
Technische Universität München
Winter term 2020/21, 03.03.2020
Prof. J. Esparza / M. Lazić / C. Weil-Kennedy

Automata and Formal Languages — Endterm Exam

• You have 120 minutes to complete the exam.

• Answers must be written in a separate booklet. Do not answer on the exam.

• Please let us know if you need more paper.

• Write your name and Matrikelnummer on every sheet.

• Write with a non-erasable pen. Do not use red or green.

• You can obtain 40 points. You need 17 points to pass. There are 4 bonus points in the last exercise.

• The F symbol indicates a more challenging question.

Question 1 (2 + 3 + 2+ 2 + 3 = 12 points)

a. Is there an NFA for (a+ b)c∗ satisfying all the following conditions? If so, give one. If not, give a proof.

• No initial state has an incoming transition.

• No final state has an outgoing transition.

• For every state q, all transitions starting at q (if any) are labelled with the same letter.

• For every state q, all transitions ending at q (if any) are labelled with the same letter.

b. Give a transducer over alphabet {0, 1}3 accepting all least significant bit first (lsbf) encodings of pairs
(x, y, z) ∈ N3 such that x > 0, y = x− 1 and z = x+ 1. For example, (0101, 1001, 1101) encodes (10, 9, 11)
and should be accepted, while (110, 101, 011) encodes (3, 5, 6) and should be rejected.

c. Recall that inf(w) denotes the set of letters occurring infinitely often in the infinite word w. Give a Büchi
automaton and an ω-regular expression for the following ω-language over Σ = {a, b, c}:

L = {w ∈ Σω : a ∈ inf(w)⇒ b ∈ inf(w)}.

d. Let f : 2N → N be a surjective function.

Assume you are given an MSO formula Sum(X,Y, Z) for X,Y, Z in 2N that is true if and only if f(X) +
f(Y) = f(Z). Give an MSO formula ϕ(X,Y, Z) that is true if and only if f(X) + f(Y) ≤ f(Z).

e. Given languages L1, L2 over alphabet Σ 6= ∅, the 2-shuffle of L1 and L2 is the language

L1 � L2 := {u1v1u2v2 | u1u2 ∈ L1 ∧ v1v2 ∈ L2} .

Let K = (QK ,Σ, δK , q
K
0 , FK) and L = (QL,Σ, δL, q

L
0 , FL) be NFAs recognizing languages K and L,

respectively. Give a tuple M = (Q,Σ, δ, q0, F) such that M is an ε-NFA recognizing K � L.

Question 2 (4 points)

Consider the following languages over the alphabet Σ = {a, b, c}:

• R ⊆ Σ∗ is the language of all words of odd length, where the first and the last letter coincide. For example,
aba, abcca ∈ R and bcab, baa 6∈ R.

1 of 10

• S ⊆ Σ∗ is the language of all words ‘w such that |w|a ≤ |w|b and |w|c ≤ |w|b, where for every σ ∈ Σ the
expression |w|σ denotes the number of times that σ occurs in w. For example, abbacc, bcab, cbcaacabb ∈ S
and aab, ccba 6∈ S.

• Let w = a1a2 . . . an ∈ Σ∗. A switch from a to b in w is a pair of indices 1 ≤ i < j ≤ n such that ai = a,
ai+1 = · · · = aj−1 = c, and aj = b. Similarly, a switch from b to a in w is a pair of indices 1 ≤ i < j ≤ n
such that ai = b, ai+1 = · · · = aj−1 = c, and aj = a. For example, in w = accbcaacbcba there are 2
switches from a to b (accbcaacbcba) and 2 from b to a (accbcaacbcba). In wb = accbcaacbcbab there are
3 switches from a to b (accbcaacbcbab), but only 2 from b to a (accbcaacbcbab).

T ⊆ Σ∗ is the language of all words that have the same number of switches from a to b and switches from
b to a. For example, w = accbcaacbcba ∈ T , but wb = accbcaacbcbab 6∈ T .

