
Lecture 3
Equivalences and normal forms
Boolean algebras, equational reasoning, normal forms

Print version of the lecture in Logic and Proof

presented on 3 May 2019

by Dr Christoph Haase

3.1
One of the main topics studied in computational logic are decision problems. A

decision problem is a computational problem whose output is either “yes” or “no”.
The decision problems most relevant to us are the following:

• Satisfiability: Given a formula F , is F satisfiable?
• Validity: Given a formula F , is F valid?
• Entailment: Given formulas F and G, does F |= G hold?
• Equivalence: Given formulas F and G, does F ≡ G hold?

In this lecture, we will focus on a method to decide the last problem. A “brute-
force” method to show that two formulas are logically equivalent is to use truth
tables. Instead we introduce an alternative approach that is more practical in
many cases, namely equational reasoning. The idea is to start from some basic
equivalences (the Boolean algebra axioms) and derive new equivalences using the
closure of logical equivalence under substitution.

1 Boolean algebras

The following is a list of the Boolean algebra axioms:

F ∧ F ≡ F

F ∨ F ≡ F Idempotence
F ∧G ≡ G ∧ F

F ∨G ≡ G ∨ F Commutativity
(F ∧G) ∧H ≡ F ∧ (G ∧H)

(F ∨G) ∨H ≡ F ∨ (G ∨H) Associativity
F ∧ (F ∨G) ≡ F

F ∨ (F ∧G) ≡ F Absorption
F ∧ (G ∨H) ≡ (F ∧G) ∨ (F ∧H)

F ∨ (G ∧H) ≡ (F ∨G) ∧ (F ∨H) Distributivity
¬¬F ≡ F Double negation

¬(F ∧G) ≡ (¬F ∨ ¬G)

¬(F ∨G) ≡ (¬F ∧ ¬G) De Morgan’s laws
F ∨ ¬F ≡ true

1



F ∧ ¬F ≡ false Complementation
F ∨ true ≡ true

F ∧ false ≡ false Zero Laws
F ∨ false ≡ F

F ∧ true ≡ F Identity Laws

Using truth tables, it is possible to show that those axioms hold for all formulas F ,
G and H. Notice that the Boolean algebra axioms come in pairs: the equivalences
in each pair are dual to each other in the sense that one is obtained from the other
by interchanging ∨ and ∧ and interchanging true and false.

Exercise 1. Given a formula F , define the De Morgan dual F by induction as
follows. The base cases are that F has the form true or false, or has the form
x or ¬x for a propositional variable x. Here we define true := false, false := true,
x := ¬x, and ¬x := x. Furthermore, for formulas F and G we define G ∨H := G∧H,
G ∧H := G∨H, and ¬G = ¬G if G is not a propositional variable. Show that F ≡ ¬F .

A Boolean algebra is a set A together with two elements true, false ∈ A, one
unary operation ¬ : A → A, and two binary operations ∧,∨ : A × A → A satisfying
the Boolean algebra axioms. Here are two examples of Boolean algebras:

• A = {0, 1} (that is the one we study in this course)
• For any set X, take A = 2X with true = X, false = ∅, ∧ = ∩, ∨ = ∪, ¬S = X \ S.

In fact, any finite Boolean algebra is of the form 2X .

∅

{a} {b} {c}

{a, b} {a, c} {b, c}

{a, b, c}

2 Equational reasoning

Equational reasoning is about transforming a formula into a sequence of equiva-
lent formulas using the Boolean algebra axioms until a desired equivalent target
formula is obtained. This captures the intuition of what a proof should be. The
essence of equational reasoning is the substitution of equals for equals. To for-
malise this we first give a precise definition of substitution. Subsequently, we use
the symbol = to denote syntactic equality, i.e., F = G means that F and G are the
same formula.

Given a formula F and a formula H we define a new formula G[F/H] (read “G
with F substituted for all occurrences of H”) by induction on the structure of G as
follows:

• Informally, G[F/H] means “substitute F for H in G”. E.g.:

(p1 ∧ (p2 ∨ p1))[¬q1/p1] = ¬q1 ∧ (p2 ∨ ¬q1)

• Formally, G[F/H] := F if G = H. Whenever G 6= H, we proceed by induction:

– Base cases:

x[F/H] := x for all x ∈ X

2



– Induction steps:

(¬G)[F/H] := ¬(G[F/H])

(G1 ∧G2)[F/H] := G1[F/H] ∧G2[F/H]

(G1 ∨G2)[F/H] := G1[F/H] ∨G2[F/H].

