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Motivation
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Example I: Simulation of a die by coins

Knuth & Yao die
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Example I: Simulation of a die by coins

Knuth & Yao die

Question:

» What is the probability of obtaining 27
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Example II: Zero Configuration Networking (Zeroconf)

» Previously: Manual assignment of IP addresses
» Zeroconf: Dynamic configuration of local IPv4 addresses

> Advantage: Simple devices able to communicate automatically

Automatic Private IP Addressing (APIPA) — RFC 3927

» Used when DHCP is configured but unavailable
» Pick randomly an address from 169.254.1.0 — 169.254.254.255

» Find out whether anybody else uses this address (by sending
several ARP requests)

Model:
» Randomly pick an address among the K (65024) addresses.
» With m hosts in the network, collision probability is g = 7.
> Send 4 ARP requests.

> In case of collision, the probability of no answer to the ARP
request is p (due to the lossy channel)
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Example II: Zero Configuration Networking (Zeroconf)

A A

S8 error (Se)

For 100 hosts and p = 0.001, the probability of error is ~ 1.55 - 101,
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Application | — Non-deterministic Systems

» Verification of non-deterministic systems

» Controller synthesis for under-specified systems

Given a model S of a system and formula ¢, the model checking

problem is to decide whether K |= ¢ (for all/some resolutions of
choices).
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Application | — Non-deterministic Systems

» Verification of non-deterministic systems

» Controller synthesis for under-specified systems

Given a model S of a system and formula ¢, the model checking
problem is to decide whether K |= ¢ (for all/some resolutions of
choices).

Solution: Combine K and ¢ into a “product game graph” K x ¢
with a “winning condition” such that

K ‘: 1)

iff

from a designated vertex of K x ¢ player 0 has “winning
strategy”.
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Aplication Il — Synthesis

Alonzo Church, 1957

“Given a requirement which a circuit is to
satisfy, we may suppose the requirement
expressed in some suitable logistic system
which is an extension of restricted recur-
sive arithmetic. The synthesis problem is
then to find recursion equivalences repre-
senting a circuit that satisfies the given
requirement (or alternatively, to determine
that there is no such circuit).”
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Aplication Il — Synthesis

Alonzo Church, 1957 “Given a requirement which a circuit is to

satisfy, we may suppose the requirement
expressed in some suitable logistic system
which is an extension of restricted recur-
sive arithmetic. The synthesis problem is
then to find recursion equivalences repre-
senting a circuit that satisfies the given
requirement (or alternatively, to determine
that there is no such circuit).”

Given a requirement on a bit stream transformation

input output

o o0

fill the box by a machine with output, satisfying the requirement (or
state that the requirement is not satisfiable).
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Discrete-time
Markov Decision Processes

MDP
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MDP

- méj/@

Markov chains — purely
probabilistic
Possible successor states are chosen

based on probabilities but not on
decisions.

We want decisions
to model both

» controllable setting (game theory,
operations theory, control theory);

» uncontrollable setting (interleaving
in concurrent systems, abstractions
of models, open systems)
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MDP: Definition

Definition:
A (labelled) Markov Decision Process (MDP) is a tuple

M = (S, Act,P, )

where
» S is a countable set of states,
» Act is a finite set of actions,

» P:S x Act xS —[0,1] is the transition probability function,
such that for each state s and action «,

> 3 esP(s,a,8") =1, then we say that a is enabled in s; or
» P(s,a,s’) =0 for all ', then we say that « is not enabled in s.

» 7o is the initial distribution.

The set of actions enabled in s is denoted by Act(s). We assume that
for each s, we have Act(s) # 0.
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MDP — Schedulers

Problem:
How is the non-determinism resolved?
(Possibly allowing also for memory and randomness)

Definition (Scheduler):

A scheduler (also called strategy or policy) on an MDP
M = (5, Act,P,m) is a function © assigning to each state s € S an
action « that is enabled in s.

Definition (Induced DTMC):

Let M = (S, Act,P,m) be a MDP and scheduler © on M. The
induced DTMC is given by

M® = (5,P% mp),
where

P(s,s") = P(s,©(s),s")
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MDP — General Schedulers

Definition (Scheduler):

A scheduler (also called strategy or policy) on an MDP

M = (5, Act,P,m) is a function © assigning to each history
so- s, € ST a probability distribution over Act such that a is
enabled in s, whenever O(sp - - - s,)(a) > 0.

Definition (Induced DTMC):

Let M = (S, Act,P,mp) be a MDP and scheduler © on M. The
induced DTMC is given by

M® = (5F,P° ),
where for any h = sps; ... s,, we define

PO(h, hspi1) = > ©(h P(Sn, @, Snt1)

aEAct
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MDP — Reachability
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MDP - Reachability

Min

When playing “Mensch Argere dich nicht” against a fixed opponent
strategy, what is the minimal probability of having all pieces kicked
out into the outside area?

