
Chair for Foundations of Software Reliability and Theoretical Computer Science
Informatik
Technical University of Munich

Eexam
Place student sticker here

Note:
• During the attendance check a sticker containing a unique code will be put on this exam.
• This code contains a unique number that associates this exam with your registration

number.
• This number is printed both next to the code and to the signature field in the attendance

check list.

Automaten und formale Sprachen

Exam: IN2041 / Endterm Date: Thursday 17th February, 2022
Examiner: Prof. Javier Esparza Time: 11:00 – 13:00

I

P 1 P 2 P 3 P 4 P 5 P 6 P 7

Working instructions
• This exam consists of 20 pages with a total of 7 problems.

• The total amount of achievable credits in this exam is 45 credits.

• Allowed resources:

– any electronic resources accessible using only the external mouse

• All answers have to be written on your own paper.

• Only write on one side of each sheet of paper.

• Write with black or blue pen on white DIN A4 paper.

• Write your name and immatriculation number on every sheet.

Left room from to / Early submission at

– Page 1 / 20 –



0
1

0
1

0
1

0
1

Problem 1 Acceptance conditions (4 credits)

Consider the following ω-automaton A

c

a b

a b

c

b

a
b

c
c

a

Notice that when we read any word w on A, reading letter l leads to state l for every l ∈ {a, b, c}.
Consider the following ω-languages over Σ = {a, b, c}, where inf(w) denotes the set of letters occurring
infinitely often in the infinite word w:

• L1 = {w ∈ Σω : {a, b} ⊆ inf(w)},

• L2 = {w ∈ Σω : a /∈ inf(w) or b /∈ inf(w)},

a) Interpreting A as a generalized Büchi automaton, can you define an acceptance condition such that A
accepts language L1? If yes, give the acceptance condition. If no, give a short justification.

b) Interpreting A as a Rabin automaton, can you define an acceptance condition such that A accepts
language L1? If yes, give the acceptance condition. If no, give a short justification.

c) Interpreting A as a Büchi automaton, can you define an acceptance condition such that A accepts
language L2? If yes, give the acceptance condition. If no, give a short justification.

d) Interpreting A as a Muller automaton, can you define an acceptance condition such that A accepts
language L2? If yes, give the acceptance condition. If no, give a short justification.

– Page 2 / 20 –



Problem 2 Pattern matching (5 credits)

Consider the pattern p = “assas” over the alphabet Σ = {a, s}.

a) Construct an NFA Ap recognizing Σ∗p according to the construction specified in the lectures.

b) Construct the DFA Bp by applying the powerset construction on the NFA Ap .

c) Construct the lazy DFA Cp for the pattern p by using Bp .

0
1

0
1
2

0
1
2

– Page 3 / 20 –



– Page 4 / 20 –



Problem 3 Coordinators for DFA (8 credits)

A word w is said to be a coordinator for a DFA A = (Q ,Σ, δ, q0, F) if there is a state p ∈ Q such that for all
states q ∈ Q, δ(q, w) = p. Intuitively, the word w acts as a coordinating mechanism among all the states, in
the sense that reading this word from any state of the automaton leads to the same common state.

a) Give an example of a 2-state DFA A which has a coordinator and also give an example of a 2-state DFA B
which does not have a coordinator.

b) Give an example of a 4-state DFA A such that every state of A is reachable from every other state and
any shortest coordinator of A is of length 3.

c) Describe an algorithm that takes as input a DFA A and decides whether A is coordinating or not. Your
description has to be sufficiently precise but you do not need to give a pseudocode of your procedure. (Hint:
You can take inspiration from the NFAtoDFA algorithm).

0
1
2

0
1
2

0
1
2
3
4

– Page 5 / 20 –



– Page 6 / 20 –



Problem 4 1-loop automata (9 credits)

An NFA A is said to be a 1-loop NFA if A does not contain any simple cycle beyond self-loops, i.e. there
are no two distinct states p, q such that p is reachable from q and q is reachable from p. A 1-loop DFA is a
1-loop NFA which is also a DFA.

