
Lecture 4
Polynomial-time formula classes
Horn-SAT, 2-SAT, X-SAT, Walk-SAT

Print version of the lecture in Logic and Proof

presented on 6 May 2019

by Dr Christoph Haase

4.1

1 Polynomial-time fragments of propositional logic

So far, the only method we have to solve the propositional satisfiability problem
that can be automated is to use truth tables, which takes exponential time in the
formula size in the worst case. In this lecture we show that for Horn formulas, 2-
CNF and X-CNF formulas satisfiability can be decided in polynomial time, whereas
for 3-CNF formulas satisfiability is as hard as the general case.

Horn formulas have numerous computer-science applications due to their good
algorithmic properties. In particular, the programming languages Prolog and Dat-
alog are based on Horn clauses in first-order logic.

Definition 1. A CNF formula is a Horn formula if each clause contains at most
one positive literal.

Example 2. An example of a Horn formula is the following:

p1 ∧ (¬p2 ∨ ¬p3) ∧ (¬p1 ∨ ¬p2 ∨ p4)

Horn formulas can be rewritten in a more intuitive way as conjunctions of im-
plications, called implication form. For example,

(true → p1) ∧ (p2 ∧ p3 → false) ∧ (p1 ∧ p2 → p4)

The satisfiability problem for Horn formulas is called Horn-SAT. There is a
simple polynomial-time algorithm to determine whether a given Horn formula F
is satisfiable using the algorithm below. This algorithm maintains a valuation A
whose domain is the set {p1, . . . , pn} of propositional variables mentioned by F . We
consider the set of such valuations ordered pointwise: A ≤ B if A(pi) ≤ B(pi) for
i = 1, . . . , n. Initially A is assigned the zero valuation 0 assigning the truth value
0 to all variables, i.e., A is such that A(pi) = 0 for i = 1, . . . , n. Thereafter each
iteration of the main loop changes A(pi) from 0 to 1 for some i until either the input
formula is satisfied or a contradiction is reached.

INPUT: Horn formula F
T := ∅
while T does not satisfy F do
begin

pick an unsatisfied clause p1 ∧ · · · ∧ pk → G

1



if G is a variable then T := T ∪ {G}
if G = false then return UNSAT

end
return T

It is clear that there can be at most n iterations of the while loop, and so the
algorithm terminates in time polynomial in the size of the input formula.

Any assignment A returned by algorithm must satisfy F since the termination
condition of the while loop is that all clauses are satisfied by A. It thus remains
to show that if the algorithm returns “unsat” then the input formula F really is
unsatisfiable. To show this, suppose that B is an assignment that satisfies F . We
claim that A ≤ B is a loop invariant.1

The initialisation A := 0 establishes the invariant. To see that the invariant
is maintained by an execution of the loop body, consider an implication p1 ∧ · · · ∧
pk → G that is not satisfied by A. Then A satisfies p1, . . . , pk but not G. Since
A ≤ B, B also satisfies p1, p2, · · · , pk. It follows that B satisfies G—so G 6= false and
the algorithm does not return “unsat”. Moreover, since B(G) = 1 the assignment
A(G) := 1 preserves the invariant. This completes the proof of correctness.

The above argument shows that the Horn-SAT algorithm returns the minimum
model of a Horn formula F , i.e., a model A such that A ≤ B for any other model B
of F .

Another subclass of formulas of propositional logic with a polynomial-time de-
cidable satisfiability problem are formulas which are in 2-CNF.

Definition 3. A 2-CNF formula, or Krom formula is a CNF formula F such that
every clause has at most two literals.

The satisfiability problem for formulas in 2-CNF is called 2-SAT. A clause of a
2-CNF formula can be written as an implication L → M for literals L and M . The
key idea underlying the algorithm for satisfiability for 2-CNF formulas is that those
implications can be represented by a directed graph:

• For a literal L, define

L :=

{
p if L = ¬p
¬p otherwise

• The implication graph of a 2-CNF formula F is a directed graph G = (V,E),
where

V := {p1, p2, . . . , pn} ∪ {¬p1,¬p2, . . . ,¬pn} ,

with p1, p2, . . . , pn the propositional variables mentioned in F . For each pair
of literals L and M , there is an edge (L,M) iff the clause (L ∨M) or (M ∨ L)
appears in F .

Figure 1 gives an example of an implication graph. Paths in G correspond to
chains of implications. Observe that for an edge (L,M) there is a corresponding
edge (M,L). This edge represents the contrapositive implication M → L corre-
sponding to the implication L → M . We say that G is consistent if there is no
propositional variable p with a path from p to ¬p and a path from ¬p to p in G.
Notice that this property can be checked in polynomial time using standard graph
algorithms for finding strongly connected components.

Theorem 4. A 2-CNF formula F is satisfiable iff its implication graph G is consistent.

1Recall that a predicate I is an invariant of a loop while C do body if whenever the conjunction of
the invariant and loop guard I ∧ C holds before an execution of body, then I holds after the execution
of body.

