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Abstract

The proliferation of unstructured text data has created an urgent need for efficient and
effective methods to transform these data into structured and annotated datasets for AI
applications. This general objective involves a data distillation step, which, in this study,
focuses on the convergence of semantically relevant context windows into coherent archetypes.
The generated archetypes, representing a domain or subdomain, are subsequently used to
classify text contexts instead of relying on millions of general domain contexts, which may
include irrelevant information or duplications.

The proposed approach involves collecting datasets from crucial domains, including
Technology, Business, Sports, Politics, and Entertainment. First, context windows are extracted
for each domain using a previously implemented pipeline. Then, a recursive hierarchical
clustering approach is employed to group relevant subcontexts within each domain. This
clustering step paves the way for experimenting with various large language models (LLMs)
to generate an archetype per cluster. Prompt engineering techniques are explored to refine
the retrieval of high-quality archetypal LLM outputs, with numerous iterations ensuring that
the LLM-generated outputs adhere to the desired format. Edge cases are handled carefully to
ensure proper parsing. By the end of this process, each cluster maps to a single archetypal
rule, and the combination of all clusters’ archetypes results in a comprehensive archetype set
for a specific domain.

Various evaluation techniques were utilized, including semantic search, fine-tuning text
classifiers, conducting surveys, and re-clustering generated domain archetypes. These meth-
ods provide a consistent evaluation framework to assess archetype completeness, disjointness,
and insights into training classifiers on full-domain text versus domain archetypes.

The results of this study demonstrate that training classifiers on domain archetypes out-
performs training on full text. Furthermore, although Meta-Llama-3-8B-Instruct model is
considered to be a light-weight LLM, it surpasses other bigger models in contextual knowl-
edge distillation and archetype generation. There are a few limitations such as length bias
in human evaluations, inconsistencies between subjective human ratings and classification
metrics, and dataset scope. Longer generated archetypes were often favored by the survey
participants, possibly conflating verbosity with quality. Results may not generalize beyond
coarse-grained news domains. Future work should target nuanced, multilingual corpora.

Overall, this research contributes to the development and evaluation of an automated,
domain-expert-driven approach to archetype creation. This method accurately captures
domain-specific knowledge and enhances the quality of subsequent text classifications. The
research successfully fulfills its goal of transforming unstructured text data into structured
and annotated datasets, ultimately supporting the creation of more effective AI applications.
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Kurzfassung

Die Verbreitung unstrukturierter Textdaten hat einen dringenden Bedarf an effizienten und
effektiven Methoden zur Umwandlung dieser Daten in strukturierte und annotierte Daten-
sätze für KI-Anwendungen geschaffen. Dieses allgemeine Ziel umfasst einen Schritt der
Daten-Destillation, der sich in dieser Studie auf die Konvergenz semantisch relevanter Kon-
textfenster zu kohärenten Archetypen konzentriert. Die generierten Archetypen, die ein
bestimmtes Fachgebiet oder Untergebiet repräsentieren, werden anschließend verwendet, um
Textkontexte zu klassifizieren anstelle der Verwendung von Millionen allgemeiner Kontexte,
die irrelevante Informationen oder Duplikate enthalten können.

Der vorgeschlagene Ansatz umfasst die Sammlung von Datensätzen aus wichtigen Bere-
ichen wie Technologie, Wirtschaft, Sport, Politik und Unterhaltung. Zunächst werden Kon-
textfenster für jede Domäne mithilfe einer zuvor implementierten Pipeline extrahiert. An-
schließend wird ein rekursiver hierarchischer Clustering-Ansatz verwendet, um relevante
Subkontexte innerhalb jeder Domäne zu gruppieren. Dieser Clustering-Schritt ebnet den Weg
für Experimente mit verschiedenen großen Sprachmodellen (LLMs), um pro Cluster einen
Archetypen zu generieren. Es werden Techniken des Prompt Engineerings erforscht, um
die Gewinnung qualitativ hochwertiger Archetypen durch LLMs zu verfeinern. Zahlreiche
Iterationen stellen sicher, dass die LLM-Ausgaben dem gewünschten Format entsprechen.
Sonderfälle werden sorgfältig behandelt, um eine korrekte Analyse zu gewährleisten. Am
Ende dieses Prozesses wird jeder Cluster einer einzelnen archetypischen Regel zugeordnet,
und die Kombination aller Archetypen der Cluster ergibt ein umfassendes Archetypen-Set
für eine bestimmte Domäne.