The following automaton is a 1-loop NFA.

p

q

r

a, b

b

a

a

b

The following automaton is not a 1-loop NFA, because there is a cycle between the states p and q.

p

q

r

a

b

ab

a, b

a) Prove or disprove: For every 1-loop NFA A , the output of NFAtoDFA(A ) is a 1-loop DFA. Here, NFAtoDFA
is the algorithm which converts an NFA to a DFA by means of the powerset construction.

0
1
2
3

– Page 7 / 20 –



0
1
2
3

0
1
2
3

b) Prove or disprove: For every pair of 1-loop NFAs A and B, the output of IntersNFA(A , B) is a 1-loop NFA.
Here IntersNFA is the algorithm which takes as input two NFAs A and B and outputs an NFA which accepts
the intersection of the languages of A and B.

c)

For 3 bonus points, prove or disprove the following: For every 1-loop NFA A , the minimal DFA which
recognizes the same language as A is a 1-loop DFA.

– Page 8 / 20 –



– Page 9 / 20 –



0
1

0
1
2

0
1

0
1
2

Problem 5 Graph of regular languages (6 credits)

Consider the following directed graph G = (V , E):

• The set V of nodes is the set of all regular languages over the alphabet Σ = {a, b}. (So the graph has
infinitely many nodes.)

• For any two regular languages L1, L2 ⊆ Σ∗, there is an edge (L1, L2) ∈ E, also denoted L1 → L2, iff
L2 = La

1 or L2 = Lb
1 . (That is, iff L2 is the residual of L1 w.r.t. a or w.r.t. b.)

Given two nodes L1, L2 ∈ V , we say that L2 is reachable from L1 if L1 = L2 or if there exists a path (a sequence
of edges) leading from L1 to L2. We write Reach(L ) the set of languages reachable from a node L of V .

a) Give two regular languages L1, L2 such that L1 6= L2 and Reach(L1) = Reach(L2) = {L1, L2}. Describe the
languages as regular expressions.

b) A sink of G is a language L such that Reach(L ) = {L}. Give regular expressions for all sinks of G, and
prove that there is no other sink.

c) Let L be the language described by the regular expression (aaa)∗a. Draw the fragment of G containing all
the languages of Reach(L ) and all edges between them. Represent all languages as regular expressions,
and recall that Σ = {a, b}.

d) Prove or disprove: For every regular language L the set Reach(L ) is finite.

– Page 10 / 20 –



Problem 6 Automata and regular expressions (7 credits)

Let A be the following NFA.

3

1

2

4

a

b

a

b

a, b

b

a

For the purposes of this problem,

• Whenever you use the algorithm NFAtoRE, you must remove states in ascending order, i.e., you
must first remove the state 1, then state 2 and so on.

• While writing the solution, if you come across a long regular expression, you can abbreviate it by
a variable and use this abbreviation. For example, you can let σ stand for the regular expression
(b∗a + a∗b)∗ and then instead of writing (b∗a + a∗b)∗ throughout the solution, you can instead use σ.

a)

Use the NFAtoRE algorithm, as described in the lectures, to convert A into a regular expression. The
solution must contain the automaton after the preprocessing step and also the automata obtained
after removing each state.

0
1
2
3
4

– Page 11 / 20 –



– Page 12 / 20 –



b)

Consider A as a non-deterministic Büchi automaton and compute an ω-regular expression for A . You may
use the results of the first subproblem for this subproblem. If you are using NFAtoRE, you do not need to
draw each intermediate automaton. It is sufficient to give the final result while describing the steps that you
have followed.

0
1
2
3

– Page 13 / 20 –



– Page 14 / 20 –



– Page 15 / 20 –



0
1
2

0
1
2

Problem 7 Büchi Complementation (6 credits)

Consider the following Büchi automaton B

q2

q0 q1

a

a, b

b

b
b

a

We denote by B the complement of B, defined with level rankings and owing states as in the lecture. We
write the states of B as the pairs [lr , O ] where lr is a level ranking and O is the set of owing states. We write
lr with rank of q0 on top, rank of q1 below, and rank of q2 on the bottom.

a) For the following pairs [lr , O ], say whether or not they are states of B. If they are not, give a justification.

