Automata and Formal Languages — Exercise Sheet 8

Exercise 8.1
(a) Let $0 \leq m < n$. Give an MSO formula $\text{Mod}^{m,n}$ such that $\text{Mod}^{m,n}(i,j)$ holds whenever $|w_iw_{i+1}\cdots w_j| \equiv m \pmod{n}$, i.e. whenever $j - i + 1 \equiv m \pmod{n}$.

(b) Let $0 \leq m < n$. Give an MSO sentence for $a^m(a^n)^*$.

(c) Give an MSO sentence for the language of words such that every two b's with no other b in between are separated by a block of a's of odd length.

Exercise 8.2
Consider the logic PureMSO(Σ) with syntax
\[
\varphi := X \subseteq Q_a \mid X < Y \mid X \subseteq Y \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists X. \varphi
\]
Notice that formulas of PureMSO(Σ) do not contain first-order variables. The satisfaction relation of PureMSO(Σ) is given by:
\[
(w, J) \models X \subseteq Q_a \iff w[p] = a \text{ for every } p \in J(X)
\]
\[
(w, J) \models X < Y \iff p < p' \text{ for every } p \in J(X), p' \in J(Y)
\]
\[
(w, J) \models X \subseteq Y \iff p \in J(Y) \text{ for every } p \in J(X)
\]
with the rest as for MSO(Σ).

Prove that MSO(Σ) and PureMSO(Σ) have the same expressive power for sentences. That is, show that for every sentence φ of MSO(Σ) there is an equivalent sentence ψ of PureMSO(Σ), and vice versa.

Exercise 8.3
1. Given a sentence φ of MSO(Σ) and a second order variable X not occurring in φ, show how to construct a formula φ^X with X as free variable expressing “the projection of the word onto the positions of X satisfies φ”. Formally, φ^X must satisfy the following property: for every interpretation J of φ^X, we have $(w, J) \models \varphi^X$ iff $(w|_{J(X)}, J) \models \varphi$, where $w|_{J(X)}$ denotes the result of deleting from w the letters at all positions that do not belong to $J(X)$.

2. Given two sentences φ_1 and φ_2 of MSO(Σ), construct a sentence Conc(φ_1,φ_2) satisfying $L(\text{Conc}(\varphi_1,\varphi_2)) = L(\varphi_1) \cdot L(\varphi_2)$.

3. Given a sentence φ of MSO(Σ), construct a sentence Star(φ) satisfying $L(\text{Star}(\varphi)) = L(\varphi)^*$.

4. Give an algorithm RegtoMSO that accepts a regular expression r as input and directly constructs a sentence φ of MSO(Σ) such that $L(\varphi) = L(r)$, without first constructing an automaton for the formula.

Exercise 8.4
Construct a finite automaton for the Presburger formula $\exists y. x = 2y$ using the algorithms of the chapter.
Solution 8.1
(a) We want to express \(j - i + 1 \equiv m \pmod{n} \), i.e., there exists \(l \geq 0 \) such that \(j = i + m - 1 + l \cdot n \).

\[
\text{Mod}^{m,n}(i, j) = \exists x \ (x = i + m - 1) \land \text{Mult}^n(x, j)
\]

where

\[
\text{Mult}^n(x, j) = \exists X \ (j \in X) \land (\forall z \in X \ [(z = x) \lor \exists y \in X \ (z = y + n)])
\]

Intuitively, \(x \) is the smallest option for \(j \), the one corresponding to \(l = 0 \). Set \(X \) to be the positions that are a multiple of \(n \) away from this \(x \). The subformula \(x = i + m - 1 \) is syntactic sugar for "\(x \) is the \((i + m - 1)\)-th position in the word" (since \(i, m \) are given, \(i + m - 1 \) is a constant). For example \(x = 3 \) is short for \(\exists y \ \text{first}(y) \land \exists z \ z = y + 1 \land x = z + 1 \), where \(\text{first}(y) \) and \(z = y + 1 \) are classic abbreviations you can find in the class notes.

(b) \(\left[(m = 0) \land \neg \exists x \ \text{first}(x) \right] \lor \left[\forall x \ Q_a(x) \land \exists x, y \ \text{first}(x) \land \text{last}(y) \land \text{Mod}^{m,n}(x, y) \right] \).

(c)

\[
\begin{align*}
&\forall x, y \ [(x < y) \land Q_a(x) \land Q_b(y) \land \forall z (x < z < y) \rightarrow \neg Q_a(z)] \rightarrow \\
&
\left[(\forall z (x < z < y) \rightarrow Q_a(z)) \land (\exists x', y' (x' = x + 1) \land (y = y' + 1) \land \text{Mod}^{1,2}(x', y')) \right] .
\end{align*}
\]

As remarked in the tutorial, the subformula \(\exists x', y' (x' = x + 1) \land (y = y' + 1) \land \text{Mod}^{1,2}(x', y') \) can be simplified to \(\text{Mod}^{1,2}(x, y) \).