For each of the languages R, S, and T , decide if it is regular or not. If a language is regular, give a NFA that
recognizes it. If it is non-regular, prove this by analyzing its residuals.

Question 3 (3 points)

Consider the two following NBAs B1 and B2:

p0 p1

b
a a

b

q0 q1

b

a

a b

(a) Give ω-regular expressions for the languages of the NBAs B1 and B2.

(b) Give the NBA B1 ∩ B2 produced using the algorithm IntersNBA seen in class.

Question 4 (4 points)

Let B the following Büchi automaton.

α

β

γ

δ ε

ζ ηa

b

a

a

a

c

b

c

a

b

a

a

The language of B is not empty. Consider the algorithm NestedDFS seen in class, with procedures dfs1 and
dfs2.

(a) Give the discovery and finishing times assigned by dfs1(q0) to every state, starting from 1. Assume that,
at every state, dfs1 explores transitions labelled by a before transitions labelled by b, and transitions
labelled by b before transitions labelled by c.

(b) Give the times at which dfs2 is called on the final states p2, p4, p6 (if at all). For each such procedure call,
give the discovery and finishing times assigned by dfs2 to each state it explores. Assume that calls to dfs2
start at time 1, and that they also explore transitions labelled by a before transitions labelled by b, and
transitions labelled by b before transitions labelled by c.

2 of 10

Question 5 (4 points)

Recall: a nondeterministic Muller automaton (NMA) is empty if it has no accepting run. Consider the following
automaton A:

p0 p1

p2p3

a
a

ba

a

a

b

a

(a) Does the acceptance condition F1 = {{p1, p3}} give an empty Muller automaton? Justify your answer:
if it is empty prove that no run is accepting, and if it is non-empty give an example of accepting run.
Additionally, if it is non-empty, construct a non-deterministic Büchi automaton that recognizes the same
language as A.

(b) Does the acceptance condition F2 = {{p1, p2}} give an empty Muller automaton? Justify your answer:
if it is empty prove that no run is accepting, and if it is non-empty give an example of accepting run.
Additionally, if it is non-empty, construct a non-deterministic Büchi automaton that recognizes the same
language as A.

Question 6 (5 points)

Let A be the following NBA:

p q r
b b

a b a

1. Draw dag(abω) and dag(bbbaω).

2. Does dag(abω) admit an odd ranking? Give such a ranking if it exists. If it does not, argue why the
conditions of an odd ranking cannot be fulfilled.

Does dag(bbbaω) admit an odd ranking? Give such a ranking if it exists. If it does not, argue why the
conditions of an odd ranking cannot be fulfilled.

3. Below is part of the complement automaton A constructed with the rank method seen in class. Give
possible states for s0, s1, s2. A reminder on notation: state ([⊥, 4, 4], {q, r}) represents the level ranking
([⊥, 4, 4], {q, r}) where q and r have rank 4 and there is no rank for p; and {q, r} is the set of owing states.

3 of 10

6
⊥
⊥
, ∅

⊥
4
4
, {q, r} s0 s1

s2

b b b

a

b

a

Question 7 (6 points)

Let AP = {p, q, r} and let Σ = 2AP .

(a) Give an LTL formula that is satisfied by computations σ1 and σ2, and not satisfied by computations σ3
and σ4, where

σ1 = {p, q}({r}{p, r})ω, σ2 = ∅∅{p, q, r}{q}ω, σ3 = {r}{p, q, r}{p}ω, σ4 = (∅{r})ω.

Let C be the set of computations σ over Σ satisfying the following property: If there exists i ≥ 1 such that
p, q ∈ σ(i) and r 6∈ σ(i), then there also exists j < i such that r ∈ σ(j).

(b) Give a formula ϕ such that L(ϕ) = C

(c) Give an ω-regular expression s such that L(s) is equal to the complement of L(ϕ), that is, s represents
the ω-language of all computations over Σ that do not belong to C.

Question 8 (2 points)

F Let Σ = {a, b}. For every n ≥ 0, let Pn the language of all palindromes over Σ of length 2n.

