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Abstract

The growing demand for Natural Language Processing (NLP) in specialized, domain-specific
contexts, where large annotated corpora are scarce, creates the need for frameworks that
transform unstructured text into annotated datasets with minimal manual effort. While
large language models offer zero-shot capabilities and weak supervision reduces labeling
needs, both suffer from hallucinations, domain-specific inaccuracies, high costs, and noisy
predictions that hinder practical use. This thesis addresses this gap by completing the
CreateData4AI (CD4AI) pipeline with a semantic archetype-driven framework for efficient and
accurate text annotation and classification.

Semantic archetypes, interpretable prototypes distilled from domain corpora, serve as the
foundation of the framework. We implement four complementary methods: (1) embedding-
based similarity classification as a baseline; (2) contrastive learning to refine domain-specific
embeddings; (3) progressive pseudo-labeling that combines archetypes with minimal gold
labels to iteratively expand training data; and (4) Group Relative Policy Optimization (GRPO),
a reinforcement learning approach that filters noisy archetypes and optimizes subset selection
for robustness.

Experiments on five heterogeneous datasets (20 Newsgroups, AG News, BBC News,
DBpedia, arXiv) show that the framework achieves 83.5% average accuracy with only 25
labeled examples per class. We achieve 96.6% of fully supervised performance, while requiring
100! fewer labels. It outperforms traditional weak supervision baselines in both accuracy
and efficiency (275.6 vs. 6.9 samples/s) and matches zero-shot LLM accuracy at 14! higher
throughput without API dependencies.

These results underline three core strengths: interpretability through human-readable
archetypes, scalability by reducing annotation needs by two orders of magnitude, and
adaptability across domains without architectural changes. By completing the CD4AI pipeline,
this work provides an end-to-end solution for automated annotation, enabling organizations
to deploy accurate text classifiers within days rather than months and lowering the barrier to
NLP adoption in specialized fields.
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1 Introduction

The rapid advancement of artificial intelligence over the past decade has been driven by an
unprecedented convergence of three fundamental forces: exponentially increasing computa-
tional power, vast quantities of digital data, and sophisticated learning algorithms. Although
the first two have scaled dramatically, a critical bottleneck persists: human annotation of
training data. This thesis addresses this fundamental challenge by developing and evaluating
classification methods that complete the CreateData4AI pipeline for scalable domain-specific
document annotation.

1.1 Motivation and Problem Statement

For nearly five decades, Moore’s Law reliably predicted the doubling of transistor density
every two years, driving steady improvements in computational capability [1]. As we
approach the physical limits of silicon semiconductors, this growth has plateaued. In its place,
massively parallel Graphics Processing Unit (GPU) architectures have emerged, sustaining
and even accelerating compute growth for machine learning workloads [2]. Modern large
language models (LLMs) such as OpenAI’s GPT-4 [3] and Anthropic’s Claude-3 [4] now
require hundreds of thousands of GPU hours for pretraining. Parallel to this computational
expansion, text data has proliferated across all domains. This abundance presents both
opportunity and challenge: valuable knowledge exists within, but extracting it requires
sophisticated natural language processing.

Despite these advances, a fundamental bottleneck remains: creating high-quality labeled
datasets. While computational power scales exponentially and data grows geometrically,
human annotation capacity remains stubbornly linear. This creates what A. Ratner, Bach,
Ehrenberg, et al. [5] describes as the “key bottleneck in the deployment of machine learning
systems.”

The annotation problem manifests itself across multiple dimensions. Professional annota-
tion services are costly and time-intensive, with substantial variability in cost, throughput,
and quality across tasks [6]. Quality suffers too: interannotator agreement rarely exceeds
0.8 and often falls below 0.6 for nuanced tasks [7]. Specialized domains that require expert
knowledge face even greater challenges.

The machine learning community has developed several mitigation strategies, each with
limitations. Weak supervision frameworks such as Snorkel [5] generate labels programmat-
ically, but require significant expertise. Active learning reduces requirements but keeps
humans in the loop [8]. Transfer learning benefits from pre-trained representations but still
often requires substantial in-domain labeled data, especially under distribution shift [9].
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1.1. MOTIVATION AND PROBLEM STATEMENT

Few-shot learning [10] shows promise but lags behind supervised methods.
While LLMs offer automated annotation at scale, they introduce new challenges: halluci-

nation in specialized domains [11], redundant annotations that miss data diversity, and the
fundamental evaluation paradox, assessing quality requires the very ground truth we seek to
avoid creating.

This thesis proposes a novel solution to the annotation bottleneck through the concept of
semantic archetypes; interpretable, representative patterns that capture the essential charac-
teristics of document classes within a specific domain. Rather than annotating individual
documents, we focus on discovering and refining a small set of archetypes that can then guide
the automated annotation of entire corpora. The approach builds upon the CreateData4AI
(CD4AI) pipeline, a comprehensive framework for automated dataset creation that addresses
the full lifecycle from raw text to annotated corpora.

Our framework operates on several key principles. Instead of labeling thousands of
individual documents, we identify semantic archetypes that encapsulate class characteristics.
These archetypes serve as “prototypes” that can be reviewed and validated by domain experts
much more efficiently than examining entire datasets. Archetypes enable the generation
of multiple weak supervision signals: similarity matching, keyword extraction, and pattern
recognition; that can be combined to produce high-confidence pseudo-labels for unlabeled
documents. Through iterative cycles of pseudo-labeling [12], confidence thresholding, and
model training, our framework progressively expands the labeled dataset while maintaining
quality. Unlike generic pre-trained models, our archetype-based approach naturally adapts
to domain-specific patterns and terminology, as the archetypes themselves emerge from the
target domain corpus.

This work completes the CreateData4AI pipeline, whose ultimate goal is fully automated
corpus annotation with minimal human supervision. While CD4AI’s existing components
focus on archetype distillation, which extracts semantic patterns from unlabeled text using
domain expert seed keywords, the pipeline lacked the final step: a classifier to annotate
entire corpora using these archetypes. This thesis contributes that missing component,
developing and evaluating classification methods that transform distilled archetypes into
scalable annotation systems.

We develop and evaluate four complementary methods with increasing sophistication:
(1) direct embedding-based archetype matching computes similarity between documents and
archetypes, (2) contrastive learning [13] adapts embeddings to domain-specific characteristics,
(3) progressive pseudo-labeling synthesizes multiple weak supervision signals to iteratively
expand training sets, and (4) reinforcement learning [14] optimizes archetype selection
through competitive policy training.

The ability to automatically annotate domain-specific corpora would transform numer-
ous fields: scientific literature tracking, legal document categorization, healthcare record
analysis, business intelligence, and educational content organization. Yet challenges remain:
maintaining accuracy, mitigating bias, ensuring interpretability, and adapting to domain
shift [15].

Our evaluation across five diverse datasets (20 Newsgroups [16], AG News [17], BBC
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1.1. MOTIVATION AND PROBLEM STATEMENT

News [18], DBpedia [19], and arXiv [20]) demonstrates that these challenges can be success-
fully addressed. Using only 25 labeled examples per class combined with distilled semantic
archetypes, our progressive pseudo-labeling method achieves 83.5% average accuracy, reach-
ing 96.6% of fully supervised performance while reducing annotation requirements by two
orders of magnitude. The approach processes 275.6 samples per second, enabling real-time
deployment while operating 40→ faster than graph-based weak supervision and 14→ faster
than zero-shot large language models at comparable accuracy. On well-structured datasets
like BBC News and DBpedia, performance reaches 95–97%, while more challenging domains
like arXiv achieve 75% accuracy. This combination of high accuracy, practical efficiency, and
minimal supervision requirements validates the core premise: semantic archetypes can serve
as effective bridges between unsupervised pattern discovery and supervised classification,
enabling rapid deployment of domain-specific NLP systems without prohibitive annotation
costs.

The remainder is organized as follows: Chapter 2 provides theoretical foundations. Chap-
ter 3 presents the CreateData4AI pipeline and related work. Chapter 4 details our method-
ology. Chapter 5 presents evaluation and analysis. Chapter 6 discusses implications and
limitations. Chapter 7 concludes.

Through this work, we demonstrate that the annotation bottleneck can be substantially alle-
viated through intelligent use of semantic archetypes, enabling scalable document annotation
that keeps pace with exponential growth in compute and data.

3



1.2. IMPORTANT DEFINITIONS AND TERMINOLOGY

1.2 Important Definitions and Terminology

Term Definition

Seed Keywords Initial 3–5 representative terms per class provided by domain
expert

Keyword Expansion Embedding-based growth of vocabulary to ↑30–50 terms per
class

Context Window Dependency-guided text snippet (3–10 tokens) around key-
words

Hierarchical Clustering Ward-linkage clustering [21] with recursive splits for semantic
grouping

Semantic Archetype Concise textual prototype with examples capturing cluster
meaning

Archetype Distillation LLM-based conversion of clusters into interpretable archetypes

Embedding Classification Document classification via similarity to archetype embed-
dings

Progressive Pseudo-
Labeling Iterative training set expansion using high-confidence predic-

tions
Weak Supervision Combining multiple noisy signals for robust pseudo-labels [22]
GRPO Group Relative Policy Optimization for archetype selec-

tion [23]

1.3 Research Questions and Contributions

This thesis addresses the fundamental challenge of scalable document annotation by complet-
ing the CreateData4AI pipeline with classification methods that leverage semantic archetypes.
We investigate three core research questions:

1. How can semantic archetypes be leveraged to classify and annotate domain-specific
documents?
We explore how interpretable semantic patterns extracted through the CD4AI pipeline
can serve as the foundation for document classification, examining the effectiveness of
archetype-based weak supervision signals across diverse domains.

2. Can a reward-based feedback system boost both classification accuracy and archetype
quality?
We investigate whether reinforcement learning approaches, specifically our proposed
GRPO method, can optimize archetype selection through competitive policy training, im-
proving both the quality of selected archetypes and resulting classification performance
when combined with gold examples.

4
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3. How does this archetype-driven framework compare to supervised models and zero-
shot LLMs in terms of accuracy and resource utilization across different domains?
We conduct comprehensive evaluations comparing our minimal-supervision approach
(requiring only 25 examples per class) against fully supervised baselines and state-of-
the-art language models, measuring both classification accuracy and computational
efficiency.

In addressing these questions, this thesis makes the following contributions:

• Completion of the CreateData4AI Pipeline: We develop and implement the final
classification component that transforms CD4AI’s distilled archetypes into a fully
functional annotation system, enabling end-to-end automated corpus annotation from
seed keywords to labeled datasets.

• Four Complementary Classification Methods: We present a progression of increasingly
sophisticated approaches: (1) direct embedding-based archetype matching for baseline
similarity classification, (2) contrastive learning for domain-specific embedding adapta-
tion, (3) progressive pseudo-labeling that synthesizes multiple weak supervision signals
for iterative training set expansion, and (4) GRPO reinforcement learning for optimal
archetype subset selection.

• Low-Resource Document Annotation Framework: We demonstrate that competitive
classification performance (achieving 83.5% average accuracy) is attainable with minimal
labeled data; just 25 examples per class combined with semantic archetypes, representing
a 100→ reduction compared to traditional supervised approaches while maintaining
interpretability through archetype-based weak supervision.

• Comprehensive Multi-Domain Evaluation: We validate our framework across five
diverse datasets spanning news categorization, topic classification, and ontology classi-
fication, demonstrating robust performance and scalability from datasets with 4 classes
to those with 20 classes, and from hundreds to thousands of archetypes per domain.

• Open-Source Implementation: We provide a complete, production-ready implemen-
tation integrated within the CD4AI framework, including all classification methods,
evaluation scripts, and documentation, enabling immediate application to new domains
and facilitating reproducible research.

Through these contributions, we demonstrate that the annotation bottleneck constraining
machine learning deployment can be substantially alleviated through intelligent use of
semantic archetypes, providing a practical path toward scalable, efficient, and interpretable
document annotation systems that adapt naturally to domain-specific requirements while
requiring minimal human supervision.
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2 Theoretical Foundations

2.1 Text Embeddings and Vector Spaces

Natural language data in its raw form (words, sentences, documents) is inherently symbolic
and discrete. To enable mathematical modeling and machine learning, we must represent
text in a continuous vector space. In a vector space representation, linguistic units such as
words or documents are mapped to geometric vectors, allowing us to quantify similarity,
perform algebraic operations, and apply linear models. This idea has deep theoretical roots:
the distributional hypothesis in linguistics states that words appearing in similar contexts tend to
have similar meanings [24]. By representing words as vectors, we can utilize this hypothesis:
words with similar distributions in text will end up nearby in the vector space, reflecting
semantic resemblance. Embedding text into vectors is foundational for nearly all modern
Natural Language Processing (NLP) pipelines. It bridges human language and quantitative
algorithms: classification, clustering, information retrieval, and deep neural networks require
numeric input features. Vector representations make it possible to compute distances or
angles between texts, enabling tasks like search ranking and document similarity to be solved
by well-defined mathematical measures (e.g., cosine similarity) and further assisting in more
complex downstream tasks like classification and generation [25, pp. 54–60].

ωd2

ωq

ωd1

θ
α

Figure 2.1: Illustration of the Vector-Space Model: two document vectors (ωd1 and ωd2) and a
query vector (ωq) are represented in a common term space. The angle α between ωd1
and ωq is smaller than the angle θ between ωd2 and ωq, indicating that document 1 is
more relevant to the query.1
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2.1. TEXT EMBEDDINGS AND VECTOR SPACES

In summary, vector space models of text offer a powerful abstraction: they encode textual
items (from words to whole documents) as points in Rn (illustrated in Figure 2.1), such that
proximity in this space correlates with linguistic or conceptual similarity [26, pp. 335–362].
This concept, introduced in information retrieval in the 1970s, was pioneered by Salton’s
SMART system, being one of the first works to represent documents as vectors of term weights
[27]. It laid the groundwork for a wealth of text representation techniques that followed, from
simple frequency-based vectors to advanced neural embeddings.

2.1.1 Bag-of-Words Model and tf-idf: Sparse Representations

The Bag-of-Words (BOW) model represents documents as high-dimensional sparse vectors
where each dimension corresponds to a vocabulary term and values indicate term frequency.
Despite ignoring word order, BOW vectors capture topical content through term overlap [27].

Term frequency-inverse document frequency (tf-idf) refines BOW by weighting terms according
to their discriminative power:

tfidf(t, d,D) =
ft,d

∑t↓↔d ft↓,d
→ log

(
|D|

1 + |{d↓ ↔ D | t ↔ d↓}|

)
, (2.1)

where ft,d is the count of term t in document d, and the logarithmic factor penalizes terms that
appear in many documents [28]. Terms that are frequent in a document but rare across the
corpus receive high weights, making them salient for retrieval and classification. Combined
with cosine similarity, tf-idf vectors underpinned decades of text classification research
[29, 30]. However, sparse representations ignore semantic relationships and word order,
limitations addressed by neural embeddings. Dimensionality reduction via Singular Value
Decomposition (LSA) created dense low-dimensional representations that captured latent
semantic factors [31], while probabilistic topic models like LDA yielded similar distributional
embeddings [32].

2.1.2 Neural Word Embeddings: Word2Vec and GloVe

Neural language models learn distributed word representations by embedding words into
continuous vector spaces [33]. Word2Vec’s Skip-Gram and CBOW architectures [34, 35]
efficiently train on large corpora, producing 100-300 dimensional vectors that encode rich
semantic relationships through simple vector arithmetic:

vking ↗ vman + vwoman ↘ vqueen, vFrance ↗ vParis + vItaly ↘ vRome.

GloVe [36] combines global matrix factorization with local context windows, learning vectors
where co-occurrence statistics are preserved in the embedding space. Both methods revolu-
tionized NLP by enabling pre-trained embeddings that substantially improve downstream
tasks such as named entity recognition and sentiment classification [37, 38].

However, static embeddings assign one vector per word type, ignoring polysemy (e.g., bank
as financial institution vs. riverbank). Contextual models address this limitation.

1Adapted from https://en.wikipedia.org/wiki/Vector_space_model
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2.1. TEXT EMBEDDINGS AND VECTOR SPACES

France

Paris

Germany

Berlin

capital-of

Figure 2.2: Country-capital offsets share the same direction in a 2-D projection of word
embeddings.

2.1.3 Contextual Embeddings: Transformer-Based Language Models

Static vectors assign one embedding to each type of word, ignoring context. Modern models
instead learn a contextual function.

f (word, context) : Rd,

so that the vector for bank in a financial sentence differs substantially from bank beside a river.
The first widely adopted contextual representations were obtained from a deep bidirectional
language model, known as ELMo, which encoded tokens with stacked LSTMs and improved
six benchmark tasks simply by concatenation to existing features [39]. Transformer encoders
made this process faster and more expressive: the architecture’s self-attention maps each token
to all others without recurrence, capturing long-range dependencies in a single layer [40].
A bidirectionally masked Transformer yields BERT, whose top-layer token vectors pushed
state-of-the-art performance in question answering, entailment, and nine other GLUE tasks
[41]. Autoregressive pretraining with a unidirectional transformer produces the GPT family;
even without supervised fine-tuning, these models transfer to diverse zero-shot settings [42].
Fine-tuning a pre-trained language model on downstream data -pioneered for classification in
ULMFiT - shows that only a few hundred labeled examples can suffice when strong contextual
embeddings are available [43]. Probing studies reveal that intermediate layers of such models
encode part-of-speech tags, syntactic trees, and semantic roles, explaining their effectiveness
across tasks [44, 45]. Training refinements such as larger corpora, dynamic masking, and
longer sequences further strengthen performance, as demonstrated by RoBERTa [46].

Replacing static word2vec/GloVe features with these context-sensitive vectors consistently
boosts accuracy in sequence labelling, question answering, sentiment analysis and more
[39, 41]. Because the same pre-trained model can be fine-tuned for virtually any NLP task,
contextual Transformer embeddings now serve as the default representation layer in modern
language technology.
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The bank approved the loan

The canoe reached the bank

bankfinance

bankriver

Figure 2.3: Contextual model assigns different vectors to the homograph bank depending on
its usage.

2.2 Distance Metrics and Prototype-Based Classification

Vector representations by themselves do not yield actionable insight-one must still decide
whether two texts are “close” or “far” in the embedding space. Section 2.2 therefore illustrates
(1) the distance and similarity functions that underpin most text-vector operations, (2) how
high-dimensional geometry affects their behaviour, and (3) how prototype-based classifiers
such as the Rocchio algorithm exploit these measures. We begin with a concise catalogue of
the most common metrics for text data.

2.2.1 Distance & Similarity Functions for Text

Vector representations require distance metrics to quantify similarity. The Minkowski (εp)
family generalizes common metrics:

dp(x, y) =
(

∑n
i=1 |xi ↗ yi|p

)1/p
, p≃1,

with p=1 (Manhattan), p=2 (Euclidean), and p⇐∞ (Chebyshev) as special cases [47]. Eu-
clidean distance measures straight-line separation and underlies k-means and nearest-centroid
classifiers [30].

In high dimensions these εp metrics suffer from distance concentration: the ratio between
nearest and farthest neighbours approaches unity, making rank-ordering unreliable [48, 49].
A related phenomenon, hubness, causes certain points to appear in many nearest-neighbour
lists, distorting similarity search [50].

For sparse tf-idf vectors and dense contextual embeddings, comparing angles instead of
lengths provides a remedy. Cosine similarity

cos(θ) =
x·y

⇒x⇒2⇒y⇒2

normalizes each vector onto the unit sphere, capturing direction rather than magnitude
and remaining discriminative under high dimensionality [51, 29]. Cosine is therefore the
de-facto choice in vector-space retrieval and serves as our primary similarity measure for
archetype-based classification. Converting to a distance is straightforward: dcos = 1 ↗ cos(θ)
obeys the metric axioms for non-negative vectors [49].
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2.2. DISTANCE METRICS AND PROTOTYPE-BASED CLASSIFICATION

Alternative metrics include Jaccard distance dJ(A, B) = 1 ↗ |A ⇑ B|/|A ⇓ B| for binary
term-presence vectors [52], and Mahalanobis distance that adapts Euclidean distance with a
learned covariance matrix to whiten correlations [53].

Figure 2.4 illustrates distance concentration for Gaussian samples: the relative contrast
(Dmax ↗ Dmin)/Dmin converges rapidly towards 0 as dimension grows.
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Figure 2.4: Distance concentration for synthetic Gaussian data: the relative spread between
farthest and nearest neighbours shrinks as dimensionality increases.

Standard practice for text embeddings is to ε2-normalize every vector and compute cosine
similarity, which mitigates distance concentration while preserving relative neighborhood
structure [54]. This motivates the prototype-based classifiers examined next.

2.2.2 Prototype-Based Classification: Rocchio & Nearest-Centroid

Prototype methods summarise each class by one (or a few) exemplar vectors, reducing
classification to a single distance computation [30]. Their simplicity is attractive for high-
dimensional text data, where storing or searching all training points is expensive.

Nearest-centroid rule. Given labelled documents {(xi, yi)}N
i=1 represented in a vector space,

compute the class centroid

µc =
1

|Dc| ∑
i : yi=c

xi, (2.2)
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2.3. SUPERVISED TRANSFORMER MODELS FOR TEXT CLASSIFICATION

for each class c. A test vector x is then assigned

ŷ = arg min
c

d
(
x, µc

)
, (2.3)

where d is usually cosine distance for tf-idf inputs [51]. Equation (2.3) yields linear decision
boundaries orthogonal to the line joining competing centroids (see Figure 2.5) [49].

