
Chair for Foundations of Software Reliability and Theoretical Computer Science
Informatik
Technical University of Munich

Eexam
Place student sticker here

Note:
• During the attendance check a sticker containing a unique code will be put on this exam.
• This code contains a unique number that associates this exam with your registration number.
• This number is printed both next to the code and to the signature field in the attendance check

list.

Automaten und formale Sprachen

Exam: IN2041 / Retake Date: Thursday 14th April, 2022
Examiner: Prof. Javier Esparza Time: 17:00 – 19:00

Working instructions
• This exam consists of 10 pages with a total of 8 problems.

• You can obtain a maximum of 40 points. There are 5 bonus points.

• Allowed resources:

– Printed or handwritten notes.

– You can cite results from the lecture notes or slides, but results from the exercises must be rewritten in
full. For example, you cannot write something like "this is true by exercise 3.1(a)."

• All answers have to be written on your own paper.

• Only write on one side of each sheet of paper.

• Write with black or blue pen on white DIN A4 paper.

• Write the page number, your name and immatriculation number on every sheet.

– Page 1 / 10 –

0

Problem 1 Statement (0 credits)

It is MANDATORY that your answer sheet includes a signed copy of the following statement.

“I did not communicate with anyone during this graded exercise and only used the allowed resources.”

– Page 2 / 10 –

Problem 2 Omega-regular languages (6 credits)

a) Let L1, L2 be two ω-regular languages over the same alphabet. Show that if L1, L2 are distinct, then there are
finite words u, v such that u(v)ω is in the symmetric difference of L1 and L2. Recall that the symmetric difference is
(L1 ∪ L2) \ (L1 ∩ L2).

b) Let R be a language and let L be an ω-language over the same alphabet. Consider the following statement:

If R is a non-empty regular language and L ∩ Rω is a non-empty ω-regular language, then L is an
ω-regular language.

If it is true, prove it. If it is false, give a counter-example.

0

1

2

3

0

1

2

3

– Page 3 / 10 –

0

1

2

0

1

2

3

4

Problem 3 Co-Büchi determinization (6 credits)

Consider the following co-Büchi automaton A.

r

p q

a

a

b

b

b

Recall that the procedure for determinizing a co-Büchi automaton is very similar to the procedure for complementing
a Büchi automaton.

a) Sketch dag(w) for w = a(b)ω by drawing the first 5 levels (i.e. levels 0, 1, 2, 3 and 4).

b) Determinize A: give a deterministic co-Büchi automaton recognizing the same language as A. You must follow
the construction given in class; in particular label the states with sets [P, O] as in class. You may draw the trap
state or omit it.

– Page 4 / 10 –

Problem 4 Double and half (9 credits)

Let Σ = {a, b}.

a) Prove or disprove: for every regular language L ⊆ Σ∗, the language Double(L) = {ww ∈ Σ∗ : w ∈ L} is regular.
To prove: show how to construct an automaton for Double(L), given an automaton for L .
To disprove: give a regular language L and show that Double(L) contains infinitely many residuals.

b) Prove or disprove: for every regular language L ⊆ Σ∗ the language Half(L) = {w ∈ Σ∗ : ww ∈ L} is regular.
To prove: show how to construct an automaton for Half(L), given an automaton for L .
To disprove: give a regular language L and show that Half(L) contains infinitely many residuals

c) Prove or disprove: for every regular language L ⊆ Σ∗, the language Replicate(L) = {w|w| ∈ Σ∗ : w ∈ L} is regular.
For example, if L = {ab, abb} then Replicate(L) = {abab, abbabbabb}.
To prove: describe how to construct an automaton for Replicate(L), given an automaton for L .
To disprove: give a regular language L and show that Replicate(L) contains infinitely many residuals.

0

1

2

3

0

1

2

3

0

1

2

3

– Page 5 / 10 –

0

1

2

3

0

1

2

3

Problem 5 LTL formulas (6 credits)

In the following questions, each formula you give MUST contain at most six symbols, excluding parenthesis. The
symbols allowed are p, q,¬,∨,∧, X , U, F , G.

a) Give LTL formulas ϕ1 and ϕ2 such that

• {q}{p, q}ω |= ϕ1 ∧ ϕ2

• {q}ω |= ϕ1 ∧ ¬ϕ2

• {p}ω |= ¬ϕ1 ∧ ϕ2

• ∅ω |= ¬ϕ1 ∧ ¬ϕ2

b) For 3 bonus points. Give LTL formulas ϕ1 and ϕ2 such that:

• ({p, q}{p})ω |= ϕ1 ∧ ϕ2

• ∅ω |= ϕ1 ∧ ¬ϕ2

• ∅{q}ω |= ¬ϕ1 ∧ ϕ2

• {q}ω |= ¬ϕ1 ∧ ¬ϕ2

– Page 6 / 10 –

Problem 6 MSO and regular languages (8 credits)

Throughout this exercise, you are only allowed to use the following standard expressions in specifying an MSO
formula:

Qa(x), Qb (x), x < y, x ∈ X , ¬ϕ, ϕ1 ∨ ϕ2, ∃xϕ, ∃Xϕ

and the abbreviations

∀xϕ, ∀Xϕ, ϕ1 ∧ ϕ2, ϕ1 → ϕ2, ϕ1 ↔ ϕ2, x = y, x ≤ y, first(x), last(x), y = x + k

where k is a constant. If you want to use any other abbreviations, you must first define them.