Es wurden verschiedene Evaluierungsmethoden eingesetzt, darunter semantische Suche,
Feinabstimmung von Textklassifikatoren, Umfragen und erneutes Clustern der generierten
Domänen-Archetypen. Diese Methoden bieten einen konsistenten Evaluierungsrahmen zur
Beurteilung der Vollständigkeit und Disjunktheit der Archetypen sowie zur Untersuchung
des Unterschieds beim Trainieren von Klassifikatoren mit Volltexten gegenüber Archetypen.

Die Ergebnisse dieser Studie zeigen, dass das Trainieren von Klassifikatoren mit Domänen-
Archetypen bessere Ergebnisse liefert als das Trainieren mit Volltext. Darüber hinaus übertrifft
das Modell Meta-Llama-3-8B-Instruct, obwohl es als leichtgewichtiges LLM gilt, größere
Modelle bei der Kontextwissen-Destillation und Archetypenerstellung. Es gibt einige Ein-
schränkungen, wie etwa Längen-Bias bei menschlichen Bewertungen, Inkonsistenzen zwis-
chen subjektiven Einschätzungen und Klassifikationsmetriken sowie die eingeschränkte Re-
ichweite der Datensätze. Längere generierte Archetypen wurden von Umfrageteilnehmenden
häufiger bevorzugt, möglicherweise aufgrund der Gleichsetzung von Ausführlichkeit mit
Qualität. Die Ergebnisse sind möglicherweise nicht auf feinere Domänen außerhalb von
Nachrichten übertragbar. Zukünftige Arbeiten sollten sich auf nuancierte, mehrsprachige
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Korpora konzentrieren.
Insgesamt leistet diese Forschung einen Beitrag zur Entwicklung und Bewertung eines

automatisierten, domänenexpertengesteuerten Ansatzes zur Archetypen-Erstellung. Diese
Methode erfasst domänenspezifisches Wissen präzise und verbessert die Qualität nachfol-
gender Textklassifikationen. Die Studie erfüllt erfolgreich ihr Ziel, unstrukturierte Textdaten
in strukturierte und annotierte Datensätze zu überführen und so die Entwicklung leistungs-
fähigerer KI-Anwendungen zu unterstützen.
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1 Introduction

1.1 Motivation

The ever-growing volume of unstructured digital textual data content across domains has
created an urgent need for systems that can extract and structure semantic knowledge in an
interpretable manner. However, the unlimited masses and redundancy of available digital text
make manual analysis infeasible. Moreover, semantic boundaries within domains are rarely
cleanly defined concepts. They often blend, overlap, and evolve, making it difficult to design
consistent class definitions or representative summaries without deep domain expertise.

Large Language Models (LLMs) offer promising capabilities for semantic understanding
and text generation, but they present their own set of limitations. When exposed to large and
unstructured inputs, they may overfit to dominant themes and overlook less frequent but
semantically important ideas. This leads to incomplete or biased representations, specifically
difficult to organize into well-defined conceptual categories or domains. In addition, prompt-
ing LLMs effectively to produce useful and representative abstractions remains a non-trivial
task specially when dealing with domain-specific context that is dense or nuanced.

Another significant challenge lies in evaluating the outcomes of such semantic processing.
Unlike numeric classification or retrieval tasks, the quality of a generated set of text-based
representations is hard to quantify. There is no clear ground truth, and common evaluation
metrics often fall short of capturing whether a generated representation is both semantically
complete and disjoint from others within the same domain or other domains.

This thesis is driven by the urge to bridge these gaps by organizing semantically similar
slices of text into meaningful and structured representations that can act as archetypes of a
domain’s conceptual space. The approach aims to reduce noise, capture the full diversity of
sub-ideas within a domain, and enable effective interaction with downstream tasks such as
semantic search and classification.