•

 2
0
0

, {q0, q2}



•

 ⊥5
5

, ∅



•

 1
⊥
0

, {q1, q2}



b) For the following transitions, say whether or not they are transitions of B. If they are not, give a justification.

•

 2
1
0

, {q0, q2}

 a−→

 1
0
⊥

, {q1}



•

 6
4
0

, {q0}

 b−→

 4
3
0

, {q0, q2}



•

 6
4
0

, {q0}

 b−→

 4
3
0

, {q2}



•

 3
3
⊥

, ∅

 b−→

 2
0
0

, {q1, q2}



•

 ⊥3
3

, ∅

 b−→

 ⊥⊥
2

, {q2}


– Page 16 / 20 –



c)
This question is for 2 bonus points. Let A be any DBA. States p and q of A are said to be mutually reachable
if p is reachable from q and q is reachable from p. A is said to be a uniform DBA if the following is true: For
every pair of mutually reachable states p, q, either both p and q are accepting states or both p and q are
rejecting states.
Prove the following: If A is a uniform DBA recognizing an ω-regular language L , then there is a uniform DBA
B such that B recognizes the complement of L .

0
1
2

– Page 17 / 20 –



Additional space for solutions–clearly mark the (sub)problem your answers are related to and strike
out invalid solutions.

– Page 18 / 20 –



– Page 19 / 20 –



– Page 20 / 20 –


	p1a1c0: Off
	p1a1c1: Off
	p1b1c0: Off
	p1b1c1: Off
	p1c1c0: Off
	p1c1c1: Off
	p1d1c0: Off
	p1d1c1: Off
	1.1.1: 
	1.2.1: 
	1.3.1: 
	1.4.1: 
	2.1.1: 
	2.2.1: 
	p2a1c0: Off
	p2a1c1: Off
	p2b1c0: Off
	p2b1c1: Off
	p2b1c2: Off
	p2c1c0: Off
	p2c1c1: Off
	p2c1c2: Off
	2.3.1: 
	3.1.1: 
	3.2.1: 
	p3a1c0: Off
	p3a1c1: Off
	p3a1c2: Off
	p3b1c0: Off
	p3b1c1: Off
	p3b1c2: Off
	p3c1c0: Off
	p3c1c1: Off
	p3c1c2: Off
	p3c1c3: Off
	p3c1c4: Off
	3.3.1: 
	p4a1c0: Off
	p4a1c1: Off
	p4a1c2: Off
	p4a1c3: Off
	p4b1c0: Off
	p4b1c1: Off
	p4b1c2: Off
	p4b1c3: Off
	p4c1c0: Off
	p4c1c1: Off
	p4c1c2: Off
	p4c1c3: Off
	4.1.1: 
	4.2.1: 
	4.3.1: 
	p5a1c0: Off
	p5a1c1: Off
	p5b1c0: Off
	p5b1c1: Off
	p5b1c2: Off
	p5c1c0: Off
	p5c1c1: Off
	p5d1c0: Off
	p5d1c1: Off
	p5d1c2: Off
	5.1.1: 
	5.2.1: 
	5.3.1: 
	5.4.1: 
	p6a1c0: Off
	p6a1c1: Off
	p6a1c2: Off
	p6a1c3: Off
	p6a1c4: Off
	6.1.1: 
	6.1.2: 
	p6b1c0: Off
	p6b1c1: Off
	p6b1c2: Off
	p6b1c3: Off
	6.2.1: 
	6.2.2: 
	p7a1c0: Off
	p7a1c1: Off
	p7a1c2: Off
	p7b1c0: Off
	p7b1c1: Off
	p7b1c2: Off
	7.1.1: 
	7.2.1: 
	7.3.1: 
	p7c1c0: Off
	p7c1c1: Off
	p7c1c2: Off
	7.3.2: 
	7.3.3: 
	7.3.4: 