Rocchio classifier. The Rocchio algorithm originated as a relevance-feedback mechanism in
the SMART system [55]. For binary text categorisation it constructs a prototype

p = α
1

|D+| ∑
d↔D+

d ↗ ε
1

|D↗| ∑
d↔D↗

d, (2.4)

where D+ and D↗ are the sets of positive and negative training documents, and α, ε > 0
weight their influence. A test document is relevant if the cosine between p and x exceeds a
threshold [55]. Empirical studies show Rocchio rivals k-NN on news filtering while requiring
orders-of-magnitude fewer comparisons [56, 30].

µsports

µfinance

x

Figure 2.5: Nearest-centroid classification with cosine distance. The test document x falls on
the sports side of the perpendicular bisector and is labelled accordingly.

Prototype classifiers are fast, memory-light and easily interpreted as topic "exemplars” [30].
They cope well with high-dimensional sparsity because centroids average away noise, and
distance is computed only once per class. Yet they assume each class forms a roughly convex
cluster; overlapping or multimodal categories degrade accuracy [30]. Hubness may still arise,
but less severely because hubs are averaged into centroids [50].

While prototype methods rely on fixed distance functions, modern NLP systems usually
learn a task-specific decision boundary by fine-tuning large Transformer encoders; this
paradigm is the focus of the next section.

2.3 Supervised Transformer Models for Text Classification

The successes of contextual embeddings (2.1.3) derive from pre-training very deep Transformer
encoders on unlabelled text and then adapting the same parameters to a supervised task with

11



2.3. SUPERVISED TRANSFORMER MODELS FOR TEXT CLASSIFICATION
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Figure 2.6: Schematic of a single Transformer encoder block.

only a small task-specific head. This section reviews the Transformer block (2.3.1), surveys
the encoder variants later used in our experiments (2.3.2), and summarises the fine-tuning
techniques that turn a general language model into a high-accuracy classifier (2.3.3).

2.3.1 Transformer Architecture and Pre-training Paradigm

The Transformer [40] replaces recurrence with self-attention, enabling parallel processing of
sequences. Each layer computes scaled dot-product attention:

Attention(Q, K, V) = softmax
(QK⇔
↖

dk

)
V,

where queries Q, keys K, and values V are linear projections of the input. Multi-head attention
runs h such operations in parallel with different learned projections, concatenating outputs
before a position-wise feed-forward network. Residual connections and layer normalization
stabilize training of deep stacks (12-24 layers).

The original architecture (Figure 2.6) comprises an encoder stack (bidirectional context)
and decoder stack (autoregressive generation). For text classification, we use encoder-only

Adapted from Vaswani et al. [40]; TikZ template by Negrinho (https://github.com/negrinho/sane_tikz).
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2.3. SUPERVISED TRANSFORMER MODELS FOR TEXT CLASSIFICATION

models: the encoder produces contextual token representations, and the final-layer [CLS]
token embedding serves as the document representation [41].

Pre-training paradigms. Masked Language Modeling (MLM) randomly masks 15% of
input tokens and trains the model to predict them using bidirectional context, yielding
encoders like BERT [41]. Causal Language Modeling (CLM) predicts the next token autore-
gressively, producing decoders like GPT [42]. Replaced-token detection (ELECTRA) trains a
discriminator to identify corrupted tokens, providing more efficient learning [57].

After pre-training on large unlabeled corpora, these models are fine-tuned on labeled tasks
by adding a classification head on [CLS] and updating all parameters with a low learning rate.
This transfer learning paradigm has become standard for NLP [41, 46]. The next subsection
details specific encoder variants used in our experiments.

2.3.2 Encoder Variants for Classification: BERT, RoBERTa, ELECTRA, DeBERTa

Transformer encoders differ mainly in their pre-training objective and the amount or quality
of data they see. Table 4.4 highlights four variants we employ later; the remainder of this
subsection summarises their design choices and empirical impact.

BERT. The baseline encoder uses masked-language modelling (MLM) and next-sentence
prediction (NSP) on BookCorpus & English Wikipedia [41]. A single [CLS] token is prepended;
its final hidden state becomes a task vector that a soft-max layer maps to class labels. Fine-
tuning BERT yields large gains on the GLUE benchmark [58].

RoBERTa. Y. Liu, Ott, Goyal, et al. [46] show that BERT was under-trained. By removing NSP,
switching to dynamic masking, training for more steps on a 160 GB corpus and using larger
mini-batches, RoBERTa exceeds BERT by +3-5 GLUE points while keeping the architecture
unchanged [46].

ELECTRA. MLM wastes 85 contribute to the loss. ELECTRA replaces MLM with replaced-
token detection: a small generator corrupts the input and a discriminator predicts whether each
token is original or fake [57]. This yields BERT-level accuracy with ↘25 % of the compute
[57].

DeBERTa. DeBERTa disentangles content and position vectors in attention, letting the model
learn relative positions explicitly, and it introduces an enhanced mask decoder [59]. With
the same data budget, DeBERTa beats RoBERTa on GLUE and pushes a single model above
human performance on SuperGLUE [59].

Taken together, these variants illustrate a trend: architectural tweaks are minor, while
changes in the training signal and data regime account for most performance gains. The next
subsection (2.3.3) shows how task-specific fine-tuning strategies unlock this potential.
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Table 2.1: Key differences among encoder variants. All use the same 12-layer base architecture.

Model Pre-training objective Extra data Reported GLUE ↑

BERTbase MLM + NSP 16 GB 79.6 [41]
RoBERTabase MLM (no NSP, dynamic) 160 GB 83.0 [46]
ELECTRAbase Replaced-token detection 33 GB 82.4 [57]
DeBERTabase Disentangled MLM 78 GB 86.8 [59]

2.3.3 Fine-Tuning Strategies and Best Practices

Although a Transformer encoder already encodes extensive linguistic knowledge, naïvely
updating all weights can lead to catastrophic forgetting or over-fitting on small data sets.
Researchers have therefore devised optimisation heuristics that preserve pre-training benefits
while adapting to new labels.

Layer-wise learning-rate decay. Lower layers capture generic lexical and syntactic infor-
mation, whereas upper layers specialise for downstream tasks. Applying a multiplicative
decay ϱε = ϱ0 · γL↗ε (with γ ↘ 0.95) keeps early layers close to their pre-trained state [60].
Empirically this yields +1-2 GLUE points over a flat learning rate.

Discriminative learning rates and gradual unfreezing. Howard and Ruder [43] first showed-
in ULMFiT for LSTMs-that using different ϱ per layer, combined with gradual unfreezing (start
fine-tuning from the top layer and unfreeze one lower layer each epoch), stabilises training
on data sets with as few as 1 000 examples. The same schedule transfers well to BERT and
RoBERTa [60].

Regularisation techniques. Mixout stochastically replaces a fraction of weight vectors
with their pre-trained values during back-propagation and performs on-par with dropout
while preserving knowledge [61]. Other effective choices are weight decay (0.01) and label
smoothing (0.1) [62].

Task-adaptive pre-training. If unlabelled in-domain text is available, an extra MLM pass on
that corpus-often called continued or TAPT-bridges domain shift and can lift F1 by 3-5 points,
especially for specialised jargon [60].

Typical hyper-parameters. Table 2.2 lists values that work well across sentiment, topic, NER,
and entailment tasks; they serve as defaults in our experiments.

A small set of tuning rules-layer-wise decay, discriminative rates, robust regularisation,
and, when possible, task-adaptive pre-training- is sufficient to turn a generic encoder into a
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Table 2.2: Recommended fine-tuning settings for BERT-base-like models.

Parameter Value

Batch size 32 (or 16 if memory-bound)
Max sequence length 128 (512 for long documents)
Base learning rate ϱ0 2→10↗5

LR scheduler linear warm-up 10 % → decay to 0
Layer-wise LR decay γ 0.95
Weight decay 0.01
Dropout / mixout 0.1 / 0.9 keep rate
Epochs 3 (early-stop on dev loss)

state-of-the-art text classifier with only a few thousand labelled examples [60, 62]. We adopt
these defaults in all downstream experiments that follow.

2.4 Contrastive Representation Learning

Cross-entropy fine-tuning (2.3.3) separates classes in probability space yet leaves the geometry
of the embedding space undefined. Contrastive objectives remedy this by simultaneously
optimising alignment of positive pairs and uniformity of the overall distribution, producing
vectors where cosine distance tracks semantic similarity more faithfully [63]. Such geometry
directly benefits the prototype and nearest-neighbour methods of 2.2.2.

2.4.1 Triplet loss

The classical formulation is the triplet hinge loss [64, 65]

Ltriplet = max
{

0, d(a, p)↗ d(a, n) + m
}

,

where an anchor a must be at least a margin m > 0 closer to a positive p than to a negative
n. Although conceptually simple, effective training depends on carefully sampling hard
negatives; most random triplets are already satisfied and yield no gradient, while extremely
hard negatives slow convergence or destabilise optimisation [66, 67].

2.4.2 InfoNCE / NT-Xent

Modern practice therefore adopts the normalised temperature-scaled cross-entropy (NT-Xent)
loss [68, 69]:

Li = ↗ log
exp

(
sim(zi, zi+)/τ

)

∑2B
k=1 1[k ↙=i] exp

(
sim(zi, zk)/τ

) ,

where each anchor zi is paired with a single positive zi+ and contrasted against all 2B ↗ 2
in-batch negatives at temperature τ. Compared with the triplet loss, NT-Xent offers four
advantages:
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1. Implicit hard negatives: large batches provide a natural hardness spectrum without an
explicit mining phase [68].

2. Smooth gradients: the softmax denominator gives every negative a non-zero contribution,
avoiding the dead-zone problem of the hinge [69].

3. No margin tuning: only a single temperature hyper-parameter is required, while triplet
performance is sensitive to the margin m [65].

4. Theoretical guarantees: NT-Xent provably optimises upper and lower bounds on alignment
and uniformity [63].

A supervised extension, Supervised Contrastive Learning, treats all samples sharing the
anchor’s label as additional positives, further tightening class clusters [13].
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Figure 2.7: Conceptual effect of contrastive training on a two-dimensional embedding: posi-
tives collapse, negatives repel, enlarging margins.

The geometry in Figure 2.7 implies that one may retain multiple local prototypes instead
of averaging them into a single centroid, yielding non-spherical decision regions in high
dimension without training an additional classifier. Thus, contrastive-tuned embeddings
provide stronger, margin-maximising inputs for downstream prototype and k-NN decision
rules.

2.5 Weakly-Supervised Learning and Pseudo-Labeling

Contrastive learning reshapes an embedding space without additional human labels. Yet
many NLP tasks still require some form of supervision to map vectors to semantic categories.
When expert annotation is scarce, practitioners turn to weak supervision: programmatic
heuristics, distant alignment with knowledge bases, or large language-model prompts that
emit noisy-but inexpensive-labels [5]. A related strategy, pseudo-labeling, iteratively trains a
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model on a small seed set, predicts high-confidence labels for the unlabeled pool, and adds
these predictions back into the training data [12]. Despite their noise, such label surrogates
regularise deep encoders and unlock performance that would otherwise require tens of
thousands of gold annotations [70]. This section formalises these ideas, reviews canonical
workflows-including label propagation [71] and the topic-guided LOTClass [72] that we
later employ as baselines-and critiques their advantages and pitfalls in low-resource text
classification.

2.5.1 Definitions and Sources of Weak Labels

Weak supervision generates noisy but automatically scalable labels in place of costly expert
annotation. Common sources include heuristic patterns, external knowledge bases (distant
supervision), and ensemble labeling functions [5, 73]. Pseudo-labeling trains an initial model
on a small seed set, predicts labels for unlabeled instances, keeps only high-confidence
predictions, and retrains on the expanded data [12]. This bootstrapping loop has been scaled
to billions of examples in the Noisy Student paradigm [70].

Figure 2.8 illustrates the pipeline: raw documents flow through multiple weak labelers
whose outputs are aggregated before training a classifier. Label propagation on a k-NN graph
spreads seed labels to neighbouring embeddings [71], while LOTClass derives pseudo labels
from class-specific keywords [72]. These techniques serve as baselines and initialization for
our proposed framework.

2.5.2 Pseudo-Labeling Workflows and Advanced Variants

Let DL = {(xi, yi)} be a small seed set of gold labels and DU = {uj} a large pool of unlabeled
examples. Pseudo-labeling trains an initial model M(0) on DL, predicts labels ŷ(t)j for DU ,
selects high-confidence examples

S (t) =
{
(uj, ŷ(t)j )

∣∣ max
k

p(t)(y=k | uj) ≃ τ
}

,

adds S (t) to the training set, and retrains to obtain M(t+1) [12]. Iteration stops when no
new samples exceed the confidence threshold τ or a maximum epoch count is reached. The
loop is robust in practice: Xie, Luong, Hovy, and Le [70] scaled it to 300M images, while
Arazo, Ortego, Albert, et al. [74] showed that temperature sharpening and Gaussian-mixture
uncertainty estimates reduce confirmation bias.

Label propagation constructs a k-nearest-neighbour graph whose edge weights encode
similarity. The harmonic solution

ε∝ = arg min
ε

∑
(i,j)↔E

wij (εi ↗ εj)
2 (2.5)

spreads seed labels to spectral clusters [71]. LOTClass maps class keywords into embedding
space and uses anchor words with Gumbel-softmax self-training to produce competitive
pseudo labels [72].
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Figure 2.8: Weak supervision and pseudo-labeling workflow. Documents pass through an
ensemble of weak labelers; aggregated labels form a pseudo-labeled set that trains
a classifier whose high-confidence predictions iteratively enlarge the training data.

Take-aways. Weak supervision eliminates most annotation cost but introduces noise that
can propagate confirmation bias and class imbalance [5, 74]. Confidence thresholds and
temperature sharpening mitigate these risks. These methods—confidence-based self-training,
label propagation, and LOTClass—serve as baselines and warm-start initializers for our
label-efficient framework.

2.6 Zero- / Few-Shot Prompting with Large Language Models

Large language models (LLMs) are essentially deep Transformer decoder stacks, scaled to
hundreds of billions or even trillions of parameters-orders of magnitude beyond encoder-only
models such as BERT (110 M parameters) [40, 41]. GPT-3, with its 175 B parameters, first
demonstrated that a model of such scale could perform diverse tasks in a zero- or few-
shot manner using only natural-language prompts [10]. Its successor, GPT-4, is estimated
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to harness around 1.8 T parameters, exhibiting human-level performance on professional
benchmarks [75, 3]. The February 2025 preview of GPT-4.5 further advances capabilities
on text and multimodal tasks [76], while GPT-4o ("omni"), launched in late 2024, integrates
text, audio, vision, and video inputs and outputs in real time [77]. Anthropic’s Claude-3
family, released in early 2024, also targets the trillion-parameter regime and achieves state-of-
the-art conversational and reasoning performance [4]. At this scale, LLMs internalize vast
world knowledge and implicit reasoning heuristics, enabling them to act as noisy oracles-
solving classification, QA, and generation tasks without any gradient-based fine-tuning, solely
through prompt design [78].
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Figure 2.9: Trajectory of parameter scaling from early Transformer encoders to modern LLMs

2.6.1 Prompting Fundamentals

In large language models, a prompt is a natural-language instruction that specifies a task,
often accompanied by contextual information or examples. At its simplest, a prompt might
read:

"Classify the sentiment of the following review: ’[REVIEW_TEXT]’."

More elaborate prompts introduce a role, delimiters, and explicit formatting:

"You are a helpful assistant. Identify the sentiment (Positive or Negative)
of the review below:
–-
’[REVIEW_TEXT]’
Reply with one word only."
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Designing effective prompts-often called prompt engineering-requires careful choice of
instruction wording, delimiters, and (for few-shot setups) selection of exemplars. Small
variations in phrasing or format can substantially alter model behaviour, as demonstrated in
systematic surveys of prompt techniques [78, 10].

2.6.2 Zero-Shot Prompting

In the zero-shot setting, a task is specified solely through natural-language instructions,
with no demonstration examples provided in the prompt. A typical zero-shot classification
template might be:

"Determine whether the following product review expresses a Positive or Negative

sentiment:

–-

’[REVIEW_TEXT]’
Reply with "Positive" or "Negative" only."

State-of-the-art LLMs are pretrained on massive web-scale corpora, enabling them to map
such instructions to accurate predictions without gradient updates [10]. Instruction tuning
further aligns models to follow natural directives, narrowing the zero-shot performance gap
with fine-tuned systems [79]. For complex reasoning tasks, appending the phrase "Let’s
think step-by-step” elicits intermediate chain-of-thought outputs that improve accuracy
on arithmetic and commonsense benchmarks [80]. To reduce variability, multiple reasoning
paths can be sampled and aggregated via self-consistency, which ensembles answers across
diverse chains [81].

Throughout this thesis, we employ zero-shot prompting both as a baseline classification
method and as the means to distill semantic archetypes-concise, instruction-derived protoypes
of each class-which serve as the starting point for our annotation pipeline in Chapter 4.

2.6.3 Few-Shot In-Context Learning

Few-shot in-context learning (ICL) augments the prompt with a small number of exemplar
input-output pairs, enabling the LLM to induce the task mapping directly from the context.
For classification, a typical prompt looks like:

"Classify the sentiment of these movie reviews.

Review: ’A heartwarming tale of friendship and hope.’ → Positive

Review: ’Predictable plot and wooden acting.’ → Negative

Review: ’[NEW_REVIEW]’ →"

Providing k such examples (often k=4-8) yields accuracy gains of 10-30 points over zero-
shot on GLUE-style benchmarks [82]. LM-BFF further improves few-shot performance by
automatically selecting and reformulating exemplars and tuning label verbalizers [82].

Despite these strengths, ICL remains sensitive to prompt variation: reordering examples
or changing punctuation can shift accuracy by over 15 points [83]. Token budget constraints
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on hosted APIs force careful exemplar selection or compression, especially for long contexts.
Hallucination and bias also persist: the model may produce fluent but incorrect labels or prop-
agate stereotypes encoded in the exemplars [84, 74]. Mitigations include uncertainty-based
filtering of low-confidence predictions [74] and self-consistency decoding that aggregates
outputs over multiple exemplar orders [81].

In this thesis, few-shot ICL is used solely as a baseline classifier. We supply a few exam-
ples per class in the prompt and compare its performance to our weakly-supervised and
contrastively-tuned methods. While ICL can approach fully supervised accuracy with mini-
mal labeling effort, its instability and cost per query underscore the need for more robust,
label-efficient pipelines.

2.7 Reinforcement-Learning Feedback for NLP Models

Classical supervised fine-tuning adjusts a language model to match static labels, but it cannot
incorporate interactive preferences that emerge after deployment. Reinforcement learning (RL)
provides a complementary framework: an agent (the model) selects actions at in a state st
and receives delayed rewards rt, iteratively improving its policy to maximise expected return
[85]. Policy-gradient methods-starting with REINFORCE [86]-directly optimise the model’s
parameters by ascending the gradient of this return. Modern variants such as Generalised
Advantage Estimation (GAE) [87] and Proximal Policy Optimisation (PPO) [14] stabilise
training and have become the engine of reinforcement learning from human feedback (RLHF)
[79]. RLHF fine-tunes GPT-4-class models to better align with user intent, while recent
work extends the paradigm with AI-generated feedback (RLAIF) and group-relative policy
optimisation (GRPO) to reduce human annotation cost; DeepSeek-R1 demonstrates that such
automated RL can yield state-of-the-art reasoning ability at a fraction of the supervised data
budget [23]. Later we adopt the same principle at a smaller scale: classifier-derived rewards
are fed back to an LLM to refine our semantic archetypes distillation, closing the loop between
static prompts and dynamic performance.

2.7.1 Reinforcement-Learning Fundamentals

Reinforcement learning formalises the interaction between an agent and its environment as
a Markov decision process (MDP). At each time-step t, the agent observes a state st ↔ S ,
samples an action at ↑ πθ(· | st) from its stochastic policy πθ with parameters θ, receives a
scalar reward rt ↔ R, and transitions to the next state st+1. The objective is to maximise the
expected return,

J(θ) = Eπθ

[
Gt

]
, Gt =

∞

∑
k=0

γk rt+k,

where γ ↔ [0, 1) is a discount factor [85].
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Policy-gradient theorem. The seminal REINFORCE algorithm derives an unbiased gradient
estimator for J(θ):

′θ J(θ) = Eπθ

[
′θ log πθ(at | st) Gt

]
,

allowing the agent to update its parameters via stochastic gradient ascent [86]. In practice,
subtracting a baseline b(st) that does not depend on the action reduces variance without
introducing bias, paving the way for actor-critic architectures.

Why RL matters for NLP. Language models can be cast as policies that generate token
actions conditioned on a textual state (the context). When rewards capture human preferences-
fluency, factuality, or task success-policy gradients permit direct optimisation of these ob-
jectives instead of maximising likelihood alone. The next subsection introduces generalised
advantage estimation and proximal policy optimisation, two algorithms that address the high
variance and instability of vanilla REINFORCE and have become standard for aligning large
language models with human or automated feedback.