The ultimate objective of this work is to develop a framework that enables the automated
understanding of domain-specific knowledge by leveraging both the semantic structure of
text and the generative capabilities of LLMs. The motivation lies in advancing the boundaries
of domain text overlapping semantic contexts into concise, discriminative, and comprehensive
archetypes that are interpretable by both humans and machines. Central to this effort is the
challenge of distilling semantically similar context windows, each encapsulating specific ideas
or concepts into a set of disjoint and complete class archetypes. These archetypes serve as
compact, representative abstractions of the underlying domain concepts, offering structured,
domain-aligned knowledge units. The proposed work does not only support deeper semantic
understanding but also contributes to the broader goal of structured knowledge extraction
and representation from unstructured text.

1



1.2. TABLE OF IMPORTANT DEFINITIONS

In doing so, the framework addresses several interconnected challenges:

• Reducing the redundancy and semantic noise inherent in large corpora

• Structuring raw LLM outputs into clearer and more interpretable forms

• Enabling classification and understanding without requiring predefined expert-driven
taxonomies

It is also worth-mentioning that CreateData4AI (CD4AI) 1 is one of the projects that moti-
vated the carrying out of this research, as it represents an innovative solution focusing on
transforming unstructured text into structured and annotated datasets that are systematically
classified according to specific features. The process encompasses several crucial steps, in-
cluding Context Rule Creation. After acquiring several context windows for each predefined
class, the domain expert assesses and identifies which windows aptly capture the essence of
the predefined classes. However, the best solution is to avoid manual work and automate
the process. That is why no human intervention is preferred, and, at the same time, the
underlying domain experts’ knowledge could be acquired via well-trained LLMs. These
archetypical rules set the foundation for automated data creation.

Through this approach, the thesis proposes a pathway toward scalable and human-aligned
semantic understanding that combines the expressive power of LLMs with principled abstrac-
tion mechanisms to make sense of unstructured data.

1.2 Table of Important Definitions

Term Definition

Context Window A bounded segment of text that surrounds a specific keyword or
topic, capturing semantic relevance to support downstream tasks
such as clustering and classification.

Class Archetype A compact and representative abstraction of semantically similar
context windows that encapsulates a subdomain or subclass
concept. Archetypes serve as distilled knowledge units used for
classification.

Context Rule Creation A three-phase process that includes semantic clustering of
context windows, generation of archetypes using LLMs, and
evaluation of the generated archetypes to ensure disjointness and
completeness.

1CD4AI

2

https://wwwmatthes.in.tum.de/pages/nqpi6qljq0x9/CreateData4AI-CD4AI


1.3. THESIS FOCUS: CONTEXTUAL KNOWLEDGE DISTILLATION

Term Definition

Semantic
Completeness

The extent to which generated archetypes comprehensively cover
all relevant sub-domains or sub-ideas in the context windows of
a domain.

Semantic Disjointness A measure of how well archetypes are non-overlapping, ensuring
that each set of domain’s archetypes represent a domain with
minimal redundancy with respect to other domains.

Contextual Distillation A process of transforming semantically similar context windows
into structured representations (archetypes), emphasizing
non-redundant, domain-specific knowledge.

Semantic Search An evaluation method that checks the semantic similarity
between user queries and corpus

1.3 Thesis Focus: Contextual Knowledge Distillation

This thesis focuses on the Context Rule Creation step, which covers three main sub-steps.
The first phase is to group the huge number of domain context windows which have been
extracted and are already present per class. The grouping would be in terms of semantic
grouping of the context windows so that, each group would represent a subdomain, subclass,
or sub-idea for the main domain. This would be achieved using clustering approaches, and
subsequently this would prepare the context windows for the next step.

The second phase is about how the clustered context windows would be utilized and
formatted as the class archetypes. The leading solution is make use of generative AI, design
the optimal prompt, then feed it to various LLMs specifically the light-weight ones to generate
archetypes not per the whole domain’s context windows, but per cluster of context windows
generated in the former step, representing a sub-domain. That approach guarantees that each
domain sub-idea is addressed, and never overlooked as much as possible by the LLM, instead
of passing the whole domain context windows at a one time to the LLM. Therefore, ensuring
higher percentage of semantic completeness of the generated class archetypes.

