
Quantitative verification
Chapter 2: Timed automata

Jan Křetínský

Technical University of Munich

Winter 2021/22

1

Formal Methods

Mathematically rigorous techniques and tools for
I specification
I design
I verification

of software and hardware systems.

Definition 1
Formal verification is the act of proving or disproving the
correctness of a system with respect to a certain formal
specification or property.

2

Formal Verification Techniques

I manual – human tries to produce a proof of correctness
I semi-automatic – theorem proving
I automatic – algorithm takes a model and a property;

decides whether the model satisfies the property
We focus on automatic techniques.

3

Application Domains of FV

I generally safety-critical systems: a system whose failure
can cause death, injury, or big financial loses (e.g., aircraft,
nuclear station)

I particularly embedded systems
I often safety critical
I reasonably small and thus amenable to formal verification

4

Model Checking
I automatic verification technique
I user produces:
I a model of a system
I a logical formula which describes the desired properties

I model checking algorithm:
I checks if the model satisfies the formula
I if the property is not satisfied, a counterexample is

produced

5

State Space

I model checking algorithms are based on state space
exploration, i.e., "brute force"

I state space describes all possible behaviors of the model
I state space ≈ graph:
I nodes = states of the system
I edges = transitions of the system

I in order to construct state space, the model must be
closed, i.e., we need to model environment of the system

6

Example: Model and State Space

7

Example: Peterson’s Algorithm

I flag[0], flag[1]
(initialized to false) – meaning want to access CS

I turn
(initialized to 1) – used to resolve conflict

Process 0:
while (true) {
<noncritical section>;
flag[0] := true;
turn := 1;
while flag[1] and

turn = 1 do {};
<critical section>;
flag[0] := false;

}

Process 1:
while (true) {
<noncritical section>;
flag[1] := true;
turn := 2;
while flag[0] and

turn = 2 do {};
<critical section>;
flag[1] := false;

}

8

Example: Peterson’s Algorithm

desired property: always, at most one process in CS

9

desired property: always, at most one process in CS: G(¬([3][3])) 10

Model Checking: Steps

1. modeling: system → model
2. specification: natural language → property
3. verification: algorithm for checking whether a model

satisfies the property

For real-time systems:
I modeling formalism: timed automata
I specification formalism: reachability, (timed logics)

11

Fischer’s Protocol

I real-time mutual exclusion protocol – correctness depends
on timing assumptions

I simple, just 1 shared variable, arbitrary number of
processes

I assumptions: known upper bound D for the time between
successive steps of the execution of a process while it
attempts to access its critical section

I each process has it’s own timer (for delaying)

12

Fischer’s protocol

I id
shared variable, initialized by -1

I each process has it’s own timer (for delaying)
I for correctness it is necessary that K > D

Process i:
while (true) {
<noncritical section>;
while id != -1 do {};
id := i;
delay K;
if (id = i) {
<critical section>;
id := -1;

}
}

13

Modeling Fischer’s Protocol

I How to model clocks?
I How to model waiting (delay) ?

14

Modeling Real Time Systems

Two possible models of time:
I discrete time domain
I continuous time domain

15

Discrete Time Domain
I clocks tick at regular interval
I at each tick, something may happen
I between ticks – the system only waits

I choose a fixed sample period ε
I all events happen at multiples of ε
I simple extension of classical model (time = new integer

variable)
I main disadvantage – how to choose ε ?
I big ε ⇒ too coarse model
I small ε ⇒ time fragmentation, too big state space

I usage: particularly synchronous systems (hardware
circuits)

16

Continuous Time Domain

I time ≈ real number
I delays may be arbitrarily small
I more faithful model, suitable for asynchronous systems
I model checking ≈ traversal of state space
I Problem: uncountable state space ⇒ cannot be directly

handled by "brute force"

17

Timed Automata

I extension of finite state machines with clocks
I continuous real time semantics
I limited list of operations over clocks ⇒ automatic

verification feasible
I allowed operations:
I comparison of a clock with a constant
I reset of a clock
I uniform flow of time (all clocks have the same rate)

18

What is a Timed Automaton?

