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Working instructions
• This exam consists of 20 pages with a total of 7 problems.

• The total amount of achievable credits in this exam is 45 credits.

• Allowed resources:

– any electronic resources accessible using only the external mouse

• All answers have to be written on your own paper.

• Only write on one side of each sheet of paper.

• Write with black or blue pen on white DIN A4 paper.

• Write your name and immatriculation number on every sheet.

Left room from to / Early submission at
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Problem 1 Acceptance conditions (4 credits)

Consider the following ω-automaton A

c

a b

a b

c

b

a
b

c
c

a

Notice that when we read any word w on A, reading letter l leads to state l for every l ∈ {a, b, c}.
Consider the following ω-languages over Σ = {a, b, c}, where inf(w) denotes the set of letters occurring
infinitely often in the infinite word w:

• L1 = {w ∈ Σω : {a, b} ⊆ inf(w)},

• L2 = {w ∈ Σω : a /∈ inf(w) or b /∈ inf(w)},

a) Interpreting A as a generalized Büchi automaton, can you define an acceptance condition such that A
accepts language L1? If yes, give the acceptance condition. If no, give a short justification.

Yes, {{a}, {b}}.

b) Interpreting A as a Rabin automaton, can you define an acceptance condition such that A accepts
language L1? If yes, give the acceptance condition. If no, give a short justification.

No: there must be a pair 〈F , G〉 in the acceptance condition with a, b ∈ F , but then aω is accepted,
contradiction.

c) Interpreting A as a Büchi automaton, can you define an acceptance condition such that A accepts
language L2? If yes, give the acceptance condition. If no, give a short justification.

No: let F be the accepting states. Since aω ∈ L2, we have a ∈ F . Similarly b ∈ F . But then (ab)ω is
accepted, contradiction.

d) Interpreting A as a Muller automaton, can you define an acceptance condition such that A accepts
language L2? If yes, give the acceptance condition. If no, give a short justification.

Yes, {{a}, {b}, {c}, {b, c}, {a, c}}.
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Problem 2 Pattern matching (5 credits)

Consider the pattern p = “assas” over the alphabet Σ = {a, s}.

a) Construct an NFA Ap recognizing Σ∗p according to the construction specified in the lectures.

0 1 2 3 4 5

a, s

a s s a s

b) Construct the DFA Bp by applying the powerset construction on the NFA Ap .

0 0, 1 0, 2 0, 3 0, 1, 4 0, 2, 5
a

s a

s s

a

a

s

s

a

a

s

c) Construct the lazy DFA Cp for the pattern p by using Bp .
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0 0, 1 0, 2 0, 3 0, 1, 4 0, 2, 5
a; R

miss; R

s; R

miss; N

s; R

miss; N

a; R

miss; N

s; R

miss; N miss; N
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Problem 3 Coordinators for DFA (8 credits)

A word w is said to be a coordinator for a DFA A = (Q ,Σ, δ, q0, F) if there is a state p ∈ Q such that for all
states q ∈ Q, δ(q, w) = p. Intuitively, the word w acts as a coordinating mechanism among all the states, in
the sense that reading this word from any state of the automaton leads to the same common state.

a) Give an example of a 2-state DFA A which has a coordinator and also give an example of a 2-state DFA B
which does not have a coordinator.

A is the following DFA.

p q

a

a

B is the following DFA.

p q

a

a

b) Give an example of a 4-state DFA A such that every state of A is reachable from every other state and
any shortest coordinator of A is of length 3.

p q r s
a, b a, b a, b

b

a

Notice that for any state q1 of A , there is another state q2 such that the shortest path from q2 to q1

is of length 3. Hence, the shortest coordinator of A must be of length at least 3. Further, aaa is a
coordinator of 3 and so A is the required DFA.