Let L = {w ∈ {a, b}∗ : for all positions i of the word w, if b appears at position i, then i ≡ 0 (mod 3)}. (Recall that
positions of a word start at 1).

a) Give a regular expression and a minimal DFA for the language L .

b) Give an MSO formula ZeroMod3(X) which satisfies the following: For any interpretation (w, I) of the formula,
(w, I) |= ZeroMod3(X) iff I(X) = {i : i ∈ {1, 2, ... , |w|} and i ≡ 0 (mod 3)}, i.e., I(X) is precisely the set of positions
of w which are divisible by 3.

c) Give an MSO formula ϕ such that L (ϕ) = L . You can use the ZeroMod3(X) formula for this subproblem.

0

1

2

3

0

1

2

3

0

1

2

– Page 7 / 10 –

0

1

2

3

4

0

1

2

Problem 7 Presburger arithmetic and automata (6 credits)

Consider the inequality ϕ = x + y ≤ 3.

a) Use the algorithm AFtoDFA to obtain a DFA recognizing the lsbf encoding of the solutions of ϕ over the naturals.

b) For 2 bonus points. Let φ be the inequality x + y ≤ 192 and let A be the DFA obtained by applying the AFtoDFA
algorithm on φ. Prove or disprove that A is a minimal DFA.
To prove: Show that all the states of A recognize different languages.
To disprove: Give two distinct states of A which recognize the same language.

– Page 8 / 10 –

Problem 8 NFA inclusion (4 credits)

Consider the following NFAs A and B where A has the states {p0, p1, p2} and B has the states {q0, q1, q2, q3}.

p0 p1

p2

q0 q1

q2q3

a

b

b

a

a

b a

b

b

a

a

b

a
b

Use the algorithm InclNFA to determine if L (A) ⊆ L (B). You must give your answer in the following table format,
where the ith row contains the iteration number of the main while loop of the InclNFA algorithm, the contents of Q
and W at the beginning of that iteration and the state that you pick from W during that iteration. The first entry of
the table has been filled for you.

Iter. Q W Chosen element

1 ∅ {[p0, {q0}]} [p0, {q0}]

2
...

...
...

...
...

...
...

0

1

2

3

4

– Page 9 / 10 –

Additional space for solutions–clearly mark the (sub)problem your answers are related to and strike out
invalid solutions.

– Page 10 / 10 –

	p1a1c0: Off
	p1a1c1: Off
	2.1.1:
	2.2.1:
	p2a1c0: Off
	p2a1c1: Off
	p2a1c2: Off
	p2a1c3: Off
	p2a1c4: Off
	p2a1c5: Off
	p2a1c6: Off
	p2b1c0: Off
	p2b1c1: Off
	p2b1c2: Off
	p2b1c3: Off
	p2b1c4: Off
	p2b1c5: Off
	p2b1c6: Off
	p3a1c0: Off
	p3a1c1: Off
	p3a1c2: Off
	p3a1c3: Off
	p3a1c4: Off
	p3b1c0: Off
	p3b1c1: Off
	p3b1c2: Off
	p3b1c3: Off
	p3b1c4: Off
	p3b1c5: Off
	p3b1c6: Off
	p3b1c7: Off
	p3b1c8: Off
	3.1.1:
	3.2.1:
	4.1.1:
	4.2.1:
	4.3.1:
	p4a1c0: Off
	p4a1c1: Off
	p4a1c2: Off
	p4a1c3: Off
	p4a1c4: Off
	p4a1c5: Off
	p4a1c6: Off
	p4b1c0: Off
	p4b1c1: Off
	p4b1c2: Off
	p4b1c3: Off
	p4b1c4: Off
	p4b1c5: Off
	p4b1c6: Off
	p4c1c0: Off
	p4c1c1: Off
	p4c1c2: Off
	p4c1c3: Off
	p4c1c4: Off
	p4c1c5: Off
	p4c1c6: Off
	p5a1c0: Off
	p5a1c1: Off
	p5a1c2: Off
	p5a1c3: Off
	p5a1c4: Off
	p5a1c5: Off
	p5a1c6: Off
	p5b1c0: Off
	p5b1c1: Off
	p5b1c2: Off
	p5b1c3: Off
	p5b1c4: Off
	p5b1c5: Off
	p5b1c6: Off
	5.1.1:
	5.2.1:
	6.1.1:
	6.2.1:
	6.3.1:
	p6a1c0: Off
	p6a1c1: Off
	p6a1c2: Off
	p6a1c3: Off
	p6a1c4: Off
	p6a1c5: Off
	p6a1c6: Off
	p6b1c0: Off
	p6b1c1: Off
	p6b1c2: Off
	p6b1c3: Off
	p6b1c4: Off
	p6b1c5: Off
	p6b1c6: Off
	p6c1c0: Off
	p6c1c1: Off
	p6c1c2: Off
	p6c1c3: Off
	p6c1c4: Off
	p7a1c0: Off
	p7a1c1: Off
	p7a1c2: Off
	p7a1c3: Off
	p7a1c4: Off
	p7a1c5: Off
	p7a1c6: Off
	p7a1c7: Off
	p7a1c8: Off
	p7b1c0: Off
	p7b1c1: Off
	p7b1c2: Off
	p7b1c3: Off
	p7b1c4: Off
	7.1.1:
	7.2.1:
	8.1.1:
	p8a1c0: Off
	p8a1c1: Off
	p8a1c2: Off
	p8a1c3: Off
	p8a1c4: Off
	p8a1c5: Off
	p8a1c6: Off
	p8a1c7: Off
	p8a1c8: Off
	8.1.2:

