinitely
many good assignments that extend A0; thus A0 satisfies (∗).

For the induction step, suppose that we have constructed assignments A0, . . . ,An

such that An satisfies (∗). Consider the two assignments B,B′ that extend An with
dom(B) = dom(B′) = {p1, p2, . . . , pn+1} (say B(pn+1) = 0 and B′(pn+1) = 1.) Since any
proper extension of An is an extension of either B or B′, it follows that one (or both)
of B and B′ has infinitely many good extensions. Define An+1 to be B if B has in-
finitely many good extensions; otherwise define An+1 to be B′. Then An+1 satisfies
(∗) by construction.

There is a unique (total) assignment A that extends all the An—it is defined by
A(pn) := An(pn) for each n ∈ N. We claim that A satisfies all formulas in S. Indeed
if F ∈ S mentions propositional variables {p1, . . . , pn} then An satisfies F . It follows
that A also satisfies F , since A extends An. Thus A satisfies all formulas in S and
the proof is concluded.

The importance of the Compactness Theorem may be more apparent from the
contrapositive formulation: if a set of formulas S is unsatisfiable then some finite
subset of S is already unsatisfiable. This suggests a procedure by which we can
show that an infinite set of formulas S is unsatisfiable. Suppose that S can be
enumerated by some algorithm as

S = {F1, F2, F3, . . .}

Then for each n ∈ N we test whether the finite set {F1, . . . , Fn} is unsatisfiable (us-
ing, say, truth tables or some other method). The Compactness Theorem guaran-
tees that if S is not satisfiable we will detect that fact after a finite amount of time.
On the other hand if S is satisfiable then the above procedure will not terminate.

2 Application: Graph colouring

Let us consider an application of the compactness theorem to prove a purely com-
binatorial result. Recall that a graph G = (V,E) is k-colourable if there is a function
c : V → {1, . . . , k}mapping the set of vertices to a set of k colours such that adjacent
vertices do not have the same colour, i.e., (u, v) ∈ E implies c(u) 6= c(v). Let us say
that H = (V1, E1) is a subgraph of G if V1 ⊆ V and E1 ⊆ E.

Theorem 2. Let G = (V,E) be a graph with set of vertices V = {vi : i ∈ N}. Suppose
that every finite subgraph of G is k-colourable. Then G is k-colourable.

Proof. Recall how we reduced k-colouring to propositional satisfiability. Introduce
propositional variables Pv,i, for each v ∈ V and 1 ≤ i ≤ k, interpreted as “vertex v
has colour i”. We consider the following propositions:

• Fv :=
∨k

i=1 Pv,i (vertex v has some colour)
• Gv :=

∧k
i=1

∧k
j=i+1 ¬Pv,i ∨ ¬Pv,j (vertex v has at most one colour)

• Hu,v :=
∧k

i=1 ¬Pu,i ∨ ¬Pv,i (vertices u and v don’t have the same colour)

Now define S = {Fv, Gv : v ∈ V }∪{Hu,v : (u, v) ∈ E}. We claim that S is satisfiable
if and only if the graph G has a k-colouring. Indeed, given such a colouring c,
define an assignment A by A(Pv,i) = 1 if and only if c(v) = i. Then it is clear that
A satisfies S. Conversely, given an assignment A satisfying S we can define a
k-colouring c by c(v) = i iff A(Pv,i) = 1.
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By assumption, every every finite subgraph of G has a k-colouring. It follows
that every finite subset of S is satisfiable. By the Compactness Theorem it must be
that S is satisfiable, and thus G itself is k-colourable.

3 Discussion

The proof of the Compactness Theorem bears a different character to the rest of
the proofs in this course. In general, our proofs are constructive: a statement that
something exists is proved by giving an algorithm for producing that “something”.
For example, our proof that a 2-CNF formula with consistent implication graph
is satisfiable consisted of an algorithm to construct a satisfying assignment given
such a graph. By contrast, the proof of the Compactness Theorem does not tell us
anything about the assignment that satisfies the set of formulas S in the statement
of theorem—merely that it exists.

Those who are studying topology might like to note that the Compactness The-
orem is equivalent to the statement that the set of propositional assignments is
compact under its “natural” topology. Here we identify the set of propositional
assignments with the set {0, 1}N, and endow the latter with the product topology,
where {0, 1} has the discrete topology.
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