c) Describe an algorithm that takes as input a DFA A and decides whether A is coordinating or not. Your
description has to be sufficiently precise but you do not need to give a pseudocode of your procedure. (Hint:
You can take inspiration from the NFAtoDFA algorithm).
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Let A = (Q ,Σ, δ, q0, F) be a DFA with state space Q. Let A ′ be the NFA given by (Q ,Σ, δ, Q , F) and let
B = (Q,Σ,∆, Q ,F ) be the DFA obtained by running NFAtoDFA(A ′).
For any word w, recall that δ(q, w) denotes the set of states reachable from q after reading the word w
in A and ∆(Q , w) denotes the (unique) state reachable from Q after reading the word w in B. Note
that by definition of the construction of B, ∆(Q , w) = ∪q∈Qδ(q, w) for any word w.
Notice that w is a coordinator for A iff there is a state p in Q such that δ(q, w) = {p} for all q ∈ Q which
(since A is a DFA), is true iff ∪q∈Qδ(q, w) = {p} which is true iff ∆(Q , w) = {p}. Hence,

w is a coordinator for A iff there is a state p ∈ Q such that ∆(Q , w) = {p} in the DFA B.

Hence, to check if A has a coordinator we only need to check if there is a state p ∈ Q such that {p} is
reachable from the state Q in the DFA B. To do this, we first construct the DFA B. Then we iterate
over all states p of A and then check if there is a path from Q to {p} in B, which can be done by either
a BFS or a DFS.
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Problem 4 1-loop automata (9 credits)

An NFA A is said to be a 1-loop NFA if A does not contain any simple cycle beyond self-loops, i.e. there
are no two distinct states p, q such that p is reachable from q and q is reachable from p. A 1-loop DFA is a
1-loop NFA which is also a DFA.

The following automaton is a 1-loop NFA.

p

q

r

a, b

b

a

a

b

The following automaton is not a 1-loop NFA, because there is a cycle between the states p and q.

p

q

r

a

b

ab

a, b

a) Prove or disprove: For every 1-loop NFA A , the output of NFAtoDFA(A ) is a 1-loop DFA. Here, NFAtoDFA
is the algorithm which converts an NFA to a DFA by means of the powerset construction.

0
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This claim is false. Let A be an NFA with initial state p and final state q over the alphabet {a, b} with
the following transitions: δ(p, a) = {p, q}, δ(p, b) = {p}. It is clear that A is a 1-loop NFA. If we let B be
the DFA obtained by the powerset construction on the NFA A , then we get the cycle δ({p}, a) = {p, q}
and δ({p, q}, b) = {p}. So, B is not a 1-loop DFA.

b) Prove or disprove: For every pair of 1-loop NFAs A and B, the output of IntersNFA(A , B) is a 1-loop NFA.
Here IntersNFA is the algorithm which takes as input two NFAs A and B and outputs an NFA which accepts
the intersection of the languages of A and B.

This claim is true. Let A and B be any two 1-loop NFAs and let C = IntersNFA(A , B). Suppose C
is not a 1-loop NFA. Let (p0, q0) → (p1, q1) → ... (pk , qk ) → (p0, q0) be a simple cycle which is not a
self-loop in C. Hence, (p1, q1) 6= (p0, q0) and so without loss of generality, we can assume that p1 6= p0.
By definition of C, this implies that p0 → p1 → ... pk → p0 is a cycle in A and so there is a path from
the state p1 to p0 in A . Since, p0 6= p1, this immediately implies that there is a simple cycle from p0 to
p0 which passes through p1 6= p0 and so we have a simple cycle in A which is not a self-loop, which
contradicts the fact that A is a 1-loop NFA.

c)

For 3 bonus points, prove or disprove the following: For every 1-loop NFA A , the minimal DFA which
recognizes the same language as A is a 1-loop DFA.
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The claim is false. We consider the same NFA A from the solution of the first subproblem which
recognizes the language (a + b)∗a. Suppose the minimal DFA B which recognizes this language
is also a 1-loop DFA. Let q0 be the initial state of B and let q1, q2 be such that q0

a−→ q1
b−→ q2. We

note that the language of q0 is, by definition, (a + b)∗a and so the languages of q1 and q2 must be
ε + (a + b)∗a and (a + b)∗a. Since B is minimal, this means that q2 = q0 and q1 6= q0 and so there is a
cycle between q0 and q1, which leads to a contradiction.
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Problem 5 Graph of regular languages (6 credits)

Consider the following directed graph G = (V , E):

• The set V of nodes is the set of all regular languages over the alphabet Σ = {a, b}. (So the graph has
infinitely many nodes.)

• For any two regular languages L1, L2 ⊆ Σ∗, there is an edge (L1, L2) ∈ E, also denoted L1 → L2, iff
L2 = La

1 or L2 = Lb
1 . (That is, iff L2 is the residual of L1 w.r.t. a or w.r.t. b.)