I an automaton with locations (states) and edges
I the automaton spends time only in locations, not in edges

19

What is a Timed Automaton?

I real valued clocks
I all clocks run at the same speed
I clock constraints guard the edges

20

What is a Timed Automaton?

I clocks can be reset when taking an edge
I only a reset to value 0 is allowed

21

What is a Timed Automaton?

I location invariants forbid to stay in a state too long
I invariants must be satisfied ⇒ force taking an edge

We also add labels to edges to allow definition of languages,
behavioral equivalences, etc.

22

Timed Automata – Clock Constraints

Definition 2
Let C be a set of clocks. Then the set B(C) of clock
constraints is defined by the following abstract syntax

g ::= x Z k | g ∧ g

where x ∈ C , k ∈N and Z ∈ {≤, <,=, >,≥}.

23

Timed Automata

Let C be a set of clocks and let Σ be a finite set of actions

Definition 3
A timed automaton is a 4-tuple: A = (L , `0,E, I)
I L is a finite set of locations
I `0 ∈ L is an initial location
I E ⊆ L × B(C) × Σ × 2C

× L is a finite set of edges
I I : L → B(C) assigns invariants to locations

edge = (source location, clock constraint, action, set of clocks
to be reset, target location)

We omit the actions from edges if either Σ is a singleton set or
the actions are not relevant (e.g. for reachability)

24

Semantics: Main Idea

I semantics is a transition system (states & transitions)
I states given by:
I location (local state of the automaton)
I clock valuation

I transitions:
I delay – only clock valuation changes
I action – change of location

25

Clock Valuations

I a clock valuation is a function ν : C → R+

I given a set of clocks Y ⊆ C , denote by ν[Y := 0] the
valuation obtained from ν by resetting clocks from Y :

ν[Y := 0](x) =

0 x ∈ Y
ν(x) otherwise.

I ν+ d ≈ flow of time (by d units):

(ν+ d)(x) = ν(x) + d

I ν |= g means that the valuation ν satisfies the constraint g
I ν |= x Z k iff ν(x) Z k
I ν |= g1 ∧ g2 iff ν |= g1 and ν |= g2

26

Examples

let ν = (x → 3, y → 2.4, z → 0.5)

I what is ν[{y} := 0] (usually written as ν[y := 0]) ?
I what is ν+ 1.2 ?
I does ν |= y < 3 ?
I does ν |= x < 4 ∧ z ≥ 1 ?

27

Semantics of Timed Automata

Definition 4
The semantics of a timed automaton A is a (labeled) transition
system SA = (S , s0, →)

I S = L × (C → R+)

I s0 = (`0, ν0) where ν0(x) = 0 for all x ∈ C
I transitions are defined by
delay (`, ν)

δ
−→ (`, ν+ δ) for all δ ∈ R+ such that

I ν |= I(`)
I ν+ δ′ |= I(`) for all 0 ≤ δ′ ≤ δ

action (`, ν)
a
−→ (`′, ν′) iff (`,g,a,Y , `′) ∈ E where

I ν |= g
I ν′ = ν[Y := 0]
I ν′ |= I(`′)

We write (`, ν)→ (`′, ν′) iff (`, ν) h
→ (`′, ν′) where h ∈ Σ ∪R≥0

28

Example

I What is a clock valuation?
I What is a state?

I clock valuation: assignment of a real value to x
I initial state (off ,0); another state e.g. (light ,1.4)

29

Example

I What is a clock valuation?
I What is a state?

I clock valuation: assignment of a real value to x
I initial state (off ,0); another state e.g. (light ,1.4)

29

Notes

I the semantics is infinite state (even uncountable)
I the semantics is even infinitely branching

Investigated areas:
I languages – emptiness, universality, language inclusion

(undecidable), ...
I equivalence checking – bisimulation of timed automata

(timed and untimed), simulation, ...
I verification – reachability, (timed) temporal logics, ...