Max

What is the maximal probability of winning the game?
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MDP - Reachability

Min
» Best case for reaching undesirable states when controlled
> Worst case for reaching desirable states when not controlled

The minimum probability to reach a set of states B from a state s
(within n steps) is

igf PE(0B), igf PE(0="B)

Max
> Best case for reaching desirable states when controlled
» Worst case for reaching undesirable states when not controlled

The maximum probability to reach a set of states B from a state s
(within n steps) is

sup P?(OB% sup PS@(QS"B)
o) e

Focus on maximum; minimum is similar
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MDP - Reachability

Recall for Markov chains
Let (S, P, ) be a finite DTMC and B C S. The vector x with
x(s) = Ps(OB) is the unique solution of the equation system

1 if se B,

X(S) _ 0 / / if s e 50 = {S ‘ PS(OB) = 0},
Z P(s,s") -x(s") otherwise.
s’'eS

Wl

0
By O
ROROLE:

W=
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MDP - Reachability

Recall for Markov chains
Let (S,P,m) be a finite DTMC and B C S. The vector x with
x(s) = Ps(0B) is the unique solution of the equation system

1 ifseB,
()= 10 if s € S = {s| P,(0OB) = 0O},

Z P(s,s’) - x(s") otherwise.

s’eS

Theorem (Maximum Reachability Probability):

Let (S, Act, P, m) be a finite MDP and B C S. The vector x with
x(s) = supg PE(0B) is the least solution of the equation system

1 if s e B,
()= 10 s € 59 = {s | supe PO(0B) = 0},
max P(s,a,s’)-x(s') otherwise.
a€Act(s)

s’eS
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MDP - Reachability - Linear Programming
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MDP - Reachability - Linear Programming

Linear Program:
Let (S, Act, P, ) be a finite MDP and B C S. The vector x with
x(s) = maxg P2(0B) is the unique solution of the linear program

Vs € B,
Vs € 55,

1
0
x(s) > Y P(s,a,u)-x(u) Vse S\ (BUSF™),Va € Act.

satisfying x(s) =
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MDP - Reachability - Linear Programming

Linear Program:
Let (S, Act, P, ) be a finite MDP and B C S. The vector x with
x(s) = maxg P2(0B) is the unique solution of the linear program

minimize Zx(s)

H)
satisfying x(s)=1 Vs € B,
x(s)=0 Vs € S5,

x(s) > Y P(s,a,u)-x(u) Vse S\ (BUSF™),Va € Act.
uesS
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MDP - Reachability - Value lteration

Value Iteration Algorithm:

Let M be a finite MDP with state space S, and B C S.
> Initialize xo(s) to 1 if s € B and to 0, otherwise.
> lterate

1 ifse B,

1 max
xn(l(): 0 lfSESO s

max Z P(s,,s’) - xn(s’) otherwise

until convergence.
le., until maxses [xp11(5) — xn(s)| < € for a small € > 0?
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MDP - Reachability - Value lteration

Value Iteration Algorithm:

Let M be a finite MDP with state space S, and B C S.
> Initialize xo(s) to 1 if s € B and to 0, otherwise.
> lterate

1 ifse B,

1 max
xn(l(): 0 LfSQSO s

max Z P(s,,s’) - xn(s’) otherwise

until convergence.
le., until maxses [xp11(5) — xn(s)| < € for a small € > 0?

Theorem
> x,(s) = sup PP(O="B).
e
> Xn+1 2 Xn-

> lim x,(s) = sup P2(OB).
oo e

n—r
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MDP - Reachability - Computing 5;

We rather compute the set

T ={s| sup P2(0B) > 0}

and return
max __ max
S =S\ 555
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MDP - Reachability - Computing 57"

We rather compute the set

5 ={s| sup P2(0B) > 0}

and return
max __ max
S =S\ 555

max.
>0 -

Initialize the set to B and in every iteration add states that reach
the set in one step with positive probability for some enabled action.
Repeat until fix-point is reached.
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MDP - Reachability - Computing 57"

We rather compute the set
e = {s| sup P2(0B) > 0}

and return
Smax o 5\ ma><

max.
>0 -

Initialize the set to B and in every iteration add states that reach
the set in one step with positive probability for some enabled action.
Repeat until fix-point is reached.

(Similarly for ST
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MDP - Reachability - Computing 57"

We rather compute the set
e = {s| sup P2(0B) > 0}

and return
Smax o 5\ ma><

max.
>0 -

Initialize the set to B and in every iteration add states that reach
the set in one step with positive probability for some enabled action.
Repeat until fix-point is reached.

(Similarly for ST": replace “some” by "every”)
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General MDP with end components

b 1
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