

Advanced Testing of Deep Learning Models: Towards Robust Al

Winter Semester 2025-26 (Pre-Course Meeting)

Vivek V. Vekariya

Simon Speth

Prof. Dr. Alexander Pretschner

Chair of Software and Systems Engineering
Technical University of Munich
16.07.2024

Deep Learning Application Development

- Performance of Deep Neural Networks (DNNs) is reflected in evaluation metrics on test dataset
- Overestimation of DNN's capabilities in real-world applications

My Research Areas

Coverage-Guided Fuzzing

Metamorphic Testing

- Metamorphic Testing (MT) is one method to solve the oracle problem for Deep Learning Models
 - There are usually no oracles for DL models
 - Metamorphic testing can be seen as a pseudo-oracle/model
 - Reverse engineering of a part of the specification
- Metamorphic Relations (MR) need to be defined in order to compute test cases
 - Source test inputs are used to compute follow-up inputs
 - Both inputs (source and follow-up) are fed into the System Under Test (SUT)
 - Both outputs and both inputs are compared to check whether the MR holds true

Metamorphic Testing

- **Example:** Testing the implementation of the sin(x) function
- **Assumption:** We implement a test case $\sin(2)$ but don't know what the correct output
- **Metamorphic Testing:** Creation of a *follow-up test case* $\sin(2 + 2\pi)$ which is expected to have the same output as the *source test case* $\sin(2)$
- **Test Case Evaluation:** We check if the relation $sin(2) = sin(2 + 2\pi)$ holds. If yes, the test case *passed*

What's new this year?

- Test Case Generation for LLMs
 - Developing diverse prompts to rigorously evaluate Large Language Models.
- **■** LLM Test Dataset Quality
 - Ensuring the integrity and effectiveness of data used for LLMs.
- 🚜 🦃 Automated Driving Use Cases
 - •Applying existing methodologies to expand capabilities (e.g., advanced steering angle prediction).

Evaluation

- We work in TEAMs
- **Peer Reviews** for code and merge requests (Let's Learn Together)
- Evaluation Criteria & Deliverables:
 - Code & Results (5/10)
 - Team & Individual reports (3/10)
 - Final Presentation (2/10)
 - Bonus: Innovative ideas & extensive evaluation of the approaches

Prerequisites

Required

- Python (of course ☺)
- Deep Learning
 Frameworks (PyTorch,
 Keras, TensorFlow)
- Linux / Windows

Good to have

- Insights of 2D Object Detector Networks (SSD, Yolo, RCNN) and Large Language Models
- Understanding of latent space and vector space modelling
- Passion for Safe Al

....But every smart work requires sincere dedication & commitment! • •

Agenda

- Pre-course Meeting: 16.07.2025
- Apply with additional documents: till 22.07.2025
- Acceptance Notification: 31.07.2025
- **Kick-off Meeting 1:** XX.10.2025 (Mo. / Tue.)
- Project Discussions & Allocation: XX.10.2025 (Mo. / Tue.)
- Weekly Follow-ups
- Final Presentations: Feb.2026 (Preliminary-Do.)

Interested?

- 1. Give your 1st priority to this course in the matching system
- Tell us more about you (motivation, CV, transcripts & Gitlab link) by filling out:

TUM 14 student wiki

Thank you for your attention

Vivek V. Vekariya

16.07.2025

Garching bei München

