

	Note:
Eexam	 During the attendance check a sticker containing a unique code will be put on this exam. This code contains a unique number that associates this exam with your registration
Place student sticker here	number.
	 This number is printed both next to the code and to the signature field in the attendance check list.

Automaten und formale Sprachen

Exam:	IN2041 / Endterm	Date:	Thursday 17 th February, 2022
Examiner:	Prof. Javier Esparza	Time:	11:00 - 13:00

	P 1	P 2	P 3	P 4	P 5	P 6	Ρ7
I							

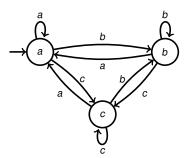
Working instructions

- This exam consists of 20 pages with a total of 7 problems.
- The total amount of achievable credits in this exam is 45 credits.
- Allowed resources:
 - any electronic resources accessible using only the external mouse
- All answers have to be written on your own paper.
- Only write on one side of each sheet of paper.
- Write with black or blue pen on white DIN A4 paper.
- Write your name and immatriculation number on every sheet.

Left room from	to	/ Early submission at

Problem 1 Acceptance conditions (4 credits)

Consider the following $\omega\text{-automaton}\;\mathcal{A}$



Notice that when we read any word *w* on A, reading letter *l* leads to state *l* for every $l \in \{a, b, c\}$. Consider the following ω -languages over $\Sigma = \{a, b, c\}$, where $\inf(w)$ denotes the set of letters occurring infinitely often in the infinite word *w*:

- $L_1 = \{w \in \Sigma^{\omega} : \{a, b\} \subseteq \inf(w)\},\$
- $L_2 = \{ w \in \Sigma^{\omega} : a \notin \inf(w) \text{ or } b \notin \inf(w) \},\$

a) Interpreting A as a generalized Büchi automaton, can you define an acceptance condition such that A accepts language L_1 ? If yes, give the acceptance condition. If no, give a short justification.

b) Interpreting \mathcal{A} as a Rabin automaton, can you define an acceptance condition such that \mathcal{A} accepts language L_1 ? If yes, give the acceptance condition. If no, give a short justification.

c) Interpreting \mathcal{A} as a Büchi automaton, can you define an acceptance condition such that \mathcal{A} accepts language L_2 ? If yes, give the acceptance condition. If no, give a short justification.

d) Interpreting \mathcal{A} as a Muller automaton, can you define an acceptance condition such that \mathcal{A} accepts language L_2 ? If yes, give the acceptance condition. If no, give a short justification.

Problem 2 Pattern matching (5 credits)

Consider the pattern p = "assas" over the alphabet $\Sigma = \{a, s\}$.

a) Construct an NFA A_p recognizing $\Sigma^* p$ according to the construction specified in the lectures.

b) Construct the DFA B_p by applying the powerset construction on the NFA A_p .

0
1
2

0 1 2

c) Construct the lazy DFA C_p for the pattern p by using B_p .

- Page 4 / 20 -

Problem 3 Coordinators for DFA (8 credits)

A word *w* is said to be a *coordinator* for a DFA $A = (Q, \Sigma, \delta, q_0, F)$ if there is a state $p \in Q$ such that **for all states** $q \in Q$, $\delta(q, w) = p$. Intuitively, the word *w* acts as a coordinating mechanism among all the states, in the sense that reading this word from *any* state of the automaton leads to the same common state.

a) Give an example of a 2-state DFA A which has a coordinator and also give an example of a 2-state DFA B which **does not have** a coordinator.

b) Give an example of a 4-state DFA A such that every state of A is reachable from every other state and any shortest coordinator of A is of length 3.

0 1

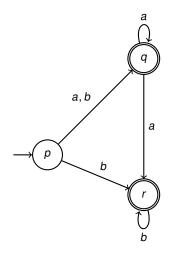
c) Describe an algorithm that takes as input a DFA *A* and decides whether *A* is coordinating or not. Your description has to be sufficiently precise but you do not need to give a pseudocode of your procedure. (**Hint:** You can take inspiration from the *NFAtoDFA* algorithm).

– Page 6 / 20 –

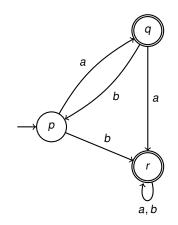
Problem 4 1-loop automata (9 credits)

An NFA *A* is said to be a *1-loop NFA* if *A* **does not** contain any simple cycle beyond self-loops, i.e. there are no two distinct states p, q such that p is reachable from q and q is reachable from p. A 1-loop DFA is a 1-loop NFA which is also a DFA.

The following automaton is a 1-loop NFA.



The following automaton is not a 1-loop NFA, because there is a cycle between the states p and q.



0	
1	
2	
3	

b) Prove or disprove: For every pair of 1-loop NFAs A and B, the output of IntersNFA(A, B) is a 1-loop NFA. Here IntersNFA is the algorithm which takes as input two NFAs A and B and outputs an NFA which accepts the intersection of the languages of A and B.

C)

For **3 bonus points**, prove or disprove the following: For every 1-loop NFA *A*, the minimal DFA which recognizes the same language as *A* is a 1-loop DFA.

– Page 9 / 20 –

Problem 5 Graph of regular languages (6 credits)

Consider the following directed graph G = (V, E):

- The set V of nodes is the set of all regular languages over the alphabet Σ = {a, b}. (So the graph has infinitely many nodes.)
- For any two regular languages $L_1, L_2 \subseteq \Sigma^*$, there is an edge $(L_1, L_2) \in E$, also denoted $L_1 \to L_2$, iff $L_2 = L_1^a$ or $L_2 = L_1^b$. (That is, iff L_2 is the residual of L_1 w.r.t. *a* or w.r.t. *b*.)

