Exercise 11.1
Construct the intersection of the two following Büchi automata:

\[\begin{array}{c}
\text{A:} & b & c & a & b \\
\dot{p} & a & q & v & r \\
\dot{s} & a, c & t \\
\end{array} \]

Exercise 11.2
Consider the following Büchi automaton \(B \) over \(\Sigma = \{a, b\} \):

\[\begin{array}{c}
\dot{q}_0 & \overset{a, b}{\longrightarrow} & \dot{q}_1 \\
\dot{q}_1 & \overset{b}{\longrightarrow} & \dot{q}_0 \\
\end{array} \]

(a) Sketch \(\text{dag}(abab^\omega) \) and \(\text{dag}((ab)^\omega) \).
(b) Let \(r_w \) be the ranking of \(\text{dag}(w) \) defined by

\[r_w(q, i) = \begin{cases}
1 & \text{if } q = q_0 \text{ and } (q_0, i) \text{ appears in } \text{dag}(w), \\
0 & \text{if } q = q_1 \text{ and } (q_1, i) \text{ appears in } \text{dag}(w), \\
\perp & \text{otherwise.}
\end{cases} \]

Are \(r_{abab^\omega} \) and \(r_{(ab)^\omega} \) odd rankings?
(c) Show that \(r_w \) is an odd ranking if and only if \(w \not\in L_\omega(B) \).
(d) Construct a Büchi automaton accepting \(\overline{L_\omega(B)} \) using the construction seen in class. Hint: by (c), it is sufficient to use \{0, 1\} as ranks.
Exercise 11.3
Show that for every DBA A with n states there is an NBA B with $2n$ states such that $B = \overline{A}$. Explain why your construction does not work for NBAs.

Exercise 11.4
Give Büchi automata for the following ω-languages:

- $L_1 = \{ w \in \{a,b\}^\omega : w$ contains infinitely many a’s $\}$,
- $L_2 = \{ w \in \{a,b\}^\omega : w$ contains finitely many b’s $\}$,
- $L_3 = \{ w \in \{a,b\}^\omega :$ each occurrence of a in w is followed by a b $\}$,

and intersect these automata. Decide if this automaton is the smallest Büchi automaton for that language.
Solution 11.1

Solution 11.2

(a) $\text{dag}(abab^\omega)$:
dag((ab)\omega):

- r is not an odd rank for dag(abab\omega) since
 \langle q_0, 0 \rangle \xrightarrow{a} \langle q_0, 1 \rangle \xrightarrow{b} \langle q_0, 2 \rangle \xrightarrow{a} \langle q_0, 3 \rangle \xrightarrow{b} \langle q_1, 4 \rangle \xrightarrow{b} \langle q_1, 5 \rangle \xrightarrow{b} \cdots
 is an infinite path of dag(abab\omega) not visiting odd nodes infinitely often.

- r is an odd rank for dag((ab)\omega) since it has a single infinite path:
 \langle q_0, 0 \rangle \xrightarrow{a} \langle q_0, 1 \rangle \xrightarrow{b} \langle q_0, 2 \rangle \xrightarrow{a} \langle q_0, 3 \rangle \xrightarrow{b} \langle q_0, 4 \rangle \xrightarrow{b} \langle q_1, 5 \rangle \xrightarrow{b} \cdots
 which only visits odd nodes.

(c) \Rightarrow Let w \in L_\omega(B). We have w = ub\omega for some u \in \{a, b\}^*.
This implies that
 \langle q_0, 0 \rangle \xrightarrow{u} \langle q_0, |u| \rangle \xrightarrow{b} \langle q_1, |u| + 1 \rangle \xrightarrow{b} \langle q_1, |u| + 2 \rangle \xrightarrow{b} \cdots
 is an infinite path of dag(w). Since this path does not visit odd nodes infinitely often, r is not odd for dag(w).

\Leftarrow Let w \not\in L_\omega(B). Suppose there exists an infinite path of dag(w) that does not visit odd nodes infinitely often. At some point, this path must only visit nodes of the form \langle q_1, i \rangle. Therefore, there exists u \in \{a, b\}^* such that
 \langle q_0, 0 \rangle \xrightarrow{u} \langle q_1, |u| \rangle \xrightarrow{b} \langle q_1, |u| + 1 \rangle \xrightarrow{b} \langle q_1, |u| + 2 \rangle \xrightarrow{b} \cdots
 This implies that w = ub\omega \in L_\omega(B) which is contradiction.

