
Lecture 7
The DPLL Algorithm
Print version of the lecture in Logic and Proof

presented on 31 January 2017

by Dr Christoph Haase

7.1

1 The DPLL Algorithm

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm is a procedure that com-
bines search and deduction to decide satisfiability of CNF formulas. This algorithm
underlies most modern SAT solvers. While the basic procedure itself is 50 years
old, practical DPLL-based SAT solvers only started to appear from the mid 1990s
as a result of enhancements such as clause learning, non-chronological backtrack-
ing, branching heuristics, restart strategies, and lazy data structures.

The DPLL algorithm is based around backtrack search for a satisfying valua-
tion. Here we describe a version of the algorithm with clause learning and non-
chronological backtracking. At every unsuccessful leaf of the search tree (called a
conflict) the algorithm uses resolution to compute a conflict clause. This clause is
added to the formula whose satisfiability is being determined. One can think of
conflict clauses as “caching” previous search results. Conflict clauses also deter-
mine backtracking, as will be explained below.

2 The Main Procedure

The DPLL algorithm is shown in Figure 1. Essentially the algorithm looks for a
satisfying valuation of a given CNF-formula by depth-first search. At any time
the state of the algorithm is a pair (F,A), where F is a CNF-formula and A is a
valuation. We say that such a state is successful if A sets some literal in each
clause of F to true, that is, A |= F . A conflict state is one in which A sets all literals
in some clause of F to false, that is, A 6|= F .

We represent a CNF-formula F as a set of clauses, with each clause being a
set of literals. A valuation is represented as a sequence of assignments 〈p1 7→
b1, . . . , pr 7→ br〉, where p1, . . . , pk are distinct propositional variables and b1, . . . , bk ∈
{0, 1}.

We classify each assignment pi 7→ bi in a valuation as either a decision assign-
ment or an implied assignment. We call the variable pi in a decision assignment
pi 7→ bi a decision variable. We sometimes use the notation pi

C7→ bi to denote an
implied assignment arising through unit propagation (see below) on clause C. The
decision level of an assignment pi 7→ bi in a given state valuation A is the number
of decision assignments in A that precede pi 7→ bi.

By F |A we denote the set of clauses obtained by deleting from F any clause that
contains a true literal under A and deleting from each remaining clause all literals

1



Input: CNF formula F .
1. Initialise A to be the empty list of assignments.
2. While there is a unit clause {L} in F |A, add assignment L 7→ 1 to A.
3. If F |A contains no clauses then stop and output A.
4. If F |A contains the empty clause then apply the learning procedure to add a

new clause C to F . If C is the empty clause then stop and output “UNSAT”.
Otherwise backtrack to the highest level at which C is a unit clause. Go to
Line 2.

5. Apply the decision strategy to determine a new decision assignment P 7→ b to
be added to A. Go to Line 2.

Figure 1: DPLL Algorithm

that are false under A. Note that (F,A) is a conflict state if F |A contains the empty
clause � and (F,A) is a successful state if F |A is the empty set of clauses.

2.1 Unit Propagation

A unit clause is a clause with a single literal. The while loop in Line 2 of the DPLL
algorithm adds the assignment L 7→ 1 to the state whenever there is a unit clause
{L} in F |A. This subroutine is called unit propagation.

Example 1. Consider an execution of the DPLL algorithm starting with the set of
clauses F = {C1, . . . , C5}, where

C1 : {¬p1,¬p4, p5}
C2 : {¬p1, p6,¬p5}
C3 : {¬p1,¬p6, p7}
C4 : {¬p1,¬p7,¬p5}
C5 : {p1, p4, p6} .

Suppose that the current valuation is given by the following sequence of deci-
sion assignments A = 〈 p1 7→ 1, p2 7→ 0, p3 7→ 0, p4 7→ 1 〉. Notice that F |A contains the
unit clause {p5}. From this, unit propagation generates the further sequence of

implied assignments 〈 p5
C17→ 1, p6

C27→ 1, p7
C37→ 1 〉. This leads to a conflict, with clause

C4 being made false.

2.2 Conflict Analysis

On termination of unit propagation, if the procedure is neither in a conflict state
nor a successful state, then another decision assignment is made (Line 5). If, on
the other hand, a conflict has been reached then a learned clause is added to the
current state (Line 4). Intuitively the learned clause summarises the reason for the
conflict.

We will explain in detail one method of clause learning in the next section. For
now we just note the properties that a learned clause is required to have under
our learning scheme.

If the state of the algorithm is (F,A) then we say that a clause C is a conflict
clause if all literals in C are made false by A. If (F,A) is a conflict state and clause
C is learned then it is required that:

1. F ≡ F ∪ {C};
2. C be a conflict clause;
3. all variables in C be decision variables.

2



2.3 Correctness

We first argue termination of the algorithm. To this end, notice that a sequence
of decisions that leads to a conflict cannot be repeated. This is because all the
variables in the learned clause C are decision variables. Thus if all but one of the
literals in C are made false in some future assignment then the remaining variable
cannot be a decision variable since its value is determined by the unit propagation
rule.

