
Technische Universität München (I7)
J. K°etínský / M. Azeem / K. Grover

Summer Semester 2021
02.05.2022

Model Checking � Exercise sheet 1

Exercise 1.1

1. Install Spin and iSpin by following steps 0�2 on http://spinroot.com/spin/Man/

README.html.

2. Inspect contents of the downloaded package. It should contain several examples and
documents to start with. To test your installation, run the following commands in
the Examples directory:

� spin --

� spin -V

� spin hello.pml

� ispin hello.pml

Spin references can be downloaded from http://spinroot.com/spin/Man/. (For a
gentle introduction to Spin, see e.g. Tutorial_1.pdf)

3. Install Modex from http://spinroot.com/modex/. Modex is a tool that can extract
Spin models from programs written in the C programming language.

4. To test your installation, run the following commands in the Manual directory:

� modex --

� modex hello.c

� spin model

5. Compare the contents of hello.pml and model.

6. In the Modex package, there is a script named verify. Given a C program, the
script calls Modex and Spin, and outputs user-friendly messages. Copy the script or
make a link to it in the bin directory. For instance,

� cp Scripts/verify /usr/local/bin

7. To test the script, run:

� verify hello.c # perform model extraction + verification

� verify clean # clean up temporary files

1

http://spinroot.com/spin/Man/README.html
http://spinroot.com/spin/Man/README.html
http://spinroot.com/spin/Man/
http://spinroot.com/modex/

Exercise 1.2

Consider the following program bounds.c:

#define N 3

#define M N+1

int main(void) {

int *p[N][M], q[N*M], i, j, k = 0;

for (i = 0; i < N; i++) {

for (j = 0; j < M; j++) {

p[i][j] = &q[k];

k++;

}

}

}

1. Can you spot a bug in the program? Justify your answer.

2. Run Modex and Spin to �nd the bug. Observe the output messages.

3. Inspect the content of the generated model �le.

Exercise 1.3

Consider the following program threads.c (an example from the Modex distribution):

1 #include <pthread.h>

2 #include <assert.h>

3

4 int shared = 0;

5 int *ptr;

6

7 void *thread1(void *arg) {

8 int tmp;

9

10 ptr = &shared;

11 tmp = shared;

12 tmp++;

13 shared = tmp;

14 return 0;

15 }

16

17 void *thread2(void *arg) {

18 int tmp;

19

20 if (ptr) {

21 tmp = shared;

22 tmp++;

23 shared = tmp;

24 }

25 return 0;

26 }

27

28 int main(void) {

29 pthread_t t[2];

30

31 pthread_create (&t[0], 0, thread1 , 0);

32 pthread_create (&t[1], 0, thread2 , 0);

33

34 pthread_join(t[0], 0);

35 pthread_join(t[1], 0);

36

2

37 assert(shared == 2);

38

39 return 0;

40 }

1. Does the assertion at line 37 always hold? Justify your answer.

2. Run Modex and Spin or verify to con�rm your �nding.

3

Solution 1.2

1. #define M N+1 is the problematic line. The C compiler replaces all instances of M
with N+1 without any parenthesis. Hence, the size of q would be N*N+1 instead of
N*(N+1).

2. Run modex bounds.c and spin -a model. This creates the pan.c �le. Next compile
it and execute it gcc -o pan pan.c && ./pan. You would get an error which says
the following: pan:1: c_code line 26 precondition false: (Pp_main->k <

((3*3)+1)) (at depth 52)

3. The model �le has a line c_state "int q[((3*3)+1)]" "Local p_main" which
gives away the problem.

Solution 1.3

1. No, it does not hold. Consider the following execution sequence after both the
threads are created: lines 8, 10, 11 (thread1.tmp = 0), 18, 20, 21 (thread2.tmp = 0),
22 (thread2.tmp = 1), 23 (shared = thread2.tmp = 1), 25, 12 (thread1.tmp = 1), 13
(shared = thread1.tmp = 1).

2. On running ./pan, we get the following error pan:1: c_code line 91 precondition

false: (now.shared==2) (at depth 35)

4