30

Reachability Problem

A run is a maximal sequence (i.e. the one that cannot be
prolonged) of the form (`0, ν0)→ (`1, ν1)→ · · ·

Definition 5
Input: a timed automaton A , a location ` of the automaton
Question: Does there exist a run of A which reaches ` ?

This problem formalizes the verification of safety problems – is
an erroneous state reachable?

31

Reachability: Attempt 1

I discretization (sampled semantics)
I allow time step (delay) 1
I clock above maximal constant ⇒ value does not increase
I finite state space

I not equivalent ⇒ find a counterexample

32

Reachability: Attempt 1

I discretization (sampled semantics)
I allow time step (delay) 1
I clock above maximal constant ⇒ value does not increase
I finite state space
I not equivalent ⇒ find a counterexample

32

Reachability: Attempt 2

I what about time step 0.5 ?

I what about time step 0.25 ?
I what about time step 2−n ?

33

Reachability: Attempt 2

I what about time step 0.5 ?

I what about time step 0.25 ?
I what about time step 2−n ?

33

Reachability: Attempt 2

I what about time step 0.5 ?

I what about time step 0.25 ?
I what about time step 2−n ?

33

Reachability and Discretization

I for each automaton there exists ε such that sampled
semantics with time step ε and dense semantics are
equivalent w.r.t. reachability

I no fixed ε is sufficient for all timed automata
I for more complex verification problems sampled and dense

semantics are not equivalent

34

Complexity of Reachability Problem

Theorem 6
The reachability problem is in PSPACE.
I note that even decidability is not straightforward – the

semantics is infinite state
I decidability proved by region construction (to be

discussed)
I completeness proved by general reduction from linearly

bounded Turing machines (not discussed)

35

Another approach?

I Idea: is it necessary to distinguish the following
valuations? (0.589,1.234) and (0.587,1.235)

I some clock valuations are equivalent as the automaton
cannot distinguish between them w.r.t. reachable locations

I let us find such equivalence classes (so called regions)

36

Region Construction

Main idea:
I define equivalence � on valuations so that if ν � µ then the

automaton “cannot distinguish between (`, ν) and (`, µ)”

I define � so that ν � µ implies that for every `
I if (`, ν)→ (`′, ν′) then (`, µ)→ (`′, µ′) so that ν′ � µ′
I if (`, µ)→ (`′, µ′) then (`, ν)→ (`′, ν′) so that ν′ � µ′

In particular, both configurations (`, ν) and (`′, µ′) can
reach the same set of locations
(Note that this equivalence is basically a bisimulation)

I work with regions, i.e., equivalence classes of valuations,
instead of valuations

I finite number of regions

What conditions on � do we need?

37

Region Construction

Main idea:
I define equivalence � on valuations so that if ν � µ then the

automaton “cannot distinguish between (`, ν) and (`, µ)”
I define � so that ν � µ implies that for every `
I if (`, ν)→ (`′, ν′) then (`, µ)→ (`′, µ′) so that ν′ � µ′
I if (`, µ)→ (`′, µ′) then (`, ν)→ (`′, ν′) so that ν′ � µ′

In particular, both configurations (`, ν) and (`′, µ′) can
reach the same set of locations
(Note that this equivalence is basically a bisimulation)

I work with regions, i.e., equivalence classes of valuations,
instead of valuations

I finite number of regions

What conditions on � do we need?

37

Region Construction

Main idea:
I define equivalence � on valuations so that if ν � µ then the

automaton “cannot distinguish between (`, ν) and (`, µ)”
I define � so that ν � µ implies that for every `
I if (`, ν)→ (`′, ν′) then (`, µ)→ (`′, µ′) so that ν′ � µ′
I if (`, µ)→ (`′, µ′) then (`, ν)→ (`′, ν′) so that ν′ � µ′

In particular, both configurations (`, ν) and (`′, µ′) can
reach the same set of locations
(Note that this equivalence is basically a bisimulation)

I work with regions, i.e., equivalence classes of valuations,
instead of valuations

I finite number of regions

What conditions on � do we need?