(a) Show that every NFA recognizing Pn has at least 2n states.

(b) For 2 bonus points: Show that every NFA recognizing Pn has at least 2n+1 − 1 states.

(c) For 2 bonus points: Show that every NFA recognizing Pn has at least 2n+1 + 2n − 2 states.

(A correct answer to (b) counts as a correct answer to both (a) and (b), and a correct answer to (c) counts as
a correct answer to (a), (b), and (c).)

4 of 10

Solution 1 (2 + 3 + 2+ 2 + 3 = 12 points)

a. Here is a possible solution.

q0 q2

q3 q4

q1

q6q5

q7

a

c

c
c

c

a

b

c
c

b

b. This is the minimal transducer: 1
1
0



0
1
0



1
0
0

 0
0
1



0
1
1

 1
0
1



1
1
1

 ,
0
0
0



c. The exercise can be solved in many different ways, we just give one solution. There are other solutions
with smaller ω-regular expressions and/or smaller NBAs.

Observe that L = L1∪L2, where L1 = {w ∈ Σω : a 6∈ inf(w)} is the language of all words over Σ containing
finitely many as, and L2 = {w ∈ Σω : {a, b} ⊆ inf(w)} is the language of all words over Σ containing
infinitely many as and infinitely many bs. In the tutorials we have considered these two languages:

• ω-regular expressions: (a+ b+ c)∗(b+ c)ω for L1, and ((b+ c)∗a(a+ c)∗b)ω for L2 (there are others).
So a possible ω-regular expression for L is

(a+ b+ c)∗(b+ c)ω + ((b+ c)∗a(a+ c)∗b)ω

• NBAs for L1 and L2:

b, c

a
a

b

b, c

a, c

a, b, c

b, c

b, c

5 of 10

A possible NBA for L is just the result of putting the two automata above side by side (NBA with
two initial states).

d. ϕ(X,Y, Z) = ∃W ∃U Sum(X,Y,W) ∧ Sum(W,U,Z)

e. Let K = (QK , δK ,Σ, q
K
0 , FK) and L = (QL, δL,Σ, q

L
0 , FL) be NFAs recognizing K and L. We define an

ε-NFA M = (Q, δ,Σ, q0, F) that recognizes K � L.

Intuitively, M runs in four phases, and decides nondeterministically when to move to the next phase. In
phases 1 and 2 the automaton initiates a simulation of K and L, respectively. In phase 3 it continues the
simulation of K from the state reached at the end of phase 1. In phase 4 it continues the simulation of L
from the state reached at the end of phase 2.

Formally, M = (Q, δ,Σ, q0, F) is defined as follows:

• Q := QK ×QL × {1, 2, 3, 4}.

• A transition [p, q, c]
a−→ [p′, q′, c′] belongs to δ if and only if

a ∈ Σ and p
a−→ p′ ∈ δK and q = q′ and c′ = c and c ∈ {1, 3} , or

a ∈ Σ and p = p′ and q
a−→ q′ ∈ δL and c′ = c and c ∈ {2, 4} , or

a = ε and p = p′ and q = q′ and c′ = c+ 1 and c < 4 .

• The initial state is [qK0 , q
L
0 , 1].

• The set of final states is FK × FL × {4}.

Solution 2 (4 points)

(a) R is a regular language. Here are two NFAs recognizing R:

a

b

c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a

b

c

a, b, c

a

b

c

a, b, c

a

a, b, c

b

a, b, c

c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

a, b, c

(b) S is non-regular. We prove that Sa
i 6= Sa

j

for every 0 ≤ i < j, i 6= j, which shows that S has infinitely

many residuals. For this, we observe that bi ∈ Sai , becaue aibi ∈ S, but bi 6∈ Saj , because ajbi /∈ S.

Common mistakes:

bi 6∈ Saj and bj ∈ Saj is not a proof that Sa
i 6= Sa

j

. For example, it is compatible with Sa
j

= {bj} = Sa
j

Showing that a language L ⊆ S is not regular is not a proof that S is not regular. Recall that Σ∗ is
regular and L ⊆ Σ∗. Thus, a superset of a non-regular language can be regular.