Given two nodes $L_1, L_2 \in V$, we say that L_2 is reachable from L_1 if $L_1 = L_2$ or if there exists a path (a sequence of edges) leading from L_1 to L_2 . We write *Reach*(*L*) the set of languages reachable from a node *L* of *V*.

a) Give two regular languages L_1 , L_2 such that $L_1 \neq L_2$ and $Reach(L_1) = Reach(L_2) = \{L_1, L_2\}$. Describe the languages as regular expressions.

0 1 2

0 1

b) A sink of *G* is a language *L* such that $Reach(L) = \{L\}$. Give regular expressions for all sinks of *G*, and prove that there is no other sink.

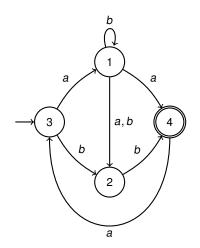
0

c) Let *L* be the language described by the regular expression $(aaa)^*a$. Draw the fragment of *G* containing all the languages of *Reach*(*L*) and all edges between them. Represent all languages as regular expressions, and recall that $\Sigma = \{a, b\}$.

0 1 2 d) Prove or disprove: For every regular language *L* the set *Reach*(*L*) is finite.

Problem 6 Automata and regular expressions (7 credits)

Let A be the following NFA.



For the purposes of this problem,

- Whenever you use the algorithm *NFAtoRE*, you must remove states in ascending order, i.e., you must first remove the state 1, then state 2 and so on.
- While writing the solution, if you come across a long regular expression, you can abbreviate it by a variable and use this abbreviation. For example, you can let σ stand for the regular expression $(b^*a + a^*b)^*$ and then instead of writing $(b^*a + a^*b)^*$ throughout the solution, you can instead use σ .

a)

Use the *NFAtoRE* algorithm, as described in the lectures, to convert *A* into a regular expression. The solution must contain the automaton after the preprocessing step and also the automata obtained after removing each state.

- Page 12 / 20 -

b)

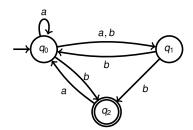
Consider A as a non-deterministic Büchi automaton and compute an ω -regular expression for A. You may use the results of the first subproblem for this subproblem. If you are using *NFAtoRE*, you do not need to draw each intermediate automaton. It is sufficient to give the final result while describing the steps that you have followed.

- Page 14 / 20 -

– Page 15 / 20 –

Problem 7 Büchi Complementation (6 credits)

Consider the following Büchi automaton $\ensuremath{\mathcal{B}}$



We denote by \overline{B} the complement of B, defined with level rankings and owing states as in the lecture. We write the states of \overline{B} as the pairs [*Ir*, *O*] where *Ir* is a level ranking and *O* is the set of owing states. We write *Ir* with rank of q_0 on top, rank of q_1 below, and rank of q_2 on the bottom.

a) For the following pairs [*Ir*, *O*], say whether or not they are states of \overline{B} . If they are not, give a justification.

•	$\begin{bmatrix} 2\\0, \{q_0, q_2\}\\0 \end{bmatrix}$
•	$\left[\begin{array}{c} \bot \\ 5 \\ 5 \end{array}, \emptyset \right]$
•	$\begin{bmatrix} 1\\ \bot , \{q_1, q_2\}\\ 0 \end{bmatrix}$

0 1 2

1 2

 $\cdot \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \{q_0, q_2\} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \\ \bot \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \\ \downarrow \end{bmatrix}$ $\cdot \begin{bmatrix} 6 \\ 4 \\ 0 \end{bmatrix} \{q_0\} \xrightarrow{b} \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix} \{q_0, q_2\} \xrightarrow{b} \begin{bmatrix} 6 \\ 4 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix} \{q_2\} \xrightarrow{b} \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix}$

• $\begin{bmatrix} 3\\3\\- \end{bmatrix} \stackrel{b}{\rightarrow} \begin{bmatrix} 2\\0\\0\\+ \end{bmatrix} \stackrel{d}{\rightarrow} \begin{bmatrix} 1\\0\\0 \end{bmatrix}$ • $\begin{bmatrix} 1\\3\\3\end{bmatrix} \stackrel{b}{\rightarrow} \begin{bmatrix} 1\\-1\\-1\\2\end{bmatrix}$

b) For the following transitions, say whether or not they are transitions of $\overline{\mathcal{B}}$. If they are not, give a justification.

0 1 2

C)

This question is for **2 bonus points**. Let *A* be any DBA. States *p* and *q* of *A* are said to be *mutually reachable* if *p* is reachable from *q* and *q* is reachable from *p*. *A* is said to be a *uniform* DBA if the following is true: For every pair of mutually reachable states *p*, *q*, either both *p* and *q* are accepting states or both *p* and *q* are rejecting states.

Prove the following: If A is a uniform DBA recognizing an ω -regular language L, then there is a uniform DBA B such that B recognizes the **complement of** L.

Additional space for solutions-clearly mark the (sub)problem your answers are related to and strike out invalid solutions.

	 	 _					 	 							 	 		 		
												\neg	\neg					 		
				$\left - \right $								-+	-+	-+						
												-+	-+	-+						
													-							
													-+			 				ļ
													-							
	 	 _					 						-		 	 		 		
	 	 _					 								 	 				
													-+							
													$ \rightarrow$							
												-+								
]]]]]]]	, []	1]	
												\neg	\neg	\neg						
												-+	-+	-+						
		_		$\left - \right $								\rightarrow	-+	-+						
													-							
												\rightarrow	-+	-+						
												\square	\square							
1 7																				
													_							

