Model Checking – Exercise sheet 4

Exercise 4.1

Using the *Compare* feature in Spot (https://spot.lrde.epita.fr/app) give an LTL formula equivalent to

- (a) $p \mathbf{R} q$, which does not contain \neg but may contain \mathbf{U}, \mathbf{G} or \mathbf{F} .
- (b) $(\mathbf{G}p) \mathbf{U} q$ which does not contain \mathbf{U} .
- (c) $(\mathbf{F}p) \mathbf{U} q$, which does not contain \mathbf{U} .

Exercise 4.2

Given the following Kripke structures and LTL formulae, answer the following questions

- (a) Which of $\mathcal{K}_1, \mathcal{K}_2$ and \mathcal{K}_3 satisfy $\phi = \mathbf{G}(\mathbf{X}q \to p)$?
- (b) Give an LTL formula which exactly characterizes \mathcal{K}_3 , i.e. both the formula and the Kripke structure accept exactly the same words.

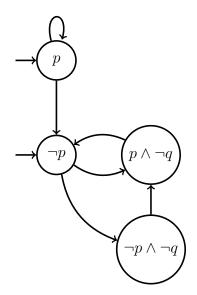


Figure 1: \mathcal{K}_1

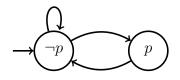


Figure 2: \mathcal{K}_2

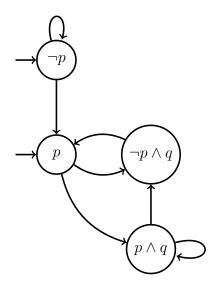
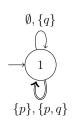


Figure 3: \mathcal{K}_3

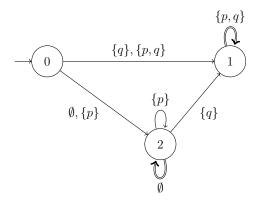
Exercise 4.3

Convert the following Büchi automata with transition-based acceptance condition ("doubled"transitions have to be seen infinitely often) to equivalent Büchi automata with state-based acceptance conditions. Moreover, give a general procedure to perform this conversion.

(a)



(b)



Exercise 4.4

Extend the set of rules of the LTL to Büchi automata translation to directly deal with the **F** and **G** operators.

Exercise 4.5

Let $\phi = \mathbf{G}((\mathbf{X}(p \mathbf{U} q)) \rightarrow ((\neg p \land \mathbf{F}q) \lor (q \mathbf{U} \mathbf{X}q)))$ and \mathcal{G} be a generalized Büchi automaton translated from ϕ using the construction presented in the lecture and the extended set of rules defined in the previous exercise.

- (a) Write down the set of subformulae $Sub(\phi)$.
- (b) What is the size of $CS(\phi)$?
- (c) How many sets of accepting states does \mathcal{G} have?
- (d) Is $\{\phi\}$ an accepting state of \mathcal{G} ?
- (e) Give a reachable state that has no successors.
- (f) Give a successor state of the smallest consistent state containing $\{\phi, q, q \ \mathbf{U} \ \mathbf{X} q, \mathbf{F} q\}$.
- (g) Give a predecessor state of the smallest consistent state containing $\{\phi, q, q \mathbf{U} \mathbf{X} q, \mathbf{F} q\}$.

Solution 4.1

- (a) $(q \mathbf{U} (p \land q)) \lor \mathbf{G}q$
- (b) $(\mathbf{F}q \wedge \mathbf{G}p) \lor q$.
- (c) $q \vee \mathbf{F}(\mathbf{F}p \wedge \mathbf{X}q)$ or another longer solution: $\mathbf{F}(q \wedge \mathbf{F}p) \vee \mathbf{F}(p \wedge \mathbf{X}q) \vee \mathbf{G}q \vee q$

Solution 4.2

(a) \mathcal{K}_1

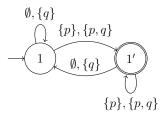
(b) $\mathbf{G} \neg p \lor (\neg p \ \mathbf{U} \ \mathbf{G}(p \to \mathbf{X}q \land \neg p \to \mathbf{X}p))$

Solution 4.3

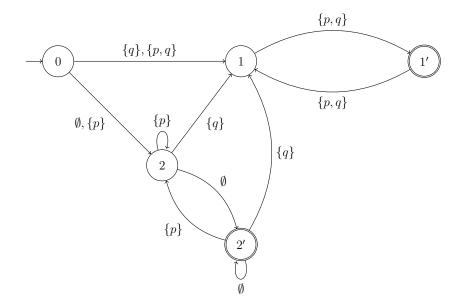
The general procedure is as follows.

