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Project Context

CreateData4dAl: Leveraging Domain Knowledge and Context Rules
to Transform Large-Scale Unstructured Text Corpora into
Structured and Annotated Datasets

() fusionbase
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Introduction & Motivation
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Motivation: “Labels are the bottleneck”

Training computation (petaFLOP)
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Training compute for notable Al models has grown exponentially for over a decade
(data: Epoch Al via Our World in Data).
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Current Limitations:

Compute scales exponentially — largest training runs
doubled every ~3.4 months since 2012

Human labeling doesn’t — it's the deployment bottleneck:
slow, costly, hard to parallelize.

Quality is inconsistent — domain tasks show high
inter/intra-annotator variance; experts are scarce.

LLM auto-labeling isn’t free — prone to hallucinations;
eval still needs ground truth; API cost/latency.



The CD4AIl Pipeline and Thesis Scope

‘ Seed Keywords ’ We have a partially annotated corpus® with:
(Domain Expert)
, 1. Keywords,
Iterative Keyword Approve / Edit ’
Expansion Keywords 2. Context Windows,
y .
Context Window Approve / Edit 3 semantlc ArChetypes'
Extraction Context Windows

But the rest of the corpus is still unlabeled!

Y
Recursive Hierarchical

Clustering
Scope of this Thesis o
“““““““““““““““““““““““ Y- : 1. We need a robust classifier to
RL-Based Archetype LLM Archetype . Approve / Edit
| Refinement Distillation | Archetypes ’
X | (a) use these archetypes and
‘ 1
Vatidation Reward | Automatic (b) systematically annotate all remaining data.
I:I Automatic
\:] Expert Action .
] RLFeodback 2. We also need to evaluate how well this system performs
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Research Questions

RQ1 How can semantic archetypes be leveraged to classify and annotate domain-specific documents?

RQ2 Can a reward-based feedback system boost both classification accuracy and archetype

quality?

RQ3 How does this archetype-driven framework compare to supervised models and zero-
shot LLMs in terms of accuracy and resource utilization across different domains?
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Methodology

Input: Partially Labeled (Data) Sets* & Archetypes

- from Domain Experts
- Used to guide our classifier(s)

For Building a Classifier 4 Methods are used:

1. Embedding Based Similarity

2. Contrastive Learning for Domain-Specific Embeddings

3. Weak Supervision via Progressive Pseudo-Labeling

4. GRPO - Reinforcement Learning for Archetype Selection
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Methodology - Embedding Based Similarity

‘ Class 1 Archetypes ’ ‘ Test Document]
‘ Class 2 Archetypes ’
Embedding Model
‘ Class K Archetypes |
Pre-computed l edoc € R? ]
| {el?},c | Cosine Similarity

[ Class Scores ]

Predicted Class ’
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Standard

| Open-Set (1)

Margin (J)

What it does: Classifies a document by comparing its
embedding to pre-computed archetype embeddings and
taking the best-matching class; supports open-set threshold
(1) and margin () decisions.

Intuition: If archetypes are good prototypes, the correct
class should be closest in embedding space.

Why it matters: Gives a training-free, fast interpretable
baseline that plugs directly into existing pipeline
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Methodology — Contrastive Learning

What it does: Fine-tune the encoder with a contrastive
loss/NT-Xent Loss so same-class (doc/archetype) pairs pull

Archetype a; Test D :
P together and different classes push apart.

Base Encoder

Archetype a; €j i
+ LoRA Adapter Fine-tuned Encoder | All Archetypes

Intuition: Generic embeddings capture “semantic similarity,”

b not our class boundaries; contrastive tuning reshapes the
space for classification.

Yi=Yj

Why it matters: Produces domain-adapted representations
while keeping inference simple (still nearest-archetype)

Classify via arg max,
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Methodology — Weak Supervision via Progressive Pseudo-Labeling

Unlabeled Data [Gold—25 per class] [CD4AI Archetypes]

Multi-Source Weak Supervision What it does: Combine three weak signals, archetype
similarity, keyword matches, and similarity to a few gold
examples, into a confidence score; add only high-confidence

Confidence Scoring pseudo-labels each round and decay the threshold over
iterations.

|Pr°8reSSiV9 ThIeShOId| Intuition: Start from the most reliable hints and gradually

0.1 grow the labeled set (curriculum), while down-weighting

uncertain labels to avoid confirmation bias.