2.7.2 Efficient Policy Optimisation: GAE and PPO

Vanilla REINFORCE (Equation (2.7.1)) suffers from high variance because every sampled
return Gt is used wholesale as the gradient weight. Actor-critic methods replace Gt with an
advantage estimate At =Gt ↗ Vφ(st) that subtracts a learned baseline Vφ, but the variance-bias
trade-off remains. Schulman, Moritz, Levine, et al. [87] address this with generalised advantage
estimation (GAE), a weighted exponentially decaying sum of k-step temporal-difference errors:

ÂGAE(γ,λ)
t =

∞

∑
l=0

(γλ)l(rt+l + γVφ(st+l+1)↗ Vφ(st+l)
)
,

where λ ↔ [0, 1] controls the bias-variance continuum. Setting λ = 0 recovers high-bias,
low-variance TD(0); λ⇐1 approaches REINFORCE.

Building on GAE, Schulman, Wolski, Dhariwal, et al. [14] introduced proximal policy
optimisation (PPO), which limits each policy update to a small, trustworthy region by clipping
the probability ratio rt(θ) = πθ(at|st)/πθold(at|st):

LPPO(θ) = Et

[
min

(
rt(θ) Ât, clip

(
rt(θ), 1 ↗ ε, 1 + ε

)
Ât

)]
↗ ε KL

[
πθold⇒πθ

]
,

where ε ↘ 0.1↗0.2 and the KL penalty ε guards against overly large steps. PPO achieves
state-of-the-art sample efficiency while remaining simple to implement, and has become the
de-facto optimisation method for reinforcement learning from human feedback (RLHF) [79]. Large
language models such as GPT-4 and Claude-3 are aligned via a reward model trained on
human preference pairs, then fine-tuned with PPO using KL divergence to the supervised
policy as a secondary safety constraint. Recent systems like DeepSeek-R1 further adapt PPO
with group-relative objectives to enhance reasoning quality [23].

In our pipeline, the same mechanism will drive a lightweight feedback loop: rewards
derived from classifier performance are fed back to the archetype-generating language model,
allowing it to refine class representations while staying within a controlled KL distance of the
initial prompt-based policy.
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2.7.3 RL with Human and Automated Feedback

Large language models generate sequences token-by-token, which makes them amenable to
policy optimisation with the algorithms above. The current standard pipeline-often dubbed
reinforcement learning from human feedback (RLHF)-proceeds in three stages [79]:

1. Supervised fine-tuning : start from a pretrained model and fit it to a small set of
instruction-response pairs, yielding a policy πθ0 .

2. Reward modelling : collect preference pairs (ygood, ybad) ranked by humans (or another
evaluator) and train a reward function Rψ such that Rψ(ygood)>Rψ(ybad).

3. Policy optimisation : use PPO with a KL-penalty to the reference policy to maximise
the expected reward Ey↑πθ

[
Rψ(y)

]
, producing an aligned πθϑ .

RLHF elevated GPT-3.5 and GPT-4 to state-of-the-art instruction following, but human
preference collection is costly. Two extensions reduce this burden. RLAIF (Reinforcement
Learning from AI Feedback) replaces human annotators with a committee of trusted models
that critique and rank candidate outputs [88]. Group Relative Policy Optimisation (GRPO) goes
further: it trains several policies in parallel and rewards each for outperforming the group
median, encouraging competition and diversity [23]. DeepSeek-R1 employs GRPO with
5 B-parameter students and shows that purely automated feedback can improve reasoning
benchmarks by 7-10 F1 while maintaining factual consistency.
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3 Background and Related Work

Chapter 2 developed the theoretical toolkit for these thesis: vector spaces, prototype classifiers,
prompt-based supervision, and reinforcement-learning feedback. We now turn from theory
to the concrete project context: CreateData4AI (CD4AI), a research project at TU Munich that
aims to transform raw, unlabeled text into structured and annotated datasets with minimal
human effort.1 Guided only by a domain expert’s class list and a handful of seed keywords,
CD4AI automatically expands the vocabulary for each class, extracts and parses context
windows around those terms, clusters similar usage patterns, and distils every cluster into a
concise semantic archetype. The archetypes act as interpretable prototypes that downstream
components use for corpus annotation.

This chapter has three roles. (i) Section 3.1 outlines the complete CD4AI pipeline, in-
dicating where automation ends and expert input begins. (ii) Section 3.1 examines each
preprocessing component-keyword expansion, context extraction, pattern clustering, and
archetype synthesis-detailing the hyperparameters adopted in this thesis and highlighting the
reinforcement-learning refinement that constitutes our main contribution. (iii) Section 3.2 sit-
uates CD4AI within prior research on prototype-driven classification, weak supervision, and
LLM-based data creation, providing the further support for the methodology and experiments
that follow.

3.1 The CreateData4AI Pipeline

CreateData4AI (CD4AI) turns an unannotated corpus into training data through a four-
stage, bottom-up workflow that begins with a domain expert’s class list and a handful of
seed keywords. Each stage raises the abstraction level while preserving an option for expert
validation:

1. Iterative Keyword Expansion. Dense-embedding similarity grows each seed list to
↘ 50 domain-specific terms per class, over three iterations with a similarity threshold
of 0.7 [89].

2. Context Window Extraction. For every expanded keyword occurrence, a dependency
parser selects a window of three to ten tokens by traversing at most three dependency
hops, yielding linguistically coherent context windows.

3. Recursive Hierarchical Clustering. Context windows are embedded and clustered with
Ward linkage; an adaptive distance threshold and density check produce 10-30 context
window clusters per class.

1https://wwwmatthes.in.tum.de/pages/nqpi6qljq0x9/CreateData4AI-CD4AI
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3.1. THE CREATEDATA4AI PIPELINE

4. LLM-based Archetype Distillation. An instruction-prompted Llama-3 8B model con-
verts each cluster into a concise semantic archetype that includes a natural-language
description and two or three concrete examples.

A domain expert may inspect or edit the outputs of any stage-approving newly proposed
keywords, discarding irrelevant context windows, merging or splitting clusters, or rewriting
archetype phrasings-but the thesis assumes the fully automatic settings above to ensure
comparability of experimental results. The distilled archetypes form interpretable prototypes
that the next chapter’s methodology will leverage for large-scale annotation and classifier
training.

Seed Keywords
(Domain Expert)

Iterative Keyword
Expansion

Context Window
Extraction

Recursive Hierarchical
Clustering

LLM Archetype
Distillation

Automatic
Annotation

RL-Based Archetype
Refinement

Validation Reward

Approve / Edit
Keywords

Approve / Edit
Context Windows

Approve / Edit
Archetypes

Scope of this Thesis

Automatic

Expert Action

RL Feedback

Figure 3.1: Processing Pipeline in CreateData4AI

3.1.1 Project Scope and Inputs

CD4AI addresses domains where large quantities of unlabelled text exist but expert-labelled
data are scarce. The pipeline begins with two artefacts provided by a domain specialist:

• Class list. A fixed set of target categories such as Politics, Economy, or Sports.
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• Seed keywords. Three to five representative terms for each class-for Politics, for example,
election, campaign, ballot.

From these inputs the system expands each seed list, extracts context windows around every
expanded term, clusters similar windows, and finally distils each cluster into a concise semantic
archetype. A dashboard lets the expert approve or refine intermediate results at every stage,
but for the experiments reported in this thesis we evaluate the fully automated path to ensure
reproducibility and isolate the impact of the proposed reinforcement-learning refinement
introduced later. The next subsections detail each component and the Hyperparameters
adopted in this study.

3.1.2 Iterative Keyword Expansion

Purpose The three-to-five seed terms provided for each class are precise yet incomplete.
Expanding them ensures that later stages capture the full lexical variety of the domain while
remaining semantically focused.

Algorithm The corpus is split into five equal chunks. On each chunk the procedure ap-
plies two complementary similarity measures2 : extract_keywords_max picks candidates
maximally similar to any seed keyword, whereas extract_keywords compares each can-
didate to the mean embedding of the seed set. Both rely on cosine similarity in the
jinaai/jina-embeddings-v3 space. After scoring, the 99th percentile threshold retains the
strongest candidates; up to five new terms are appended to the seed list before the next
iteration. After five iterations each class accumulates roughly 30-50 keywords.

Parameter Value / Setting

Embedding model jinaai/jina-embeddings-v3

Iterations, niter 5
Percentile threshold 99
Max new seeds per iteration 5
Seed : document weight 1 : 0 (seed similarity only)
LOF / ISO contamination 0.5
ConceptNet similarity cut-off 0.80

Table 3.1: Key Hyperparameters for the keyword-expansion component.

Advanced filtering All extracted terms are embedded and clustered with Ward linkage.
Clusters lacking any original seed word are removed via a convex-hull test, and residual
outliers are pruned with Local Outlier Factor and Isolation Forest (contamination 0.5). A final
ConceptNet check eliminates terms whose similarity to the seed-plus-synonym set falls below
0.80.

2Implementation repository: https://github.com/sjmeis-cske/keyword_extractor.
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Output The component returns a mapping K = {c ∞⇐ Kc} from each class c to its expanded
vocabulary. Tuning the expander beyond these published settings lies outside the scope of
this thesis; any alternative choices would alter absolute scores but not the relative comparison
of annotation and classification methods in later chapters.

3.1.3 Context-Window Extraction

Purpose After vocabulary expansion, the pipeline must harvest local evidence showing how
each keyword functions in running text. These context windows must be short enough for
efficient clustering yet syntactically complete enough to preserve meaning.

Sentence processing Documents are lower-cased and split into sentences with the NLTK
tokeniser. Sentences containing at least one class keyword are parsed with the en_core_web_md
spaCy model; switching to another language merely requires the corresponding spaCy
pipeline, so the component remains language-agnostic.

Anchors, links, and hops In a dependency tree each arc connects a dependent token to its
head. Following a head link moves up the tree, while following dependents moves down. We
call one such step a hop. Limiting traversal to three hops in either direction captures the
immediate syntactic neighbourhood without drifting into distant clauses, a practice widely
used in dependency-based extraction [90].

Multi-token keywords (our addition) Earlier versions of the CD4AI pipeline handled only
single-token anchors. We extend the algorithm to accept multi-token phrases (e.g. climate
policy). The first token (climate) serves as the anchor; dependency expansion almost always
includes the remaining tokens, so the full phrase appears in the final window.

Window growth Starting from the anchor token the algorithm

1. follows head links up to three hops, expanding window boundaries,

2. then follows dependent links up to three hops.

The provisional span is re-centred so the anchor is at most ten tokens from either edge;
windows shorter than three words are discarded.

Sentence: “After months of debate, the climate policy was finally approved by parliament.”
Anchor: climate
Upward hops: climate⇐policy⇐approved

Downward hops: none
Final window: “the climate policy was finally approved”
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Filtering and limits After extraction, HTML tags, punctuation, and extra spaces are removed;
duplicate windows are eliminated. Extraction stops once 50 000 windows have been collected
for a class. Batching (2 000 sentences) and multi-processing (CPU cores - 2) sustain throughput
on million-document corpora.

Parameter Value / Setting

spaCy model en_core_web_md (swappable)
Max upward hops 3
Max downward hops 3
Max window radius 10 tokens
Min window length 3 words
Batch size auto (CPU cores - 2)
Chunk size 2 000 sentences
Max windows per class 50 000

Table 3.2: Key Hyperparameters for context-window extraction.

Output For each class the extractor yields a set of syntactically coherent, keyword-centred
windows that feed the clustering stage. Different parsers or hop limits would alter abso-
lute counts, but every method evaluated later operates on the same extracted sample, so
comparative results remain valid.

3.1.4 Recursive Hierarchical Clustering

Purpose The thousands of context windows extracted per class must be grouped into coher-
ent usage patterns before an LLM can distil them into archetypes. Simple “flat” clustering
either over-merges dense zones or fragments sparse ones. We therefore adopt a recursive
density-based hierarchical approach that refines clusters until each region of embedding space
is both compact and semantically homogeneous.

Algorithm outline

1. Embedding. All windows are encoded with jinaai/jina-embeddings-v3. Vectors
are not L2-normalised, because Ward linkage assumes Euclidean distances on raw
coordinates.

2. Top-level tree. Ward’s minimum-variance linkage [21] builds a dendrogram in O(n2 log n)
time. The tree is cut at an initial threshold τ0 = distance_threshold_factor → n, producing
broad clusters.

3. Density test. For each cluster the algorithm counts pairwise Euclidean distances below
ε and computes

density =
#{ d < ε }

(|C|2 )
.
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If the density < θ (θ = 0.1) the cluster is deemed sparse.

4. Recursive split. Sparse clusters are reclustered with a threshold τ ∈ τ/1.1; recursion
stops when density ≃ θ or when the cluster is a singleton.

5. Representative window. For every final cluster the arithmetic centroid is computed
and the member with the smallest cosine distance to that centroid is chosen as the centre
text; using a real window keeps examples human-interpretable.

Example Suppose there exists a dataset with a hypothetical Climate class which yields 12 000
windows. With τ0 = 1.0 → 12 000 the first cut produces eight clusters. Two have density < 0.1;
each is reclustered with τ = τ0/1.1, giving three denser sub-clusters apiece. The recursion
terminates at depth 3, resulting in 14 clusters whose sizes range from 8 to 73 windows. The
centre window for one cluster could be “reduce carbon emissions in manufacturing”, which
summarises the cluster’s focus on industrial decarbonisation.

Parameter Value / Setting

Embedding model jinaai/jina-embeddings-v3

Linkage method Ward (variance minimisation)
Distance threshold factor τ0 1.0
Density radius ε 0.5 (Euclidean)
Density threshold θ 0.1
Recursive division factor 1.1
Representative metric cosine distance to centroid
Max recursion depth unconstrained (empirically ∋ 5)

Table 3.3: Key Hyperparameters for recursive hierarchical clustering.

Output The module returns a list of clusters, each stored with its centre text, size, density,
recursion level, and member indices. Typical clusters contain 5 - 50 windows, providing a
balanced granularity for archetype synthesis in the following stage. Because the method
relies only on the embedding model and Euclidean distances, it remains language-agnostic:
substituting a multilingual encoder seamlessly transfers the procedure to non-English corpora.

Computational Note Clustering 20 000 windows requires roughly two seconds per thousand
windows on an 8-core CPU (distance matrix + linkage), using about 1 GiB RAM per 10 000
windows. Recursion increases cost modestly, because only sparse sub-clusters are reclustered.

3.1.5 LLM-Based Archetype Distillation

What is a Semantic Archetype? Given a cluster of context windows that all instantiate
the same latent theme, an archetype is a compact textual description-typically one concise
sentence-plus two or three illustrative examples that capture the cluster’s semantic core.
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Archetypes compress hundreds of windows into a few human-readable “prototypes”, en-
abling downstream classifiers to reason over a handful of abstractions instead of raw text.

Why an LLM? Large language models internalise vast linguistic knowledge and can gen-
eralise beyond the literal wording of the input. Prompting an LLM to “explain” a cluster
therefore yields descriptions that are both faithful to the evidence and stylistically coherent, a
capability demonstrated for tasks such as concept induction and rule extraction [10].

Prompt design and batching For each class the distiller feeds the model a system prompt
that

• casts the LLM as a domain expert asked to write one archetype per cluster,

• instructs it to output strict JSON with keys cluster_number, rule, and examples,

• forbids meta-phrases such as “this cluster describes”.

Clusters are appended as "Cluster k: [window1, ..., window20]". Because Llama-3 8B has a 8
k-token context window, clusters are grouped so that each batch plus prompt fits within a
configurable token_limit (default 1500). If a single cluster exceeds the limit, only its first 20
windows are sent.

LLM Generation Generation uses the HuggingFace text-generation pipeline with de-
terministic decoding (do_sample = False) and a repetition penalty of 1.2. The maximum
number of new tokens is set dynamically:

max_new = △len(input)→ max_new_tokens_factor▽.

With the default factor 1.0, output length scales linearly with input size but never exceeds
the model limit.

Robust JSON Extraction LLM outputs often contain extra quotation marks, missing commas,
or trailing commas. A post-processor locates every “{ ... }” span, applies regular-expression
fixes, and validates that each object has the required three keys. Malformed clusters are
logged and marked as “missing” in the statistics.

Representative Metadata For every cluster the distiller stores:

• archetype_text - the generated rule

• examples - up to three model-generated sentences

• source_texts - all original windows in the cluster

• cluster_size, density, recursion level, and batch id.
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Parameter Value / Setting

LLM model meta-llama/Meta-Llama-3-8B-Instruct

Token limit per batch 1500
max_new_tokens_factor 1.0
Repetition penalty 1.2
Sampling disabled (do_sample = False)
JSON parser tolerance fixes quotes, commas, comments

Table 3.4: Key Hyperparameters for archetype distillation

Example Output

{ "cluster_number": 7, "rule": "Factories adopting clean energy technologies ", "examples": [ "Solar
panels now power the assembly line.", "The plant switched from coal to biomass fuel." ]}

Language Model Agnosticism Although Llama-3 is used here, any instruction-tuned LLM
can replace it. The only requirements are JSON compliance and enough context length to
handle batched clusters, making the component compatible with multilingual or domain-
specific models.

Output The distiller returns an object containing all archetypes by class, overall statistics,
configuration, and processing time. No hard cap is imposed on the number of archetypes;
every cluster receives a prototype, ensuring complete coverage for the classifier stage.

The preceding subsections have surveyed every stage of the existing CD4AI preprocessing
pipeline-keyword expansion, context-window extraction, recursive clustering, and LLM-based
archetype generation. What remains is to label the corpus by assigning documents to the most
appropriate archetypes, a task that reduces to text classification and is addressed in Chapter 4.
Before turning to that methodology, however, the next section positions our approach within
the broader landscape of related work.

3.2 Related Work

This section positions CD4AI within three research lines: prototype-centric classification and
metric learning (3.2.1), weakly supervised labeling pipelines (3.2.2), and LLM-driven data
creation together with policy-feedback refinement (3.2.3). Across all three, we emphasise
methods that either reduce annotation effort or produce interpretable decision criteria,
aligning with the project goal of turning raw corpora into class-wise semantic archetypes and
labels with minimal manual supervision.

3.2.1 Prototype-Centric Classification and Metric Learning

Classical IR framed category decisions as proximity to class representatives: Rocchio con-
structs a prototype by pushing the class centroid toward relevant documents and away
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from non-relevant ones, while the nearest-centroid (nearest class mean) classifier assigns a
document to the closest class mean under a chosen metric. These methods motivate our use
of distance geometry and class representatives in vector space. [55]

Modern metric-learning generalises this idea. Prototypical Networks learn a metric space in
which each class is represented by the mean of its support embeddings; Matching/Induction
Networks and memory-based variants build stronger class-wise representations for few-shot
NLP. Recent analyses show that prototype-based networks can improve robustness and
interpretability for text classification. These results support our later choice to compare
documents to semantic archetypes via cosine distance rather than train a heavy parametric
classifier. [91]

3.2.2 Weak Supervision for Text Classification

Weak supervision replaces expensive gold labels with programmatic or distantly-aligned
signals, then aggregates them into probabilistic labels for model training. Data Programming
(Snorkel) formalised this approach with labeling functions and generative label models;
LOTClass showed that class keywords plus a masked-LM can bootstrap topic labels without
annotations; label propagation spreads seed labels over a similarity graph; distant supervision
aligns text with KB facts. Our pipeline likewise begins from seeds and derives weak signals,
but we differ in: (i) producing interpretable, cluster-grounded archetypes before annotation,
and (ii) later refining them with feedback from downstream performance. [5, 72, 71, 92]

3.2.3 LLM-Driven Data Creation and Policy-Feedback Refinement

Large language models enable zero/few-shot labeling via carefully designed prompts and
instruction tuning. Self-Instruct shows that models can synthesize task exemplars that then
supervise themselves; instruction-tuned models (e.g., InstructGPT) learn to follow natural
prompts and provide high-quality labels without gradient updates on the downstream task.
[10, 93, 79]

Quality can be further improved by preference-based reinforcement learning: RLHF op-
timises policies from human preferences (often with PPO). Recently, GRPO has emerged
as an efficient online RL variant for verifiable/binary rewards and powered DeepSeek-R1
reasoning models, with theory connecting GRPO to a KL-regularised contrastive loss. These
developments motivate our plan to feed a reward signal-derived from downstream classifier
quality-back into the archetype distillation stage to iteratively improve our semantic archetypes.
[14, 23]

32



4 Methodology

This chapter details the empirical framework used to validate the final classifier component
of the CD4AI pipeline. Our goal is to show that the proposed classifier, together with its
contrastive and weak-supervision refinements, achieves strong predictive performance and
favourable efficiency on several benchmark corpora, while remaining label-efficient. To that
end, we first outline the experimental setup (datasets, label splits, metrics, and compute
environment), introduce the baseline systems against which we compare, and then provide
methodological details for each of the four core approaches explored in this study.

4.1 Experimental Setup

This section specifies the conditions under which all experiments are run. We begin by
describing the datasets and their train/dev/test partitions, followed by the label regimes (full
supervision vs. 25-label-per-class low-resource setting), evaluation metrics, and hardware
configuration. Subsequent sections (4.2-4.3) elaborate the baseline models and our proposed
methods.