(d) Recall that we construct an NBA with an infinite number of states whose runs on an \omega-word w are the rankings of dag(w). The automaton accepts a ranking R if and only if every infinite path of R visits nodes of odd rank i.o. By (c), for every w \in \{a, b\}^\omega, if dag(w) has an odd ranking, then it has one ranging over 0 and 1. Therefore, it suffices to execute CompNBA with rankings ranging over 0 and 1 (and our NBA is now finite). We obtain the following Büchi automaton, for which some intuition is given below:
Any ranking \(r \) of \(\text{dag}(w) \) can be decomposed into a sequence \(lr_1, lr_2, \ldots \) such that \(lr_i(q) = r(q, i) \), the level \(i \) of rank \(r \). Recall that in this automaton, the transitions \(\delta(lr(q_0)), lr(q_1) \rightarrow \delta(lr'(q_0)), lr'(q_1) \) represent the possible next level for ranks \(r \) such that \(lr(q) = r(q, i) \) and \(lr'(q) = r(q, i + 1) \) for \(q = q_0, q_1 \).

The additional set of states in the automaton represents the set of states that “owe” a visit to a state of odd rank. Formally, the transitions are the triples \(\delta(lr, O) \rightarrow \delta(lr', O') \) such that \(lr \rightarrow lr' \) and \(O' = \{ q' \in Q | lr'(q') \text{ is even} \} \) if \(O \neq \emptyset \), and \(O' = \{ q' \in Q | lr'(q') \text{ is even} \} \) if \(O = \emptyset \).

Finally the accepting states of the automaton are those with no “owing” states, which represent the breakpoints, i.e. a moment where we are sure that all runs on \(w \) have seen an odd rank since the last breakpoint.

★ It is enough to only consider the blue states, as any other state cannot reach a level in which there is an odd rank; descendants of \(\text{dag} \) states with rank 0 can never be assigned an odd rank.

Solution 11.3

Observe that \(A \) rejects a word \(w \) iff its single run on \(w \) stops visiting accepting states at some point. Hence, we construct an NBA \(B \) that reads a prefix as in \(A \) and non deterministically decides to stop visiting accepting states by moving to a copy of \(A \) without its accepting states.

More precisely, we assume that each letter can be read from each state of \(A \), i.e. that \(A \) is complete. If this is not the case, it suffices to add a rejecting sink state to \(A \). The NBA \(B \) consists of two copies of \(A \). The first copy is exactly as \(A \). The second copy is as \(A \) but restricted to its non accepting states. We add transitions from the first copy to the second one as follows. For each transition \((p, a, q) \) of \(A \), we add a transition that reads letter \(a \) from state \(p \) of the first copy to state \(q \) of the second copy. All states of the first copy are made non accepting and all states of the second copy are made accepting. Note that \(B \) contains at most \(2n \) states as desired.

Here is an example of the construction:

This construction does not work on NBAs. Indeed, we have \(A = B = \{ a^\omega \} \) below:
Solution 11.4
The following Büchi automata respectively accept L_1, L_2 and L_3:

\[
\begin{align*}
\text{p}_0 &\xrightarrow{b} \text{p}_1 & \text{q}_0 &\xrightarrow{a} \text{q}_1 & \text{r}_0 &\xrightarrow{a} \text{r}_1 \\
\text{p}_1 &\xrightarrow{a} \text{p}_0 & \text{q}_1 &\xrightarrow{a} \text{q}_0 & \text{r}_1 &\xrightarrow{b} \text{r}_0 \\
\end{align*}
\]

Taking the intersection of these automata leads to the following Büchi automaton:

\[
\begin{align*}
\text{p}_0, \text{q}_0, \text{r}_0 &\xrightarrow{a} \text{p}_1, \text{q}_0, \text{r}_1 & \text{p}_1, \text{q}_0, \text{r}_1 &\xrightarrow{a} \text{p}_1, \text{q}_0, \text{r}_1 \\
\text{p}_1, \text{q}_0, \text{r}_0 &\xrightarrow{b} \text{p}_1, \text{q}_0, \text{r}_1 & \text{p}_1, \text{q}_0, \text{r}_1 &\xrightarrow{b} \text{p}_1, \text{q}_0, \text{r}_1 \\
\end{align*}
\]

★ Note that the language of this automaton is the empty language.