The third phase concerns testing and evaluating of the generated domain archetypes, which
are the outcomes of the second phase. A challenge occurs because the text outcome is not
measurable. What is crucial to be tested is whether each class has a set of archetypes, which
completely and disjointly represent the corresponding domain. Evaluation would include
downstream tasks, text semantic search, fine-tuning text classifiers, and conducting a survey.

1.4 Research Objectives & Questions

This thesis looks into the subsequent research questions:

1. What are the most effective methods to accurately capture semantics from related text
chunks and distill them into one coherent text?
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2. What are the current prompt engineering techniques crucial for generating well-defined,
coherent class archetypes that effectively incorporate domain expertise?

3. How can the quality and consistency of the generated class archetypes be evaluated
and ensured?

4. Does the downstream utility of generated archetypes achieve similar results to manually
annotated datasets in domain-specific tasks?

Diving deep into these questions leads to achieving the main goal of this thesis: supporting
domain experts in the definition of classes, particularly creating archetypes for all predefined
classes to be used for classifying any text paragraph. Moreover, it aids the CD4AI project
in achieving its goal of forming structured datasets suitable as input to machine learning
models from unstructured data.
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2 Foundations

This chapter outlines the grounds behind the current research methodology. It delves into
the principal concepts and techniques, which are crucial for the three aforementioned phases.
This chapter covers several key points starting with recent AI advancements and contributions
in natural language processing (NLP) field. Moreover, the paramount importance of the text
classification, and its vital contributions and effectiveness in various real-life applications.
Additionally, this section covers the different types of text summarization and semantic
distillation. It also introduces LLMs with a discussion about the latest advanced prompt
engineering techniques. Furthermore, the section covers a few top clustering techniques along
with some representations for text semantics. Since the evaluation of LLMs generated text is
not that easy, some existing methods would be introduced.

2.1 AI Advances Driving Natural Language Processing Innovation

Recent advances in artificial intelligence (AI) are fundamentally transforming the field of
NLP, reshaping how machines interpret, generate, and interact with human language. As
illustrated in Figure 2.1, the NLP market is projected to experience substantial revenue growth
over time, reflecting the increasing integration of AI-powered technologies. In parallel growth
to this transformation is the emergence of LLMs, which have proven pivotal due to their
scalability, accessibility, and efficiency.

Tools such as ChatGPT exemplify the wide-ranging impact of these models, garnering
significant academic and public interest for their ability to generate natural, creative, and
context-aware responses. Their applications span diverse domains, including education,
research, healthcare, marketing, and customer service [1]. These AI-driven advancements
are lowering the technical barriers to working with complex textual data, empowering both
individuals and organizations regardless of technical expertise to automate tasks such as
writing, translation, summarization, information retrieval, and decision-making. As a result,
productivity and innovation are being significantly enhanced across sectors.

Moreover, the integration of AI into NLP has catalyzed the disclosure of new sub-fields and
the refinement of existing ones. Areas such as explainable AI for language models, controllable
text generation, and ethical NLP focusing on challenges like bias, misinformation, and fairness
have gained increasing prominence. These shifts underscore AI’s role not merely as a tool
but as a transformative force driving both conceptual and methodological evolution in NLP
[2]. In addition to expanding the scope of NLP, AI has markedly improved the accuracy and
efficiency of core linguistic tasks. Modern neural architectures now underpin critical processes
such as part-of-speech tagging, syntactic parsing, and named entity recognition, leading
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to more adaptable and context-aware systems. Transformer-based models, which leverage
attention mechanisms and large-scale pre-training, have set new performance benchmarks by
learning deep, bidirectional representations of language [3].

The generative capabilities of these models have further enabled breakthroughs in real-time
dialogue systems, personalized content creation, and specialized applications in areas like
healthcare diagnostics and financial analytics [4]. By processing sequential and contextual
data with unprecedented accuracy, transformer models have significantly enhanced machines’
ability to understand linguistic nuances, idiomatic expressions, sarcasm, and even cross-
lingual semantics [5]. These innovations have made NLP systems more intelligent, adaptive,
and capable of engaging with human language in a profoundly contextualized and meaningful
way.

