Approximating Values of Generalized-Reachability Stochastic Games

Pranav Ashok¹, Krishnendu Chatterjee², Jan Kretínský¹, Maximilian Weininger¹, Tobias Winkler³

¹ Technical University of Munich, ² IST Austria, ³ RWTH Aachen

Markov decision process: Non-deterministic choice + probabilities a

- Markov decision process: Non-deterministic choice + probabilities

- Markov decision process: Non-deterministic choice + probabilities

Iteration	x_i(s)	x_i(t)
0	0	0
1		
2		

- Markov decision process: Non-deterministic choice + probabilities

Iteration	x_i(s)	x_i(t)
0	0	0
1	0	
2		

- Markov decision process: Non-deterministic choice + probabilities

Iteration	x_i(s)	x_i(t)
0	0	0
1	0	1/3
2		

- Markov decision process: Non-deterministic choice + probabilities

Iteration	x_i(s)	x_i(t)
0	0	0
1	0	1/3
2	1/3	

- Markov decision process: Non-deterministic choice + probabilities

Iteration	x_i(s)	x_i(t)
0	0	0
1	0	1/3
2	1/3	4/9

- Markov decision process: Non-deterministic choice + probabilities

Iteration	x_i(s)	x_i(t)
0	0	0
1	0	1/3
2	1/3	4/9

Markov decision process: Non-deterministic choice + probabilities

- Value iteration:

Iteration	x_i(s)	x_i(t)
0	0	0
1	0	1/3
2	1/3	4/9

We add two things: Another player and multiple objectives

Adding a second player: Stochastic Games

Having multiple target sets

Want: Pareto frontier

Want: Pareto frontier

How: Value iteration from below [CFK+13]

Want: Pareto frontier

How: Value iteration from below [CFK+13]

Want: Pareto frontier

How: Value iteration from below [CFK+13]

Want: Pareto frontier

How: Value iteration from below [CFK+13]

Want: Pareto frontier

How: Value iteration from below [CFK+13]

Want: Pareto frontier

How: Value iteration from below [CFK+13]

Want: Pareto frontier

How: Value iteration from below [CFK+13]

Problem: When to stop?

Want: Pareto frontier

How: Value iteration from below [CFK+13]

Problem: When to stop?

Want: Pareto frontier

How: Value iteration from below [CFK+13]

Problem: When to stop?

Want: Pareto frontier

How: Value iteration from below [CFK+13]

Problem: When to stop?

Want: Pareto frontier

How: Value iteration from below [CFK+13]

Problem: When to stop?

Want: Pareto frontier

How: Value iteration from below [CFK+13]

Problem: When to stop?

Want: Pareto frontier

How: Value iteration from below [CFK+13]

Problem: When to stop?

Want: Pareto frontier

How: Value iteration from below [CFK+13]

Problem: When to stop?

Solution: Convergent over-approximation

Approximate values of generalized-reachability stochastic games for arbitrarily small precision.

- Stochastic game, value iteration

Stochastic game, value iteration

Stochastic game, value iteration

Problems when computing over-approximation (greater fixpoints)

Stochastic game, value iteration

Problems when computing over-approximation (greater fixpoints)

Stochastic game, value iteration

Problems when computing over-approximation (greater fixpoints)

Single-dimensional solution

Stochastic game, value iteration

Problems when computing over-approximation (greater fixpoints)

Single-dimensional solution (+Paper)

Stochastic game, value iteration

Problems when computing over-approximation (greater fixpoints)

Single-dimensional solution (+Paper)

Extension to multiple dimensions

Stochastic game, value iteration

Problems when computing over-approximation (greater fixpoints)

Single-dimensional solution (+Paper)

Extension to multiple dimensions [Paper]

Implementation

We have:

- VI from below

Implementation

We have:

- VI from below
- Single-dimensional VI from above

Implementation

We have:

- VI from below
- Single-dimensional VI from above

We need:

- Extension to multiple dimensions

More information

Paper available at:

https://dl.acm.org/doi/10.1145/3373718.3394761

Video presentation of the results:

https://www.youtube.com/watch?v=my7tOrom1Fg