Given termination, correctness is straightforward. By Condition 1 above we
have F ≡ F ∪ {C} for any learned clause C. Thus if the empty clause is learned
then the original formula was unsatisfiable. On the other hand, if the algorithm
terminates with a satisfying assignment A then the input formula is also satisfied
by A.

3 Clause Learning

Let A = 〈 p1 7→ b1, . . . , pk 7→ bk 〉 be a sequence of assignments leading to a conflict.
We compute an associated sequence of clauses A1, . . . , Ak+1 by backward induction
as follows:

1. Define Ak+1 to be any conflict clause under the assignment A.
2. If pi 7→ bi is a decision assignment or if pi is not mentioned in Ai+1 then define

Ai = Ai+1.
3. If pi

Ci7→ bi is an implied assignment and pi is mentioned in Ai+1 then define Ai

to be the resolvent of Ai+1 and Ci with respect pi.

The final clause A1 is the learned clause.1

Example 2. Consider the conflict described in Example 1. From this situation the
learning procedure generates clauses A8, A7, . . . , A1 as shown below.

A8 := {¬p1,¬p7,¬p5} (clause C4)

A7 := {¬p1,¬p5,¬p6} (resolve A8, C3)

A6 := {¬p1,¬p5} (resolve A7, C2)

A5 := {¬p1,¬p4} (resolve A6, C1)
...

A1 := {¬p1,¬p4}

The learned clause A1 is a conflict clause that contains only decision variables,
including an occurrence of the top-level decision variable p4. This clause captures
the intuition that the conflict arose from the decision to make both p1 and p4 true
(and is nothing to do with p2 and p3, which are not even mentioned in the formula).
The addition of clause A1 to F ensures that valuations in which p1 and p4 are
both true are no longer reachable. Indeed, the algorithm backtracks to the highest
level in which A1 is a unit clause (namely the valuation p1 7→ 1) and then unit
propagation immediately leads to the assignment p4 7→ 0.

The following proposition shows that the above learning procedure fulfils the
desiderata listed in Section 2.2.

Proposition 3. Suppose that state (F,A) is a conflict and let C be the learned
clause. Then C is a conflict clause, all variables occurring in C are decision vari-
ables in A, and F ≡ F ∪ {C}.

1Note that we are describing one policy for learning clauses and that alternative policies exist.

3



Proof. Suppose that A = 〈 p1 7→ b1, . . . , pk 7→ bk 〉. Then clause learning produces
a sequence of clauses Ak+1, Ak, . . . , A1, with Ak+1 the conflict clause and A1 = C
the learned clause. Since C is obtained by a resolution proof from F , we have
F ≡ F ∪ {C} by the Resolution Lemma.

Now we claim that the following hold for each clause Ai, 1 ≤ i ≤ k + 1.

1. Ai is a conflict clause (i.e., is made false by A);
2. The non-decision variables appearing in Ai lie all in {p1, . . . , pi−1};

The proof of claim is by “backward” induction on i, from k + 1 down to 1.
The base case is i = k + 1. By definition Ak+1 is a conflict clause. It follows that

Ak+1 can only mention variables in the domain of A, so Condition 2 is satisfied.
The induction step divides into two cases. Suppose that Ai+1 satisfies Condi-

tions 1 and 2 above. The first case is that pi is either a decision variable or does
not occur in Ai+1 then Ai = Ai+1, and clearly Ai satisfies Conditions 1 and 2.

The second case is that pi
Ci7→ bi is an implied assignment and pi occurs in Ai+1.

Then Ai is a resolvent of Ai+1 and Ci (with respect to pi). In particular Ai does not
mention the variable pi. It remains to check that Conditions 1 and 2 hold for Ai.

Now Ci is a unit clause under the assignment 〈 p1 7→ b1, . . . , pi−1 7→ bi−1 〉. Thus,
other than pi, Ci can only mention variables in the set {p1, . . . , pi−1} and all literals
in Ci pertaining to these variables are made false by A. This shows that Conditions
1 and 2 hold for the resolvent Ai.

Note that we have proved that all variables that appear in a learned clause C
are decision variables. By a similar inductive argument it can be shown that C
must mention the top-level decision variable. It follows that if a top-level decision
assignment p 7→ b leads to conflict after unit propagation, then after backtracking
the assignment p 7→ 1 − b is performed by the unit propagation rule before any
further decisions.

4 Other Enhancements

Modern SAT solvers include numerous enhancements beyond what is discussed
above. These include techniques, such as watched literals, to efficiently discover
which clauses become unsat, decision heuristics for choosing decision variables,
clause removal (removing learned clauses), and random restarts.

4


	The DPLL Algorithm
	The Main Procedure
	Unit Propagation
	Conflict Analysis
	Correctness

	Clause Learning
	Other Enhancements