Ultimately, the ongoing AI-driven progress in NLP is not only reshaping the technical
landscape but also amplifying its societal impact. The increasing indispensability of AI in
language technologies highlights its foundational role in shaping the present and future of
human–machine communication.

Figure 2.1: NLP Market Forecasted Revenue [6]

2.2 Text Classification Across Domains

Text classification is a foundational task in NLP, underpinning a wide array of real-world
applications by enabling the automated assignment of predefined categories to textual
data. This automation is crucial for managing and extracting value from the growing
volume of unstructured information generated across domains [7]. In the financial sector, for
instance, institutions routinely process large quantities of documents such as prospectuses,
statements, and regulatory filings which must be accurately classified to ensure compliance
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and operational efficiency. However, manual classification remains common in industrial
workflows, often leading to costly errors. For example, JP Morgan reported that 80% of its
loan servicing errors were caused by manual contract misclassification [8].

The practical relevance of text classification spans various use cases:

• Sentiment Analysis is widely applied in business and social media to assess public
opinion on products, services, or events.

• Topic Labeling is essential for content categorization in news articles, academic litera-
ture, and document organization.

• Question Answering and Dialog Act Classification are pivotal in customer support
systems, virtual assistants, and interactive applications.

Manual classification of large-scale text data is not only labor-intensive and time-consuming
but also susceptible to inconsistency due to human fatigue and bias. Automating this process
using machine learning models enables scalable, objective, and consistent classification.
Moreover, effective text classification enhances information retrieval, reduces information
overload, and supports downstream tasks such as content filtering, spam detection, knowledge
management, and personalized recommendations [7].

Advancements in classification algorithms especially with the advent of deep learning
and attention-based architectures have significantly improved accuracy across domains with
diverse data structures and complexities. The availability of hand-annotated datasets further
accelerates research in this field, enabling the development of scalable, cross-domain solutions
for content analysis [9]. Among the various subfields, cross-domain text classification has
emerged as a critical area, particularly in sentiment analysis. This is due to both its broad
applicability and the increasing availability of benchmark datasets. Nonetheless, despite the
impressive capabilities of large pretrained language models, their performance often degrades
in unfamiliar domains unless fine-tuned with costly, domain-specific labeled data [10].

2.3 Large Language Models

Language is a fundamental tool of human communication, enabling the expression of ideas,
emotions, and information. However, machines lack the innate capacity to understand or
generate human language, necessitating the development of advanced AI techniques. Within
the field of NLP, LMs have been developed over years as in Figure 2.2 as essential technologies
for capturing linguistic patterns and generating coherent, context-aware text [11].

2.3.1 Introduction to LLMs

LLMs represent a transformative leap in language modeling, building on earlier paradigms
such as Statistical Language Models (SLMs), which employed probabilistic methods to predict
word sequences, and Neural Language Models (NLMs), which utilized neural networks to
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Figure 2.2: LMs Development Over Past Years

learn semantic representations. These were followed by Pre-trained Language Models (PLMs),
which leveraged large-scale corpora and self-supervised learning to achieve generalized
language understanding. LLMs extend PLMs by incorporating significantly larger datasets,
vast computational resources, and advanced training algorithms, resulting in models that can
perform complex language tasks with human-like fluency and precision [11].

The architecture of LLMs typically involves two main training phases: a large-scale pre-
training stage using general text corpora, followed by a fine-tuning or alignment phase using
human feedback or task-specific data. These models often exceed hundreds of billions of
parameters and are trained on datasets spanning hundreds of gigabytes to terabytes. Their
versatility is reflected in a wide range of applications, including translation, summarization,
code generation, and question answering. The development of LLMs has been further
propelled by innovations in transformer architectures, which enable effective modeling of
long-range dependencies in text [11]. Recent advancements exemplified by the Generative
Pre-trained Transformer (GPT) series have demonstrated LLMs’ capacity to understand,
process, and generate language across diverse domains. Despite their growing presence in
both industry and academia, many users still lack a foundational understanding of how
these models function, highlighting the need for accessible overviews of their historical
development, core principles, and capabilities [11].