37

Preliminaries

Let d ∈ R≥0. Define
I bdc to be the integer part of d
I fr(d) to be the fractional part of d

Thus d = bdc+ fr(d)

Example: b42.37c = 42, fr(42.37) = 0.37

38

Equivalence on Clock Valuation: Condition 1
Let cx be the largest constant compared to a clock x (“max bound”)

Two valuations ν and µ are equivalent, ν � µ iff the following
conditions are satisfied:

C1 Clock x is in both valuations ν and µ above its max bound, or it
has the same integer part in both of them:

ν(x) ≥ cx ∧ µ(x) ≥ cx or bν(x)c = bµ(x)c

C2 If the value of clock is below its max bound, then either it has
zero fractional part in both ν and µ or in none of them:

ν(x) ≤ cx ⇒ (fr(ν(x)) = 0⇔ fr(µ(x)) = 0)

C3 For two clocks that are below their max bound, ordering of
fractional parts must be the same in both ν and µ:

ν(x) ≤ cx∧ν(y) ≤ cy ⇒

(fr(ν(x)) ≤ fr(ν(y))⇔ fr(µ(x)) ≤ fr(µ(y)))

39

Equivalence on Clock Valuation: Condition 1
Let cx be the largest constant compared to a clock x (“max bound”)

Two valuations ν and µ are equivalent, ν � µ iff the following
conditions are satisfied:

C1 Clock x is in both valuations ν and µ above its max bound, or it
has the same integer part in both of them:

ν(x) ≥ cx ∧ µ(x) ≥ cx or bν(x)c = bµ(x)c

C2 If the value of clock is below its max bound, then either it has
zero fractional part in both ν and µ or in none of them:

ν(x) ≤ cx ⇒ (fr(ν(x)) = 0⇔ fr(µ(x)) = 0)

C3 For two clocks that are below their max bound, ordering of
fractional parts must be the same in both ν and µ:

ν(x) ≤ cx∧ν(y) ≤ cy ⇒

(fr(ν(x)) ≤ fr(ν(y))⇔ fr(µ(x)) ≤ fr(µ(y)))

39

Equivalence on Clock Valuation: Condition 1
Let cx be the largest constant compared to a clock x (“max bound”)

Two valuations ν and µ are equivalent, ν � µ iff the following
conditions are satisfied:

C1 Clock x is in both valuations ν and µ above its max bound, or it
has the same integer part in both of them:

ν(x) ≥ cx ∧ µ(x) ≥ cx or bν(x)c = bµ(x)c

C2 If the value of clock is below its max bound, then either it has
zero fractional part in both ν and µ or in none of them:

ν(x) ≤ cx ⇒ (fr(ν(x)) = 0⇔ fr(µ(x)) = 0)

C3 For two clocks that are below their max bound, ordering of
fractional parts must be the same in both ν and µ:

ν(x) ≤ cx∧ν(y) ≤ cy ⇒

(fr(ν(x)) ≤ fr(ν(y))⇔ fr(µ(x)) ≤ fr(µ(y)))
39

Equivalence: Examples

Identify cx and cy

suppose cx = 4, cy = 5, cz = 1
I let (x , y , z) denote valuations, decide:

1. (0,0.14,0.3) � (0.05,0.1,0.32) ?
2. (1.9,4.2,0.4) � (2.8,4.3,0.7) ?
3. (0.05,0.1,0.3) � (0.2,0.1,0.4) ?
4. (0.03,1.1,0.3) � (0.05,1.2,0.3) ?

40

Equivalence: Examples

Identify cx and cy

suppose cx = 4, cy = 5, cz = 1
I let (x , y , z) denote valuations, decide:

1. (0,0.14,0.3) � (0.05,0.1,0.32) ?
2. (1.9,4.2,0.4) � (2.8,4.3,0.7) ?
3. (0.05,0.1,0.3) � (0.2,0.1,0.4) ?
4. (0.03,1.1,0.3) � (0.05,1.2,0.3) ?