Why it matters: Turns a tiny seed (25/class) plus
’DQBERTa_Vg Fine_tuning‘ archetypes into a much larger, still-clean training set

Updated Predictions
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Methodology — GRPO: Reinforcement Learning for Archetype Selection

; [CD4AI Archetypes

Feature Extraction

ot )

Selection S ] [ Selection S; [ Selection S3 ] Selection Sy

Pseudo-Label & Evaluate

GRPO: Relative Rewards |
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What it does: Train multiple small policies that
include/exclude archetypes; reward each by downstream
validation performance relative to peers; keep the best
subset.

Intuition: CD4Al over-produces archetypes; some are noisy
or redundant, learn to keep the ones that actually help
classification.

Why it matters: Improves supervision quality without
regenerating archetypes or retraining the distillation LLM
(computationally efficient way to denoise the pool)
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Baselines

. LLM prompting
. zero/few shot prompting with fixed prompts and examples drawn from training data
. 4 groups:
=  High Performance proprietary: gpt-40, claude-3.7-sonnet
=  High Performance open-weight: Qwen2.5-72B-Instruct, Mixtral-8x22B-Instruct-v0.1

= Efficient mid-size (~7-8B) : LLama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.3
=  Small/ Tiny (~1-4B): Ph1-3.5-mini-instruct, Qwen2.5-1.5B-Instruct

. Supervised Encoders
=  3fine tuned base encoders: ROBERTa-base, ELECTRA-base, DeBERTa-v3-base
= 3 Data Regimes:

=  Archetype Only
. Gold-25/cls
. Full-train (upper bound)

=  Weak supervision — Label Propagation
. Graph/similarity propagation from the small gold set over unlabeled data (Weak Supervision SOTA)
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Evaluation
Datasets Hardware
Dataset Classes Orig. Our splits Component Specification
Train  Test Train Dev  Test GPU 1 x NVIDIA RTX 5000 Ada
20 Newsgroups 20 11314 7532 4000 1000 1000 CPU 14 vCPU
AG News 4 120000 7600 12000 3000 1000 System memory 62 GB RAM
BBC News 5 1225 1000 1225 300 700 Platform Runpod VM instance
DBpedia-14 14 560000 70000 14000 3500 1000 Precision Mixed precision (automatic, where available)
arXiv 10 100000 - 15000 3000 1000 Random seed 42 (training, data splits, and sampling)

Primary Classification Metrics: Accuracy and Macro-F1 (plus
Macro-Precision/Recall for detail).

Efficiency metrics: Throughput (samples/s) and end-to-end
latency measured on stated hardware (local models) or as request
timings for API LLMs.
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Results — Baselines

Method Avg. Acc. Labels Throughput Latency Cost Deploy
(%) Required (samples/s) (ms) (Relative) (Ease)

REALISTIC SCENARIOS (25 LABELS/CLASS)

Label Propagation 83.1 25/class 6.9 191.7 Low Medium

LLM-5shot (GPT-40) 82.8 5 total 18.5 61.7 High Easy

LLM-0shot (GPT-40) 80.9 0 20.2 47.5 High Easy

RoBERTa Gold-25 71.6  25/class 400.0 2.5 Low Easy

Archetype (RoBERTa) 48.9 0 11.3 88.6 Low Medium

UNREALISTIC REFERENCET (FULL SUPERVISION)

RoBERTa Full-train 86.4 200-3000t 400.0 2.5 Low Easy

Design targets for our methods: 280% accuracy and 250 samples/s (beat LP/LLM limits while staying fast).
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Results — Comparison

Method Type Avg. Acc. Avg. F1 Throughput
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20 Newsgroups arXiv AG News BBC News DBpedia

(Complex) (Technical) (Moderate) (Clear) (Structured)
0 Pseudo-Labeling [ Contrastive [ RoBERTa Gold-25
= GRPO [0 Label Propagation

All three methods clear the bar (quality + speed)
Pseudo-labeling = balanced default

Contrastive = fastest path

GRPO helps on messy domains (pruning
noisy/redundant archetypes matters most where
classes overlap.