A capable LLM should demonstrate four foundational features [12]:

1. Deep comprehension of natural language context,

2. Human-like text generation,

3. Contextual awareness, especially in knowledge-intensive tasks,

4. Robust instruction-following abilities for problem-solving and decision-making.
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Several prominent LLMs have been released in recent years, including OpenAI’s ChatGPT,
Meta AI’s Llama, and Databricks’ Dolly 2.0. These models have seen rapid adoption across
domains such as customer support, education, translation, finance, healthcare, and software
development. For example, ChatGPT had surpassed 180 million users by late 2023 [12].
Beyond mainstream NLP applications, LLMs have sparked interest in fields like security and
privacy due to their capacity to reason over complex inputs. Their use cases now extend
far beyond text generation, underlining their adaptability and the growing importance of
understanding their foundational mechanics, broader implications, and associated risks [12].

2.3.2 LLMs Quantization

As the scale and complexity of LLMs continue to increase, deploying them efficiently on
resource-constrained environments such as edge devices and personal hardware has become
an interesting challenge. Quantization emerges as a critical technique for mitigating this
challenge by reducing the bit precision of model parameters, thereby significantly compressing
the model size and accelerating inference, while aiming to maintain the original model’s
performance.

Modern LLMs consist of hundreds of billions of parameters, often requiring upwards of
hundreds of gigabytes of memory even in reduced FP16 formats. Such memory demands
are incompatible with the capabilities of most edge devices, thereby inhibiting on-device
deployment. Quantization addresses this constraint by representing model weights using
lower-precision integers (e.g., 8-bit or 4-bit), substantially reducing both memory footprint
and data movement overhead. This not only speeds up inference but also brings deployment
within the realm of feasibility for a broader range of hardware.

On-device deployment via quantized models yields several benefits: reduced inference
latency, enhanced user privacy through local processing, and reduced reliance on centralized
cloud infrastructure translating to lower operational costs and improved scalability. Yet,
these benefits hinge on the quantization technique’s ability to preserve the generalization
and robustness of the original LLM across diverse tasks and domains, while maintaining
computational efficiency.

Quantization methods are broadly categorized into two families as outlined in [13]:

• Quantization-Aware Training (QAT): This approach integrates quantization into the
training pipeline itself, using backpropagation to simulate quantization effects. Al-
though QAT achieves high post-quantization accuracy, especially in low-bit regimes,
it demands extensive computations and is often impractical for massive LLMs due to
their training cost and memory requirements.

• Post-Training Quantization (PTQ): PTQ applies quantization to pre-trained models
without retraining. While significantly more scalable and attractive for real-world
deployment, especially by end-users, PTQ often suffers from performance degradation
particularly in aggressive quantization settings such as 3-bit or 4-bit precision.
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A spectrum of quantization schemes has been proposed, each offering trade-offs between
computational efficiency and representational fidelity [14]:

• Uniform Scalar Quantization: This basic approach maps each parameter to a fixed
grid defined by a global scale factor and offset. While highly efficient, its inability to
model the often non-uniform distribution of LLM weights leads to quantization noise
and accuracy loss.

• Non-Uniform Scalar Quantization: This method improves flexibility by using a learned
codebook, where each weight is replaced by its nearest centroid. The quantization
grid is thus better adapted to the underlying data distribution, however at the cost of
additional storage for the codebook and increased computational complexity.

• Vector Quantization (VQ): VQ generalizes scalar quantization by encoding weight
vectors (e.g., 2D or 4D) using multi-dimensional centroids. This approach captures inter-
weight correlations, leading to denser and more expressive quantization with superior
signal-to-quantization-noise ratio (SQNR). Studies demonstrate that higher-dimensional
VQ significantly enhances performance under low-bit constraints.