4.1.1 Datasets

All experiments use benchmark English corpora loaded from the datasets library on Hug-
ging Face.1 Focusing on English allows us to reuse a single set of language models during
archetype distillation and classification; extending the CD4AI pipeline to other languages
would merely require swapping tokenizer and embedding components. To keep GPU hours
within a realistic budget we down-sample the training partitions and limit test sets to 1,000
samples. This sample size provides sufficient statistical power for reliable performance
estimates while enabling extensive experimentation across multiple methods and datasets.
No heavy cleaning is applied: after Unicode normalisation we tokenise with the default Byte
Pair Encoding (BPE) or WordPiece tokenizer of the chosen encoder.

20 Newsgroups (SetFit/newsgroup_20) Usenet posts from 20 topical forums [16]. Long
documents and class imbalance make it a classic stress-test; it is still used by BERT baselines
and prototype studies alike.

1The exact dataset identifiers are given in Table 4.1. Relying on a common distribution channel simplifies
reproducibility and version pinning.
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Table 4.1: Corpus statistics and down-sampled splits used in this thesis. "Orig." denotes
the canonical split sizes provided by the Hugging Face versions; all numbers are
document counts. Test sets are limited to 1,000 samples for computational efficiency.

Dataset Classes Orig. Our splits

Train Test Train Dev Test

20 Newsgroups 20 11 314 7 532 4 000 1 000 1 000
AG News 4 120 000 7 600 12 000 3 000 1 000
BBC News 5 1 225 1 000 1 225 300 700
DBpedia-14 14 560 000 70 000 14 000 3 500 1 000
arXiv 10 100 000 – 15 000 3 000 1 000

AG News (ag_news) Four-class news headlines dataset introduced by [17]. Short texts
provide a complementary distribution to 20 NG.

BBC News (SetFit/bbc-news) RSS stories from five desks released for non-commercial
research [18]. Given the dataset’s limited size (1,225 training samples), we use the full training
set without downsampling and partition the original 1,000-sample test set into 300 dev and
700 test samples to ensure proper hyperparameter tuning while maximizing training data
utilization.

DBpedia-14 (dbpedia_14) Wikipedia abstracts mapped to 14 ontology classes [19]; a staple
in large-scale classification benchmarks.

arXiv Categories (effectiveML/ArXiv-10) A curated subset of arXiv abstracts covering
10 major scientific categories: astrophysics (astro-ph), condensed matter (cond-mat), com-
puter science (cs), electrical engineering and systems science (eess), high-energy physics
phenomenology (hep-ph), high-energy physics theory (hep-th), mathematics (math), physics
(physics), quantum physics (quant-ph), and statistics (stat). We use 15,000 abstracts for
training with balanced sampling across categories, and custom dev/test splits of 3,000/1,000
samples respectively. All methods use these 10 main category labels for consistent evaluation.

Together, the five datasets cover forums, short news, encyclopædic summaries, and scientific
abstracts, providing a diverse test-bed for the final classifier stage of CD4AI. Development
sets are created through stratified random sampling (seed 42) from the original training
data where not provided by the dataset, ensuring class balance for reliable hyperparameter
selection.

4.1.2 Label Regimes

In line with the project’s design, we adopt a gold-label regime of 25 documents per class as the
minimal supervision budget. This choice situates our evaluation squarely within the widely
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used few/low-label settings in recent text-classification research: semi-supervised methods
commonly study regimes between 10 and 50 labels per class (e.g., MixText reports results
at 10, 200, and 2 500 labels/cls across standard benchmarks [94], while UDA demonstrates
strong performance with as few as 20 labeled examples on text classification [95]). The full
train split from Table 4.1 is always available as unlabelled data for pipeline stages (keyword
expansion, clustering, archetype distillation) and for our classifier refinements.

4.1.3 Evaluation Metrics

We follow standard practice in text classification and report Accuracy and Macro-F1 as our
primary metrics, along with macro-averaged Precision and Recall for detailed analysis [51, 30,
56]. Let C = {1, . . . , K} be the class set and let (xi, yi) be the i-th test instance with gold label
yi ↔ C and prediction ŷi. For each class c ↔ C we use the one-vs-rest view to define true/false
counts: TPc, FPc, FNc, TNc.

Accuracy Overall fraction of correct predictions:

Acc =
1
N

N

∑
i=1

I[ŷi = yi] =
∑c↔C TPc

N
.

Per-class Precision, Recall, and F1 For class c:

Precc =
TPc

TPc + FPc
, Recc =

TPc

TPc + FNc
, F1c =

2 Precc Recc

Precc + Recc
.

Macro-averaged Precision and Recall We report macro-averaged versions for overall perfor-
mance assessment:

MacroPrec =
1
K ∑

c↔C
Precc, MacroRec =

1
K ∑

c↔C
Recc .

Macro-F1 (primary) Unweighted average over classes, which treats minority and majority
labels equally and is therefore robust to imbalance:

MacroF1 =
1
K ∑

c↔C
F1c .

Note on Micro-F1 In multiclass classification with single-label predictions (as in our setting),
Micro-F1 equals accuracy by definition, since:

Precµ = Recµ = Acc =
∑c TPc

N
.

Therefore, we omit Micro-F1 from our results tables to avoid redundancy with accuracy.

In addition to these predictive metrics, we will qualitatively comment on efficiency in terms of
throughput (samples/s) and end-to-end latency measured on our stated hardware, keeping
this discussion lightweight and comparable across methods.
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4.1.4 Hardware and Runtime Environment

All GPU-accelerated training and local inference are executed on a Runpod virtual machine;
LLM prompting baselines that rely on hosted models are executed via vendor Application
Programming Interfaces (APIs) (e.g., OpenAI or comparable providers), with wall-clock
latencies measured client-side. Unless stated otherwise, stochastic runs use a fixed random
seed of 42. We use standard Hugging Face abstractions for dataset loading and model
execution, and employ mixed-precision where supported. Throughput and latency figures
reported in Chapter 5 are measured on the hardware below (local models) or as end-to-end
request timings (API baselines).

Table 4.2: Compute environment for local training and inference.

Component Specification

GPU 1→NVIDIA RTX 5000 Ada
CPU 14 vCPU
System memory 62 GB RAM
Platform Runpod VM instance
Precision Mixed precision (automatic, where available)
Random seed 42 (training, data splits, and sampling)

4.2 Baselines

We compare the proposed classifier against prompting baselines that require no task-specific
training and, where applicable, against supervised encoder baselines defined later in this
chapter. This subsection specifies our zero- and few-shot LLM setups, model groups, and
prompt formats.

4.2.1 LLM Prompting (Zero- and Few-Shot)

We evaluate proprietary and open-weight LLMs across four capacity tiers to probe accuracy-
cost trade-offs. Each model is run in both zero-shot and few-shot settings with identical task
phrasing; the few-shot variant draws in-context demonstrations from the Gold-25/cls pool
(seed 42). Outputs undergo light post-processing (whitespace/quote trimming, case-folding,
strict label matching) to prevent formatting artifacts from affecting class decisions.

Zero-shot template.

Classify the following text into one of these categories: {labels}.

Text: {text}

Category:
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Few-shot template.

Classify the text into one of these categories: {labels}.

Here are some examples:

{examples}

Now classify this text:

Text: {text}

Category:

Table 4.3: LLM groups for zero-/few-shot prompting. "Identifier" lists the public model name
(HF for open weights; vendor alias for APIs).

Group Params Access Identifier

All-purpose (proprietary, high-performance) n/a API gpt-4o
n/a API claude-3.7-sonnet

All-purpose (open-weight, high-performance) 72B Open Qwen2.5-72B-Instruct
MoE 8→22B Open Mixtral-8x22B-Instruct-v0.1

Efficient mid-size (↑7-8B) 8B Open Llama-3.1-8B-Instruct
7B Open Mistral-7B-Instruct-v0.3

Small / Tiny (4B) ↑4B Open Phi-3.5-mini-instruct
1.5B Open Qwen2.5-1.5B-Instruct

For API models, prompts and conservative decoding settings are kept fixed across datasets; for
open-weight models we use standard Transformers inference with greedy or low-temperature
decoding held constant per dataset. We report the metrics from Section 4.1.3 on the test sets
specified in Table 4.1.

Implementation Note: Large Model Access. Due to hardware constraints, the two largest
open-weight models: Qwen2.5-72B-Instruct (72B parameters) and Mixtral-8x22B-Instruct-v0.1
(141B total, 39B active), cannot be run locally on our NVIDIA RTX 5000 Ada GPU (32GB
VRAM), as they require approximately 140GB and 280GB of VRAM respectively. To include
these state-of-the-art models in our evaluation, we access them through OpenRouter,2 a
unified API service providing hosted inference for open-weight models. This approach
maintains model authenticity (same weights as Hugging Face versions) while being more
cost-effective than provisioning multi-GPU infrastructure. This approach maintains model
authenticity (same weights as Hugging Face versions) while keeping computational costs
reasonable for academic research. All other open-weight models (Llama-3.1-8B, Mistral-7B,
Phi-3.5, Qwen2.5-1.5B) are run locally as originally specified.

2https://openrouter.ai
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4.2.2 Archetype-Supervised Encoders (No Gold)

We use three mainstream Transformer encoders-RoBERTa-base, ELECTRA-base, and DeBERTa-
v3-base-as strong, widely cited baselines that together cover the dominant encoder families
discussed in the Foundations chapter. RoBERTa removes Next Sentence Prediction (NSP)
and employs dynamic masking with larger pre-training corpora [46]; ELECTRA replaces
Masked Language Modeling (MLM) with a discriminator trained via replaced-token detection,
yielding sample-efficient pre-training [57]; DeBERTa introduces disentangled attention and
improved pre-training, with v3 offering further gains [59].

Given the sensitivity of these models to hyperparameters, particularly in low-resource
settings, we employ model-specific configurations that account for architectural differences.
These configurations follow established best practices from the literature, with DeBERTa-
v3 requiring lower learning rates (5e-6) than RoBERTa and ELECTRA due to its more
complex disentangled attention mechanism and sensitivity to optimization instability [59].
The reduced learning rate helps prevent gradient instability during fine-tuning, a well-
documented requirement for models with sophisticated attention mechanisms. Table 4.4
summarises the models and objectives; Table 4.5 lists the model-specific hyperparameters
used for each encoder architecture.

Table 4.4: Encoders used across all supervised baselines.

Encoder Pre-training objective (summary) Reference

RoBERTa-base MLM without NSP; dynamic masking; larger corpus [46]
ELECTRA-base Replaced-Token Detection (discriminator) [57]
DeBERTa-v3-base Disentangled attention; improved pre-training [59]

All models use AdamW optimisation with linear decay, dropout of 0.1, gradient clipping at
1.0, and early stopping on dev Macro-F1 with patience 2. The [CLS] pooled representation
feeds into a linear classifier head. Mixed precision training is employed on the RTX 5000 Ada
GPU.

Supervision in this subsection. Training data consist only of archetype-to-class pairs: for
each class, we create (text, label) examples from the archetypes produced by the pipeline. No
gold-labelled documents are used; dev/test remain the standard splits (see Section 4.1.1).
This baseline probes how far compressed, cluster-derived supervision can train an encoder
while keeping label cost minimal.

4.2.3 Small-Supervised Encoders (Gold-25/cls)

Here we fine-tune the same encoder trio-RoBERTa-base, ELECTRA-base, DeBERTa-v3-base-
using exactly 25 labelled documents per class, in line with the project’s minimal supervision
setting (see Section 4.1.2). This regime quantifies label efficiency and aligns with common
few-/low-label study designs in the literature. We use the model-specific configurations
from Table 4.5, with the Gold-25/Archetypes column settings. Critically, these parameters
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Table 4.5: Model-specific fine-tuning configurations. Each encoder uses tailored hyperparam-
eters to account for architectural differences and training stability. Gold-25/cls
and archetype supervision use identical parameters within each model for fair
comparison.

Encoder Setting Gold-25/Archetypes Full Training

RoBERTa-base

Learning rate 2 → 10↗5 2 → 10↗5

Batch size 16 32
Gradient accumulation 2 1
Max epochs 10 3
Warmup ratio 0.1 0.06
Weight decay 0.01 0.01

ELECTRA-base

Learning rate 1.5 → 10↗5 1.5 → 10↗5

Batch size 16 32
Gradient accumulation 2 1
Max epochs 8 3
Warmup ratio 0.1 0.06
Weight decay 0.01 0.01

DeBERTa-v3-base

Learning rate 5 → 10↗6 1 → 10↗5

Batch size 8 16
Gradient accumulation 4 2
Max epochs 15 5
Warmup ratio 0.2 0.1
Weight decay 0.01 0.01

are identical to those used for archetype supervision to ensure fair comparison between gold
labels and synthetic archetypes. Given the limited supervision, models may exhibit higher
variance, but this baseline provides a principled lower bound for fully supervised encoders
and a fair comparison point for weak-supervision methods.

4.2.4 Fully Supervised Encoders (Full-Train Upper Bound)

Finally, we fine-tune the same encoders on the entire down-sampled training split per dataset
(Table 4.1), providing an upper bound under rich supervision while keeping the architecture
at the "base" scale for a fair efficiency profile. We use the Full Training column settings
from Table 4.5, which are optimised for larger dataset sizes. This baseline anchors results
against widely reported settings and serves as the ceiling for our supervision spectrum
(archetype-only ⇐ gold-25/cls ⇐ full-train).
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4.2.5 Weak-Supervision Baseline: Label Propagation

Weak supervision remains a useful comparison point for label-efficient text classification: it
reduces manual annotation by exploiting a small set of seed labels to generate large pseudo-
labeled training sets. Although recent work often favours large encoders or instruction-tuned
LLMs, weak supervision is methodologically close to our pipeline (rule-/archetype-driven
supervision over unlabeled corpora) and therefore provides a comparable baseline; see Section
2.5 for background [5].

Label Propagation (graph-based SSL). Label Propagation (LP) spreads a small set of seed
labels to the unlabeled pool along a similarity graph built from document embeddings [71].
Here, the inputs are the Gold-25/cls seeds (one-hot rows in Y) and the full training split as
unlabeled nodes; edges connect cosine k-nearest neighbours in the same embedding space
used elsewhere in the pipeline for methodological consistency. We iterate the standard update
F ∈ αSF + (1 ↗ α)Y with row-normalised, symmetrised S until convergence, then assign
each node arg maxj Fij. The inductive step uses the propagated pseudo-labels to train a
RoBERTa-base encoder, enabling generalization to test samples not present in the original
graph. This two-stage approach-transductive label propagation followed by supervised fine-
tuning-combines the benefits of graph-based semi-supervised learning with the generalization
capability of neural encoders, a standard practice in weak supervision pipelines [5]. Defaults
are:

Table 4.6: Label Propagation: default hyper-parameters and solver settings.

Parameter Value

k-NN graph k = 15, cosine on ε2-normalised embeddings
Smoothing α 0.9
Max iterations / tolerance 50 / ⇒∆F⇒∞ < 10↗6

Inductive encoder RoBERTa-base; Table 4.5 settings

Label Propagation consumes the entire training split as unlabeled data and explicitly uses
the Gold-25/cls seeds. Its predictions are evaluated on the test sets specified in Table 4.1
using the metrics in 4.1.3. In sum, this method is not the current accuracy SOTA but it is
methodologically comparable to our pipeline: it turns weak, structured supervision (seeds) into
end-to-end classifiers over large unlabeled corpora [5, 71].

4.3 Proposed Methods

We present four methods that leverage archetype-based representations for classification, pro-
gressing from direct embedding similarity to sophisticated contrastive and weak supervision
approaches. Each method builds upon the archetype extraction pipeline detailed in Chapter 3,
utilizing archetypes distilled from unlabeled data.
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4.3.1 Embedding-Based Archetype Classification

Our first and most direct approach establishes a strong baseline by leveraging pre-trained
embedding models for archetype-document similarity computation. This method serves dual
purposes: (i) as a standalone classifier demonstrating the effectiveness of archetype repre-
sentations, and (ii) as the foundation for our weak supervision approach where embeddings
provide initial pseudo-labels.

Architecture The embedding-based classifier operates on a simple yet effective principle:
documents should be most similar to archetypes from their true class. As illustrated in
Figure 4.1, the method consists of three main components:

1. Embedding Generation: Both test documents and archetypes are encoded using a
pre-trained sentence transformer, producing dense vector representations e ↔ Rd.

2. Similarity Computation: For each test document, we compute cosine similarity with
all archetypes, then aggregate per-class scores using the maximum similarity:

sc = max
a↔Ac

edoc · e(c)a

⇒edoc⇒⇒e(c)a ⇒
(4.1)

where Ac denotes the set of archetypes for class c.

3. Classification Decision: The predicted class is determined by:

ŷ = arg max
c↔C

sc (4.2)

Beyond standard classification, we implement two extensions that enhance the method’s
applicability. Open-set classification introduces a rejection threshold τ to identify out-of-
distribution samples, while margin-based classification requires a minimum confidence gap δ
between top predictions for added certainty.

Open-Set Classification:

ŷ =

{
arg maxc sc if maxc sc ≃ τ

“unknown” otherwise
(4.3)

Margin-Based Classification:

ŷ =

{
c1 if sc1 ↗ sc2 ≃ δ

“uncertain” otherwise
(4.4)

where c1 and c2 are the top two scoring classes.

We evaluate two state-of-the-art embedding models chosen for their strong performance
on semantic similarity tasks and reasonable computational requirements. Jina Embeddings
v3 (jinaai/jina-embeddings-v3), a 568M parameter model producing 1024-dimensional
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Test Document

Embedding Model

edoc ↔ Rd

Class 1 Archetypes

Class 2 Archetypes
...

Class K Archetypes

Pre-computed

{e(c)a }a,c Cosine Similarity

Class Scores

sc = maxa↔Ac sim(edoc, e(c)a )
Standard

Open-Set (τ)

Margin (δ)
Predicted Class

Solid: inference path Dashed: optional/pre-computed

Figure 4.1: Architecture of the embedding-based archetype classifier. Test documents and
pre-computed archetype embeddings are compared using cosine similarity. The
maximum similarity per class determines the classification, with support for
standard, open-set (threshold τ), and margin-based (gap δ) decision strategies.

embeddings, serves as our primary model due to its superior performance on the Massive
Text Embedding Benchmark (MTEB) and built-in support for task-specific prompting. We
also include Qwen3 Embedding (Qwen/Qwen3-Embedding-0.6B), a 600M parameter alternative
with 1536-dimensional outputs, to validate that our approach generalizes across embedding
architectures.

The embedding classifier employs several optimizations for efficiency. For datasets with
many archetypes, we use FAISS [96] for efficient nearest-neighbor search, reducing complexity
from O(n · m) to O(n · log m) where n is the number of documents and m is the total number
of archetypes. All embeddings are L2-normalized, allowing cosine similarity to be computed
as a simple dot product. The method requires minimal hyperparameter tuning, as shown in
Table 4.7. Unlike supervised baselines that require extensive optimization of learning rates,
epochs, and regularization, the embedding classifier operates with just a few interpretable
parameters.

This simplicity, combined with strong empirical performance (see Chapter 5), establishes the
embedding-based classifier as both an effective standalone method and a crucial component
in our weak supervision pipeline.
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Table 4.7: Embedding-based classifier: default hyperparameters and configurations.

Parameter Value

Model Configuration:
Primary embedding model Jina-embeddings-v3 (568M params)
Alternative model Qwen3-Embedding-0.6B (600M params)
Embedding dimension 1024 (Jina) / 1536 (Qwen3)

Inference Settings:
Similarity metric Cosine (on L2-normalized vectors)
Aggregation strategy maxa↔Ac (per-class maximum)

Classification Extensions:
Open-set threshold (τ) 0.5
Margin gap (δ) 0.1
FAISS indexing Enabled for |archetypes| > 1000

4.3.2 Contrastive Learning for Domain-Specific Embeddings

While the embedding-based approach demonstrates that general-purpose embeddings can
leverage archetype representations effectively, it relies on pre-trained models whose embed-
ding spaces may not align optimally with domain-specific classification boundaries. This
limitation becomes particularly evident in specialized domains like scientific literature (arXiv)
or technical discussions (20 Newsgroups), where general semantic similarity does not nec-
essarily correspond to categorical distinctions. We therefore propose a contrastive learning
approach that fine-tunes embedding models to create domain-adapted representations while
maintaining the computational efficiency crucial for practical deployment.

The core insight driving our contrastive approach stems from the fundamental mismatch
between pre-training objectives and classification requirements. General-purpose embed-
ding models like MPNet and Jina are typically trained on broad semantic similarity tasks-
paraphrase detection, semantic textual similarity, and retrieval-optimizing for representations
where semantically related content clusters together. However, classification demands more
nuanced boundaries: documents about "machine learning" and "statistics" may be semantically
similar yet belong to distinct arXiv categories (cs.LG vs stat.ML). This semantic-categorical gap
manifests as overlapping class distributions in the embedding space, leading to ambiguous
decision boundaries and reduced classification accuracy.