Solution 8.2
Given a sentence \(\psi \) of PureMSO(\(\Sigma \)), let \(\phi \) be the sentence of MSO(\(\Sigma \)) obtained by replacing every subformula of \(\psi \) of the form

\[
\begin{align*}
X & \subseteq Y & & \text{by} & \forall x \ (x \in X \rightarrow x \in Y) \\
X & \subseteq Q_a & & \text{by} & \forall x \ (x \in X \rightarrow Q_a(x)) \\
X & < Y & & \text{by} & \forall x \forall y \ (x \in X \land y \in Y) \rightarrow x < y
\end{align*}
\]

Clearly, \(\phi \) and \(\psi \) are equivalent. For the other direction, let

\[
\text{empty}(X) := \forall Y \ X \subseteq Y
\]

and

\[
\text{sing}(X) := \neg \text{empty}(X) \land \forall Y \ (Y \subseteq X \land \neg \text{empty}(Y)) \rightarrow X = Y.
\]

Let \(\phi \) be a sentence of MSO(\(\Sigma \)). Assume without loss of generality that for every first-order variable \(x \) the second-order variable \(X \) does not appear in \(\phi \) (if necessary, rename second-order variables appropriately). Let \(\psi \) be the sentence of PureMSO(\(\Sigma \)) obtained by replacing every subformula of \(\phi \) of the form

\[
\begin{align*}
&\exists x \ \psi' & & \text{by} & \exists X \ (\text{sing}(X) \land \psi'[X/x]) \\
&Q_a(x) & & \text{by} & X \subseteq Q_a \\
x & < y & & \text{by} & X < Y \\
x & \in Y & & \text{by} & X \subseteq Y
\end{align*}
\]

Clearly, \(\phi \) and \(\psi \) are equivalent.

Solution 8.3
1. We build \(\varphi_X \) using the following inductive rules:

- If \(\varphi = Q_a(x), x < y, x \in X, \neg \varphi_1, \varphi_1 \lor \varphi_2 \), then \(\varphi_X = \varphi \)
- If \(\varphi = \neg \varphi_1 \) (resp. \(\varphi_1 \lor \varphi_2 \)), then \(\varphi_X = \neg \varphi_1^X \) (resp. \(\varphi_1^X \lor \varphi_2^X \)).
• If $\varphi = \exists x \psi$, then $\varphi^X = \exists x \left(x \in X \land \psi^X \right)$.
• If $\varphi = \exists Y \psi$, then $\varphi^X = \exists Y \left(\forall x \in Y \rightarrow x \in X \right) \land \psi^X$.

2. We take the formula

$$\text{Conc}(\varphi_1, \varphi_2) := \exists X \exists Y \forall x \left(x \in X \lor y \in Y \right) \land \forall x \forall y \left(\left(x \in X \land y \in Y \right) \rightarrow x < y \right) \land \varphi_1^X \land \varphi_2^Y \lor \forall x \text{false} \land \varphi_1 \land \varphi_2$$

We add the last line because although sets of positions like X and Y can be empty, a word w satisfying a sentence of the form $\exists X \psi$ must be of length $|w| > 0$ so the empty word is not accounted for.

3. We first express that Y is a set of consecutive positions between two consecutive positions of X. Intuitively our X is the set of positions at which starts each subword verifying φ.

$$\text{Block}(Y, X) := \exists x \in X \exists z \left(\text{Next}(x, z, X) \land \forall y \left(y \in Y \leftrightarrow (x \leq y \land y < z) \right) \right)$$

where $\text{Next}(x, z, X) = z \in X \land \exists i \in X \ x < i \land i < z$ denotes that z comes just after x in X. The last line of $\text{Block}(Y, X)$ is for the case where we are considering the block from the last position of X to the end of the word.

Now we express that there exists a set X of positions such that every subword between any two consecutive positions of X satisfies φ.

$$\text{Star}(\varphi) := \exists X \forall x \left(\text{first}(x) \rightarrow x \in X \right) \land \forall Y \left(\text{Block}(Y, X) \rightarrow \varphi^Y \right) \lor \forall z \text{false}$$

4. $\text{REtoMSO}(r)$

Input: Regular expression r

Output: Sentence φ such that $L(\varphi) = L(r)$.

- $r = \emptyset \rightarrow \exists x \ x < x$
- $r = \varepsilon \rightarrow \forall x \ x < x$
- $r = a \rightarrow \exists x \left(\text{first}(x) \land \text{last}(x) \land Q_a(x) \right)$
- $r = r_1 + r_2 \rightarrow \text{REtoMSO}(r_1) \lor \text{REtoMSO}(r_2)$
- $r = r_1 r_2 \rightarrow \text{Conc}(\text{REtoMSO}(r_1), \text{REtoMSO}(r_2))$
- $r = r_1^* \rightarrow \text{Star}(\text{REtoMSO}(r_1))$

Solution 8.4

We can rewrite the formula as $\exists y. x - 2y = 0$.

To build an automaton recognizing the lsbf encodings of the x that are solution of this formula, we can first construct automata for the atomic formulas $x - 2y \leq 0$ and $-x + 2y \leq 0$, then intersect them and then project on the x component. Here we will use EqtoDFA (section 10.2.1 of the lecture notes) to directly get an automaton for $x - 2y = 0$ after which we just need to project on x.

We first use EqtoDFA to obtain an automaton for $x - 2y = 0$:
It remains to project the automaton on x, i.e. on the first component of the letters. We obtain:

which says that all encodings starting with a 0 are solutions.