Lecture 4

 Polynomial-time formula classesHorn-SAT, 2-SAT, X-SAT, Walk-SAT
Print version of the lecture in Logic and Proof
presented on 6 May 2019
by Dr Christoph Haase

1 Polynomial-time fragments of propositional logic

So far, the only method we have to solve the propositional satisfiability problem that can be automated is to use truth tables, which takes exponential time in the formula size in the worst case. In this lecture we show that for Horn formulas, 2CNF and X-CNF formulas satisfiability can be decided in polynomial time, whereas for 3-CNF formulas satisfiability is as hard as the general case.

Horn formulas have numerous computer-science applications due to their good algorithmic properties. In particular, the programming languages Prolog and Datalog are based on Horn clauses in first-order logic.

Definition 1. A CNF formula is a Horn formula if each clause contains at most one positive literal.

Example 2. An example of a Horn formula is the following:

$$
p_{1} \wedge\left(\neg p_{2} \vee \neg p_{3}\right) \wedge\left(\neg p_{1} \vee \neg p_{2} \vee p_{4}\right)
$$

Horn formulas can be rewritten in a more intuitive way as conjunctions of implications, called implication form. For example,

$$
\left(\text { true } \rightarrow p_{1}\right) \wedge\left(p_{2} \wedge p_{3} \rightarrow \text { false }\right) \wedge\left(p_{1} \wedge p_{2} \rightarrow p_{4}\right)
$$

The satisfiability problem for Horn formulas is called Horn-SAT. There is a simple polynomial-time algorithm to determine whether a given Horn formula F is satisfiable using the algorithm below. This algorithm maintains a valuation \mathcal{A} whose domain is the set $\left\{p_{1}, \ldots, p_{n}\right\}$ of propositional variables mentioned by F. We consider the set of such valuations ordered pointwise: $\mathcal{A} \leq \mathcal{B}$ if $\mathcal{A}\left(p_{i}\right) \leq \mathcal{B}\left(p_{i}\right)$ for $i=1, \ldots, n$. Initially \mathcal{A} is assigned the zero valuation 0 assigning the truth value 0 to all variables, i.e., \mathcal{A} is such that $\mathcal{A}\left(p_{i}\right)=0$ for $i=1, \ldots, n$. Thereafter each iteration of the main loop changes $\mathcal{A}\left(p_{i}\right)$ from 0 to 1 for some i until either the input formula is satisfied or a contradiction is reached.

INPUT: Horn formula F
$T:=\emptyset$
while T does not satisfy F do
begin
pick an unsatisfied clause $p_{1} \wedge \cdots \wedge p_{k} \rightarrow G$
if G is a variable then $T:=T \cup\{G\}$
if $G=$ false then return UNSAT
end
return T
It is clear that there can be at most n iterations of the while loop, and so the algorithm terminates in time polynomial in the size of the input formula.

Any assignment \mathcal{A} returned by algorithm must satisfy F since the termination condition of the while loop is that all clauses are satisfied by \mathcal{A}. It thus remains to show that if the algorithm returns "unsat" then the input formula F really is unsatisfiable. To show this, suppose that \mathcal{B} is an assignment that satisfies F. We claim that $\mathcal{A} \leq \mathcal{B}$ is a loop invariant. \mid ?

The initialisation $\mathcal{A}:=0$ establishes the invariant. To see that the invariant is maintained by an execution of the loop body, consider an implication $p_{1} \wedge \cdots \wedge$ $p_{k} \rightarrow G$ that is not satisfied by \mathcal{A}. Then \mathcal{A} satisfies p_{1}, \ldots, p_{k} but not G. Since $\mathcal{A} \leq \mathcal{B}, \mathcal{B}$ also satisfies $p_{1}, p_{2}, \cdots, p_{k}$. It follows that \mathcal{B} satisfies G-so $G \neq f$ false and the algorithm does not return "unsat". Moreover, since $\mathcal{B}(G)=1$ the assignment $\mathcal{A}(G):=1$ preserves the invariant. This completes the proof of correctness.

The above argument shows that the Horn-SAT algorithm returns the minimum model of a Horn formula F, i.e., a model \mathcal{A} such that $\mathcal{A} \leq \mathcal{B}$ for any other model \mathcal{B} of F.

Another subclass of formulas of propositional logic with a polynomial-time decidable satisfiability problem are formulas which are in 2-CNF.

Definition 3. A 2-CNF formula, or Krom formula is a CNF formula F such that every clause has at most two literals.