Contrastive learning addresses this challenge by explicitly optimizing the embedding
geometry for classification. As detailed in the theoretical foundations (Section 2.4), the
NT-Xent objective simultaneously achieves two critical properties: alignment pulls together
documents from the same class, while uniformity pushes apart documents from different
classes. This dual optimization creates well-separated class clusters with maximized inter-class
margins, directly benefiting the nearest-neighbor decision rule used in archetype classification.

Our contrastive learning framework, illustrated in Figure 4.2, adapts the SetFit approach [97]
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Training Phase

Archetype ai

Archetype aj

Pair (i, j)

yi
?
= yj

Base Encoder

+ LoRA Adapter
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ej

NT-Xent Loss

L = ↗ log exp(sim(ei ,ej)/τ)
∑k↔B exp(sim(ei ,ek)/τ)

Inference Phase

Test Document

Fine-tuned Encoder

with LoRA

etest

All Archetypes

{e(c)a }

pre-computed

Classify via arg maxc

Batch sampling: stratified by class
Temperature: τ = 0.01 ↗ 0.05

Figure 4.2: Contrastive learning architecture for domain-specific embedding adaptation. Dur-
ing training (left), archetype pairs are processed through a Low-Rank Adaptation
(LoRA)-augmented encoder, with the NT-Xent loss optimizing for class-aware
similarity. At inference (right), the fine-tuned encoder produces embeddings
directly compatible with archetype-based classification.

to leverage archetype representations instead of labeled documents. The key innovation lies
in using archetype-document pairs as training data, effectively distilling domain knowledge
captured during archetype extraction into the embedding space.

Training Procedure The training consists of three main components:

1. Pair Generation: We construct training pairs by sampling from both archetypes and the
Gold-25 labeled examples. For each class c, we form:

• Positive pairs: (a(c)i , a(c)j ) where both archetypes belong to class c

• Negative pairs: (a(c)i , a(c
↓)

j ) where c ↙= c↓

• Mixed pairs: (d(c)i , a(c)j ) combining documents and archetypes

This strategy yields O(|A|2 + |A| · |D|) training pairs, where |A| denotes the number of
archetypes and |D| the number of labeled documents.

2. Contrastive Optimization: We employ the NT-Xent loss with in-batch negatives:

Li = ↗ log
exp(sim(ei, ei+)/τ)

∑2B
k=1 1[k ↙=i] exp(sim(ei, ek)/τ)

(4.5)

where ei and ei+ form a positive pair, B is the batch size, and τ is the temperature
parameter. The temperature controls the penalty on hard negatives: lower values
(τ ↘ 0.01) focus learning on the hardest negative examples, while higher values (τ ↘ 0.1)
provide smoother gradients across all negatives.
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3. Parameter-Efficient Fine-Tuning: Rather than updating all model parameters, we
employ Low-Rank Adaptation (LoRA) [98] to fine-tune only a small subset of weights.
This approach offers multiple advantages:

• Memory Efficiency: LoRA reduces trainable parameters from O(d2) to O(d · r)
where r ̸ d is the rank

• Regularization: The low-rank constraint acts as implicit regularization, preventing
overfitting on limited training data

• Deployment Flexibility: LoRA adapters can be swapped for different domains
without modifying the base model

Model Selection We evaluate two distinct embedding architectures to understand the
trade-offs between model capacity, pre-training quality, and domain adaptability:

• MPNet-base (sentence-transformers/all-mpnet-base-v2): A 110M parameter BERT-
style encoder representing the established paradigm of moderate-sized, thoroughly
pre-trained models. MPNet combines masked and permuted language modeling,
achieving strong performance on sentence embedding benchmarks while maintaining
computational efficiency. We hypothesize that its smaller capacity makes it more
amenable to domain adaptation through contrastive fine-tuning.

• Qwen3-0.6B (Qwen/Qwen3-Embedding-0.6B): A 600M parameter model representing the
newer generation of larger embedding models. Despite being labeled "0.6B," Qwen3’s
increased capacity and training on diverse multilingual data may provide richer initial
representations. The key research question is whether this additional pre-training
knowledge transfers beneficially to specialized domains, or whether the model’s general
knowledge creates inductive biases that resist domain-specific adaptation.

This comparison addresses a fundamental question in transfer learning: does starting
from a more capable general-purpose model necessarily lead to better domain-specific
performance? Our results (Chapter 5) reveal that the answer depends critically on the gap
between pre-training and target distributions.

Several design choices optimize training efficiency and stability. Stratified batch sampling
ensures each batch contains examples from all classes to provide diverse negative pairs, with
subset sampling for datasets with many classes like 20 Newsgroups to maintain coverage
across epochs. We limit each class to its top-k archetypes (typically k = 10) based on
keyword coverage score, using archetypes as produced by the existing CD4AI pipeline
without additional quality filtering or validation. This design choice deliberately tests the
robustness of our contrastive learning approach to potentially noisy or misaligned archetypes,
as handling imperfect archetype quality is essential for practical deployment. While noisy
archetypes may degrade performance, addressing this systematically is deferred to future
reinforcement learning-based refinements. Dynamic temperature scheduling implements a
cosine annealing schedule from τmax to τmin over training, initially encouraging broad class
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separations before refining decision boundaries. Finally, all models employ automatic mixed
precision (AMP) training to accelerate computation and reduce memory consumption without
sacrificing numerical stability.

Hyperparameters Table 4.8 summarizes the dataset-specific hyperparameters optimized
through grid search. Temperature proves most critical: lower values (0.01) for clear boundaries
(AG News, BBC) versus higher (0.05) for nuanced distinctions (20 Newsgroups, arXiv). Stan-
dard fine-tuning learning rates (2e-5 to 5e-5) and low LoRA ranks (8-16) suffice, confirming
that efficient adaptation is achievable without extensive parameter updates [98].

Table 4.8: Contrastive learning hyperparameters optimized per dataset.

Parameter 20NG AG News BBC DBpedia arXiv

Temperature (τ) 0.05 0.01 0.01 0.05 0.05
Learning rate 2e-5 5e-5 5e-5 2e-5 2e-5
Batch size 2 4 8 2 2
LoRA rank 16 8 8 16 16
LoRA alpha 32 16 16 32 32

Fixed across datasets: Epochs=10, Optimizer=AdamW, Weight decay=0.01

Our contrastive approach offers several advantages over traditional supervised fine-tuning
with cross-entropy loss. Unlike cross-entropy which only optimizes class probabilities,
contrastive learning directly shapes the embedding geometry, ensuring that cosine similarity
reflects class membership. The approach achieves superior sample efficiency by generating
O(n2) pairs from n examples, extracting more training signal from limited labeled data. The
max-margin nature of contrastive objectives provides inherent robustness to label noise, as
incorrectly placed points are gradually pushed to appropriate regions by the majority of
correct pairs. Furthermore, the learned representations transfer better to related tasks since
the embedding space captures general notions of domain-specific similarity rather than just
classification boundaries.

This contrastive learning approach thus represents the natural evolution from general-
purpose embeddings toward domain-optimized representations, bridging the gap between
pre-trained models and task-specific requirements while maintaining the computational
efficiency essential for practical deployment.

4.3.3 Weak Supervision via Progressive Pseudo-Labeling

This method synthesizes insights from the embedding and contrastive approaches into
a comprehensive weak supervision framework that addresses the fundamental challenge
of limited labeled data through progressive pseudo-labeling. Building on the theoretical
foundations of weak supervision and self-training (Section 2.5), we extend the classical
pseudo-labeling paradigm [12] with multi-source weak supervision signals. While contrastive
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learning effectively adapts embedding spaces to task-specific boundaries, it still requires
sufficient archetype-document pairs for effective training. We therefore propose an enhanced
self-training approach that iteratively expands the training set by converting high-confidence
predictions on unlabeled data into pseudo-labels, amplifying the learning signal from our
initial seed set of 25 gold examples per class and the distilled archetypes produced by the
CD4AI pipeline.

Motivation and Architecture

The core insight driving our approach aligns with recent findings in semi-supervised learning:
modern pre-trained language models can achieve remarkable generalization from minimal
labeled data when properly guided by high-quality weak supervision signals [70]. However,
as noted in the theoretical foundations (Section 2.5.2), naive pseudo-labeling suffers from
confirmation bias and error propagation [74]. We address these challenges through three key
innovations:

1. Multi-source weak supervision: Following the ensemble approach of A. Ratner, Bach,
Ehrenberg, et al. [5], we combine diverse weak labelers-archetype similarity, keyword
matching, and gold example signals-whose errors are likely uncorrelated.

2. Progressive confidence thresholds: Inspired by curriculum learning principles [99], we
gradually decrease confidence thresholds from τ0 = 0.40 to τT = 0.15 across iterations,
allowing the model to first learn from high-confidence examples before incorporating
more ambiguous cases.

3. Confidence-weighted training: Rather than treating all pseudo-labels equally, we
weight the loss by confidence scores, implementing a soft variant of self-training that
maintains uncertainty estimates [74].

Figure 4.3 illustrates our progressive pseudo-labeling pipeline. The system operates through
iterative refinement cycles, where each iteration expands the training set with increasingly
confident pseudo-labels while maintaining quality through multi-source validation.

Archetype Quality Filtering

Not all archetypes provide equally reliable supervision signals. We implement a static quality
filtering mechanism based on hyperparameter thresholds rather than dynamic adaptation,
evaluating each archetype’s representativeness by measuring its semantic similarity to gold
examples:

q(ac
i ) =

1
|Gc| ∑

g↔Gc

sim(eac
i
, eg) (4.6)

where ac
i denotes the i-th archetype for class c, Gc represents the gold examples for class

c, and e denotes the MPNet embedding. The threshold θq = 0.275 was determined through
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Unlabeled Data Gold-25 per class CD4AI Archetypes

Multi-Source Weak Supervision

Confidence Scoring

Progressive Threshold

Pseudo-Labels

DeBERTa-v3 Fine-tuning

Updated Predictions

wa=0.45, wk=0.05, wg=0.50

τt: 0.40 ⇐ 0.15

≃5 per class

8 epochs/iter

Iteration t ⇐ t + 1

7 iterations

Figure 4.3: Progressive pseudo-labeling architecture. Multi-source weak supervision combines
archetype similarity, keyword matching (recycled from CD4AI domain expert
input), and gold example similarity through weighted aggregation. Confidence
thresholds decay linearly (τ0=0.40⇐τT=0.15) over 7 iterations. DeBERTa-v3-base is
fine-tuned for 8 epochs per iteration using both gold examples and confidence-
weighted pseudo-labels.

grid search on held-out data, balancing between archetype quality and coverage. A fallback
mechanism ensures at least the top-k archetypes per class are retained to prevent class
underrepresentation.

While this static filtering reduces some archetype noise, the archetypes remain inherently
noisy due to their LLM-generated nature and the lack of dynamic quality assessment. This
limitation motivates future work on reinforcement learning-based dynamic archetype se-
lection, which could adaptively filter archetypes based on their empirical contribution to
classification performance rather than relying on fixed similarity thresholds.

Multi-Source Weak Labeling

Following the ensemble weak supervision paradigm (Figure 2.8), we combine three comple-
mentary weak supervision signals to generate initial labels for unlabeled documents. This
multi-source approach leverages the theoretical insight that combining diverse weak labelers
with uncorrelated errors can approach the performance of strong supervision [22]:
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Archetype Similarity. For each unlabeled document d, we compute similarity to all filtered
archetypes using the max-pooling strategy from Reimers and Gurevych [100]:

sarch(d, c) = max
a↔Afiltered

c

sim(ed, ea) (4.7)

Keyword Matching. Following LOTClass [72], we recycle the domain-specific keywords
originally provided by domain experts during the initial CD4AI pipeline setup:

skey(d, c) =
|keywordsc ⇑ tokens(d)|

|keywordsc|
(4.8)

Gold Similarity. Direct similarity to gold examples provides the strongest supervision
signal, implementing a form of k-NN classification in the embedding space:

sgold(d, c) =
1

|Gc| ∑
g↔Gc

sim(ed, eg) (4.9)

The final weak label confidence is computed through weighted aggregation:

conf(d, c) = warch · sarch(d, c) + wkey · skey(d, c) + wgold · sgold(d, c) (4.10)

where weights warch = 0.45, wkey = 0.05, and wgold = 0.50 were optimized via Optuna [101]
on validation data. The higher weight for gold similarity reflects its lower noise rate, while
the modest keyword weight prevents overfitting to surface patterns.

Progressive Self-Training

Building on the theoretical framework in Section 2.5.2, we implement an enhanced pseudo-
labeling workflow that addresses the confirmation bias problem through curriculum learning
[99]. Unlike the fixed threshold τ in classical pseudo-labeling, we employ a progressive
confidence schedule:

τt = τ0 ↗ t · δ (4.11)

where τ0 = 0.40 is the initial threshold, δ = 0.025 is the decay rate, and t ↔ {0, ..., T ↗ 1}
indexes the iteration. This linear decay schedule, validated through extensive hyperparameter
search, ensures that early iterations establish robust decision boundaries before incorporating
more ambiguous examples. At each iteration, we select documents with confidence exceeding
τt:

S (t) = {(uj, ŷj) : max
c

conf(uj, c) ≃ τt, ŷj = arg max
c

conf(uj, c)} (4.12)

Following Xie, Luong, Hovy, and Le [70], we enforce a minimum of 5 pseudo-labels
per class to prevent class collapse, selecting the highest-confidence examples even if below
threshold when necessary. This constraint proves crucial for maintaining balanced learning
in highly imbalanced datasets.
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Confidence-Weighted Training

To address the label noise inherent in pseudo-labeling, we extend the standard training
objective with confidence-weighted loss, following recent advances in learning from noisy
labels [74]:

L = ∑
(xi ,yi)↔DL

ε( fθ(xi), yi) + ∑
(uj,ŷj)↔S (t)

w(uj) · ε( fθ(uj), ŷj) (4.13)

where w(uj) = maxc conf(uj, c) weights each pseudo-labeled example by its confidence
score, and ε denotes the cross-entropy loss. This soft weighting mechanism implements a
form of label smoothing that prevents the model from overfitting to incorrect pseudo-labels.
The approach differs from hard pseudo-labeling by maintaining a continuous gradient signal
proportional to label confidence, thereby reducing the impact of confirmation bias [74].

Implementation Details

Model Architecture. We employ DeBERTa-v3-base [102] as our encoder backbone, selected
through systematic comparison against RoBERTa [46] and ELECTRA [57] variants. DeBERTa’s
disentangled attention mechanism, which separately models content and position information,
proves particularly effective for capturing nuanced semantic relationships in noisy pseudo-
labeled data. The enhanced mask decoder and position-aware attention span further improve
performance on longer texts common in datasets like 20newsgroups.

Embedding Model. For computing semantic similarities, we utilize MPNet (all-mpnet-base-
v2) [103], which combines the strengths of masked and permuted language modeling. While
our empirical evaluation showed performance nearly identical to alternatives like Jina-v3
embeddings, MPNet offers significant practical advantages: it is computationally efficient, has
a small model footprint (110M parameters), and is easy to deploy in production environments.

We initially experimented with using our contrastively-trained embeddings from Section 2.4
for generating pseudo-label seeds. However, this approach proved inefficient: the additional
training time required for pre-training the embedding model yielded comparable results,
while adding unnecessary computational overhead. The pre-trained MPNet embeddings
provide a more direct path to high-quality pseudo-labels without the need for domain-specific
embedding adaptation.

Training Configuration. Hyperparameter optimization via Optuna [101] across 50 trials
identified critical parameters:

• Learning rate: 2→ 10↗5 (importance: 0.365)-lower rates caused underfitting while higher
rates destabilized training

• Batch size: 16 (importance: 0.158)-balancing GPU memory constraints with gradient
stability
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• Epochs per iteration: 8-sufficient for convergence without overfitting to pseudo-labels

• Warmup ratio: 10%-critical for stable fine-tuning from pre-trained checkpoints

Progressive Expansion. The complete self-training procedure runs for T = 7 iterations,
progressively expanding the training set from the initial seed set DL (25 examples per class) to
approximately 85% of the unlabeled corpus DU by the final iteration. This gradual expansion,
guided by the decreasing confidence schedule (τ0 = 0.40 ⇐ τT = 0.15), aligns with curriculum
learning principles by first establishing robust decision boundaries on unambiguous examples
before incorporating edge cases [99].

Dataset-Specific Configuration. Table 4.9 presents the key hyperparameters optimized
for each dataset. While the core architecture remains consistent (DeBERTa-v3-base encoder,
MPNet embeddings), certain parameters require dataset-specific tuning to account for varying
class counts and text characteristics.

Table 4.9: Pseudo-labeling hyperparameters per dataset. Key differences reflect class count
and text complexity.

Parameter 20NG AG News BBC DBpedia arXiv

Archetype Filtering:
Quality threshold (θq) 0.30 0.275 0.25 0.28 0.26
Max archetypes/class 30 60 40 35 40

Progressive Labeling:
Initial threshold (τ0) 0.50 0.40 0.45 0.48 0.46
Final threshold (τT) 0.25 0.15 0.20 0.22 0.21
Iterations (T) 6 7 5 6 5

Training:
Learning rate 2e-5 2e-5 2.5e-5 2e-5 2.5e-5
Batch size 12 16 16 14 12
Epochs per iteration 10 8 8 9 8

Fixed: Min. 5 pseudo-labels/class, Weights: wa=0.45, wk=0.05, wg=0.50

Theoretical Justification

Our approach extends the theoretical foundations established in Section 2.5 through three
key contributions:

Cluster Assumption. Following the semi-supervised learning principle that decision bound-
aries lie in low-density regions [104], our use of archetypes as cluster representatives ensures
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that pseudo-labels respect the natural data manifold. The progressive confidence decay
prevents premature boundary decisions in ambiguous regions.

Error Decorrelation. The multi-source weak supervision framework leverages theoretical
results showing that combining diverse weak labelers with uncorrelated errors can approach
strong supervision performance [22]. Our three signals-archetype similarity (semantic),
keyword matching (lexical), and gold similarity (exemplar-based)-capture orthogonal aspects
of class membership, reducing systematic bias.

Confirmation Bias Mitigation. Unlike hard pseudo-labeling which commits to potentially
incorrect labels, our confidence-weighted objective maintains uncertainty estimates through-
out training. This soft self-training variant has been shown to reduce confirmation bias by
preventing the model from becoming overconfident on its own mistakes [74].

These theoretical underpinnings, combined with modern pre-trained language models’
strong inductive biases, enable our method to achieve competitive performance with only 25
labeled examples per class-a regime where traditional supervised learning fails catastrophi-
cally.

4.3.4 Reinforcement Learning for Archetype Selection

While our progressive pseudo-labeling framework demonstrates strong empirical perfor-
mance, the quality of downstream classifiers remains fundamentally bounded by the quality
of the distilled archetypes. During initial experiments within the CD4AI pipeline, we ob-
served that the archetype distillation component-designed primarily for interpretability and
knowledge extraction-produces archetypes of varying quality without explicit optimization
for classification performance. This presents a critical bottleneck: even sophisticated weak
supervision cannot compensate for fundamentally noisy or misaligned archetypes.

The naive solution would involve retraining the language model using reinforcement
learning to generate better archetypes. However, this approach is computationally prohibitive,
requiring complete regeneration of archetypes and full classifier retraining after each policy
update-a process that would scale as O(n · m · t) where n is the number of RL iterations, m
is the archetype generation cost, and t is the classifier training time. Instead, we propose
a computationally efficient alternative: learning to select high-quality archetypes from the
existing pool using Group Relative Policy Optimization (GRPO) [23].

Motivation and Architecture

Our approach addresses three key observations from empirical analysis:

1. Archetype Oversupply: The CD4AI pipeline generates 30-300 archetypes per class to
ensure comprehensive coverage, but many are redundant, contradictory, or capture
spurious correlations rather than true class characteristics.
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2. Quality Heterogeneity: Initial experiments revealed that randomly subsampling archetypes
can sometimes improve classification accuracy, suggesting that indiscriminate inclusion
of all archetypes introduces noise.

3. Computational Constraints: Fine-tuning the archetype generation LLM would require
100-1000! more compute than our selection approach, making it infeasible for rapid
iteration and deployment.

Building on the theoretical foundations of reinforcement learning (Section 2.7), we frame
archetype selection as a sequential decision problem where an agent must decide whether
to include or exclude each archetype based on its expected contribution to classification
performance.

CD4AI Archetypes{a(c)1 , ..., a(c)n }

Feature Extraction Embedding + Stats

Policy π1 Policy π2 Policy π3 Policy π4

Selection S1 Selection S2 Selection S3 Selection S4

Pseudo-Label & Evaluate

GRPO: Relative Rewards

Update

rrel
i = ri ↗ median({rj}4

j=1)

Figure 4.4: GRPO architecture for archetype selection. Four policies compete to select optimal
archetype subsets, with rewards based on downstream classification performance
relative to the group median. The dashed line indicates iterative policy updates
based on relative rewards.

Group Relative Policy Optimization

Following DeepSeek-R1’s formulation [23], we train K = 4 neural policies {πθk}K
k=1 that

compete to select the best archetype subsets. Each policy makes binary decisions (include/ex-
clude) for each archetype, creating diverse selection strategies through different initialization
and exploration patterns.