(c) T is a regular language. Intuitively, since a switch from a to b can only be followed by a switch from b to
a, the language consists of all words over {a, b, c} whose projection onto a, b is a word of ε+ a(a+ b)∗a+
b(a+ b)∗b. Here are two automata recognizing T :

6 of 10

a

b

a

b

c

a, b, c

a, b, c

c

a, b, c

c
a

b

b

a

a

b

a, c

b, c

b, c

a, c

Solution 3 (3 points)

B1 recognizes the ω-language with an odd number of bs: this can be written a∗b(a∗ba∗b+a∗)ω, or a∗b(ba∗b+a)ω,
or a∗b(a∗(ba∗b)∗)ω.

B2 recognizes the ω-language with an infinite number of bs: this can be written (a∗b)ω, or a∗b(aa∗b + b)ω, or
a∗b(b∗(aa∗b)∗)ω.

The NBA B1 ∩ B2 produced using the algorithm IntersNBA is:

p0, q0, 1

p1, q1, 1 p0, q1, 2

p1, q0, 2

b

a

b

a

b

a b

a

Solution 4 (4 points)

We note ”state[discovery time/finishing time]” for dfs1’s exploration:
α[1/14], γ[2/13], ζ[3/6], η[4/5], ε[7/12], δ[8/11], β[9/10].

Procedure dfs2 is called on ζ at time 6 of dfs1’s exploration, and on β at time 10. Exploration of dfs2 on ζ:
ζ[1/4], η[2/3]; exploration of dfs2 on β: β[1/], α[2/], γ[3/], ε[4/], δ[5/] and then the algorithm answers NEMP.

Solution 5 (4 points)

(a) F1 gives an empty Muller automaton. First, note that there is no direct path from p3 to p1, that is, every
path from p3 to p1 visits either p0 or p2. Therefore, every run that visits both states p1 and p3 infinitely
often, also has to visit p0 or p2 infinitely often (or both). Since the Muller acceptance condition requires
that the states visited infinitely often are exactly p1 and p3, we conclude that there is no accepting run,
the NMA is empty.

(Note that the only way to avoid visiting p0 and p2 infinitely often is that a run stays either in p1 or in
p3, which is also not allowed, as we have to visit both p1 and p3 infinitely often.)

(b) F1 gives a non-empty Muller automaton. Namely, a run of the ω-word a(ab)ω is accepting as it visits
infinitely often exactly p1 and p2.

First we transform the NMA into an equivalent NGA with acceptance condition {{[p1, 1]}, {[p2, 1]}}:

7 of 10

[p0, 0] [p1, 0]

[p2, 0][p3, 0]

[p1, 1]

[p2, 1]

a

a

ba

a

a

b

a

a

ba

b

a

a

Now, we transform the NGA into an equivalent NBA:

[p0, 0] [p1, 0]

[p2, 0][p3, 0]

[p1, 1]

[p2, 1]

[p1, 1]′

[p2, 1]′

a

a

ba

a

a

b

a

a

b

a
b

a

a a

b a

Note that some transitions are omitted for simplicity, and some more could be omitted without changing the
recogniized language.

Solution 6 (5 points)

1. dag(abω):

p, 0 p, 1

q, 2 q, 3 q, 4

r, 3 r, 4

a

b

b b

b b

b

b

dag(bbbaω):

8 of 10

p, 0

q, 1 q, 2 q, 3

r, 2 r, 3 r, 4 r, 5

b

b b

b b

a a a

2. Yes it does, for example 2 on the first two p-nodes, then 1 on the q nodes and 0 on the r-nodes.

No it does not: the only infinite path is made of r-nodes which are final and thus must have even rank by
definition of a rank.

3. An answer for the complement automaton:

6
⊥
⊥
, ∅

⊥
4
4
, {q, r}

⊥
3
4
, {r}

⊥
3
2
, ∅

⊥
⊥
4
, {r}

b b b

a

b

a

Solution 7 (6 points)

(a) There are many solutions, for example (1) F(p ∧ q) ∧ ¬r or (2) XXr or (3) p ∨ FGq...