Given two nodes L1, L2 ∈ V , we say that L2 is reachable from L1 if L1 = L2 or if there exists a path (a sequence
of edges) leading from L1 to L2. We write Reach(L ) the set of languages reachable from a node L of V .

a) Give two regular languages L1, L2 such that L1 6= L2 and Reach(L1) = Reach(L2) = {L1, L2}. Describe the
languages as regular expressions.

For example, L1 = Σ(ΣΣ)∗ and L2 = (ΣΣ)∗. Indeed La
1 = Lb

1 = L2 and respectively for the residuals of L2.

b) A sink of G is a language L such that Reach(L ) = {L}. Give regular expressions for all sinks of G, and
prove that there is no other sink.

The two sinks of G are Σ∗ and ∅. They are clearly sinks as their residuals are equal to themselves.
Let L be some sink of G. Assume L is not empty, and w is a word in L . By definition of being a sink,
La = Lb = L . Thus Lw = L , so L contains the empty word ε. Now take any word u. Since Lu = L by the
same reasoning as above, we have ε ∈ Lu, and thus by definition of residuals uε = u ∈ L . So L = Σ∗.
Therefore the only two sinks of G are Σ∗ and ∅.

c) Let L be the language described by the regular expression (aaa)∗a. Draw the fragment of G containing all
the languages of Reach(L ) and all edges between them. Represent all languages as regular expressions,
and recall that Σ = {a, b}.

(aaa)∗a

∅

(aaa)∗

(aaa)∗aa

b

a, b

a

b

b

a

a

d) Prove or disprove: For every regular language L the set Reach(L ) is finite.

True: A regular language only has finitely many residuals. Since every language reachable from L in
G is a residual, L can only reach finitely many other languages.
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Problem 6 Automata and regular expressions (7 credits)

Let A be the following NFA.

3

1

2

4

a

b

a

b

a, b

b

a

For the purposes of this problem,

• Whenever you use the algorithm NFAtoRE, you must remove states in ascending order, i.e., you
must first remove the state 1, then state 2 and so on.

• While writing the solution, if you come across a long regular expression, you can abbreviate it by
a variable and use this abbreviation. For example, you can let σ stand for the regular expression
(b∗a + a∗b)∗ and then instead of writing (b∗a + a∗b)∗ throughout the solution, you can instead use σ.

a)

Use the NFAtoRE algorithm, as described in the lectures, to convert A into a regular expression. The
solution must contain the automaton after the preprocessing step and also the automata obtained
after removing each state.

0
1
2
3
4
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We perform a preprocessing step and also merge the multiple transitions between states 1 and 2 into
a single transition.

3init

1

2

4 fin
ε

a

b

a + b

a

b

b

a

ε
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Now we remove state 1 and also merge any multiple transitions along the way.

3init

2

4 fin
ε ab∗a

ab ∗(a + b) + b

b

a

ε

Now we remove state 2 and also merge any multiple transitions along the way. Let σ = ab∗a + (ab∗(a +
b) + b)b in the sequel.

3init 4 fin
ε σ

a

ε

Now we remove state 3.

init 4 fin
σ

aσ

ε

And finally we remove state 4.

init fin
σ(aσ)∗

Hence, the final regular expression is σ(aσ)∗.

b)

Consider A as a non-deterministic Büchi automaton and compute an ω-regular expression for A . You may
use the results of the first subproblem for this subproblem. If you are using NFAtoRE, you do not need to
draw each intermediate automaton. It is sufficient to give the final result while describing the steps that you
have followed.

0
1
2
3
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First, we need to compute r3,4, i.e., a regular expression for the set of words with runs leading from
state 3 to state 4 while visiting state 4 exactly once after leaving state 3. To do this, it suffices to
compute a regular expression for the automaton B obtained by from A by deleting the transition 4 a−→ 3.
From the steps of the solution for the first subproblem, this is exactly σ.

Next, we need to compute r4,4, i.e., a regular expression for the set of words with runs leading from
state 4 to state 4 while visiting state 4 exactly once after leaving state 4. To do this, we need to redirect
all the incoming arrows of 4 to a new state fin and take the initial state to be 4 and the final state to be
fin. This results in the following automaton.

