Exercise 4.1

1. Build the automata B_p and C_p for the word pattern $p = mammamia$.

2. How many transitions are taken when reading $t = mami$ in B_p and C_p?

3. Let $n > 0$. Find a text $t \in \{a,b\}^*$ and a word pattern $p \in \{a,b\}^n$ such that testing whether p occurs in t takes n transitions in B_p and $2n - 1$ transitions in C_p.

Exercise 4.2

In order to make pattern-matching robust to typos we want to include also “similar” words in our results. For this we consider words with a small Levenshtein-distance (edit-distance) “similar”.

We transform a word w to a new word w' using the following operations (with $a_i, b \in \Sigma$):

- **replace** (R): $a_1 \ldots a_{i-1}a_i a_{i+1} \ldots a_l \rightarrow a_1 \ldots a_{i-1}ba_{i+1} \ldots a_l$
- **delete** (D): $a_1 \ldots a_{i-1}a_i a_{i+1} \ldots a_l \rightarrow a_1 \ldots a_{i-1} \varepsilon a_{i+1} \ldots a_l$
- **insert** (I): $a_1 \ldots a_{i-1}a_i a_{i+1} \ldots a_l \rightarrow a_1 \ldots a_{i-1}a_i ba_{i+1} \ldots a_l$

The Levenshtein-distance (denoted $\Delta(w,w')$) of w and w' is the minimal number of operations (R,D,I) needed to transform w into w'. We denote with $\Delta_{L,i} = \{w \in \Sigma^* | \exists w' \in L. \Delta(w',w) \leq i \}$ the language of all words with edit-distance at most i to some word of L.

(a) Compute $\Delta(abede, accd)$.

(b) Let p be the pattern $ABBA$. Construct an NFA-ε locating the pattern or variations of it with edit-distance 1.

(c) Prove the following statement: If L is a regular language, then $\Delta_{L,n}$ is a regular language.

Exercise 4.3

Consider transducers whose transitions are labeled by elements of $(\Sigma \cup \{\varepsilon\}) \times (\Sigma^* \cup \{\varepsilon\})$. Intuitively, each transition reads one or zero letter and writes a word of arbitrary length. Such a transducer can be used to perform operations on strings, e.g., upon reading “singing in the rain” it could write Singing In The Rain.

Sketch such ε-transducers for the following operations, each of which is informally defined by means of three examples. For each example, when the transducer reads the string on the left, it should write the string on the right. You may assume that the alphabet Σ consists of $\{a,b,\ldots,z,A,B,\ldots,Z\}$, a whitespace symbol, and an end-of-line symbol. Moreover, you may assume that every string ends with an end-of-line symbol and contains no other occurrence of the end-of-line symbol.
(a)

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automata and Formal Languages</td>
<td>AFL</td>
</tr>
<tr>
<td>Technical University of Munich</td>
<td>TUM</td>
</tr>
<tr>
<td>Max Planck Institute</td>
<td>MPI</td>
</tr>
</tbody>
</table>

(b) For this exercise, Σ is extended with \{.,\}.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ada Lovelace</td>
<td>Lovelace, A.</td>
</tr>
<tr>
<td>Alan Turing</td>
<td>Turing, A.</td>
</tr>
<tr>
<td>Donald Knuth</td>
<td>Knuth, D.</td>
</tr>
</tbody>
</table>

(c) For this exercise, Σ is extended with \{0,1,\ldots,9, (,), +\}. We want to transform phone-numbers into a normal form, where they are prefixed with a country code.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>004989273452</td>
<td>+49 89 273452</td>
</tr>
<tr>
<td>(00)4989273452</td>
<td>+49 89 273452</td>
</tr>
<tr>
<td>273452</td>
<td>+49 89 273452</td>
</tr>
<tr>
<td>2 7 3 4 5 2</td>
<td>+49 89 273452</td>
</tr>
<tr>
<td>498949</td>
<td>+49 89 498949</td>
</tr>
<tr>
<td>+49 89 498949</td>
<td>+49 89 498949</td>
</tr>
</tbody>
</table>

Exercise 4.4

Let \(\text{val} : \{0,1\}^* \to \mathbb{N}\) be the function that associates to every word \(w \in \{0,1\}^*\) the number \(\text{val}(w)\) represented by \(w\) in the least significant bit first encoding.