The satisfiability problem for formulas in 2-CNF is called 2-SAT. A clause of a 2 -CNF formula can be written as an implication $L \rightarrow M$ for literals L and M. The key idea underlying the algorithm for satisfiability for 2-CNF formulas is that those implications can be represented by a directed graph:

- For a literal L, define

$$
\bar{L}:= \begin{cases}p & \text { if } L=\neg p \\ \neg p & \text { otherwise }\end{cases}
$$

- The implication graph of a 2 -CNF formula F is a directed graph $\mathcal{G}=(V, E)$, where

$$
V:=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \cup\left\{\neg p_{1}, \neg p_{2}, \ldots, \neg p_{n}\right\}
$$

with $p_{1}, p_{2}, \ldots, p_{n}$ the propositional variables mentioned in F. For each pair of literals L and M, there is an edge (L, M) iff the clause $(\bar{L} \vee M)$ or $(M \vee \bar{L})$ appears in F.

Figure 1 gives an example of an implication graph. Paths in \mathcal{G} correspond to chains of implications. Observe that for an edge (L, M) there is a corresponding edge (\bar{M}, \bar{L}). This edge represents the contrapositive implication $\bar{M} \rightarrow \bar{L}$ corresponding to the implication $L \rightarrow M$. We say that \mathcal{G} is consistent if there is no propositional variable p with a path from p to $\neg p$ and a path from $\neg p$ to p in \mathcal{G}. Notice that this property can be checked in polynomial time using standard graph algorithms for finding strongly connected components.
Theorem 4. A 2-CNF formula F is satisfiable iff its implication graph \mathcal{G} is consistent.

[^0]

Figure 1: Example of an implication graph for the 2-CNF formula $\left(p_{0} \vee p_{2}\right) \wedge\left(p_{0} \vee\right.$ $\left.\neg p_{3}\right) \wedge\left(p_{1} \vee \neg p_{3}\right) \wedge\left(p_{1} \vee \neg p_{4}\right) \wedge\left(p_{2} \vee \neg p_{4}\right) \wedge\left(p_{0} \vee \neg p_{5}\right) \wedge\left(p_{1} \vee \neg p_{5}\right) \wedge\left(p_{2} \vee \neg p_{5}\right) \wedge\left(p_{3} \vee p_{6}\right) \wedge$ $\left(p_{4} \vee p_{6}\right) \wedge\left(p_{5} \vee p_{6}\right)$.

The proof of this theorem consists of two steps. First, suppose that \mathcal{G} is not consistent, i.e., that there are paths from p to $\neg p$ and from $\neg p$ to p. Then for any assignment \mathcal{A} that satisfies F we must have $\mathcal{A}(p) \leq \mathcal{A}(\neg p)$ and $\mathcal{A}(\neg p) \leq \mathcal{A}(p)$. But then $\mathcal{A}(p)=\mathcal{A}(\neg p)$, which is impossible. Thus F must be unsatisfiable.

For the converse direction, suppose that \mathcal{G} is consistent. We construct a satisfying assignment incrementally, starting with the empty assignment, using the procedure below.

INPUT: 2-CNF formula F
$\mathcal{A}:=$ empty valuation
while there is some unassigned variable do begin
pick a literal L for which there is no path from L to \bar{L}, and
set $\mathcal{A}(L):=1$
while there is an edge (M, N) with $\mathcal{A}(M)=1$ and $\mathcal{A}(N)$ is undefined
do $\mathcal{A}(N):=1$
end
return \mathcal{A}
The invariant of the outer loop is that any node reachable from a true node is also true. If the invariant holds and all variables are assigned, then we have a satisfying valuation. The invariant of the inner loop is that there is no path from a true node to a false node. If the invariant of the outer loop holds but not all variables have been assigned, then pick a unassigned literal L with no path from L to \bar{L} (such a literal must exist by consistency of \mathcal{G}) and set $\mathcal{A}(L):=1$. After this assignment the invariant of the inner loop (no path from a true node to a false node) is true. Indeed, by assumption there is no path from L to \bar{L}, moreover there can be no path from a true node to \bar{L} (equivalently, from L to a false node) else L would already have been assigned.

Clearly the body of the inner loop maintains the invariant that there is no path from a true node to a false node. Thus on termination of the inner loop every node reachable from a true node is true.

A 3-CNF formula is a CNF formula with at most 3 literals per clause, and the corresponding satisfiability problem is called 3-SAT. While the satisfiability problem for 2-CNF formulas is "easy", i.e., polynomial-time solvable, we show that the satisfiability problem for 3-CNF formulas is as hard as the general case. More precisely, given an arbitrary propositional formula F we build an equisatisfiable 3-CNF formula G. By this we mean that G is satisfiable if and only if F is satisfiable. Since the transformation from F to G is straightforward to implement,
it follows that if we had an polynomial-time algorithm to decide satisfiability for 3-CNF formulas then we could also decide satisfiability of arbitrary formulas in polynomial time. Note that two logically equivalent formulas are equisatisfiable, but two equisatisfiable formulas need not be logically equivalent.

