Quantitative Verification – Exercise sheet 6

Exercise 6.1

Prove the following statements:

- Let P be a stochastic matrix, i.e. the matrix representation of some Markov Chain. Then, $\frac{1}{2}P + \frac{1}{2}I$ is aperiodic, where I is the unit matrix.
- There exists a finite state Markov Chain and an initial distribution π_0 with a limiting distribution π^* , but $\pi_n = P^n \pi_0 \neq \pi^*$ for all $n \in \mathbb{N}$.
- If all states are irreducible, aperiodic and recurrent non-null in a Markov Chain, there is a unique limiting distribution which does not depend on π_0 . Show that each of these properties are required by finding a Markov Chain which
 - (i) does not have a unique limiting distribution, and
 - (ii) satisfies all but one of the properties.

Exercise 6.2

Imagine jobs arriving at a server with an unbounded queue. The server works on a job at the head of the queue and, when finished, moves on to the next job. The server never drops a job, but just allows them to queue up. At every time step, with probability $p = \frac{1}{50}$ one job arrives, and independently, with probability $q = \frac{1}{30}$ one job departs, i.e. is finished by the server. Note that during a time step, we might have both an arrival and a transmission, or neither. Draw the Markov Chain modelling this server (assuming that you are interested in studying the number of jobs in the system).

Exercise 6.3

A simplified version of the IPv4 Zeroconf protocol is outlined below. Model the protocol in PRISM and compute the transient probabilities for the first few steps.

- 1. Randomly pick an address among the K (65024) addresses.
- 2. With M hosts in the network, collision probability is $q = \frac{M}{K}$
- 3. Send 4 ARP requests.
- 4. In case of collision, the probability of no answer to the ARP request is p (due to the lossy channel).

