Advanced Testing of Deep Learning Models:
Towards Robust AI

Winter Semester – 2024-25

Vivek V. Vekariya
Simon Speth
Prof. Dr. Alexander Pretschner

Lehrstuhl für Software and Systems Engineering
Technische Universität München
04.07.2024
The world of AI testing

- **DNN Testing**: How to identify corner cases?
- **Dataset Quality Evaluation**: How to evaluate dataset quality for safety assured performance?

Hidden defects of DNN (Corner Cases)

1. Hand Picked Test set
2. Inadequate test dataset
3. Statistical measure about the quality of test dataset?
Exploring Latent Space Coverage

- **Dataset Quality Aspects:**
 - Robust test dataset: e.g. Accuracy - 0%
 - Diverse test dataset: Test more underlying faults

- **Latent Space Coverage:**
 - Coverage, Density & Sparsity Estimation
 - Verify training policies
 - Estimate potential data collection gap
Exploring Latent Space Coverage

- **Directly using Latent space vectors:**
 - GANs & VAEs

- **Corner Case Identification:**
 - Coverage-guided Fuzz Testing
 - Latent Space based Testing
 - Metamorphic Relation Testing

Is this a true maximization of latent space coverage?

Dense and Sparse test data points in Latent Space

Ideal test data points in latent space
Coverage-Guided Fuzzing

1) Failed test
2) Coverage Information
Metamorphic Testing

- Metamorphic Testing (MT) is one method to solve the oracle problem for Deep Learning Models
 - There are usually no oracles for DL models
 - Metamorphic testing can be seen as a pseudo-oracle/model
 - Reverse engineering of a part of the specification

- Metamorphic Relations (MR) need to be defined in order to compute test cases
 - Source test inputs are used to compute follow-up inputs
 - Both inputs (source and follow-up) are fed into the System Under Test (SUT)
 - Both outputs and both inputs are compared to check whether the MR holds true
Metamorphic Testing

- **Example:** Testing the implementation of the $\sin(x)$ function
- **Assumption:** We implement a test case $\sin(2)$ but don't know what the correct output is.
- **Metamorphic Testing:** Creation of a follow-up test case $\sin(2 + 2\pi)$ which is expected to have the same output as the source test case $\sin(2)$.
- **Test Case Evaluation:** We check if the relation $\sin(2) = \sin(2 + 2\pi)$ holds. If yes, the test case passed.

```
<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2$</td>
<td>$\sin(2)$</td>
</tr>
<tr>
<td>$2 + 2\pi$</td>
<td>$\sin(2 + 2\pi)$</td>
</tr>
</tbody>
</table>
```

sin() Example:

```
2 \downarrow
\Rightarrow
2 + 2\pi \Rightarrow \sin(2 + 2\pi)
```
Metamorphic Testing

Example: Deep Learning LiDAR object detection model:

\[M = (R, \varphi) \]

\[x \rightarrow f(x) \]

\[\varphi(x) \rightarrow f(\varphi(x)) \]
Metamorphic Testing

Example: Deep Learning LiDAR object detection model:

• Testing of a LiDAR object detection model:
• $\varphi(x)$: Rotation of the follow-up point cloud by 180°
• R: Inverse 180° rotation of all output 3D bounding boxes. Then we check if all follow-up bounding boxes have a corresponding bounding box in the source output.
Learning Outcomes

• **Implementation, testing & evaluation** of state-of-the-art Classification & 2D Object Detectors DNNs
• Corner Case data generation using fuzzing, metamorphic relations and latent space properties
• GANs & VAEs for latent space coverage maximization
• Adversarial Attacks for state-of-the-art Classifiers and 2D Object Detectors
Prerequisites

Required

- Python (of course 😊)
- Deep Learning Frameworks (PyTorch, Keras, TensorFlow)
- Linux / Windows

Good to have

- Insights of 2D Object Detector Networks (SSD, Yolo, RCNN)
- Understanding of latent space and vector space modelling
- Passion for Safe AI

....But every smart work requires sincere dedication & commitment!
Agenda

- **Pre-course Meeting**: 04.07.2024
- **Apply with additional documents**: till 20.07.2024
- **Acceptance Notification**: 25.07.2024
- **Kick-off Meeting - 1**: XX.10.2024 (Di.)
- **Project Discussions & Allocation**: XX.10.2024 (Di.)
- **Weekly Follow-ups**
- **Mid-term Presentations**: TBD (Preliminary-Do.)
- **Final Presentations**: Feb.2025 (Preliminary-Do.)
1. Give your 1st priority to this course in the matching system
2. Tell us more about you (motivation, CV, transcripts & Gitlab link) by filling out:
 \url{TUM_I4_student_wiki}
Thank you for your attention 😊

Vivek V. Vekariya
Simon Speth
Garching bei München