Theorem 5. Given an arbitrary formula F, we can compute an equisatisfiable 3-CNF formula G in polynomial time.

Proof. Let F be an arbitrary formula. We construct an equisatisfiable 3-CNF formula G as follows. Let $F_{1}, F_{2}, \ldots, F_{n}$ be a list of the subformulas of F, with $F_{n}=F$. Furthermore let the propositional variables appearing in F be p_{1}, \ldots, p_{m} and suppose that $F_{1}=p_{1}, \ldots, F_{m}=p_{m}$. Corresponding to the non-atomic subformulas F_{m+1}, \ldots, F_{n} of F we introduce new propositional variables p_{m+1}, \ldots, p_{n}. With each new variable p_{i} we associate a formula G_{i} which intuitively asserts that p_{i} has the same truth value as the subformula F_{i}.

Formally, the formulas G_{m+1}, \ldots, G_{n} are defined from F_{m+1}, \ldots, F_{n} as follows:

- If $F_{i}=F_{j} \vee F_{k}$ then we define G_{i} so that it is logically equivalent to $p_{i} \leftrightarrow p_{j} \vee p_{k}$:

$$
G_{i}:=\left(\neg p_{i} \vee p_{j} \vee p_{k}\right) \wedge\left(\neg p_{j} \vee p_{i}\right) \wedge\left(\neg p_{k} \vee p_{i}\right)
$$

- If $F_{i}=F_{j} \wedge F_{k}$ then we define G_{i} so that it is logically equivalent to $p_{i} \leftrightarrow p_{j} \wedge p_{k}$:

$$
G_{i}:=\left(\neg p_{i} \vee p_{j}\right) \wedge\left(\neg p_{i} \vee p_{k}\right) \wedge\left(\neg p_{j} \vee \neg p_{k} \vee p_{i}\right)
$$

- If $F_{i}=\neg F_{j}$ then we define G_{i} so that it is logically equivalent to $p_{i} \leftrightarrow \neg p_{j}$:

$$
G_{i}:=\left(\neg p_{i} \vee \neg p_{j}\right) \wedge\left(p_{j} \vee p_{i}\right)
$$

We now define

$$
G:=G_{m+1} \wedge G_{m+2} \wedge \cdots \wedge G_{n} \wedge p_{n}
$$

Then any assignment \mathcal{A} with domain $\left\{p_{1}, \ldots, p_{m}\right\}$ that satisfies F can be uniquely extended to an assignment \mathcal{A}^{\prime} with domain $\left\{p_{1}, \ldots, p_{n}\right\}$ that satisfies G by writing $\mathcal{A}^{\prime}\left(p_{i}\right)=\mathcal{A}\left(F_{i}\right)$ for $i=m+1, \ldots, n$. Conversely any assignment \mathcal{A}^{\prime} that satisfies G restricts to an assignment that satisfies F. Thus F and G are equisatisfiable.

Finally, we consider formulas that can be written as conjunctions of XORclauses, where each XOR-clause is an exclusive-or of literals. Such formulas look like CNF-formulas, but with exclusive-or instead of disjunction. For example, consider the formula

$$
F=\left(p_{1} \oplus p_{3}\right) \wedge\left(\neg p_{1} \oplus p_{2}\right) \wedge\left(p_{1} \oplus p_{2} \oplus \neg p_{3}\right)
$$

The satisfiability of F can be formulated as a system of linear equations over \mathbb{Z}_{2} (the integers modulo 2), with one equation for each clause.

$$
\begin{array}{ll}
p_{1} & +p_{3} \\
1+p_{1}+p_{2} & 1 \\
p_{1} & =1 \\
p_{2}+1+p_{3} & =1
\end{array}
$$

Simplifying yields:

$$
\begin{aligned}
& p_{1}+p_{3}=1 \\
& p_{1}+p_{2}=0 \\
& p_{1}+p_{2}+p_{3}=0
\end{aligned}
$$

Reducing the system to echelon form using Gaussian elimination and solving yields $p_{1}=1, p_{2}=1, p_{3}=0$.

In general we can reduce the SAT problem for conjunctions of XOR-clauses to solving linear equations over \mathbb{Z}_{2}. Such equations can be solved by Gaussian elimination (which requires a cubic number of arithmetic operations).

2 Walk-SAT: A randomised algorithm for satisfiability

The algorithms that we looked at so far are all exact in the sense that once they stop, they will tell us for sure whether the input formula is satisfiable. In this section, we describe a very simple randomised algorithm Walk-SAT for deciding satisfiability of CNF formulas. We show that Walk-SAT yields a polynomial-time algorithm when run on 2-CNF formulas.