Let the states of the original automaton be relabeled to $S \times \{1\}$ and create a copy of the states labeled by $S \times \{2\}$. For every accepting transition from $(s_1, 1) \rightarrow (s_2, 1)$, change the destination to $(s_2, 2)$. For every non-accepting transition from $(s_1, 2) \rightarrow (s_2, 2)$, change the destination to $(s_2, 1)$.

(a)



(b)



Solution 4.4

Extend the definition of NNF to include **F** and **G**, extend the corresponding $Sub(\phi)$:

- if $\mathbf{F}\phi_1 \in Sub(\phi)$ then $\phi_1 \in Sub(\phi)$
- if $\mathbf{G}\phi_1 \in Sub(\phi)$ then $\phi_1 \in Sub(\phi)$,

and extend rules for transitions as follows: $(M, \sigma, M') \in \Delta$ iff $\sigma = M \cap AP$ and

- if $\mathbf{F}\phi_1 \in Sub(\phi)$, then $\mathbf{F}\phi_1 \in M$ iff $\phi_1 \in M$ or $\mathbf{F}\phi_1 \in M'$
- if $\mathbf{G}\phi_1 \in Sub(\phi)$, then $\mathbf{G}\phi_1 \in M$ iff $\phi_1 \in M$ and $\mathbf{G}\phi_1 \in M'$

Also, the acceptance condition must be extended for \mathbf{F} : \mathcal{F} contains a set F_{ψ} , for every subformula ψ of the form $\mathbf{F}\phi_1$, where

$$F_{\psi} = \{ M \in CS(\phi) \mid \phi_1 \in M \text{ or } \neg(\mathbf{F}\phi_1) \in M \}$$

Solution 4.5

Translate ϕ into an NNF formula:

$$\phi = \mathbf{G} \left((\mathbf{X}(p \mathbf{U} q)) \to ((\neg p \land \mathbf{F}q) \lor (q \mathbf{U} \mathbf{X}q)) \right)$$

$$\equiv \mathbf{G} \left((\mathbf{X}(\neg p \mathbf{R} \neg q)) \lor ((\neg p \land \mathbf{F}q) \lor (q \mathbf{U} \mathbf{X}q)) \right)$$

(a) Let $\phi_1 = \neg p \mathbf{R} \neg q$, $\phi_2 = \neg p \wedge \mathbf{F}q$, and $\phi_3 = q \mathbf{U} \mathbf{X}q$. We have $\phi = \mathbf{G}(\mathbf{X}\phi_1 \vee (\phi_2 \vee \phi_3))$ and $Sub(\phi) = \{\mathbf{true}, \phi, \mathbf{X}\phi_1 \vee (\phi_2 \vee \phi_3), \mathbf{X}\phi_1, \phi_2 \vee \phi_3, \phi_1, \phi_2, \phi_3, \mathbf{F}q, \mathbf{X}q, p, q\} \cup \{\mathbf{false}, \neg \phi, \neg (\mathbf{X}\phi_1 \vee (\phi_2 \vee \phi_3)), \neg \mathbf{X}\phi_1, \neg (\phi_2 \vee \phi_3), \neg \phi_1, \neg \phi_2, \neg \phi_3, \neg \mathbf{F}q, \neg \mathbf{X}q, \neg p, \neg q\}.$

- (b) Only ϕ , $\mathbf{X}\phi_1$, ϕ_1 , ϕ_3 , $\mathbf{F}q$, $\mathbf{X}q$, p, q can independently form consistent states. So, $|CS(\phi)| = 2^8 = 256$ states
- (c) $\mathcal{F} = \{F_{q\mathbf{U}\mathbf{X}q}, F_{\mathbf{F}q}\}$
- (d) $\{\phi\} \in F_{q\mathbf{UX}q}$ and $\{\phi\} \in F_{\mathbf{F}q}$
- (e) $\{\phi\}$ is reachable because it is an initial state, and it has no successors because $\mathbf{X}\phi_1 \lor (\phi_2 \lor \phi_3) \notin \{\phi\}$.
- (f) $\{\phi, q \mathbf{U} \mathbf{X}q\}$
- (g) $\{\phi, q \mathbf{U} \mathbf{X} q, \mathbf{F} q, \mathbf{X} q\}$