40

Regions

Definition 7
Classes of equivalence � are called regions, denoted by [ν].

Example:
I suppose TA with two clocks, cx = 3, cy = 2
I draw all regions (since we have just 2 clocks, we can draw

them in plane)

41

Regions

Definition 7
Classes of equivalence � are called regions, denoted by [ν].

Example:
I suppose TA with two clocks, cx = 3, cy = 2
I draw all regions (since we have just 2 clocks, we can draw

them in plane)

41

Regions

Lemma 8
ν � µ implies that for every `
I if (`, ν)→ (`′, ν′) then (`, µ)→ (`′, µ′) so that ν′ � µ′

I if (`, µ)→ (`′, µ′) then (`, ν)→ (`′, ν′) so that ν′ � µ′

Lemma 9
The number of regions is at most |C |! · 2|C | ·

∏
x∈C(cx + 1).

42

Region Graph

A region graph is a (labeled) transition system where
I states are pairs of the form (`, [ν]) where ` is a location

and ν is a valuation
I transitions are defined by

(`, [ν])→ (`′, [ν′]) iff (`, ν)→ (`′, ν′)

Theorem 10
Region graph is equivalent to the semantics of A w.r.t.
reachability, i.e., a location ` is reachable in the region graph
iff it is reachable in the semantics of A .
Moreover, region graph is finite and can be effectively
constructed ⇒ region graph can be used to solve the
reachability problem.

43

Operations on Regions

To construct the region graph, we need the following
operations:
I let time pass – go to adjacent region at top right
I intersect with a clock constraint (note that clock

constraints define supersets of regions)
I if region is in the constraint: no change
I otherwise: empty

I reset a clock – go to a corresponding region

44

Example: Timed Automaton

45

Example: Region Graph

Here transitions that do not change location have been compressed
(i.e. each transition in the above graph consists of an arbitrary
number of delay transitions succeeded by one action transition)

46

Zones – More Efficient Reachability Analysis

Regions – impractical, too many regions constructed explicitly

Definition 11
Denote by B+(C) the set of extended clock constraints defined
by

ψ ::= x Z k | x − y Z k | φ ∧ φ

where x , y ∈ C , k ∈N and Z ∈ {≤, <,=, >,≥}.

Definition 12
A zone is a set of clock valuations described by an extended
clock constraint gZ ∈ B

+(C):

Z = {ν | ν |= gZ }

A symbolic state is a pair (`,Z) where ` is a location and Z a
zone

47

Zone Operations & Symbolic Transitions

I Z↑ =
{
ν+ δ | ν ∈ Z ∧ δ ∈ R≥0

}
I Z [Y := 0] =

{
ν[Y := 0] | ν ∈ Z

}
Lemma 13
If Z is a zone, then both Z↑ and Z [Y := 0] are zones.

Symbolic transition relation { over symbolic states:
I (`,Z) {

(
`,Z↑ ∧ I(`)

)
I (`,Z) { (`′, (Z ∧ g)[Y := 0] ∧ I(`′)) if (`,g,a,Y , `′) ∈ E

48

Zones – Reachability

Theorem 14
I If (`,Z) { (`′,Z ′) and ν′ ∈ Z ′, then (`, ν)→ (`′, ν′) for

some ν ∈ Z
I If (`, ν)→ (`′, ν′) with ν ∈ Z , then (`,Z) { (`′,Z ′) with
ν′ ∈ Z ′

It follows that
I whenever (`′,Z ′) is reachable from (`0, {ν0}), then all

states of the form (`′, ν′) with ν′ ∈ Z ′ are reachable from
(`0, ν0),

I whenever (`′, ν′) with ν′ ∈ Z ′ is reachable from (`0, ν0),
then (`′,Z ′) is reachable from (`0, {ν0}).