Labels Training Deploy 100 1
(%) (%) (samples/s) (per class) (minutes) (Ease)
MEeTHODS MEETING DESIGN TARGETS (>80% Acc, >50 SAMPLES/S) S
GRPO-Pseudo CD4AI+ 84.9 84.6 191.3 25 42-270 Medium g
Pseudo-Labeling CD4Al 83.5 83.2 275.6 25 7-79 Medium g
Contrastive (Qwen3)  CD4AI 81.5 814 1,601.6 25 2-71 Easy
HiGH-Accuracy But SLow METHODS
Label Propagation Baseline 83.1 82.4 6.9 25 10-60 Medium
LLM-5shot (GPT-40) Baseline 82.8 82.6 18.5 5 total None Easy
LLM-0shot (GPT-40) Baseline 80.9 80.7 20.2 0 None Easy
Fast Bur LOWER-ACCURACY METHODS
RoBERTa Gold-25 Baseline 71.6 71.2 400.0 25 0.5-2 Easy .
Contrastive (MPNet)  CD4AI 80.3 80.2 999.4 25 2-20 Easy
Embedding (Qwen3)  CD4AI 41.5 40.8 988.1 25 None Easy ‘
Archetype (RoBERTa) Baseline 48.9 43.6 11.3 0 5-15 Medium °
REFERENCE (UNREALISTIC)t ‘
RoBERTa Full-train ~ Baseline 86.4 86.2 400.0 200-3000 15-45 Easy
CDA4AL: The CD4AI Pipeline extended as planned with a Pipeline Component for Classification/Annotation
CD4Al+: The Pipeline extended with a feedback mechanism to preselect suitable Archtypes at an earlier stage
Baseline: The Baseline Methods we evaluate our proposed approaches agains
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Accuracy (%)

Results — GRPO Caveats
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Method Avg. Acc. Improvement Training Throughput Cost
(%) (pp) Time (samples/s) Ratio

Pseudo-Labeling 83.5 baseline 7-79 min 275.6 1x
GRPO Selection 84.9 +1.4 0.7-45hr 1913 3-6x
Dataset-specific improvements over pseudo-labeling:
High-complexity +2.5 avg

(20NG, arXiv)
Low-complexity -0.2 avg

(BBC, DBpedia)

Marginal Accuracy Gain Substantial Time Increase

200

Training Time (minutes)
Ju—y Ju—y Ju—y Juy
a N o N a9
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Pseudo-Labeling GRPO Pseudo-Labeling GRPO
(Baseline) (+RL Optimization) (Baseline) (+RL Optimization)
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Key Takeaways

« Buys very little gain over plain pseudo-labeling
on average, gains are diminishing.

« Costs a lot more compute: training time grows
several-fold and inference gets slower.

« Can be worse on some datasets (esp.
clear/structured ones): simpler methods match
or beat GRPO there

* Probable root cause: the bottleneck is
archetype quality, not selection; more RL doesn'’t
fix noisy archetypes.
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Answering the RQs

 Yes, with a small gold seed: archetypes become effective supervision when paired with our four methods (embedding
baseline — contrastive — progressive pseudo-labels — optional RL).

 Best used as weak supervision, not alone: combining archetype similarity + a few gold examples produces reliable
pseudo-labels.

« Helps a bit, mainly on harder datasets (20NG, arXiv), but returns are diminishing.

« Compute trade-off is real: training becomes much heavier; throughput drops vs. the simpler pipeline.

Better accuracy-speed trade-off than label propagation (too slow) and LLM prompting (good quality but slow/costly);
closer to full-train than small supervised baselines.

Design targets met: practical accuracy at practical throughput on the same splits/hardware.
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Limitations & Future Work

Limitations

» Overall quality is bottlenecked by the quality/coverage of
generated archetypes; weak seeds propagate noise.

» Several heuristic choices (e.g., 25 labels/class, GRPO policy
selection biases, Label Budget) were not systematically
optimized.

« Evaluation is English-only and single-label; behavior on
multilingual and multi-label tasks remains untested.

« Throughput is high at inference, but full pipeline (distillation
+ iterations + RL) adds compute/ops complexity.

+ Upstream CD4Al stages (keyword expansion, context

windows, clustering, distillation) were tuned before a
classifier existed; may be suboptimal now.
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Future Work

Move RL “upstream”: optimize archetype generation
(prompting/policies) with validation-based rewards, not only
selection.

End-to-end retuning of CD4Al stages to maximize
downstream classifier performance (jointly revisit expansion,
windowing, clustering, distillation).

Multilingual and multi-label extensions; stress-test on
morphologically rich and low-resource languages and
overlapping-topic corpora.

Test CD4Al Pipeline with HITL for stages (Context Windows,
Clusters etc.)
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Conclusion

« Completed CD4Al end-to-end by adding automatic annotation from archetypes plus an optional RL feedback loop.

* Introduced four complementary methods: nearest-archetype baseline, contrastive adaptation, progressive pseudo-
labeling, and GRPO selection.

» Delivered a label-efficient, interpretable, and high-throughput pipeline that works with ~25 labels per class across
diverse datasets.

« Established clear usage guidance: Contrastive for speed, Pseudo-labeling as the balanced default, GRPO only when
small extra accuracy on hard domains justifies compute.

« Showed that expert-guided archetypes can stand in for large labeled sets while retaining transparency in decisions.

 Mapped the next steps: focus on improving archetype generation, end-to-end retuning, and extending to multilingual
and multi-label scenarios.
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