The following theorem is central to equational reasoning. It proves what should
intuitively be clear: whenever we substitute a subformula of a formula G by an
equivalent one, the resulting formula is equivalent to G.

Theorem 2 (Substitution Theorem). Let F,G,G′, H be formulas such that G′ =
G[F/H] and F ≡ H. Then G′ ≡ G.

Proof. If G = H then G[F/H] = F , and thus G′ = F ≡ H = G. Hence it remains to
show the statement for G 6= H. We proceed by induction on the structure of G. For
the induction base case, let G = x. Since H 6= G, we have G′ = x, and hence G′ ≡ G.

For the induction step, let G = ¬J and G′ = G[F/H] = ¬(J [F/H]). Let J ′ =
J [F/H], by the induction hypothesis we have J ′ ≡ J , and consequently G′ = ¬J ′ ≡
¬J = G. For G = G1 ∧ G2, by the induction hypothesis, G1 ≡ G1[F/H] = G′

1 and
G2 ≡ G2[F/H] = G′

2. Hence G1 ∧ G2 ≡ G′
1 ∧ G′

2, and consequently G′ ≡ G. The case
G = G1 ∨G2 follows analogously.

We can now apply Theorem 2 in order to perform equational reasoning. Here is
an example:

(P ∨ (Q ∨R) ∧ (R ∨ ¬P )) ≡ R ∨ (¬P ∧Q) .

has the following equational proof:

(P ∨ (Q ∨R)) ∧ (R ∨ ¬P ) ≡ ((P ∨Q) ∨R) ∧ (R ∨ ¬P )

≡ (R ∨ (P ∨Q)) ∧ (R ∨ ¬P )

≡ R ∨ ((P ∨Q) ∧ ¬P )

≡ R ∨ (¬P ∧ (P ∨Q))

≡ R ∨ ((¬P ∧ P ) ∨ (¬P ∧Q))

≡ R ∨ (false ∨ (¬P ∧Q))

≡ R ∨ (¬P ∧Q).

3 Normal forms

For algorithms reasoning about Boolean formulas, it is convenient to assume that
formulas are presented in a unified form into which any arbitrary formula can be
transformed to. Two of the most prominent normal forms are defined as follows:

• A literal is a propositional variable or the negation of a propositional variable:

x or ¬x
• A formula F is in conjunctive normal form (CNF) if it is a conjunction of

disjunctions of literals Li,j:

F =

n∧
i=1

(

mi∨
j=1

Li,j)

• A formula F is in disjunctive normal form (DNF) if it is a disjunction of
conjunctions of literals Li,j :

F =

n∨
i=1

(

mi∧
j=1

Li,j)

3



• Convention: true is CNF with no clauses, false is CNF with a single clause
without literals

Example 3. The formulas representing the 3-colouring problem and the Sudoku
problem in the previous lecture are both CNF formulas.

The following theorem formally show that any formula can be transformed into
CNF and DNF, making them universally applicable normal forms.

Theorem 4 (Normalisation Theorem). For every formula there is an equivalent for-
mula in CNF and an equivalent formula in DNF.

Proof. We can transform a formula F into an equivalent CNF formula using equa-
tional reasoning as follows:

1. Using the Double Negation law and De Morgan’s laws, substitute in F every
occurrence of a subformula of the form

¬¬G by G

¬(G ∧H) by (¬G ∨ ¬H)

¬(G ∨H) by (¬G ∧ ¬H)

¬true by false

¬false by true

until no such formulas occur (i.e., push all negations inward until negation
is only applied to propositional variables).

2. Using the Distributivity laws, substitute in F every occurrence of a subfor-
mula of the form

G ∨ (H ∧R) by (G ∨H) ∧ (G ∨R)

(H ∧R) ∨G by (H ∨G) ∧ (R ∨G)

G ∨ true by true

true ∨G by true

until no such formulas occur (i.e., push all disjunctions inward until no con-
junction occurs under a disjunction).

3. Use the Identity and Zero laws to remove false from any clause and to delete
all clauses containing true.

The resulting formula is then in CNF.
The translation of F to DNF has the same first step, but dualises steps 2 and 3

(swap ∧ and ∨, and swap true and false).

In summary, we see that CNF formulas and DNF formulas both have the same
expressiveness as the class of all formulas. However you will see in Exercise Sheet
1 that they differ in succinctness: a CNF can be exponentially shorter than the
corresponding DNF and vice versa. Note in relation to this that the SAT problem
is trivial for DNF formulas. On the other hand, we will see later on that SAT for
general formulas is easily reduced to SAT for CNF formulas.

4


	Boolean algebras
	Equational reasoning
	Normal forms