(a) Give a transducer that doubles numbers, i.e. a transducer accepting

\[L_1 = \{ [x,y] \in (\{0,1\} \times \{0,1\})^* \mid \text{val}(y) = 2 \cdot \text{val}(x) \} . \]

(b) Give an algorithm that takes \(k \in \mathbb{N}\) as input, and that produces a transducer \(A_k\) accepting

\[L_k = \{ [x,y] \in (\{0,1\} \times \{0,1\})^* \mid \text{val}(y) = 2^k \cdot \text{val}(x) \} . \]

Hint: use (a) and consider operations seen in class.

(c) Give a transducer for the addition of two numbers, i.e. a transducer accepting

\[\{ [x,y,z] \in (\{0,1\} \times \{0,1\} \times \{0,1\})^* \mid \text{val}(z) = \text{val}(x) + \text{val}(y) \} . \]

(d) For every \(k \in \mathbb{N}_{>0}\), let

\[X_k = \{ [x,y] \in (\{0,1\} \times \{0,1\})^* \mid \text{val}(y) = k \cdot \text{val}(x) \} . \]

Sketch an algorithm that takes as input transducers \(A\) and \(B\), accepting respectively \(X_a\) and \(X_b\) for some \(a, b \in \mathbb{N}_{>0}\), and that produces a transducer \(C\) accepting \(X_{a+b}\).

(e) Let \(k \in \mathbb{N}_{>0}\). Using (b) and this, how can you build a transducer accepting \(X_k\)?

(f) Show that the following language has infinitely many residuals, and hence that it is not regular:

\[\{ [x,y] \in (\{0,1\} \times \{0,1\})^* \mid \text{val}(y) = \text{val}(x)^2 \} . \]
Solution 4.1

1. A_p:

![Diagram of A_p]

B_p:

![Diagram of B_p]

C_p:

![Diagram of C_p]

2. Four transitions taken in B_p: \{0\} $\xrightarrow{m} \{0, 1\} \xrightarrow{a} \{0, 2\} \xrightarrow{m} \{0, 1, 3\} \xrightarrow{i} \{0\}$.

Six transitions taken in C_p: 0 $\xrightarrow{m} 1 \xrightarrow{a} 2 \xrightarrow{m} 3 \xrightarrow{i} 1 \xrightarrow{i} 0 \xrightarrow{i} 0$.

3. $t = a^{n-1}b$ and $p = a^n$. The automata B_p and C_p are as follows:

B_p:

![Diagram of B_p]
The runs over t on B_p and C_p are respectively:

$$\{0\} \xrightarrow{a} \{0, 1\} \xrightarrow{a} \{0, 1, 2\} \xrightarrow{a} \ldots \xrightarrow{a} \{0, 1, \ldots, n - 1\} \xrightarrow{b} \{0\},$$

and

$$0 \xrightarrow{a} 1 \xrightarrow{a} 2 \xrightarrow{a} \ldots \xrightarrow{a} (n - 1) \xrightarrow{b} (n - 2) \xrightarrow{b} (n - 3) \xrightarrow{b} \ldots \xrightarrow{b} 0.$$

Solution 4.2

(a) $\Delta(abcde, accd) = 2$.

(b) We use the automaton A_p for pattern $p = ABBA$ and duplicate it carefully in order to allow up to one “mistake”.

(c) Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA for L. We obtain an NFA-ϵ N for $\Delta_{L,n}$ by adding n “error-levels”. Formally:

$$N = (Q \times [0, n], \Sigma, \delta', (q_0, 0), F \times [0, n])$$

with

$$\delta' = \{(q, i, a, (p, i)) \mid q, p \in Q \land i \leq n \land a \in \Sigma \land \delta(q, a) = p\} \quad \text{no change}$$

$$\cup \{(q, i, \varepsilon, (p, i + 1)) \mid q, p \in Q \land i < n \land (\exists a \in \Sigma. \delta(q, a) = p)\} \quad \text{delete}$$

$$\cup \{(q, i, a, (q, i + 1)) \mid q \in Q \land i < n \land a \in \Sigma\} \quad \text{insert}$$

$$\cup \{(q, i, b, (p, i + 1)) \mid q, p \in Q \land i < n \land (\exists a \in \Sigma \setminus \{b\}. \delta(q, a) = p)\} \quad \text{replace}$$

Let us prove that $\Delta_{L,n} = L(N)$.