(b) XF(p ∧ q ∧ ¬r)→ (X¬(p ∧ q ∧ ¬r) U r) or equivalently XG¬(p ∧ q ∧ ¬r) ∨ (X¬(p ∧ q ∧ ¬r) U r)

Frequent mistakes:

F(p∧ q ∧¬r)→ (¬(p∧ q ∧¬r) U r) is not correct since we have the requirement that i ≥ 1, and we have
to take care of the point 0 using the operator X.

F(p ∧ q ∧ ¬r) → (Fr U (p ∧ q ∧ ¬r)) is not correct since this formula just claims that r will appear
eventually, but we have no guarantee that it will happen strictly before p ∧ q ∧ ¬r. Also, we have to take
care of the i = 0 point as above.

F(p ∧ q ∧ ¬r)→ (r U (p ∧ q ∧ ¬r)) is not correct since it forces r to appear everywhere before p ∧ q ∧ ¬r,
and we only need one point where r will appear. Also, we have to take care of the i = 0 point as above.

(c) s = (∅+ {p}+ {q}+ {p, q})(∅+ {p}+ {q}+ {p, q})∗{p, q}Σω, that is, (∅+ {p}+ {q}+ {p, q})+{p, q}Σω.

Frequent mistakes:

s = (∅+{p}+{q}+{p, q})∗{p, q}Σω. This ω-expression is not correct. For example, consider σ = {p, q}∅ω.
We have that σ ∈ C so this computation should not be captured by the solution expression. Still, σ ∈ L(s).

s = (∅+{p}+{q})∗{p, q}Σω. This ω-expression is not correct. For example, consider σ = {p, q}{r}{p, q}∅ω.
We have that σ ∈ C so this computation should not be captured by the solution expression. Still, σ ∈ L(s).

9 of 10

Solution 8 (2 points)

Let An be an arbitrary NFA recognizing Pn. Let w1w
R
1 , w2w

R
2 be two different palindromes of length 2n. Since

they are both accepted by An, there exist initial states q01, q02, states q1, q2, and final states q1f , q2f such that

q01
w1−−→ q1

wR
1−−→ qf1 and q02

w2−−→ q2
wR

2−−→ qf2. We have q1 6= q2, since otherwise A would accept w1w
R
2 , which is

not a palindrome. Since there are exactly 2n palindromes of length 2n (one for each word w ∈ {a, b}n), and A
has a different state for each of them, the automaton A has at least 2n states.

For the first bonus points: Let w1, w2 be two different words of length 0 ≤ `1, `2 ≤ n− 1. There exist different

words w′1, w′2 such that w1w
′
1 and w2w

′
2 are palindromes. Assume q01

w1−−→ q1
w′

1−−→ qf1 and q02
w2−−→ q1

w′
2−−→ qf2.

We prove q1 6= q2. Assume q1 = q2. Then the NFA accepts w1w
′
2. If `1 6= `2 then w1w

′
2 does not have length

2n, and so it does not belong to Pn, contradiction. If `1 = `2 then w1w
′
2 is not a palindrome, contradiction.

Since there are
∑n−1
i=0 2i = 2n− 1 words of length up to n− 1, the NFA has at least 2n− 1 additional states, on

top of the 2n above. So the NFA has at least 2n+1 − 1 states.

For the second bonus points: Let w1, w2 be two different words of length 1 ≤ `1, `2 < n. There exist different
words w′1, w′2 such that w′1w1 and w′2w2 (observe the order!) are palindromes. Using the same argument as
above, we get q1 6= q2. So we get at least 2n − 1 states for the words of length 0 ≤ ` ≤ n − 1, at least 2n

states for the words of length n, and at least 2n − 1 state for the words of length n + 1 ≤ ` ≤ 2n. In total:
2(2n − 1) + 2n = 2n+1 + 2n − 2 states.

10 of 10