3

1

2

4

fin

a

b

a + b

a

b

b

a
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Removing states 1 and 2 is exactly similar to the solution of the first subproblem and so we get

3 4

fin

σ

a

Removing state 3 gives us that the resulting regular expression is aσ.
Hence, the ω-regular expression for A is σ · (aσ)ω.
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Problem 7 Büchi Complementation (6 credits)

Consider the following Büchi automaton B

q2

q0 q1

a

a, b

b

b
b

a

We denote by B the complement of B, defined with level rankings and owing states as in the lecture. We
write the states of B as the pairs [lr , O ] where lr is a level ranking and O is the set of owing states. We write
lr with rank of q0 on top, rank of q1 below, and rank of q2 on the bottom.

a) For the following pairs [lr , O ], say whether or not they are states of B. If they are not, give a justification.

•

 2
0
0

, {q0, q2}



•

 ⊥5
5

, ∅



•

 1
⊥
0

, {q1, q2}



• Yes.

• No: q2 is accepting and must have even rank.

• No: q1 should not be in the owing states as lr(q1) /∈ [0, 2n].

b) For the following transitions, say whether or not they are transitions of B. If they are not, give a justification.

•

 2
1
0

, {q0, q2}

 a−→

 1
0
⊥

, {q1}



•

 6
4
0

, {q0}

 b−→

 4
3
0

, {q0, q2}



•

 6
4
0

, {q0}

 b−→

 4
3
0

, {q2}



•

 3
3
⊥

, ∅

 b−→

 2
0
0

, {q1, q2}



•

 ⊥3
3

, ∅

 b−→

 ⊥⊥
2

, {q2}


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• No: q2
a−→ q0 so rank cannot increase.

• No: q0 /∈ δ(q0, b).

• Yes.

• No: q0 should be in the owing states.

• No: q0 should have a rank since q1
b−→ q0. Another reason is:

 ⊥3
3

, ∅

 is not a valid state since

q2 should not have odd rank.

c)
This question is for 2 bonus points. Let A be any DBA. States p and q of A are said to be mutually reachable
if p is reachable from q and q is reachable from p. A is said to be a uniform DBA if the following is true: For
every pair of mutually reachable states p, q, either both p and q are accepting states or both p and q are
rejecting states.
Prove the following: If A is a uniform DBA recognizing an ω-regular language L , then there is a uniform DBA
B such that B recognizes the complement of L .

Let A = (Q ,Σ, δ, q0, F) be a uniform DBA recognizing L . Consider the DBA B = (Q ,Σ, δ, q0, Q \ F).
Notice that B is a uniform DBA. We claim that B recognizes the complement of L .
Let w be any infinite word and let ρ be the unique run of A on the word w (unique because A is
deterministic). Notice that ρ is also the unique run of B on the word w. Let inf (ρ) be the set of states
which appear infinitely often in ρ.
Notice that if p, q ∈ inf (ρ) then p and q are mutually reachable in A . Indeed, let i, j, k be positions along
the run ρ such that i < j < k , p appears at position i, q appears at position j and p appears at position
k . (Such positions exist because p, q ∈ inf (ρ)). This implies that there must be a path from p to q and
a path from q to p, which enables us to conclude that p and q are mutually reachable. Hence, all the
states in inf (ρ) are mutually reachable from one another. Since A is uniform, this implies that either
inf (ρ) ⊆ F or inf (ρ) ⊆ Q \ F .
If inf (ρ) ⊆ F , this means that w is accepted by A . Since ρ is also the unique run of B on w and since
the accepting states of B is Q \ F , it follows that B rejects the word w.
If inf (ρ) ⊆ Q \ F , this means that w is rejected by A . Since ρ is also the unique run of B on w and
since the accepting states of B is Q \ F , it follows that B accepts the word w.
It follows that B recognizes the complement of L .

Notice that a Büchi automaton may accept words w that are not accepted by a run that ends in a
cycle/ that are not of the form w = u(v)ω with u, v ∈ Σ∗. For example, the Büchi automaton that accepts
(0 + 1 + ... + 9)ω accepts the word w of the decimals of

√
2.

0
1
2
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Additional space for solutions–clearly mark the (sub)problem your answers are related to and strike
out invalid solutions.
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