$\Delta_{L,n} \subseteq L(N)$. If $w \in \Delta_{L,n}$, it means that there is $w' \in L$ such that $\Delta(w', w) = k \leq n$, or in other words, starting from the word w', we can obtain w by applying k “mistakes” (delete, insert, replace). As $w' \in L$ (accepted by M) and as the 0-level of N is a copy of M, note that w' has a run in N that
reaches a final state \((q_f, 0)\). By construction of the automaton \(N\), there is a run of the word \(w\) that follows the run of \(w'\) where each “mistake” can be seen as moving to the next error-level, using the corresponding transition from \(δ'\) (delete, insert, replace) depending on a mistake. It is easy to see that if the word \(w'\) reaches a final state \((q_f, 0)\) in \(N\), then \(w\) can reach \((q_f, k)\), and thus \(w \in L(N)\).

\(L(N) \subseteq \Delta_{L,n}\). If \(w \in L(N)\), this means there is a run of \(w\) in \(N\) that reaches a final state \((q_f, k)\in F \times [0,n]\). Intuitively, for each transition of that run that changes the level, we modify \(w\) so that it “stays in the same level”. Formally, we check the nature of the transition that changes the level and modify \(w\) as follows:

(i) If \((p,i) \xrightarrow{a} (p,i+1)\) is an insert edge, this occurrence of the letter \(a\) will be removed from \(w\).
(ii) If \((p,i) \xrightarrow{a} (q,i+1)\) is a replace edge, and there exists a \((p,i) \xrightarrow{b} (q,i)\) edge, for some letter \(b\), then we replace this occurrence of \(a\) in \(w\) with \(b\).
(iii) If \((p,i) \xrightarrow{\epsilon} (q,i+1)\) is a delete edge, and there exists a \((p,i) \xrightarrow{a} (q,i)\) edge, for some letter \(a\), then we add the letter \(a\) at this place in \(w\).

Denote the obtained word by \(w'\). It is easy to see that \(w'\) is obtained from \(w\) by applying mistakes (delete, insert, replace) \(k\) times, as in the run of \(w\) there are exactly \(k\) transitions that change the level. Therefore, \(\Delta(w', w) \leq k \leq n\). Moreover, it is easy to see that if \(w\) reaches \((q_f, k)\), then \(w'\) reaches \((q_f, 0)\). As the 0-level is a copy of \(M\), then \(w' \in L\). To summarize, there exists \(w' \in L\) such that \(\Delta(w', w) \leq n\), that is, \(w \in \Delta_{L,n}\).

Solution 4.3

(a)

\([A, A], [B, B], \ldots, [Z, Z]\)

\([a, \epsilon], [b, \epsilon], \ldots, [z, \epsilon], [\omega, \epsilon]\)

(b)

\([A, A], [B, B], \ldots, [Z, Z]\)

\([a, a], [b, b], \ldots, [z, z]\)

\([a, \epsilon], [b, \epsilon], \ldots, [z, \epsilon]\)

\([A, \epsilon]\) → \([\omega, \epsilon]\) → \([A', \epsilon]\) → \([EOL, , \omega A . EOL]\)

\([Z, \epsilon]\) → \([\omega, \epsilon]\) → \([Z', \epsilon]\) → \([EOL, , \omega Z . EOL]\)

\([a, \epsilon], [b, \epsilon], \ldots, [z, \epsilon]\)

\([A, A], [B, B], \ldots, [Z, Z]\)

\([a, a], [b, b], \ldots, [z, z]\)

(c)
Solution 4.4

(a) Let \([x_1 x_2 \cdots x_n, y_1 y_2 \cdots y_n] \in (\{0, 1\} \times \{0, 1\})^n\) where \(n \geq 2\). Multiplying a binary number by two shifts its bits and adds a zero. For example, the word

\[
\begin{bmatrix}
10110 \\
01011
\end{bmatrix}
\]

belongs to the language since it encodes \([13, 26]\). Thus, we have \(\text{val}(y) = 2 \cdot \text{val}(x)\) if and only if \(y_1 = 0, x_n = 0,\) and \(y_i = x_{i-1}\) for every \(1 < i \leq n\). From this observation, we construct a transducer that

- tests whether the first bit of \(y\) is 0,
- tests whether \(y\) is consistent with \(x\), by keeping the last bit of \(x\) in memory,
- accepts \([x, y]\) if the last bit of \(x\) is 0.