2



¬p0

¬p1

¬p2

¬p3

¬p4

¬p5

¬p6

p0

p1

p2

p3

p4

p5

p6

Figure 1: Example of an implication graph for the 2-CNF formula (p0 ∨ p2) ∧ (p0 ∨
¬p3)∧ (p1 ∨¬p3)∧ (p1 ∨¬p4)∧ (p2 ∨¬p4)∧ (p0 ∨¬p5)∧ (p1 ∨¬p5)∧ (p2 ∨¬p5)∧ (p3 ∨ p6)∧
(p4 ∨ p6) ∧ (p5 ∨ p6).

The proof of this theorem consists of two steps. First, suppose that G is not
consistent, i.e., that there are paths from p to ¬p and from ¬p to p. Then for any
assignment A that satisfies F we must have A(p) ≤ A(¬p) and A(¬p) ≤ A(p). But
then A(p) = A(¬p), which is impossible. Thus F must be unsatisfiable.

For the converse direction, suppose that G is consistent. We construct a sat-
isfying assignment incrementally, starting with the empty assignment, using the
procedure below.

INPUT: 2-CNF formula F
A := empty valuation
while there is some unassigned variable do

begin
pick a literal L for which there is no path from L to L, and
set A(L) := 1
while there is an edge (M,N) with A(M) = 1 and A(N) is undefined

do A(N) := 1
end

return A

The invariant of the outer loop is that any node reachable from a true node is
also true. If the invariant holds and all variables are assigned, then we have a
satisfying valuation. The invariant of the inner loop is that there is no path from
a true node to a false node. If the invariant of the outer loop holds but not all
variables have been assigned, then pick a unassigned literal L with no path from
L to L (such a literal must exist by consistency of G) and set A(L) := 1. After this
assignment the invariant of the inner loop (no path from a true node to a false
node) is true. Indeed, by assumption there is no path from L to L, moreover there
can be no path from a true node to L (equivalently, from L to a false node) else L
would already have been assigned.

Clearly the body of the inner loop maintains the invariant that there is no path
from a true node to a false node. Thus on termination of the inner loop every node
reachable from a true node is true.

A 3-CNF formula is a CNF formula with at most 3 literals per clause, and the
corresponding satisfiability problem is called 3-SAT. While the satisfiability prob-
lem for 2-CNF formulas is “easy”, i.e., polynomial-time solvable, we show that the
satisfiability problem for 3-CNF formulas is as hard as the general case. More
precisely, given an arbitrary propositional formula F we build an equisatisfiable
3-CNF formula G. By this we mean that G is satisfiable if and only if F is sat-
isfiable. Since the transformation from F to G is straightforward to implement,

3



it follows that if we had an polynomial-time algorithm to decide satisfiability for
3-CNF formulas then we could also decide satisfiability of arbitrary formulas in
polynomial time. Note that two logically equivalent formulas are equisatisfiable,
but two equisatisfiable formulas need not be logically equivalent.

Theorem 5. Given an arbitrary formula F , we can compute an equisatisfiable 3-CNF
formula G in polynomial time.

Proof. Let F be an arbitrary formula. We construct an equisatisfiable 3-CNF for-
mula G as follows. Let F1, F2, . . . , Fn be a list of the subformulas of F , with Fn = F .
Furthermore let the propositional variables appearing in F be p1, . . . , pm and sup-
pose that F1 = p1, . . . , Fm = pm. Corresponding to the non-atomic subformulas
Fm+1, . . . , Fn of F we introduce new propositional variables pm+1, . . . , pn. With each
new variable pi we associate a formula Gi which intuitively asserts that pi has the
same truth value as the subformula Fi.

Formally, the formulas Gm+1, . . . , Gn are defined from Fm+1, . . . , Fn as follows:

• If Fi = Fj ∨Fk then we define Gi so that it is logically equivalent to pi ↔ pj ∨pk:

Gi := (¬pi ∨ pj ∨ pk) ∧ (¬pj ∨ pi) ∧ (¬pk ∨ pi) .

• If Fi = Fj ∧Fk then we define Gi so that it is logically equivalent to pi ↔ pj ∧pk:

Gi := (¬pi ∨ pj) ∧ (¬pi ∨ pk) ∧ (¬pj ∨ ¬pk ∨ pi)

• If Fi = ¬Fj then we define Gi so that it is logically equivalent to pi ↔ ¬pj:

Gi := (¬pi ∨ ¬pj) ∧ (pj ∨ pi) .

We now define
G := Gm+1 ∧Gm+2 ∧ · · · ∧Gn ∧ pn .

Then any assignment A with domain {p1, . . . , pm} that satisfies F can be uniquely
extended to an assignment A′ with domain {p1, . . . , pn} that satisfies G by writing
A′(pi) = A(Fi) for i = m + 1, . . . , n. Conversely any assignment A′ that satisfies G
restricts to an assignment that satisfies F . Thus F and G are equisatisfiable.

Finally, we consider formulas that can be written as conjunctions of XOR-
clauses, where each XOR-clause is an exclusive-or of literals. Such formulas look
like CNF-formulas, but with exclusive-or instead of disjunction. For example, con-
sider the formula

F = (p1 ⊕ p3) ∧ (¬p1 ⊕ p2) ∧ (p1 ⊕ p2 ⊕ ¬p3) .

