Model Checking – Exercise sheet 4

Exercise 4.1

Using the *Compare* feature in Spot (https://spot.lrde.epita.fr/app) give an LTL formula equivalent to

- (a) $p \mathbf{R} q$, which does not contain \neg but may contain \mathbf{U}, \mathbf{G} or \mathbf{F} .
- (b) $(\mathbf{G}p) \mathbf{U} q$ which does not contain \mathbf{U} .
- (c) $(\mathbf{F}p) \mathbf{U} q$, which does not contain \mathbf{U} .

Exercise 4.2

Given the following Kripke structures and LTL formulae, answer the following questions

- (a) Which of $\mathcal{K}_1, \mathcal{K}_2$ and \mathcal{K}_3 satisfy $\phi = \mathbf{G}(\mathbf{X}q \to p)$?
- (b) Give an LTL formula which exactly characterizes \mathcal{K}_3 , i.e. both the formula and the Kripke structure accept exactly the same words.

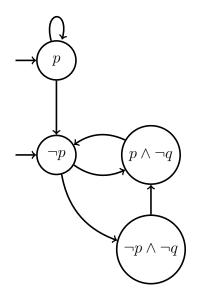


Figure 1: \mathcal{K}_1

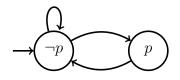


Figure 2: \mathcal{K}_2

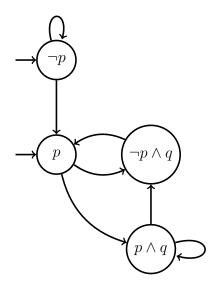
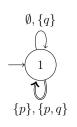


Figure 3: \mathcal{K}_3

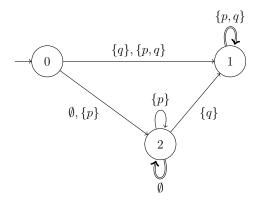
Exercise 4.3

Convert the following Büchi automata with transition-based acceptance condition ("doubled"transitions have to be seen infinitely often) to equivalent Büchi automata with state-based acceptance conditions. Moreover, give a general procedure to perform this conversion.

(a)



(b)



Exercise 4.4

Extend the set of rules of the LTL to Büchi automata translation to directly deal with the **F** and **G** operators.

Exercise 4.5

Let $\phi = \mathbf{G}((\mathbf{X}(p \mathbf{U} q)) \rightarrow ((\neg p \land \mathbf{F}q) \lor (q \mathbf{U} \mathbf{X}q)))$ and \mathcal{G} be a generalized Büchi automaton translated from ϕ using the construction presented in the lecture and the extended set of rules defined in the previous exercise.

- (a) Write down the set of subformulae $Sub(\phi)$.
- (b) What is the size of $CS(\phi)$?
- (c) How many sets of accepting states does \mathcal{G} have?
- (d) Is $\{\phi\}$ an accepting state of \mathcal{G} ?
- (e) Give a reachable state that has no successors.
- (f) Give a successor state of the smallest consistent state containing $\{\phi, q, q \ \mathbf{U} \ \mathbf{X} q, \mathbf{F} q\}$.
- (g) Give a predecessor state of the smallest consistent state containing $\{\phi, q, q \mathbf{U} \mathbf{X} q, \mathbf{F} q\}$.