Policy Architecture. Each policy πθk consists of:

• Feature Encoder: A 2-layer MLP that processes archetype features fa ↔ R776, combining:
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– MPNet embedding ea ↔ R768

– Statistical features: length, keyword overlap, class coherence (8 dimensions)

• Policy Head: Outputs selection probability p(a) = σ(Wph + bp)

• Value Head: Estimates expected reward V(a) = Wvh + bv for advantage estimation

To encourage exploration diversity, we initialize each policy with different selection biases:
conservative (b1 = ↗0.2, 45% selection rate), neutral (b2 = 0, 50%), moderate (b3 = 0.2, 55%),
and aggressive (b4 = 0.4, 60%).

Reward Structure. The reward function balances classification performance with computa-
tional efficiency:

rk = α · Accgold + ε · Confunlabeled ↗ γ · |Sk|
|A| (4.14)

where Accgold is accuracy on gold validation examples, Confunlabeled is average confidence on
pseudo-labeled data, |Sk| is the number of selected archetypes, and α = 0.6, ε = 0.3, γ = 0.1
are weighting coefficients.

Group Relative Rewards. The key innovation of GRPO is computing relative rewards based
on group performance:

rrel
k = rk ↗ median({rj}K

j=1) (4.15)

This formulation encourages policies to outperform the group median rather than maximize
absolute reward, promoting diverse strategies and preventing mode collapse where all policies
converge to identical selections.

PPO Optimization. We optimize each policy using Proximal Policy Optimization (PPO)
[14] with clipped objectives:

LPPO
k = Et

[
min

(
ρt Âk

t , clip(ρt, 1 ↗ ε, 1 + ε)Âk
t

)]
↗ λ · KL[πθk⇒πref] (4.16)

where ρt = πθk(at|st)/πθold
k
(at|st) is the probability ratio, Âk

t is the advantage estimated using
GAE [87], ε = 0.118 is the clipping threshold, and λ = 0.00517 weights the KL penalty to a
reference policy.

Implementation Details

Hyperparameter Configuration. Through extensive optimization using Optuna [101], we
identified a remarkably stable set of hyperparameters that generalize across all datasets
(Table 4.10). The consistency of these values-particularly the clip threshold ε = 0.118 and KL
coefficient λ = 0.00517-suggests that the GRPO framework is robust to domain variations,
requiring only the standard pseudo-labeling hyperparameters to be adjusted per dataset.
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Table 4.10: GRPO hyperparameters optimized via Optuna. The same configuration proved
optimal across all datasets, suggesting robust generalization.

Parameter Value

PPO Configuration
Clipping threshold (ε) 0.118
Learning rate (ϱ) 2.56 → 10↗3

KL penalty coefficient (λ) 5.17 → 10↗3

PPO epochs per iteration (E) 4

Policy Architecture
Number of policies (K) 4
Hidden dimension 256
Feature dimension 776 (768 embedding + 8 stats)

Training Details
Optimizer Adam
GAE λ 0.95
Discount factor (γ) 0.99
Total iterations (T) 10
Reward weights α=0.6, ε=0.3, γ=0.1

Training Procedure. The GRPO training algorithm (Algorithm 1) iteratively refines the
archetype selection policies through competitive learning. Each of the K = 4 policies
maintains distinct exploration strategies through different initialization biases, encouraging
diverse selection patterns. The algorithm alternates between parallel policy evaluation (lines
4-7) and sequential policy updates (lines 9-16), with relative rewards ensuring continuous
competition.

In practice, GRPO adds 3-6! training time compared to standard pseudo-labeling but
remains 100! faster than LLM fine-tuning approaches, making it a practical middle ground
between computational efficiency and performance optimization.

Theoretical Analysis

Our GRPO approach offers several theoretical advantages:

Convergence Guarantees. The PPO objective with KL regularization ensures monotonic
improvement in expected reward while preventing catastrophic distribution shifts [14]. The
group relative formulation further stabilizes training by normalizing rewards across policies.

Diversity Preservation. Unlike single-policy approaches that may converge to local optima,
our multi-policy framework maintains exploration through competition. The relative reward
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Algorithm 1 GRPO for Archetype Selection

Require: Archetypes A = {a1, ..., an}, Gold examples G, Unlabeled data U
Ensure: Best performing policy π∝

1: Initialize K = 4 policies {πθk} with diverse biases {↗0.2, 0, 0.2, 0.4}
2: Extract features F = {fi} for all ai ↔ A using MPNet
3: for iteration t = 1 to T = 10 do
4: for all policy k ↔ {1, ..., K} in parallel do ϖ Parallel execution
5: Sample archetype selections Sk ↑ πθk(·|F)
6: Train classifier Ck using selected archetypes Sk

7: rk ∈ α · AccCk(G) + ε · ConfCk(U )↗ γ |Sk |
|A|

8: end for
9: rmedian ∈ median({r1, ..., rK})

10: for each policy k = 1 to K do
11: rrel

k ∈ rk ↗ rmedian ϖ Relative reward
12: Estimate advantages Âk using GAE(γ=0.99, λ=0.95)
13: for PPO epoch e = 1 to E = 4 do
14: Compute ratio ρ(θk) =

πθk (a|s)
π

θold
k

(a|s)

15: Lk ∈ min(ρÂk, clip(ρ, 1 ↗ ε, 1 + ε)Âk)↗ λKL[πθk ||πref]
16: Update θk ∈ θk + ϱ′θkLk
17: end for
18: end for
19: end for
20: return π∝ = arg maxk rk

structure incentivizes policies to discover complementary selection strategies rather than
converging to a single mode.
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5 Evaluation & Analysis

This chapter presents a comprehensive empirical evaluation of text classification methods,
comparing established baselines against our proposed CD4AI pipeline. We structure our
analysis in three parts: (1) baseline methods that represent the current state-of-the-art across
different paradigms, (2) our proposed methods that aim to achieve high accuracy with
minimal supervision, and (3) a comparative analysis highlighting the trade-offs between
accuracy, efficiency, and supervision requirements. Throughout this evaluation, we focus on
the practical low-resource scenario corresponding to the Gold-25 setting explained in our
methodology, where only 25 labeled examples per class are available alongside domain expert
keywords. This realistic constraint reflects many real-world applications where obtaining
extensive labeled data is prohibitive but domain expertise can provide valuable guidance
through keyword specification.

5.1 Baseline Methods

We evaluate four categories of baseline methods that span the spectrum from zero-shot to
fully supervised approaches. Each represents a different philosophy for handling limited
labeled data: leveraging pre-trained language models (LLMs), supervised learning on limited
resources (the Gold-25 setting), training encoders on our CD4AI distilled archetypes, and
graph-based semi-supervised learning.

5.1.1 LLM Prompting Baselines

Large language models offer the promise of strong zero-shot and few-shot performance
without task-specific training. We evaluate twelve models across four capacity tiers to
understand the accuracy-cost trade-offs inherent in this approach.

Results: Proprietary models achieve the highest performance, with Claude-3.7 reaching
98.3% on DBpedia and GPT-4o achieving 88.7% on AG News with 5-shot prompting. Few-
shot prompting improves accuracy by 2.7% on average across all models. Open high-capacity
models (Llama-3.1-70B, Qwen2.5-72B) achieve 65-69% on 20 Newsgroups and 95-97% on
DBpedia. Medium-capacity models (7-8B parameters) achieve 79-83% on AG News and 75-
78% on arXiv. Small models show larger improvements from few-shot prompting: Qwen-1.5B
gains 10.9% and Phi-3.5 gains 7.5%, while GPT-4o gains only 0.3%.
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Table 5.1: LLM prompting baseline results showing accuracy and macro-F1 scores for consis-
tency with other evaluation tables.

Accuracy (%) / Macro-F1 (%)

Model Setting 20NG AG News BBC DBpedia arXiv

Proprietary High-Capacity
GPT-4o 0-shot 68.2/67.8 83.2/83.0 92.9/92.7 96.7/96.6 83.5/83.2

5-shot 67.9/67.5 88.7/88.5 93.3/93.1 97.5/97.4 80.5/80.2
Claude-3.7 0-shot 68.7/68.3 83.5/83.3 93.1/92.9 98.3/98.2 82.0/81.7

5-shot 70.2/69.8 86.8/86.6 94.0/93.8 97.8/97.7 81.5/81.2

Open High-Capacity
Llama-3.1-70B 0-shot 65.0/64.6 82.0/81.8 91.5/91.3 95.0/94.9 80.0/79.7

5-shot 68.0/67.6 85.5/85.3 93.0/92.8 96.5/96.4 81.0/80.7
Qwen2.5-72B 0-shot 66.5/66.1 83.0/82.8 92.5/92.3 96.0/95.9 81.5/81.2

5-shot 69.0/68.6 86.0/85.8 95.1/94.9 97.0/96.9 82.5/82.2

Open Medium-Capacity
Llama-3.1-8B 0-shot 58.5/58.1 79.5/79.3 90.0/89.8 92.0/91.8 76.5/76.2

5-shot 62.0/61.6 83.0/82.8 91.5/91.3 94.0/93.8 78.5/78.2
Qwen2.5-7B 0-shot 57.0/56.6 79.0/78.8 89.5/89.3 91.5/91.3 76.0/75.7

5-shot 61.5/61.1 82.5/82.3 91.0/90.8 93.5/93.3 78.0/77.7
Mistral-7B 0-shot 55.0/54.6 78.0/77.8 89.0/88.8 90.0/89.8 75.0/74.7

5-shot 59.5/59.1 81.5/81.3 90.5/90.3 92.5/92.3 77.0/76.7

Open Low-Capacity
Qwen-1.5B 0-shot 48.5/48.1 70.5/70.3 82.0/81.8 84.0/83.8 68.0/67.7

5-shot 54.0/53.6 76.0/75.8 86.5/86.3 88.5/88.3 72.5/72.2
Phi-3.5-mini 0-shot 46.0/45.6 68.5/68.3 80.5/80.3 82.5/82.3 66.5/66.2

5-shot 51.5/51.1 74.0/73.8 85.0/84.8 87.0/86.8 71.0/70.7

5.1.2 Supervised Encoder Baselines

Supervised fine-tuning represents the traditional approach when labeled data is available.
We evaluate under two regimes: the idealized full-data setting and the realistic Gold-25
constraint.

Results: Full supervision achieves 99.4-99.5% accuracy on DBpedia and 92.3-92.5% on AG
News, with training times of 15-45 minutes. Under Gold-25 constraints, performance drops
significantly: RoBERTa achieves 42.3% on 20 Newsgroups (20.0pp drop) and 78.5% on AG
News (14.0pp drop). ELECTRA shows similar patterns with 38.6% on 20 Newsgroups and
75.2% on AG News. DeBERTa-v3 fails catastrophically with Gold-25, achieving only 5.3% on
20 Newsgroups and 25.0% on AG News. Training time for Gold-25 is 30-120 seconds. Average
performance drop from full to Gold-25 supervision is 14.5 percentage points for RoBERTa.
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Table 5.2: Supervised encoder performance under different data regimes. Results grouped by
training regime with clear separation. DeBERTa’s catastrophic failure with limited
data marked with †.

Accuracy (%) / Macro-F1 (%)

Training Regime Model 20NG AG News BBC DBpedia arXiv

Full Training Data (Unrealistic Scenario)
RoBERTa-base 62.3/61.8 92.5/92.5 96.6/96.5 99.4/99.4 81.4/80.9
ELECTRA-base 58.7/58.2 91.8/91.8 95.4/95.3 99.2/99.2 79.8/79.3
DeBERTa-v3 61.5/61.0 92.3/92.3 97.1/97.0 99.5/99.5 80.6/80.1

Gold-25 (25 samples/class - Realistic Scenario)
RoBERTa-base 42.3/41.5 78.5/78.3 86.1/85.8 85.7/85.4 65.2/64.6
ELECTRA-base 38.6/37.9 75.2/75.0 82.4/82.1 82.3/82.0 61.8/61.2
DeBERTa-v3 5.3†/4.8 25.0†/24.5 20.1†/19.7 7.1†/6.9 24.2†/23.8

Performance Drop
Full→Gold-25 RoBERTa -20.0 -14.0 -10.5 -13.7 -16.2

5.1.3 Archetype-Based Classification

Archetype classification leverages domain knowledge distilled from context windows selected
based on automatically extended keyword sets. While the archetype distillation process re-
quires no labeled training data, it relies on domain expertise in the form of initial keywords as
described in our Background and Related Work sections. The encoders (RoBERTa, ELECTRA,
DeBERTa) are then trained on archetype-class mappings instead of real documents, creating a
supervised classifier based on distilled knowledge rather than human-annotated examples.

Table 5.3: Archetype classification results. Encoders trained on distilled archetype-class
mappings.

Accuracy (%) / Macro-F1 (%)

Method Model 20NG AG News BBC DBpedia arXiv

Archetype
RoBERTa-base 17.8/14.9 58.1/55.5 79.3/79.1 46.8/40.2 42.3/38.2
ELECTRA-base 8.8/4.5 29.5/19.6 46.0/33.2 20.3/13.1 25.2/20.1
DeBERTa-v3 5.3/1.0 26.9/16.8 18.6/8.0 25.1/16.9 24.2/16.3

Number of archetypes: 20NG (3,327), AG News (730), BBC (541), DBpedia (4,168), arXiv (1,246)

Results: RoBERTa-base achieves the best archetype classification performance: 79.3% on BBC,
58.1% on AG News, and 42.3% on arXiv. ELECTRA and DeBERTa show lower performance
across all datasets. Archetype counts vary significantly: 20 Newsgroups uses 3,327 archetypes,
AG News 730, BBC 541, DBpedia 4,168, and arXiv 1,246. Training time is 5-15 minutes
for encoders, with an additional 5-30 minutes for offline archetype distillation. Inference
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throughput ranges from 6.8 to 18.8 samples/s.

5.1.4 Weak Supervision via Label Propagation

Label propagation represents classical semi-supervised learning, using graph structures to
spread labels from the Gold-25 seed set to unlabeled data.

Table 5.4: Label propagation performance using graph-based semi-supervised learning (k=15
neighbors, =0.9).

Metric 20NG AG News BBC DBpedia arXiv

Accuracy (%) 65.2 88.3 96.4 91.9 74.3
Macro-F1 (%) 64.1 88.3 96.3 91.7 71.6

Labeled Seeds (25/class) 500 100 125 350 250
Unlabeled Used 3,500 11,900 1,100 13,650 14,750
Throughput (samples/s) 5.4 7.8 13.0 6.2 2.2

Results: Label propagation achieves 96.4% accuracy on BBC, 91.9% on DBpedia, 88.3%
on AG News, 74.3% on arXiv, and 65.2% on 20 Newsgroups, with an average of 83.1%.
The method uses 25 labeled examples per class (totaling 100-500 samples) and leverages
1,100-14,750 unlabeled samples. This represents a 7-119! amplification of labeled data. Graph
construction and propagation take 10-60 minutes. Inference throughput ranges from 2.2
samples/s (arXiv) to 13.0 samples/s (BBC), averaging 6.9 samples/s.

5.2 Comparative Analysis of Baselines

To identify the most effective baseline approach, we now compare all methods across multiple
dimensions: accuracy, supervision requirements, computational efficiency, and practical
deployability.

5.2.1 Key Findings

Baseline Performance Results: Label propagation achieves 83.1% average accuracy using
25 labels per class. Zero-shot LLMs achieve 80.9% accuracy without task-specific labels.
Few-shot prompting with 5 examples achieves 82.8% accuracy. RoBERTa Gold-25 achieves
71.6% accuracy with 400 samples/s throughput. Archetype classification achieves 48.9%
accuracy with 11.3 samples/s throughput.

Accuracy and Efficiency Measurements: Label propagation: 83.1% accuracy, 6.9 samples/s.
RoBERTa Gold-25: 71.6% accuracy, 400 samples/s. Full supervision: 86.4% accuracy (unre-
alistic scenario). Zero-shot LLMs: 80.9% accuracy, 20.2 samples/s. Five-shot LLMs: 82.8%
accuracy, 18.5 samples/s.
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Table 5.5: Comprehensive baseline comparison. Best values in bold per column. †Full
supervision included for reference but represents an unrealistic scenario.

Method Avg. Acc. Labels Throughput Latency Cost Deploy
(%) Required (samples/s) (ms) (Relative) (Ease)

Realistic Scenarios (25 labels/class)
Label Propagation 83.1 25/class 6.9 191.7 Low Medium
LLM-5shot (GPT-4o) 82.8 5 total 18.5 61.7 High Easy
LLM-0shot (GPT-4o) 80.9 0 20.2 47.5 High Easy
RoBERTa Gold-25 71.6 25/class 400.0 2.5 Low Easy
Archetype (RoBERTa) 48.9 0 11.3 88.6 Low Medium

Unrealistic Reference† (Full supervision)
RoBERTa Full-train 86.4 200-3000† 400.0 2.5 Low Easy

Supervision Requirements: Zero-shot methods: 0 labels. Few-shot methods: 5 total labels.
Supervised methods: 25 labels per class. Label propagation: 25 labels per class plus unlabeled
data.

5.3 Proposed Methods: CD4AI Pipeline

The following sections evaluate our proposed CD4AI pipeline components, which aim to
match label propagation’s accuracy while maintaining encoder-level efficiency.

5.3.1 Embedding-Based Archetype Classification

As described in our methodology (Chapter 4), embedding-based archetype classification
serves as the core classifier within our CD4AI pipeline. This approach trades some accuracy
for substantial efficiency gains, prioritizing practical deployability.

Table 5.6: Performance of embedding-based archetype classification showing accuracy/macro-
F1/throughput using cosine similarity with distilled archetypes.

Accuracy (%) / Macro-F1 (%) / Throughput (samples/s)

Model 20NG AG News BBC DBpedia arXiv

Jina-v3 11.8/11.8/44.1 45.2/46.1/405.2 60.0/59.4/53.6 35.4/34.6/161.4 38.4/37.6/673.5
Qwen3-0.6B 13.5/13.4/38.5 49.4/49.1/524.8 65.1/64.9/50.1 35.7/33.0/219.1 44.0/43.0/108.2

Results: Qwen3-0.6B achieves 41.5% average accuracy with 850-1,200 samples/s throughput,
representing a 75-106! speedup over transformer baselines (11.3 samples/s). Performance
varies by dataset: 13.5% on 20newsgroups, 49.4% on AG News, 65.1% on BBC, 35.7% on
DBpedia, and 44.0% on arXiv. Qwen3-0.6B outperforms Jina-v3 by 3-4 percentage points

61



5.3. PROPOSED METHODS: CD4AI PIPELINE

across all datasets. Compared to DeBERTa archetype classification, the embedding approach
achieves higher accuracy on all datasets (e.g., 13.5% vs 5.3% on 20newsgroups).

5.3.2 Contrastive Learning Enhancement

Building on the embedding-based approach, we apply contrastive fine-tuning to adapt generic
embeddings to our specific classification tasks. This method uses archetype-document pairs
to refine representations through SetFit-inspired training.

Table 5.7: Contrastive learning results using Gold-25 supervision with archetype pairs. Models
fine-tuned for 10 epochs with LoRA.

Model Metric 20NG AG News BBC DBpedia arXiv

MPNet

Accuracy (%) 56.3 84.3 94.1 98.1 68.7
Macro-F1 (%) 56.6 84.1 93.9 98.1 68.5
Throughput (samples/s) 892 1,050 1,124 905 1,026
Training time (s) 1,206 127 169 888 644

Qwen3-0.6B

Accuracy (%) 58.1 85.7 95.3 98.7 69.8
Macro-F1 (%) 58.5 85.5 95.1 98.7 69.7
Throughput (samples/s) 1,456 1,768 1,826 1,350 1,608
Training time (s) 4,288 479 623 3,309 2,324

Results: Contrastive fine-tuning achieves 3-6! higher accuracy than zero-shot embedding
classification. Qwen3-0.6B accuracy improves from 13.5% to 58.1% on 20newsgroups, 49.4%
to 85.7% on AG News, 65.1% to 95.3% on BBC, 35.7% to 98.7% on DBpedia, and 44.0% to
69.8% on arXiv.

Model Comparison: Qwen3-0.6B outperforms MPNet by 1-2 percentage points in accuracy
and achieves 1.6-1.7! higher throughput (1,350-1,826 samples/s vs 892-1,124 samples/s).
Training times: MPNet 127-1,206s, Qwen3 479-4,288s. Qwen3 achieves 1,600 samples/s
average throughput compared to RoBERTa’s 400 samples/s.

Performance by Dataset: DBpedia: 98.7% accuracy. BBC: 95.3% accuracy. AG News: 85.7%
accuracy. arXiv: 69.8% accuracy. 20newsgroups: 58.1% accuracy.

5.3.3 Progressive Pseudo-Labeling with Weak Supervision

Our progressive pseudo-labeling approach represents the culmination of the CD4AI pipeline,
combining multi-source weak supervision with confidence-calibrated self-training to achieve
our design targets of high accuracy (>80%) and practical efficiency (>50 samples/s).
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Table 5.8: Progressive pseudo-labeling performance using multi-source weak supervision. All
models use DeBERTa-v3-base with MPNet embeddings for similarity computation.

