Automata and Formal Languages — Exercise Sheet 12

Exercise 12.1
Let B be the following Büchi automaton.

(a) For every state of B, give the discovery time and finishing time assigned by a DFS on B starting in s_0 (i.e. the moment they first become grey and the moment they become black). Visit successors s_i of a given state in the ascending order of their indices i. For example, when visiting the successors of s_2, first visit s_3 and later s_4.

(b) The language of B is not empty. Give the witness lasso found by applying NestedDFS to B following the same convention for the order of successors as above.

(c) Is the execution in (b) optimal? Does there exist an optimal execution of NestedDFS on B with a different order for visiting successors?

Exercise 12.2
Let $AP = \{p, q\}$ and let $\Sigma = 2^{AP}$. Give LTL formulas for the following ω-languages:

(a) $\Sigma \{p, q\} \{q\}^\omega$

(b) $\Sigma^* \{q\}^\omega$

(c) $\Sigma^* \emptyset \Sigma^\omega$

(d) $\{p\}^* \{p, q\} (\{p\} + \{p, q\})^\omega$

(e) $\{p\}^* \{q\}^* \emptyset^\omega$

Exercise 12.3
Let $AP = \{p, q, r\}$. Give formulas for the computations satisfying the following properties:

(a) if q eventually holds, then p must not hold before q first does.

(b) if q eventually holds, then p holds at some point before q first holds.

(c) p always holds everywhere between q and r.

(d) p, and only p, holds at even positions and q, and only q, holds at odd positions.
Exercise 12.4
The *weak until* operator W has the following semantics:

- $\sigma \models \phi_1 W \phi_2$ iff there exists $k \geq 0$ such that $\sigma^k \models \phi_2$ and $\sigma^i \models \phi_1$ for all $0 \leq i < k$, or $\sigma^k \models \phi_1$ for every $k \geq 0$.

Prove: $p W q \equiv G(p \lor (p U q)) \equiv F \neg p \rightarrow (p U q) \equiv p U (q \lor Gp)$.
Solution 12.1
a. We note "state[discovery time/finishing time]."

b. The lasso found by NestedDFS from \(s_0 \) is \(s_0s_1s_2s_3s_4s_5s_5 \).

c. Given a non-empty NBA, we use the following definition of optimal execution of NestedDFS: the algorithm reports NONEMPTY at the earliest time such that all the states of a witness lasso have been explored.

The execution given in (b) is non optimal since it does not return the lasso \(s_0s_1s_2s_3s_1 \) which already appeared in the explored subgraph.

There is no execution of NestedDFS which blackens \(s_2 \) before \(s_5 \). But there is an execution of NestedDFS on \(B \) which returns the lasso \(s_0s_1s_2s_3s_5s_5s_5 \) before it has visited the only other witness lasso \(s_0s_1s_2s_3s_1 \) and thus is optimal: the execution which does dfs1 via \(s_0s_1s_2s_4s_5 \), blackens \(s_5 \) then launches dfs2 from \(s_5 \) and finds a cycle. Node \(s_3 \) is not part of the explored subgraph so the algorithm reports NONEMPTY at the earliest time such that all the states of a witness lasso have been explored.

Solution 12.2
(a) \(X(p \land q) \land XXG(\neg p \land q) \)
(b) \(FG(\neg p \land q) \)
(c) \(F(\neg p \land \neg q) \)
(d) \(Gp \land Fq \)
(e) \((p \land \neg q) U ((\neg p \land q) U G(\neg p \land \neg q)) \)

Solution 12.3
(a) \(Fq \rightarrow (\neg p U q) \)
(b) \(Fq \rightarrow (\neg q U (\neg q \land p)) \)
(c) \(G((q \land XFr) \rightarrow X(p U r)) \)
(d) \(G(\neg r) \land G(p \leftrightarrow \neg q) \land p \land G(p \rightarrow Xq) \land G(q \rightarrow Xp) \)

Solution 12.4
- \(p \models W q \equiv Gp \lor (p U q) \).
 Follows immediately from the definitions.

- \(Gp \lor (p U q) \equiv F \neg p \rightarrow (p U q) \).
 We have: \(Gp \lor (p U q) \equiv \neg (F \neg p) \lor (p U q) \equiv F \neg p \rightarrow (p U q) \).

- \(Gp \lor (p U q) \equiv p U (q \lor Gp) \).
 Assume \(\sigma \models Gp \lor (p U q) \) holds. If \(\sigma \models Gp \), then \(\sigma \models (p U q) (\psi \lor Gp) \) for every \(\varphi, \psi \). If \(\sigma \models p U q \), then \(\sigma \models Gp \lor (p U q) \).

- \(Gp \lor (p U q) \equiv p U (q \lor Gp) \).
 Assume \(\sigma \models p U (q \lor Gp) \). Then there exists \(k \geq 0 \) such that \(\sigma^k \models q \lor Gp \) and \(\sigma^i \models p \) for all \(0 \leq i < k \).
 If \(\sigma^k \models q \), then \(\sigma \models q \lor Gp \). If \(\sigma^k \models Gp \), then \(\sigma^i \models p \) for all \(0 \leq i, \) and so \(\sigma \models Gp \).
 Or simply, using the fact given in the lecture that \(\varphi U (\psi_1 \lor \psi_2) \equiv (\varphi U \psi_1) \lor (\varphi U \psi_2) \), we have:
 \(p U (q \lor Gp) \equiv (p U q) \lor (p U Gp) \equiv (p U q) \lor Gp \equiv Gp \lor (p U q) \).