Note that words \([\varepsilon, \varepsilon]\) and \([0, 0]\) both encode the numerical values \([0, 0]\). Therefore, they should also be accepted since \(2 \cdot 0 = 0\). We obtain the following transducer:

\[
\begin{bmatrix}
0 & 0 \\
1 & 1
\end{bmatrix}
\]

\(
\star \) The initial state can be merged with state 0 as they have the same outgoing transitions.

(b) We construct \(A_0\) as the following transducer accepting \(\{[x, y] \in (\{0, 1\} \times \{0, 1\})^* : y = x\}\):
Let A_1 be the transducer obtained in (a). For every $k > 1$, we define $A_k = \text{Join}(A_{k-1}, A_1)$. A simple inductions show that $L(A_k) = L_k$ for every $k \in \mathbb{N}$.

(c) We construct a transducer that computes the addition by keeping the current carry bit. Consider some tuple $[x, y, z] \in \{0, 1\}^3$ and a carry bit r. Adding x, y and r leads to the bit

$$z = (x + y + r) \mod 2.$$

(1)

Moreover, it yields a new carry bit r' such that $r' = 1$ if $x + y + r > 1$ and $r' = 0$ otherwise. The following table identifies the new carry bit r' of the tuples that satisfy (??):

<table>
<thead>
<tr>
<th>r</th>
<th>0</th>
<th>x</th>
<th>x</th>
<th>0</th>
<th>x</th>
<th>0</th>
<th>1</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$r = 0$</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>1</td>
</tr>
</tbody>
</table>

We construct our transducer from the above table:

(d) We construct a transducer C that, intuitively, feeds its input to both A and B, and then feed the respective outputs of A and B to a transducer performing addition. More formally, let $A = (Q_A, \{0, 1\}, \delta_A, q_0A, F_A)$, $B = (Q_B, \{0, 1\}, \delta_B, q_0B, F_B)$, and let $D = (Q_D, \{0, 1\}, \delta_D, q_0D, F_D)$ be the transducer for addition obtained in (c). We define C as $C = (Q_C, \{0, 1\}, \delta_C, q_0C, F_C)$ where

- $Q_C = Q_A \times Q_B \times Q_D$,
- $q_0C = (q_0A, q_0B, q_0D)$,
- $F_C = F_A \times F_B \times F_D$,

and

$$\delta_C((p, p', p''), [x, y, z]) = \{(q, q', q'') : \exists y', y'' \in \{0, 1\} \text{ s.t. } p \xrightarrow{[x, y]} A q, p' \xrightarrow{[x, y']} B q' \text{ and } p'' \xrightarrow{[y, y', z]} D q''\}.$$

(e) Let $\ell = \lfloor \log_2(k) \rfloor$. There exist $c_0, c_1, \ldots, c_\ell \in \{0, 1\}$ such that $k = c_0 \cdot 2^0 + c_1 \cdot 2^1 + \cdots + c_\ell \cdot 2^\ell$. Let $I = \{0 \leq i \leq \ell : c_i = 1\}$. Note that $k = \sum_{i \in I} 2^i$. Therefore, we may use transducer A_i from (b) for each $i \in I$, and combine these transducers using (d).
(f) For every $n \in \mathbb{N}_{>0}$, let

$$u_n = \begin{bmatrix} 0^n 1 \\ 0^n 0 \end{bmatrix} \quad \text{and} \quad v_n = \begin{bmatrix} 0^{n-1} 0 \\ 0^{n-1} 1 \end{bmatrix}.$$

Let $i, j \in \mathbb{N}_{>0}$ be such that $i \neq j$. We claim that $L^{u_i} \neq L^{u_j}$. We have

$$u_i v_i = \begin{bmatrix} 0^i 1 0^i \\ 0^{2i} 1 \end{bmatrix} \quad \text{and} \quad u_j v_i = \begin{bmatrix} 0^j 1 0^i \\ 0^{i+j} 1 \end{bmatrix}.$$

Therefore, $u_i v_i$ encodes $[2^i, 2^{2i}]$, and $u_j v_i$ encodes $[2^j, 2^{i+j}]$. We observe that $u_i v_i$ belongs to the language since $2^{2i} = (2^i)^2$. However, $u_j v_i$ does not belong to the language since $2^{i+j} \neq 2^{2j} = (2^j)^2$.\[\square\]