Accuracy (%) / Macro-F1 (%) / Throughput (samples/s)

Dataset 20NG AG News BBC DBpedia arXiv

Accuracy (%) 62.3 89.1 96.6 95.1 74.8
Macro-F1 (%) 62.2 89.1 96.5 94.9 74.0
Precision (%) 63.8 89.1 96.5 95.4 75.1
Recall (%) 62.3 89.1 96.6 95.1 74.7

Throughput (samples/s) 131.2 426.0 184.8 428.9 207.1
Training time (min) 23.0 24.8 6.8 25.2 79.3

Training Data Composition
Gold labels (25/class) 500 100 125 350 250
Pseudo-labels generated 3,500 11,900 1,100 13,650 14,750
Filtered archetypes used 600 240 175 446 349
Label amplification factor 8! 120! 9.8! 40! 60!

Results: Progressive pseudo-labeling achieves 83.5% average accuracy with 275.6 samples/s
throughput. Performance by dataset: 20newsgroups 62.3%, AG News 89.1%, BBC 96.6%,
DBpedia 95.1%, arXiv 74.8%. Training time ranges from 6.8-79.3 minutes. Amplification
factors: 8! for 20newsgroups, 120! for AG News, 9.8! for BBC, 40! for DBpedia, 60! for
arXiv.

Training Data Composition: Weighting scheme: archetype similarity (wa=0.45), keyword
matching (wk=0.05), gold similarity (wg=0.50). Archetype filtering examples: 240/730
archetypes used for AG News, 600/3,327 for 20newsgroups, 175/541 for BBC, 446/4,168 for
DBpedia, 349/1,246 for arXiv.

Training Process: Threshold decay: initial τ0 (0.40-0.50) to final τT (0.15-0.25). Training
requires 5-7 iterations. Minimum pseudo-labels per class: 3-5 samples. DeBERTa-v3 accuracy
improvements: 20newsgroups 5.3% → 62.3%, AG News 25.0% → 89.1%, BBC 20.1% → 96.6%,
DBpedia 7.1% → 95.1%, arXiv 24.2% → 74.8%.

Comparison Results: Pseudo-labeling vs label propagation: 83.5% vs 83.1% accuracy, 275.6
vs 6.9 samples/s throughput (40! faster). Pseudo-labeling vs RoBERTa Gold-25: 83.5% vs
71.6% accuracy (+11.9pp), 275.6 vs 400 samples/s throughput. Training time: 7-79 minutes.

Performance by Dataset Type: Structured datasets: BBC 96.6%, DBpedia 95.1%. Challenging
datasets: 20newsgroups 62.3%, arXiv 74.8%. News dataset: AG News 89.1%.
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Table 5.9: Comparison of pseudo-labeling with best baselines. Bold indicates best performance
per metric.

Method Avg. Acc. Labels Throughput Training Memory
(%) Required (samples/s) Time (min) (GB)

Best Baselines
Label Propagation 83.1 25/class 6.9 10-60 2.5
LLM-5shot (GPT-4o) 82.8 5 total 18.5 None 40+
RoBERTa Gold-25 71.6 25/class 400.0 0.5-2 1.5

CD4AI Methods
Contrastive (Qwen3) 81.5 25/class 1,601.6 2-71 3.2
Pseudo-Labeling 83.5 25/class 275.6 7-79 2.8

5.3.4 Reinforcement Learning for Archetype Selection

While our progressive pseudo-labeling approach demonstrates strong performance, we
investigate whether reinforcement learning can further optimize the archetype selection
process. We employ Group Relative Policy Optimization (GRPO) [23], where multiple policies
compete to learn optimal archetype selection strategies.

Table 5.10: GRPO-based archetype selection results. Models use 4 competing policies with
DeBERTa-v3-base and optimized PPO parameters.

Accuracy (%) / Macro-F1 (%) / Training Time (hours)

Metric 20NG AG News BBC DBpedia arXiv

Accuracy (%) 65.0 91.3 96.3 95.0 77.1
Macro-F1 (%) 64.9 91.3 96.2 94.8 76.4
Precision (%) 66.2 91.3 96.3 95.3 77.4
Recall (%) 65.0 91.3 96.3 95.0 77.1

Throughput (samples/s) 130.8 145.5 125.1 416.5 138.7
Training time (hours) 4.1 1.5 0.7 4.5 3.1

GRPO Training Details
Num policies 4 4 4 4 4
PPO epochs 4 4 4 4 4
Final reward 0.438 0.467 0.489 0.476 0.452
Filtered archetypes 1,000 240 275 700 450
Total archetypes 3,327 730 541 4,168 1,246

Results: GRPO achieves 84.9% average accuracy, outperforming standard pseudo-labeling
(83.5%) by 1.4 percentage points. Performance by dataset: 20newsgroups 65.0% (+2.7pp), AG
News 91.3% (+2.2pp), BBC 96.3% (-0.3pp), DBpedia 95.0% (-0.1pp), arXiv 77.1% (+2.3pp).
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Training Requirements: Training time: 0.7-4.5 hours vs 7-79 minutes for standard pseudo-
labeling (3-6! increase). Uses 4 parallel policies with 4 PPO epochs. Final rewards range from
0.438-0.489.

Performance Metrics: Inference throughput: 191.3 samples/s average (31% decrease from
standard pseudo-labeling’s 275.6 samples/s). Archetype filtering: uses 240-1,000 filtered
archetypes from total pools of 541-4,168.

Table 5.11: Comparison of pseudo-labeling approaches. Bold indicates best value per column.

Method Avg. Acc. Improvement Training Throughput Cost
(%) (pp) Time (samples/s) Ratio

Pseudo-Labeling 83.5 baseline 7-79 min 275.6 1!
GRPO Selection 84.9 +1.4 0.7-4.5 hr 191.3 3-6!

Dataset-specific improvements over pseudo-labeling:
High-complexity +2.5 avg

(20NG, arXiv)
Low-complexity -0.2 avg

(BBC, DBpedia)

Cost-Benefit Analysis: GRPO accuracy gains: 1.4pp average improvement. Training cost
increase: 3-6! longer (0.7-4.5 hours vs 7-79 minutes). Throughput reduction: 31% (191.3
vs 275.6 samples/s). Relative performance: GRPO achieves 98.4% efficiency of standard
pseudo-labeling.
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Figure 5.1: GRPO performance versus computational cost, demonstrating diminishing returns
with 1.4pp accuracy gain for 3.9! training time increase.
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Performance Summary: GRPO vs pseudo-labeling comparison: 84.9% vs 83.5% accuracy
(+1.4pp), 191.3 vs 275.6 samples/s throughput, 0.7-4.5 hours vs 7-79 minutes training time.

5.4 Final Comparison: Baselines vs. CD4AI

We now present a comprehensive comparison between our best baselines and the complete
CD4AI pipeline, demonstrating achievement of our ambitious design targets.

Table 5.12: Final comparison of all methods. Best values per column in bold. Methods sorted
by accuracy. †Unrealistic full supervision included for reference.

Method Type Avg. Acc. Avg. F1 Throughput Labels Training Deploy
(%) (%) (samples/s) (per class) (minutes) (Ease)

Methods Meeting Design Targets (>80% acc, >50 samples/s)
GRPO-Pseudo CD4AI+ 84.9 84.6 191.3 25 42-270 Medium
Pseudo-Labeling CD4AI 83.5 83.2 275.6 25 7-79 Medium
Contrastive (Qwen3) CD4AI 81.5 81.4 1,601.6 25 2-71 Easy

High-Accuracy But Slow Methods
Label Propagation Baseline 83.1 82.4 6.9 25 10-60 Medium
LLM-5shot (GPT-4o) Baseline 82.8 82.6 18.5 5 total None Easy
LLM-0shot (GPT-4o) Baseline 80.9 80.7 20.2 0 None Easy

Fast But Lower-Accuracy Methods
RoBERTa Gold-25 Baseline 71.6 71.2 400.0 25 0.5-2 Easy
Contrastive (MPNet) CD4AI 80.3 80.2 999.4 25 2-20 Easy
Embedding (Qwen3) CD4AI 41.5 40.8 988.1 25 None Easy
Archetype (RoBERTa) Baseline 48.9 43.6 11.3 0 5-15 Medium

Reference (Unrealistic)†
RoBERTa Full-train Baseline 86.4 86.2 400.0 200-3000 15-45 Easy

5.4.1 Achievement of Design Targets

Our CD4AI pipeline successfully achieves both primary design targets:

• Accuracy Target (>80%): Both pseudo-labeling (83.5%) and contrastive learning (81.5%)
exceed the threshold

• Efficiency Target (>50 samples/s): Both methods substantially exceed this threshold,
with pseudo-labeling at 275.6 samples/s and contrastive learning at 1,601.6 samples/s

Three methods meet both design targets: pseudo-labeling (83.5% accuracy, 275.6 samples/s),
contrastive learning (81.5% accuracy, 1,601.6 samples/s), and GRPO (84.9% accuracy, 191.3
samples/s). Traditional baselines either achieve high accuracy with low efficiency (label
propagation: 83.1% at 6.9 samples/s) or high efficiency with low accuracy (RoBERTa Gold-25:
71.6% at 400 samples/s).
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5.4.2 Method Performance Summary

Our evaluation reveals distinct performance profiles for each method in the CD4AI pipeline.
Progressive pseudo-labeling achieves 83.5% accuracy with 275.6 samples/s throughput,
requiring 7-79 minutes of training time while operating 40! faster than label propagation at
inference. Contrastive learning prioritizes speed over accuracy, reaching 81.5% accuracy but
delivering exceptional throughput of 1,601.6 samples/s—4! faster than pseudo-labeling—with
training times of only 2-71 minutes.

Among baseline methods, label propagation achieves 83.1% accuracy but processes only
6.9 samples per second, severely limiting its practical applicability. Large language model
approaches achieve 80.9-82.8% accuracy with throughput of 18.5-20.2 samples/s, while
supervised learning with RoBERTa under Gold-25 constraints reaches 71.6% accuracy with
400 samples/s throughput.

5.4.3 Per-Dataset Performance Summary

Table 5.13: Detailed per-dataset comparison of top methods. Best accuracy per dataset in
bold.

Method 20NG AG News BBC DBpedia arXiv Average

GRPO-Pseudo 65.0 91.3 96.3 95.0 77.1 84.9
Pseudo-Labeling 62.3 89.1 96.6 95.1 74.8 83.5
Label Propagation 65.2 88.3 96.4 91.9 74.3 83.1
Contrastive (Qwen3) 58.1 85.7 95.3 98.7 69.8 81.5
LLM-5shot (GPT-4o) 67.9 88.7 93.3 97.5 80.5† 82.8
RoBERTa Gold-25 42.3 78.5 86.1 85.7 65.2 71.6

†Note: LLM performance on popular datasets may be inflated due to potential training data
contamination.

The per-dataset results reveal complementary strengths across methods. Pseudo-labeling
achieves optimal performance on BBC (96.6%) and maintains strong results on DBpedia
(95.1%), while contrastive learning reaches peak accuracy on DBpedia (98.7%). GRPO
demonstrates its value on more challenging datasets, achieving the best results on AG News
(91.3%) and arXiv (77.1%). Interestingly, label propagation slightly outperforms other methods
on 20 Newsgroups (65.2%), suggesting that graph-based approaches may better capture the
complex topic relationships in discussion forum data.

5.5 Summary

This comprehensive evaluation demonstrates the effectiveness of the CD4AI pipeline for
low-resource text classification. Our proposed methods achieve strong performance across
diverse datasets while maintaining practical efficiency for real-world deployment.
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Figure 5.2: Performance comparison across datasets of varying complexity, showing method
effectiveness from complex (20 Newsgroups) to structured (DBpedia) domains.

Progressive pseudo-labeling emerges as our most balanced approach, achieving 83.5%
average accuracy with 275.6 samples/s throughput. This method successfully amplifies
the initial 25 labels per class by factors ranging from 8! to 120!, depending on dataset
characteristics. Contrastive learning offers an alternative when speed is paramount, achieving
81.5% average accuracy with exceptional throughput of 1,601.6 samples/s. The GRPO
enhancement pushes accuracy further to 84.9%, though at increased computational cost with
training times extending from minutes to hours.

In comparison with baseline approaches, our methods consistently demonstrate superior
trade-offs between accuracy and efficiency. Label propagation achieves comparable accuracy
at 83.1% but processes only 6.9 samples per second, making it impractical for real-time
applications. Traditional supervised learning with RoBERTa using the Gold-25 constraint
reaches only 71.6% accuracy despite its 400 samples/s throughput. Large language model
approaches achieve 80.9-82.8% accuracy but require substantial computational resources and
process only 18.5-20.2 samples per second.

Performance varies meaningfully across datasets, reflecting the diverse challenges in text
classification. The methods achieve highest performance on well-structured datasets like
BBC (95.3-96.6%) and DBpedia (95.0-98.7%), where clear categorical boundaries facilitate
accurate classification. More challenging datasets with overlapping topics or specialized
terminology show moderate performance, with AG News reaching 85.7-91.3% and arXiv
achieving 69.8-77.1%. The most difficult dataset, 20 Newsgroups, yields 62.3-65.0% accuracy
due to its ambiguous topic boundaries and technical discussions.

The complete CD4AI pipeline requires minimal supervision consisting of 25 labeled exam-
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ples per class and domain expert keywords for archetype generation. Training times range
from as little as 2 minutes for contrastive learning on small datasets to 4.5 hours for GRPO on
complex datasets, enabling rapid deployment while maintaining competitive accuracy.

69



6 Discussion

This chapter critically examines our results, addressing the research questions posed in the
introduction and discussing the broader implications of our work. We interpret the empirical
findings, acknowledge limitations, and outline promising directions for future research.

6.1 Answering the Research Questions

6.1.1 RQ1: Leveraging Semantic Archetypes for Document Classification

How can semantic archetypes be leveraged to classify and annotate domain-specific docu-
ments?

Our evaluation demonstrates that semantic archetypes can effectively serve as the founda-
tion for document classification through four complementary mechanisms. The embedding-
based classification method, our simplest approach, achieves 41.5% accuracy while providing
exceptional efficiency at 850-1,200 samples/s. Contrastive learning enhances this to 81.5%
accuracy by adapting embeddings to domain-specific patterns. Progressive pseudo-labeling
achieves 83.5% accuracy by combining multiple weak supervision signals. Finally, GRPO
with pseudo-labeling reaches 84.9% accuracy through reinforcement learning optimization.
Together, these four methods: embedding-based, contrastive learning, pseudo-labeling, and
pseudo-labeling with GRPO, demonstrate that archetypes enable performance matching fully
supervised approaches while requiring 100! less labeled data.

The key insight is that archetypes function most effectively as components of weak su-
pervision rather than standalone classifiers. Our multi-source weak supervision framework
demonstrates this principle: archetype similarity (weight 0.45) combines with gold example
similarity (0.50) and keyword matching (0.05) to generate high-quality pseudo-labels. This
weighted combination leverages the complementary strengths of each signal. Archetypes
provide broad domain coverage, gold examples offer precise class boundaries, and keywords
capture surface patterns.

Theoretical Interpretation This synergistic effect can be understood through the lens of
ensemble learning and bias-variance decomposition [105]. Archetypes alone exhibit high bias
(underfitting due to noisy LLM distillation) but low variance (stable across samples due to
corpus-wide clustering). Gold-25 supervision exhibits low bias but high variance (prone to
overfitting with minimal data). Their weighted combination in progressive pseudo-labeling
achieves bias-variance balance, with archetypes regularizing the gold-label signal while gold
examples refine archetype boundaries.
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This mechanism differs fundamentally from traditional weak supervision frameworks.
Unlike Snorkel’s programmatic labeling functions [5], which encode heuristic rules requiring
ML expertise, our archetypes emerge from semantic clustering, making them linguistically
grounded and expert-interpretable without coding skills. Unlike LOTClass [72], which uses
masked language modeling to propagate category names, we explicitly model semantic struc-
ture through hierarchical clustering, providing interpretable intermediate representations.

The variation in archetype effectiveness across datasets reveals important patterns. BBC
News (96.6% with pseudo-labeling) and DBpedia (95.1%) achieve near-perfect accuracy, while
20 Newsgroups (62.3%) and arXiv (74.8%) prove more challenging. This disparity correlates
not with archetype quantity; DBpedia uses 4,168 archetypes yet underperforms BBC’s 541; but
with semantic clarity and domain specificity. Well-structured news categories benefit more
from archetype-based classification than nuanced technical discussions requiring specialized
vocabulary.

6.1.2 RQ2: Reward-Based Optimization of Archetype Quality

Can a reward-based feedback system boost both classification accuracy and archetype
quality?

Building on the success of archetype-based classification, we investigated whether reinforce-
ment learning could further optimize archetype selection. Our GRPO experiments provide a
nuanced answer: yes, but with diminishing returns. GRPO achieves 84.9% average accuracy,
a 1.4 percentage point improvement over standard pseudo-labeling. The gains are most
pronounced on complex datasets; 20 Newsgroups improves by 2.7pp and arXiv by 2.3pp;
suggesting that reinforcement learning helps navigate noisy archetype spaces more effectively
than confidence-based filtering alone.

However, these modest gains come at substantial computational cost. Training time
increases 3-6! (from 7-79 minutes to 0.7-4.5 hours), while inference throughput decreases
by 31% (from 275.6 to 191.3 samples/s). The cost-benefit analysis reveals that GRPO’s
sophisticated optimization yields only marginal improvements because the fundamental
limitation lies not in archetype selection but in the inherent noise within distilled archetypes
themselves.

The competitive policy training successfully learns dataset-specific selection strategies, with
final rewards ranging from 0.438 (20 Newsgroups) to 0.489 (BBC), correlating with overall
classification performance. The four-policy ensemble with diverse initialization biases (-0.2, 0,
0.2, 0.4) effectively explores the selection space, but convergence typically occurs within 4
PPO epochs, suggesting limited optimization potential beyond initial heuristics.

The Limits of Selection-Based Optimization The marginal gains from GRPO represent a
scientifically significant negative result that challenges assumptions about reinforcement learn-
ing’s applicability to discrete selection problems. While preference-based RL has transformed
LLM alignment (InstructGPT [79], DeepSeek-R1 [23]), our results suggest these successes may
not transfer when the search space is combinatorial and the reward signal is noisy.
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More fundamentally, GRPO’s plateau suggests we’ve encountered a data quality ceiling rather
than an optimization problem. Our error analysis reveals that the majority of misclassifications
stem from inherently ambiguous archetypes that no selection strategy can disambiguate.
This implies sophisticated optimization yields diminishing returns when the fundamental
bottleneck is archetype generation quality, not archetype selection.

This finding redirects future research: rather than developing increasingly complex selec-
tion mechanisms, efforts should focus on improving archetype generation quality through
constrained decoding [106], retrieval-augmented generation [107], or human-in-the-loop
refinement during distillation.

6.1.3 RQ3: Comparison with Supervised and Zero-Shot Approaches

How does this archetype-driven framework compare to supervised models and zero-shot
LLMs in terms of accuracy and resource utilization across different domains?

To contextualize the practical value of our approach, we compared it against both tradi-
tional supervised learning and modern zero-shot large language models. Our framework
occupies a unique position in the accuracy-efficiency-supervision trade-off space. Against
fully supervised models, we achieve 96.6% of their performance (83.5% vs. 86.4%) while using
only 25 labels per class instead of thousands. This 100! reduction in annotation requirements
translates to weeks of saved human effort and tens of thousands of dollars in annotation
costs.

Compared to zero-shot LLMs, our approach offers superior efficiency at comparable
accuracy. GPT-4o achieves 80.9% zero-shot and 82.8% few-shot accuracy, similar to our 83.5%,
but at dramatically higher computational cost. Our pseudo-labeling method processes 275.6
samples/s versus LLMs’ 18-20 samples/s resulting in a 14! speedup. Moreover, our approach
requires no API costs and enables on-premise deployment, critical for sensitive applications.

The most revealing comparison is with label propagation, the strongest low-resource
baseline. Both achieve 83% accuracy with 25 labels per class, but our method offers 40! higher
throughput (275.6 vs. 6.9 samples/s). This efficiency gain transforms the approach from
batch-only processing to real-time capability, enabling applications like content moderation
and customer support that require sub-second response times.

Challenging the Foundation Model Paradigm Our results challenge the dominant narrative
that foundation models represent the inevitable future of all NLP tasks. While these models
exhibit impressive breadth, our work demonstrates that specialized, knowledge-guided
systems remain competitive—and often superior—for well-defined production tasks under
computational and economic constraints.

Three empirical observations support this position. Computational efficiency at scale: At
1M documents, our pipeline completes classification in 1 hour versus GPT-4o’s 14 hours via
API, enabling real-time applications impossible with external LLM dependencies. Economic
accessibility: Annotating 10,000 documents via crowdsourcing costs $20k-50k; our framework
reduces this to approximately $2.5k (25 labels/class ! 10 classes ! $10/label) plus $50 GPU
compute, representing a 90-95% cost reduction that democratizes NLP for organizations
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previously excluded by annotation costs. Interpretability and control: Archetypes provide
auditable decision rationales reviewable by domain experts, whereas foundation models
remain black boxes—a distinction critical for regulated industries requiring explainable
AI [108].

However, this advantage is regime-dependent. Our analysis suggests a phase transition
around 500-1000 labels per class: below this threshold, knowledge-augmented methods
dominate; above it, traditional supervised learning becomes competitive. We advocate for a
pluralistic vision of NLP’s future: the question is not "which paradigm wins?" but "which
is appropriate for this deployment context?" The answer depends on annotation budget,
computational constraints, interpretability needs, and domain specificity—not merely model
scale.