49

Example: Zones

50

Representation by Difference Bound Matrices

Let C0 = C ∪ {0} where 0 is the clock with constant value 0

Each zone can be described using a conjunction of constraints
of the form

x − y ≤ k x − y < k

where x , y ∈ C0 and k ∈N

I When x − y ≤ k and x − y < k , take only x − y < k ,
I when x − y � k and x − y � k ′, take only x − y � min{k , k ′}
⇒ There are |C0||C0| such constraints.

Store the contraints into a difference bound matrix

51

Difference Bound Matrix

x < 20 ∧ y ≤ 20 ∧ y − x ≤ 10 ∧ x − y ≤ −10 ∧ z > 5

matrix representation can be used to perform necessary
operation: passing of time, resetting clock, intersection with
constraint, ...

52

Network of TA

I interleaving semantics
I handshake communication – synchronization on c! and c?

pairs

53

Networks of TA

Let Chan be a finite set of communication channels

Assume Σ = {c! | c ∈ Chan} ∪ {c? | c ∈ Chan} ∪ N where N
contains a special action τ (an internal action)

Definition 15
Consider n timed automata Ai = (Li , `i

0,Ei , Ii). The parallel
composition A = A1 | · · · | An is a network of timed automata.

A location vector: ~̀= (`1, . . . , `n)

Invariants are composed into common invariants over location
vectors: I(~̀) = I1(`1) ∧ · · · ∧ In(`n)

54

Networks of TA – Semantics
Semantics is defined by a transition system (S , s0, →) where
I S = (L1 × · · · × Ln) × (C → R≥0)

i.e. states are of the form (~̀, ν)

I s0 = (~̀0, ν0) where ~̀0 = (`1
0, . . . , `

n
0) and ν0(x) = 0 for

x ∈ C
I transitions:
I (~̀, ν)→ (~̀, ν+ δ) if ν+ δ′ |= I(~̀) for each δ′ ∈ [0, δ]

I ((`1, . . . , `i , . . . , `n), ν)→ ((`1, . . . , `′i , . . . , `n), ν′) if there exists
(`i ,g,a,Y , `′i) ∈ Ei such that
I ν |= g,
I ν′ = ν[Y := 0] and ν′ |= I(`1, . . . , `′i , . . . , `n)

I ((`1, . . . , `i , . . . , `j , . . . , `n), ν)→ ((`1, . . . , `′i , . . . , `
′

j , . . . , `n), ν′)

if there exist (`i ,gi , c?,Yi , `′i) ∈ Ei and (`j ,gj , c!,Yj , `′j) ∈ Ej

such that
I ν |= gi ∧ gj ,
I ν′ = ν[Yi ∪ Yj := 0] and ν′ |= I(`1, . . . , `′i , . . . , `

′

j , . . . , `n)

55

UPPAAL Tool

UPPAAL is a toolbox for modeling, simulation and verification
of real-time systems
I Uppsala University + Aalborg University = UPPAAL

I Modeling language: networks of timed automata
(+ additional features)

I widely used for teaching
I several industrial case studies
I www.uppaal.org

56

Functionality of UPPAAL

I modeling – graphical tool for specification of timed
automata, templates

I simulation – simulation of the model (manual, random)
I verification – verification of simple properties (restricted

subset of Computation Tree Logic), counterexample can be
simulated

Java user interface and C++ verification engine

57

Extensions of Timed Automata (UPAAL)

I Bounded integer variables – declared as
int[min,max] name

where min and max are the lower and upper bound,
respectively. Violating a bound leads to an invalid state
that is discarded at run-time.

I Arrays
I Broadcast channels – One sender c! can synchronise with

an arbitrary number of receivers c?. Any available receiver
must synchronize. Broadcast sending is never blocking.

