
Lecture 1
History of mathematical logic in
computer science
Print version of the lecture in Logic and Proof

presented on 29 April 2019

by Dr Christoph Haase

1 Practicalities

• General information:

– Lectures in Lecture Theatre B:

∗ Mon 11am-12pm, Wed 11am-12pm (Weeks 1-6)
∗ Thu 11am-12pm (Weeks 1-4)

– Five exercise sheets, new format this year

– Departmental Classes

∗ Tue 10-11am, Tue 11am-12pm, Tue 2-3pm, Weeks 2-6 in Room
013RHB
∗ Submit by 5pm on preceding Friday

– Lecture notes, slides, exercise sheets: online

– Questions after lecture? Use Piazza in the first instance:

piazza.com/ox.ac.uk/spring2019/lptt19/

– Alternatively, discuss with your tutor or send me an email at

christoph.haase@cs.ox.ac.uk

– Office hours: Tue 1:30-2:30pm, Room 417

• Recommended textbooks:

– ‘Logic for Computer Scientists’, U. Schöning

– ‘Mathematical Logic for Computer Science’, M. Ben-Ari

– ‘Logic in computer science: modelling and reasoning about systems’,
M. Huth and M. Ryan

– ‘Handbook of Practical Logic and Automated Reasoning’, J. Harrison

• Further literature:

– ‘Gödel, Escher, Bach: an Eternal Golden Braid’, D. Hofstadter

– ‘Logicomix: An Epic Search for Truth’, A. Doxiadis and C. Papadimitriou

1

piazza.com/ox.ac.uk/spring2019/lptt19/


2 About this course

When I was a student, even the topologists regarded mathematical logi-
cians as living in outer space. Today the connections between logic and
computers are a matter of engineering practice at every level of computer
organization.

Martin Davis. Influences of Mathematical Logic on Computer Science.

Logic is fundamental to computer science. This is not surprising, given that
computers are built from Boolean circuits. However, what has been called the un-
usual effectiveness of logic in computer science goes far beyond hardware design: it
applies, among other things, to knowledge representation, programming-language
theory, automated verification, complexity theory, databases, and constraint solv-
ing. The role of logic in computer science has been compared to that of calculus in
physics and engineering, and some people even call logic the calculus of computer
science.

This course focusses on the foundations of logic rather than its computer-
science applications. We only briefly cover some applications for illustrative pur-
poses, and mostly leave applications to subsequent courses in the areas mentioned
above. However our emphasis is very much on the computational aspects of logic.
In particular we study questions of decidability using notions from the Models of
Computation course, including finite-state automata and Post’s Correspondence
Problem. We will also present the satisfiability problem in propositional logic as
a prototypical search problem, thus making a connection with the first-year Algo-
rithms course.

3 A historical perspective on logic

The study of logic arose from a desire to understand reasoning and argumenta-
tion. Aristotle (384–322 BC) compiled a list of syllogisms, which can be seen as
arguments in which the conclusion follows from the hypotheses merely by virtue of
the meaning of the words if, then, and, or, is, all, are, some and none. For example,

All beings are mortal
All humans are beings
All humans are mortal

All B are M
All H are B
All H are M

While Aristotle wrote down a compendium of valid arguments, Leibniz (1646–
1716) was the first to envision a system of rules (or calculus) by which arguments
could be systematically constructed and tested for validity. An important step
toward this goal was worked out by George Boole (1815–1864) who proposed a set
of equational rules for propositional logic. A particularly influential contribution of
Boole was to give an algebraic formulation of logic. Boole’s work was picked up by
William Stanley Jevons (1835–1882) who built a mechanical computer, the logic
piano, to carry out logical deductions.

A more expressive and powerful system than propositional logic, called predi-
cate logic, was invented independently by Gottlob Frege (1848–1925) and Charles
Sanders Pierce (1839–1914), partly motivated by problems in the foundations of
mathematics. Propositional logic and predicate logic are the two main logical sys-
tems that we study in this course.

In the first half of the twentieth century logic played a central role in the study
of the foundations of mathematics. Russell (1872–1970) and Whitehead (1861–
1947) attempted to show in their Principia Mathematica how theorems in set the-
ory, arithmetic, real analysis and geometry could be derived from well-defined ax-
ioms and rules of inference within a formal system of predicate logic. One of the

2



most celebrated outcomes of this research program is a negative result, by Kurt
Gödel (1906–1978), who showed that no logical system of arithmetic could be both
consistent (free of contradiction) and complete (capable of proving all true facts).
Shortly thereafter Alonzo Church (1903–1995) and Alan Turing (1912–1954) inde-
pendently showed that there is no algorithm for the Entscheidungsproblem, that is,
the problem of deciding the validity of a given logic statement. The formulation and
proof of this last result led directly to the notions of Turing machine and λ-calculus,
thus laying the foundations of theoretical computer science. We will give a proof
of this result in this course, building on concepts you have learned in Models of
Computation.

4 Contemporary highlights of logic in computer science

More recent developments in logic have been heavily influenced by computer sci-
ence. We highlight two among many important contributions. Claude Shannon
(1916–2001) showed how to use electrical switches to compute Boolean functions,
and is regarded as the founder of digital circuit design. Alan Robinson (1925–)
discovered resolution and unification, thus contributing to the foundations of auto-
mated reasoning and logic programming. Resolution will be one of the main proof
systems considered in this course.

A form of resolution underlies modern SAT solvers–computer programs for de-
termining satisfiability of propositional formulas. The dramatic improvement in
the performance of SAT solvers over the last 20 years has led to their successful
application in areas such as automated verification, cryptography, and artificial
intelligence planning.