The satisfiability of F can be formulated as a system of linear equations over Z2

(the integers modulo 2), with one equation for each clause.

p1 + p3 = 1
1 + p1 + p2 = 1
p1 p2 + 1 + p3 = 1

Simplifying yields:
p1 + p3 = 1
p1 + p2 = 0
p1 + p2 + p3 = 0

Reducing the system to echelon form using Gaussian elimination and solving
yields p1 = 1, p2 = 1, p3 = 0.

In general we can reduce the SAT problem for conjunctions of XOR-clauses
to solving linear equations over Z2. Such equations can be solved by Gaussian
elimination (which requires a cubic number of arithmetic operations).

4



2 Walk-SAT: A randomised algorithm for satisfiability

The algorithms that we looked at so far are all exact in the sense that once they
stop, they will tell us for sure whether the input formula is satisfiable. In this
section, we describe a very simple randomised algorithm Walk-SAT for deciding
satisfiability of CNF formulas. We show that Walk-SAT yields a polynomial-time
algorithm when run on 2-CNF formulas.

Given a CNF formula F , Walk-SAT starts by guessing an assignment uniformly
at random. While there is some unsatisfied clause in F , the algorithm picks a literal
in that clause (again at random) and flips its truth value. If a satisfying assignment
has not been found after r steps, where r is a parameter, then algorithm returns
“unsat”:

INPUT: CNF formula F with n variables, repetition parameter r
pick a random assignment
repeat r times

pick an unsatisfied clause
pick a literal in the clause uniformly at random, and flip its value
if F is satisfied then return the current assignment

return unsat

If F is not satisfiable then clearly the procedure will certainly return “unsat”.
However it is possible for F to be satisfiable and the algorithm to halt before finding
a satisfying assignment. We say that Walk-SAT has one-sided errors. Below we
will show that for a 2-CNF formulas F with n variables, choosing r = 2mn2 the
error probability of Walk-SAT is at most 2−m. Thus we obtain a polynomial-time
algorithm with exponentially small error probability.

Consider a 2-CNF formula F with a satisfying assignment A. We bound the
expected number of flips to find this assignment. Of course the algorithm may
terminate successfully by finding another satisfying assignment, but we only seek
an upper bound on the expected running time.

We will need the following result from elementary probability theory.

Proposition 6 (Markov’s Inequality). Let X be a non-negative random variable.

Then for all a > 0, Pr(X ≥ a) ≤ E[X]

a
.

Proof. Define a random variable

I =

{
1 X ≥ a
0 otherwise.

Then I ≤ X/a, since X ≥ 0. Hence

E[X]

a
≥ E[I] = Pr(I = 1) = Pr(X ≥ a) .

Define the distance between two assignments to be the number of variables on
which they differ. Let Ti be the maximum over all assignments B at distance i from
A of the expected number of variable-flipping steps to reach A starting from B. By
definition, T0 = 0 and clearly Tn = 1 + Tn−1. Otherwise when we flip we choose
from among two literals in a clause that is not satisfied by the current assignment.
Since such a clause is satisfied by A, at least one of those literals must have a
different value under A than B. Thus the probability of moving closer to A is at
least 1/2 and the probability of moving farther from A is at most 1/2. In summary

5



we have

T0 = 0

Tn = 1 + Tn−1

Ti ≤ 1 + (Ti+1 + Ti−1)/2 0 < i < n (1)

To obtain an upper bound on the Ti we consider the situation in which (1) holds
as an equality. Defining H0, . . . ,Hn by the equations

H0 = 0

Hn = 1 +Hn−1

Hi = 1 + (Hi+1 +Hi−1)/2 0 < i < n

we have Ti ≤ Hi for i = 0, . . . , n.
The above is a system of n+1 linearly independent equations in n+1 unknowns,

which therefore has a unique solution. Adding all the equations together we get
H1 = 2n− 1. Then solving the H1-equation for H2 we get H2 = 4n− 4. Continuing in
this manner yields Hi = 2in− i2. So the worst expected time to hit A is Hn = n2.

Theorem 7. Consider a run of Walk-SAT on a satisfiable 2-CNF formula with n
variables. Choosing r = 2mn2, the probability of returning a satisfying assignment
is at least 1− 2−m.

Proof. We can divide the 2mn2 iterations of the main loop into m phases, each con-
sisting of 2n2 iterations. Since the expected number of iterations to find a satisfying
valuation from any given starting point is at most n2, by Markov’s inequality the
probability that a satisfying valuation is not found in any given phase is at most
n2/2n2 = 1/2. Thus the probability that an unsatisfying valuation is not found over
all m phases is at most 2−m.

We have analysed Walk-SAT in terms of a one-dimensional random walk on line
{0, . . . , n} with absorbing barrier 0 and reflecting barrier n. A similar analysis can
be carried out for 3-CNF formulas, but with a probability 2/3 of going right and 1/3
of going left. However in this case we require the parameter r to be exponential in
n to get a decent error bound.

6


	Polynomial-time fragments of propositional logic
	Walk-SAT: A randomised algorithm for satisfiability