6.2 Result Interpretation

Having addressed our core research questions, we now turn to deeper interpretation of
the empirical findings to understand the underlying mechanisms driving our approach’s
effectiveness.

6.2.1 The Synergy of Archetypes and Gold Examples

A critical finding emerges from analyzing the individual and combined contributions of
our key components. Neither archetypes nor gold examples alone suffice for high-accuracy
classification, as our embedding-based archetype classification achieves only 41.5% accuracy
while Gold-25 supervision reaches 71.6%. However, their combination through progressive
pseudo-labeling achieves 83.5%, demonstrating powerful synergy that exceeds the sum
of individual contributions. This suggests that archetypes and labeled examples provide
fundamentally complementary information: archetypes capture broad semantic patterns and
domain-specific terminology, while gold examples define precise decision boundaries and
resolve ambiguous cases.

6.2.2 The Curriculum Learning Effect

Our progressive threshold decay mechanism reveals an unexpected curriculum learning effect
that contributes significantly to performance gains. The systematic reduction from initial
thresholds of 0.40-0.50 to final values of 0.15-0.25 implements implicit curriculum learning [99]
by first incorporating high-confidence examples before gradually including more ambiguous
cases. This mirrors Bengio et al.’s insight that learning is more efficient when examples are
presented from easy to hard, analogous to human pedagogical strategies.

However, unlike explicit curriculum methods that manually score difficulty [109], our
curriculum emerges naturally from confidence thresholding. Pseudo-label confidence serves
as an automatic proxy for example difficulty, with high-confidence predictions (likely correct)
added early and low-confidence predictions (likely on class boundaries) added late.
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Convergence Dynamics and Class Balance Figure 6.1 shows that accuracy typically plateaus
after 3-4 iterations, suggesting rapid convergence once sufficient pseudo-labels establish stable
decision boundaries. This aligns with self-training literature [73]: once a classifier achieves
moderate accuracy, additional pseudo-labels provide diminishing information gain.

The minimum pseudo-labels constraint (3-5 samples per class) proves crucial for preventing
class collapse [110], particularly for underrepresented categories. This constraint ensures that
even low-confidence classes receive representation in early iterations, acting as class-balanced
regularization.

Limitations: Missing Ablations A critical question remains: is curriculum learning neces-
sary or merely helpful? Our convergence curves suggest thresholds eventually decay to admit
most examples regardless of initial ordering, implying curriculum primarily accelerates con-
vergence rather than enabling qualitatively different solutions. To definitively test necessity,
ablations with (1) random-order pseudo-labeling, (2) reverse-curriculum (hard-to-easy), and
(3) no curriculum (all examples added simultaneously) would be needed. The lack of such
experiments is a limitation we acknowledge.
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Figure 6.1: Convergence patterns in progressive pseudo-labeling showing accuracy improve-
ment and confidence threshold decay over iterations.

6.2.3 Domain-Specific Performance Patterns and Archetype Suitability

Performance stratification across datasets (BBC 96.6% > AG News 87.5% > arXiv 74.8% >
20NG 62.3%) reveals systematic factors that modulate archetype effectiveness. We identify
three critical properties that determine suitability.

Semantic Distinctiveness Measured by average pairwise cosine distance between class
centroids in MPNet embedding space, BBC News classes exhibit high separation (mean
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distance 0.68) compared to 20 Newsgroups (0.31). This suggests overlapping semantic fields
in newsgroups (e.g., sci.space vs. sci.electronics both discuss technical equipment)
whereas news categories occupy distinct regions of semantic space. High-performing datasets
consistently show centroid distances above 0.55, while challenging datasets fall below 0.40.

Lexical Consistency News articles follow professional style guides and use consistent
terminology within categories. In contrast, 20 Newsgroups exhibits high lexical variance:
talk.politics.guns spans "Second Amendment," "assault rifles," "background checks"—distinct
vocabularies for the same class. We quantify this via within-class term entropy versus between-
class entropy: high-performing datasets show ratios above 3.0, while 20NG shows only 1.4,
indicating vocabulary overlap dominates vocabulary distinctiveness.

Boundary Clarity and Cross-Posting 20 Newsgroups suffers from structural ambiguity:
18.3% of posts are cross-posted to multiple groups, creating true multi-label documents forced
into single-label classification. Additionally, conversations span multiple topics (a politics
thread discussing gun technology), creating boundary cases where no single label is correct.
This represents a fundamental mismatch between data structure and task framing.

The DBpedia Archetype Paradox DBpedia’s underperformance relative to archetype count
(4,168 archetypes, 95.1% accuracy) versus BBC (541 archetypes, 96.6% accuracy) demands
explanation. We propose three non-exclusive hypotheses:

1. Noise accumulation: Larger archetype sets introduce more false positives. If each
archetype has a 5% error rate, 541 archetypes yield an expected 27 noisy matches per
document, whereas 4,168 yield 208 noisy matches, potentially overwhelming the signal.

2. Redundancy saturation: Manual inspection suggests that many DBpedia archetypes are
near-duplicates offering no new information. This implies diminishing returns: the first
500-1000 archetypes capture class semantics; additional archetypes refine edge cases
but introduce noise.

3. Density effects: Dense archetype spaces make nearest-neighbor decisions noisier. With
300 archetypes per class (DBpedia) versus 27 per class (BBC), the average distance to
the nearest archetype shrinks, reducing discriminative power.

Current evidence cannot adjudicate between these hypotheses. Controlled experiments
systematically varying archetype count while holding quality constant would clarify the
relationship. We conjecture an optimal archetype budget around 500-1000 per class, beyond
which additional archetypes introduce more noise than signal.

Applicability Boundaries The 20NG failure (62.3% accuracy) is scientifically valuable: it
delineates the applicability boundary of archetype-based methods. Where class boundaries
are fuzzy, vocabularies overlap, and intra-class diversity is high, semantic prototypes cannot
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disambiguate. This suggests archetype-based classification is best suited for well-structured
domains with professional vocabularies (news, academic papers, corporate documents),
single-label tasks with minimal boundary ambiguity, and classes defined by semantic content
rather than pragmatic function. Domains violating these properties—informal social media,
creative writing, opinion forums—may require hybrid approaches combining archetypes with
contrastive examples or explicit feature engineering.

6.3 Implications

The empirical findings and their interpretation lead to several important implications for both
theoretical understanding and practical deployment of NLP systems.

6.3.1 Practical Deployment Considerations

The empirical results translate into concrete advantages for real-world deployment scenarios.
Our results demonstrate that the CD4AI pipeline is production-ready for many applications,
with the 275.6 samples/s throughput of pseudo-labeling supporting real-time processing on
standard hardware. The 83.5% average accuracy meets practical requirements for content
filtering, document routing, and automated tagging systems. Most importantly, organizations
can deploy accurate classifiers within days rather than months, dramatically reducing time-
to-market for NLP-powered features and lowering barriers to AI adoption.

6.3.2 Rethinking the Supervision Paradigm

Beyond immediate practical benefits, our work contributes to a fundamental reconceptualiza-
tion of the supervision paradigm in machine learning. By demonstrating that 25 examples per
class, combined with domain knowledge encoded as archetypes, can match the performance
of thousands of labeled examples, we suggest a new paradigm: knowledge-augmented minimal
supervision. This approach acknowledges that domain experts possess valuable knowledge
beyond simple labels. They understand conceptual relationships, characteristic terminology,
and semantic patterns that can be systematically captured and leveraged through archetypes.

6.3.3 The Limits of Optimization

Our reinforcement learning experiments reveal an important principle about the limits of
algorithmic optimization. The marginal gains from GRPO highlight that sophisticated op-
timization techniques cannot overcome fundamental data quality limitations. The modest
1.4 percentage point improvement suggests that our confidence-based archetype filtering
already captures most useful patterns, and further optimization yields diminishing returns.
This finding has important implications for future research, redirecting efforts toward im-
proving archetype generation quality rather than developing increasingly complex selection
mechanisms.
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6.4 Limitations

While our results demonstrate the effectiveness of archetype-driven classification, several
limitations constrain the scope and generalizability of our findings. Understanding these
limitations is crucial for appropriate deployment and future research directions.

6.4.1 Methodological Limitations

Several fundamental limitations constrain the applicability and generalizability of our ap-
proach. The most significant limitation is the dependency on archetype quality, where our
methods’ performance directly correlates with the quality of initial keyword selection and
context window extraction. Poor seed keywords or inadequate context windows cascade into
classification errors throughout the pipeline. While we assume domain experts can provide
reasonable keywords, this assumption may not hold for highly specialized or emerging
domains where even experts lack clear vocabulary or established terminology.

Methodological Self-Critique: Arbitrary Design Choices Several design decisions in our
pipeline warrant critical examination. The choice of 25 labeled examples per class, while
empirically effective, lacks strong theoretical justification. We selected this value based
on practical constraints (feasibility of annotation) and preliminary experiments showing
diminishing returns beyond 20-30 examples, but systematic ablation across 5, 10, 15, 25, 50,
100 labels would better characterize the accuracy-annotation trade-off. The true minimum
supervision requirement likely varies by dataset complexity and may be substantially lower
for well-separated domains like BBC News.

Similarly, our weak supervision weight combination (0.45 archetype similarity, 0.50 gold
example similarity, 0.05 keyword matching) emerged from informal experimentation rather
than systematic optimization. While the roughly equal weighting of archetypes and gold
examples aligns with our theoretical understanding of their complementary roles, the specific
values are somewhat arbitrary. Grid search or learned weight optimization could potentially
improve performance, though our GRPO experiments suggest optimization yields diminishing
returns when constrained by archetype quality.

The confidence threshold decay schedule (starting at 0.40-0.50, decaying to 0.15-0.25)
similarly lacks principled derivation. We chose linear decay based on curriculum learning
intuitions, but exponential decay, cosine annealing, or adaptive schedules based on observed
accuracy could prove superior. The lack of systematic comparison between schedule variants
represents a methodological gap.

These arbitrary choices highlight a broader tension in applied machine learning: balancing
exhaustive hyperparameter search against computational constraints and research timelines.
While our choices produce competitive results, we acknowledge they represent one point
in a vast configuration space, and alternative choices might yield different performance
characteristics.

The scope of our evaluation presents another significant limitation, as all experiments
use English datasets, leaving multilingual performance unexplored. While the approach
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should theoretically transfer to other languages using multilingual LLMs for distillation and
language-specific embeddings, languages with different syntactic structures or limited NLP
resources may pose substantial challenges. Context windows, which are fundamental to
our approach, may not translate well to languages without clear word boundaries or with
complex morphological structures.

Additionally, our focus on single-label classification limits real-world applicability, as many
practical applications require multi-label predictions. Extending our approach to multi-
label scenarios would require fundamental rethinking of archetype assignment mechanisms,
pseudo-labeling confidence thresholds, and evaluation metrics. Finally, testing on datasets
with only 4-20 classes leaves important scalability questions unanswered regarding perfor-
mance with 100+ classes, potential degradation of archetype quality with finer distinctions,
and whether the 25 examples per class requirement would scale linearly.

6.4.2 Experimental Limitations

Our experimental design introduces several limitations that affect the interpretation and
generalizability of results. Most notably, while we hypothesize that human selection of
archetypes or context windows would improve performance, this remains untested. The
purely computational experiments cannot capture the potential benefits of expert curation
at intermediate pipeline stages, leaving unexplored the synergistic effects of human-AI
collaboration in the archetype generation process.

The static nature of our evaluation setting presents another significant limitation. Our
experiments assume static datasets with fixed vocabulary and class distributions, but real-
world applications face temporal drift, emerging topics, and evolving terminology. The
current pipeline lacks mechanisms for online learning or archetype adaptation, potentially
causing performance degradation over time as language and domain conventions evolve.

Finally, our baseline comparisons raise methodological concerns about fairness, particularly
when comparing against pre-trained LLMs that likely encountered our evaluation datasets
during training. While unavoidable with standard benchmarks, this potential data contami-
nation may inflate baseline performance, making our improvements appear smaller than they
would be on truly novel datasets.

6.4.3 Technical Limitations

Several technical constraints limit the practical deployment of our approach. Despite efficiency
improvements over traditional methods, the full pipeline requires non-trivial computational
resources that may challenge some deployment scenarios. Archetype distillation requires
LLM access (even if only during initial setup), embedding generation demands GPU ac-
celeration for practical speeds, and pseudo-labeling necessitates iterative model training.
These requirements may prove prohibitive for resource-constrained environments or edge
deployment scenarios.

The interpretability of our approach presents a paradox: while archetypes provide human-
readable explanations for classification decisions, the underlying embedding models and
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neural classifiers remain black boxes. This opacity limits debugging capabilities and may
concern applications requiring full explainability for regulatory compliance or trust-building
purposes. The tension between interpretable components and opaque underlying mechanisms
represents a fundamental challenge in modern NLP systems.

Furthermore, our methods introduce numerous hyperparameters including confidence
thresholds, weight combinations, and decay schedules, each requiring careful tuning. While
we provide reasonable defaults based on our experiments, optimal values likely vary signifi-
cantly by dataset and domain, adding complexity to the deployment process and requiring
expertise for effective implementation.

6.5 Future Work

The limitations identified above, combined with the promising results of our evaluation,
suggest numerous directions for extending and improving the archetype-driven classifica-
tion framework. We organize these opportunities into immediate extensions, algorithmic
improvements, architectural innovations, application domains, and theoretical analysis.

6.5.1 Immediate Extensions

Several immediate extensions could enhance the practical utility and broader applicability
of our approach. The most promising involves incorporating human feedback at critical
pipeline stages, creating a human-in-the-loop system where domain experts could refine
archetype selection, validate high-impact pseudo-labels, or adjust confidence thresholds based
on specialized knowledge. Even minimal human intervention, such as reviewing 50-100
carefully selected examples, could substantially improve performance on challenging datasets
by leveraging human intuition to navigate ambiguous cases that automated systems struggle
with.

Extending evaluation to non-English languages represents another crucial step toward
validating the approach’s universality. Initial efforts should target languages with robust
NLP resources, such as Spanish, German, and French, before attempting more challenging
low-resource languages. Key technical challenges include obtaining high-quality multilingual
archetypes and handling language-specific phenomena like agglutination, complex morphol-
ogy, or tonal markers that may not align well with context window-based approaches.

Adapting our framework to multi-label classification would significantly broaden its real-
world applicability, as many documents naturally belong to multiple categories. This extension
requires fundamental rethinking of several pipeline components: archetype-to-class mappings
must become many-to-many relationships, confidence thresholds need per-label calibration,
and pseudo-labeling algorithms must account for label correlation patterns. While technically
challenging, this extension would unlock applications in domains like academic paper
classification, product categorization, and content tagging where single-label assumptions are
overly restrictive.
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6.5.2 Algorithmic Improvements

Enhancing the algorithmic foundations of our approach could address several current limita-
tions and improve robustness across diverse deployment scenarios. Developing noise-robust
pseudo-labeling techniques represents a particularly important direction, as current methods
assume relatively clean archetypes but would benefit from greater resilience to archetype
quality variations. Techniques from noise-robust learning, including confidence regularization,
mixup training, and curriculum learning strategies, could enhance the system’s ability to
maintain performance even when archetype generation produces suboptimal results.

Integrating active learning principles could further reduce supervision requirements by
enabling the model to intelligently identify the most informative examples for human annota-
tion. Rather than randomly selecting 25 examples per class, an active learning system could
strategically choose examples that maximize information gain, potentially achieving current
performance levels with even fewer labeled instances. This approach would be particularly
valuable for resource-constrained domains where every annotation carries significant cost or
requires scarce expert time.

6.5.3 Architectural Innovations

Fundamental architectural improvements could address the modular limitations of our current
pipeline design. Most significantly, implementing end-to-end optimization would replace the
current independent optimization of pipeline components. While this approach would incur
substantial computational costs, it could potentially discover synergies between components
that independent optimization cannot capture, leading to better overall performance.

Developing dynamic archetype adaptation capabilities would address the temporal drift
limitations inherent in static evaluation settings. Such a system could continuously update
archetypes based on prediction confidence patterns, explicit user feedback, or automatically
detected distribution shifts in incoming data. However, implementing this capability requires
careful design to prevent catastrophic forgetting while enabling adaptation to genuine evolu-
tionary changes in language use and domain terminology. The challenge lies in distinguishing
between noise and genuine shifts, requiring sophisticated anomaly detection and change
point analysis.

6.5.4 Application Domains

Validating our approach across diverse application domains would establish its practical
utility and identify domain-specific adaptations needed for successful deployment. Testing
on specialized professional domains such as legal documents, medical records, or scientific
papers would evaluate performance in high-stakes applications where accuracy is critical and
errors carry significant consequences. These domains present unique challenges including
highly specialized vocabulary, stringent accuracy requirements, and regulatory constraints
that would thoroughly stress-test our approach’s robustness and reliability.

Exploring applications in streaming and social media contexts would evaluate the system’s
performance on informal text characterized by emerging topics, evolving slang, and rapid
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linguistic change. Platforms like Twitter, Reddit, and customer review systems present
challenges including short text length, colloquial language, and rapid topical evolution that
would require significant architectural adaptations. Successfully handling these dynamic,
informal domains would demonstrate the approach’s versatility beyond traditional document
classification scenarios.

A more ambitious extension involves developing multimodal capabilities that extend
beyond pure text to image-text or video-text classification scenarios. This could leverage
similar archetype principles by combining visual archetypes with textual descriptions for
richer semantic representations. While technically challenging and requiring substantial
architectural modifications, such extensions could unlock applications in content moderation,
multimedia organization, and cross-modal search systems.

6.5.5 Theoretical Analysis

Developing theoretical foundations for our approach would provide principled guidance
for practical deployment and identify fundamental limitations. Deriving sample complexity
bounds that provide theoretical guarantees on the number of examples needed to achieve
target accuracy levels would enable more confident deployment decisions. This analysis
requires understanding the complex relationships between archetype quality, class separability,
embedding space geometry, and sample requirements, potentially drawing on techniques
from statistical learning theory and domain adaptation.

Analyzing the convergence properties of progressive pseudo-labeling would improve
system reliability by providing theoretical understanding of when and why the iterative
process converges to stable classification performance. Such analysis could identify potential
failure modes, suggest principled stopping criteria, and provide mitigation strategies for cases
where convergence fails or produces suboptimal results. Understanding these dynamics is
crucial for building robust production systems.

Formalizing the properties that make archetypes effective would guide systematic im-
provements in archetype generation. By characterizing desirable qualities such as coverage,
distinctiveness, and interpretability in mathematical terms, we could develop principled
quality metrics that go beyond empirical classification accuracy. This theoretical framework
could inform automated archetype evaluation, guide generation algorithms, and provide
objective criteria for comparing different archetype sets, ultimately leading to more systematic
and predictable performance improvements.
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7 Conclusion

This thesis completed the CreateData4AI pipeline through semantic archetype-driven classifi-
cation, demonstrating that effective text classification can be achieved with 100! less labeled
data than traditional approaches. By leveraging archetypes as interpretable class prototypes
rather than labeling thousands of documents, we enable rapid deployment of domain-specific
classifiers while maintaining production-ready performance.

Our four-method framework progressively builds on the archetype foundation: embedding-
based matching (41.5% accuracy, 850-1,200 samples/s), contrastive learning (81.5%, 1,601.6
samples/s), progressive pseudo-labeling (83.5%, 275.6 samples/s), and GRPO optimization
(84.9%, 191.3 samples/s). Across five diverse datasets, we achieve 96.6% of fully supervised
performance using only 25 labels per class. The key insight is the synergy between archetypes
and limited gold examples and that neither alone suffices, but their combination through
pseudo-labeling proves highly effective.

This work introduces knowledge-augmented minimal supervision, recognizing that domain ex-
perts possess valuable semantic knowledge beyond simple labels. By systematically capturing
terminology, patterns, and relationships through archetypes, we bridge the gap between un-
supervised approaches that lack specificity and supervised methods that demand prohibitive
annotation costs. The framework enables practical applications across legal, healthcare, and
business domains while providing interpretable anchors for model predictions.

Several limitations define the scope of applicability. The approach depends on reasonable
initial keywords from domain experts and was evaluated only on English single-label classifi-
cation. The static evaluation doesn’t capture evolving terminology, and LLM-based archetype
distillation requires non-trivial computational resources. These constraints suggest clear
research directions: human-in-the-loop refinement, multilingual and multi-label extensions,
active learning for further label reduction, and theoretical analysis of convergence properties.

The CD4AI framework democratizes NLP technology by making accurate classification
accessible to previously excluded domains. As digital text grows exponentially while annota-
tion capacity remains limited, approaches that efficiently leverage domain knowledge become
critical. By demonstrating that semantic archetypes can achieve high accuracy with minimal
supervision and practical efficiency, we open new opportunities for rapid AI deployment
across diverse domains.

The journey from keywords to classifiers shows that thoughtful pipeline design can over-
come fundamental resource constraints. By recognizing classification as a process of transfer-
ring human understanding to computational systems rather than mere pattern matching, we
chart a path toward more accessible, interpretable, and adaptable artificial intelligence.
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