To be more concrete, subsequently we will briefly present some examples of re-
cent research outcomes that have resulted from research into computational logic.
The topics we cover here are of an academic nature in order to ease understanding.
It should, however, be noted that concepts, methods and algorithms from compu-
tational logic are applied on a daily basis in industry, for instance in the design
process of hard- and software.

4.1 Finding a needle amongst 1, 566× 10349 needles

Our first example is an old conjecture posed by Paul Erdős in the 1930s.

Erdős discrepancy conjecture
For any C > 0 and any infinite sequence x1x2x3 · · · of +1’s and −1’s there exist
d, k ∈ N such that

|
∑

1≤i≤k

xid| > C.

This conjecture was widely believed to be true, however only the case C = 1
had been resolved until the 1990s. In 2009, the conjecture was taken on by the
Polymath project [3]. The attempt to solve the problem failed, even proving the
case C = 2 seemed impossible:

“Given how long a finite sequence can be, it seems unlikely that we could
answer this question [for C = 2] just by a clever search of all possibilities
on a computer.”

In 2014, B. Konev and A. Lisitsa from the University of Liverpool developed a clever
encoding of the Erdős discrepancy conjecture into a propositional satisfiability
problem, and showed that any sequence of length at least 1161 has discrepancy
at least 3 [4]. The computer-generated proof showing that no sequence of length
1161 has discrepancy 2 took 13Gb to store. The achievement of B. Konev and A.

3



Lisitsa demonstrated the role SAT solvers can nowadays play, even in pure scien-
tific areas such as extremal combinatorics. However, the success of the machines
was only of short duration. In September 2015, T. Tao announced a proof of the
Erdős discrepancy conjecture, which has since turned into a theorem[5].

4.2 Optimal sorting networks

Sorting is one of the most fundamental algorithmic tasks computers perform on
an every day basis. When sorting small amounts of data, using efficient algorithms
such as QuickSort can create too much of an overhead. In this case, sorting net-
works can do a better job for inputs of a fixed length. A sorting network consists
of wires and comparators, where inputs flow from the left to the right. Whenever
inputs reach a comparator, they are either swapped or left untouched, depend-
ing on their relative order. The principle is easily understood from the following
illustration:

n 5 6 7 8 9 10 11 12 13 14 15 16
d 5 5 6 6 7 7 8 8 9 9 9 9

Figure 1: Optimal depth d for sorting networks with n inputs.

While optimal sorting networks up to 8 inputs had been found by D. Knuth
and R. Floyd in the 1960s, getting the bounds tight for n up to 16 required much
longer. Using a sophisticated SAT encoding, the Oxford students D. Bundala and
J. Závodný showed in 2014 that the previously known upper bounds for d were in-
deed tight [2]. Note that this entails showing, for instance, that no sorting network
with 16 inputs and depth strictly less than 9 can exist, a challenging combinatorial
problem.

4.3 Leibniz’ ontological proof

While so far we have focussed on achievements made by encoding problems into
propositional satisfiability problem, interactive theorem provers are another area
of lively research. Roughly speaking, interactive theorem provers provide environ-
ments in which axioms and theorems can be formally expressed and reasoned
about. Many interactive theorem provers have tactics which can automatically
discharge some proof obligations. Whenever they get stuck, they ask the user to
provide hints or proofs.

A notable recent application of interactive theorem provers in philosophical logic
has been a proof of Leibniz’s ontological argument for the existence of God within
the axioms of his algebra of concepts. Bentert et al. formalised Leibniz’s algebra
of concepts in the theorem prover Isabelle/HOL, and showed that depending on
a certain interpretation of Leibniz’s words, his proof of the existence of God is

4



valid [1]. While in this course we will neither attempt to prove nor disprove the
absence of god, their work provides an interesting example of how research into
interactive theorem provers can provide new perspectives on topics from other
fields such as philosophy.

References

[1] Matthias Bentert, Christoph Benzmüller, David Streit, and Bruno Woltzenlo-
gel Paleo. Analysis of an ontological proof proposed by Leibniz. In Charles
Tandy, editor, Death and Anti-Death, Volume 14: Four Decades after Michael
Polanyi, Three Centuries after G.W. Leibniz. Ria University Press, 2016. Preprint:
http://christoph-benzmueller.de/papers/B16.pdf.

[2] Daniel Bundala and Jakub Zavodny. Optimal sorting networks. In Adrian Horia
Dediu, Carlos Martín-Vide, José Luis Sierra-Rodríguez, and Bianca Truthe,
editors, Language and Automata Theory and Applications - 8th International
Conference, LATA 2014, Madrid, Spain, March 10-14, 2014. Proceedings, volume
8370 of Lecture Notes in Computer Science, pages 236–247. Springer, 2014.

[3] Justin Cranshaw and Aniket Kittur. The polymath project: Lessons from a
successful online collaboration in mathematics. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’11, pages 1865–
1874, New York, NY, USA, 2011. ACM.

[4] Boris Konev and Alexei Lisitsa. A SAT attack on the Erdős discrepancy con-
jecture. In Carsten Sinz and Uwe Egly, editors, Theory and Applications of
Satisfiability Testing - SAT 2014 - 17th International Conference, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Pro-
ceedings, volume 8561 of Lecture Notes in Computer Science, pages 219–226.
Springer, 2014.

[5] Terence Tao. The Erdos discrepancy problem. arXiv preprint arXiv:1509.05363,
2015.

5

http://christoph-benzmueller.de/papers/B16.pdf

	Practicalities
	About this course
	A historical perspective on logic
	Contemporary highlights of logic in computer science
	Finding a needle amongst 1,566 10349 needles
	Optimal sorting networks
	Leibniz' ontological proof