Given a CNF formula F, Walk-SAT starts by guessing an assignment uniformly at random. While there is some unsatisfied clause in F, the algorithm picks a literal in that clause (again at random) and flips its truth value. If a satisfying assignment has not been found after r steps, where r is a parameter, then algorithm returns "unsat":

INPUT: CNF formula F with n variables, repetition parameter r
pick a random assignment
repeat r times
pick an unsatisfied clause
pick a literal in the clause uniformly at random, and flip its value
if F is satisfied then return the current assignment
return unsat
If F is not satisfiable then clearly the procedure will certainly return "unsat". However it is possible for F to be satisfiable and the algorithm to halt before finding a satisfying assignment. We say that Walk-SAT has one-sided errors. Below we will show that for a 2-CNF formulas F with n variables, choosing $r=2 m n^{2}$ the error probability of Walk-SAT is at most 2^{-m}. Thus we obtain a polynomial-time algorithm with exponentially small error probability.

Consider a $2-\mathrm{CNF}$ formula F with a satisfying assignment \mathcal{A}. We bound the expected number of flips to find this assignment. Of course the algorithm may terminate successfully by finding another satisfying assignment, but we only seek an upper bound on the expected running time.

We will need the following result from elementary probability theory.
Proposition 6 (Markov's Inequality). Let X be a non-negative random variable. Then for all $a>0, \operatorname{Pr}(X \geq a) \leq \frac{\mathbf{E}[X]}{a}$.

Proof. Define a random variable

$$
I= \begin{cases}1 & X \geq a \\ 0 & \text { otherwise } .\end{cases}
$$

Then $I \leq X / a$, since $X \geq 0$. Hence

$$
\frac{\mathbf{E}[X]}{a} \geq \mathbf{E}[I]=\operatorname{Pr}(I=1)=\operatorname{Pr}(X \geq a) .
$$

Define the distance between two assignments to be the number of variables on which they differ. Let T_{i} be the maximum over all assignments \mathcal{B} at distance i from \mathcal{A} of the expected number of variable-flipping steps to reach \mathcal{A} starting from \mathcal{B}. By definition, $T_{0}=0$ and clearly $T_{n}=1+T_{n-1}$. Otherwise when we flip we choose from among two literals in a clause that is not satisfied by the current assignment. Since such a clause is satisfied by \mathcal{A}, at least one of those literals must have a different value under \mathcal{A} than \mathcal{B}. Thus the probability of moving closer to \mathcal{A} is at least $1 / 2$ and the probability of moving farther from \mathcal{A} is at most $1 / 2$. In summary
we have

$$
\begin{array}{rlr}
T_{0} & =0 & \\
T_{n} & =1+T_{n-1} & \\
T_{i} & \leq 1+\left(T_{i+1}+T_{i-1}\right) / 2 & 0<i<n \tag{1}
\end{array}
$$

To obtain an upper bound on the T_{i} we consider the situation in which (1) holds as an equality. Defining H_{0}, \ldots, H_{n} by the equations

$$
\begin{aligned}
H_{0} & =0 \\
H_{n} & =1+H_{n-1} \\
H_{i} & =1+\left(H_{i+1}+H_{i-1}\right) / 2
\end{aligned}
$$

we have $T_{i} \leq H_{i}$ for $i=0, \ldots, n$.
The above is a system of $n+1$ linearly independent equations in $n+1$ unknowns, which therefore has a unique solution. Adding all the equations together we get $H_{1}=2 n-1$. Then solving the H_{1}-equation for H_{2} we get $H_{2}=4 n-4$. Continuing in this manner yields $H_{i}=2 i n-i^{2}$. So the worst expected time to hit \mathcal{A} is $H_{n}=n^{2}$.

Theorem 7. Consider a run of Walk-SAT on a satisfiable 2-CNF formula with n variables. Choosing $r=2 m n^{2}$, the probability of returning a satisfying assignment is at least $1-2^{-m}$.

Proof. We can divide the $2 m n^{2}$ iterations of the main loop into m phases, each consisting of $2 n^{2}$ iterations. Since the expected number of iterations to find a satisfying valuation from any given starting point is at most n^{2}, by Markov's inequality the probability that a satisfying valuation is not found in any given phase is at most $n^{2} / 2 n^{2}=1 / 2$. Thus the probability that an unsatisfying valuation is not found over all m phases is at most 2^{-m}.

We have analysed Walk-SAT in terms of a one-dimensional random walk on line $\{0, \ldots, n\}$ with absorbing barrier 0 and reflecting barrier n. A similar analysis can be carried out for $3-$ CNF formulas, but with a probability $2 / 3$ of going right and $1 / 3$ of going left. However in this case we require the parameter r to be exponential in n to get a decent error bound.

[^0]: ${ }^{1}$ Recall that a predicate I is an invariant of a loop while C do body if whenever the conjunction of the invariant and loop guard $I \wedge C$ holds before an execution of body, then I holds after the execution of body.