58

Fischer’s Algorithm

With the following declarations (for 6 processes):

int[0,6] id; const k 2; clock x

and the following parameter (for 6 processes): int[1,6] pid

59

Extensions to TA in UPPAAL

I Urgent locations – time is not allowed to pass in the
location, i.e., they are semantically equivalent to adding
an extra clock x that is reset on all incoming edges, and
having an invariant x ≤ 0 on the location

I Committed locations – even more restrictive than urgent
locations. A state of a network is committed if any of its
locations is committed. A committed state cannot delay
and the next transition must involve an outgoing edge from
at least one of the committed locations
... useful in modeling atomic actions

60

The properties

UPPAAL tool uses a simple fragment of CTL as a specification
language

Syntax:

E^P | A�P | E�P | A^P | P−−>P

P ::= A .` | gc | gd | ¬P | P ∨ P

where
I A .` – a location ` of an automaton A (in a given network)
I gc – a clock constraint
I gd – a predicate over data variables

(such as v ≥ 1, or v == v′ − 1)

61

Properties

I E^P = it is possible to reach a state in which P is
satisfied

(written as E<>P)
I A^P = P will inevitably become true, the automaton is

guaranteed to eventually reach a state in which P is true.

(written as A<>P)

62

Properties

I A�P = P holds always and everywhere in the future

(written as A[]P)
I E�P = P is potentially always true; there is a run in

which P is true in all states

(written as E[]P)

63

Properties

I P−−>Q = P leads to Q ; if P becomes true, Q will
inevitably become true later on;

P−−>Q ≡ A�(P imply A^Q)

(written as P-->Q)

64

Timed CTL – Very Briefly

Syntax of TCTL state-formulas over a set of atomic
propositions AP and a set of clocks C :

Φ ::= true | a | g | Φ ∧ Φ | ¬Φ | EΦUJΦ | AΦUJΦ

where a ∈ AP , g is a clock constraint and J is an interval in
R≥0 with bounds in N

65

TCTL – Very Briefly

Let L be a function which to every location assigns a set of
atomic propositions. For a state s = (`, ν) we define a
satisfaction relation |= by

s |= true
s |= a iff a ∈ L(`)
s |= g iff ν |= g
s |= ¬Φ iff s 6|= Φ
s |= Φ1 ∧ Φ2 iff (s |= Φ1) and (s |= Φ2)
s |= EΦ1UJΦ2 iff ω |= Φ1UJΦ2 for some divergent run ω
s |= AΦ1UJΦ2 iff ω |= Φ1UJΦ2 for all divergent runs ω

A run is divergent, if its total execution time is infinite
recall that a run is a maximal path; it can be convergent if either it makes
finitely many transitions, or the length of delays converges to a finite number

66

TCTL – Very Briefly
Let ω = (`0, ν0) h1−→ (`1, ν1) h2−→ (`2, ν2) h3−→ · · · be divergent run

Here each hi is either a real number (delay), or an action of Σ

Define

δi =

hi if hi is a delay in R≥0

0 otherwise, i.e., hi ∈ Σ

Given t ∈ R≥0 we denote by ωt the state “visited” by ω at time
t :
ωt = (`i , νi + δ) where
I i is the maximal number s. t.

∑i
j=1 δj ≤ t

I δ = t −
∑i

j=1 δj

ω |= Φ1UJΦ2 if there is time t ∈ J such that
I ωt |= Φ2
I ωt ′ |= Φ1 ∨ Φ2 for all t ′ < t

67

TCTL – Very Briefly – Examples

I E trueU[0,1]a = there exists a run which reaches a location
satisfying a during the first time unit

I E bU[0,1]a = there exists a run which reaches a location
satisfying a at some time t ∈ [0,1] and before that visits only
states that satisfy either b or a

Define ^JΦ ≡ trueUJΦ and �JΦ = ¬^J
¬Φ

I A^[0,3]a

I A^[1,2](E^[0,1]a)

I A�[0,1]¬(E^[0,11]a)

68

TCTL Model Checking: Approach

Eliminating timing intervals J other than [0,∞) from s |= QΦ1UJΦ2:
I introduce a new clock z that is reset in s |= Φ1

I check if z ∈ J by CTL: s[{z} := 0] |= Q(Φ1 ∨ Φ2)U(z ∈ J ∧ Φ2)
69

TCTL Model Checking: Algorithm

70