Quantization strategies can further be divided based on whether they require calibration
[15]:

• Zero-Shot Quantization: Techniques such as LLM.int8(), NF4, and FP4 fall under
this category. They perform quantization without task-specific calibration data or
fine-tuning, relying instead on simple, efficient schemes like block-wise scaling and
rounding to predefined alphabets (e.g., mapping to values in [−1, 1]). Their minimal
computational overhead and ease of use have facilitated wide adoption, as seen in tools
like Hugging Face Transformers.

• Optimization-Based Quantization: These methods involve learning quantization pa-
rameters such as scale factors, offsets, and codebooks by minimizing quantization
error on calibration datasets. Though computationally expensive, this yields higher
quality quantized models with better retention of downstream task performance. Such
techniques are often used by model developers prior to releasing publicly available
quantized variants.

The widespread use of quantization has played a pivotal role in enabling LLM inference on
hardware and edge devices without major trade-offs in benchmark performance. Nonetheless,
a critical area remains underexplored: the security and robustness implications of quantization.
Most existing research has primarily focused on utility and accuracy, leaving potential
vulnerabilities such as susceptibility to adversarial perturbations or quantization-induced
bias relatively neglected [15].
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Figure 2.3: LLMs Approach for Text Classification

2.3.3 Impact on Text Classification

LLMs, particularly those based on transformer architectures, have significantly reshaped the
field of text classification in recent years. Initially exemplified by models such as Bidirectional
Encoder Representations from Transformers (BERT) and GPT, and more recently advanced by
GPT-4, Llama, and BloombergGPT, LLMs have exhibited exceptional abilities in capturing
contextual and semantic nuances, making them powerful tools for diverse classification tasks
[16] as shown in Figure 2.3 [17]. This evolution marks a decisive shift away from traditional
rule-based and dictionary-based approaches toward sophisticated, data-driven methods. Pre-
trained LLMs like BERT, RoBERTa (A Robustly Optimized BERT Pretraining Ap- proach),
and DeBERTa leverage deep learning to model language with high contextual sensitivity,
outperforming earlier techniques such as bag-of-words or word embeddings [18]. These
encoder-based models have proven particularly effective when fine-tuned on task-specific
data, leading to substantial performance gains in complex text classification scenarios.

A comprehensive study by Bucher et al. [18] compared the performance of fine-tuned
small-scale LLMs (e.g., RoBERTa, DeBERTa, XLNet) with larger generative models (e.g.,
ChatGPT-3.5/4, Claude Opus) across various classification tasks and text genres. Results
show that fine-tuned models consistently outperform generative counterparts, especially
in specialized applications such as stance detection and emotion classification in political
discourse. While generative LLMs offer ease of use via prompt-based interactions, they
lack the task-specific optimization that supervised fine-tuning provides. The study also
highlights that even modest amounts of labeled data (around 200–500 samples) are sufficient
for small LLMs to surpass zero-shot generative models in metrics like accuracy and F1-score.
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These advantages are particularly pronounced in imbalanced or domain-specific datasets. An
open-source toolkit developed by the authors simplifies the training and evaluation process
using Hugging Face libraries, making fine-tuning more accessible.

Despite the growing capabilities of generative LLMs, fine-tuned encoder-based models
remain the preferred choice for many classification tasks due to their performance, efficiency,
and controllability. Smaller models further offer benefits in terms of data privacy, transparency,
and on-device deployment-key considerations in sensitive or regulated environments [18].
While generative models may close the gap through advances in few-shot learning and prompt
engineering, fine-tuned LLMs currently deliver superior domain-specific performance.

Chae et al. [17] reinforce these findings by demonstrating that LLMs:

• Outperform traditional machine learning models (e.g., SVMs using BoW or embeddings)
across various classification benchmarks.

• Excel in both single- and multi-target tasks, modeling nuanced linguistic patterns.

• Deliver strong zero-shot performance (e.g., GPT-3 Davinci) when effectively prompted,
though results vary with prompt structure.

• Achieve notable accuracy improvements with fine-tuning, especially smaller models like
BERT or GPT-3 Ada, after training on moderate-sized datasets ( 1000–2000 examples).

• Are sensitive to training data composition and prompt design, which can introduce
systematic biases particularly in socio-political contexts.

• Enable low-cost, scalable text classification through APIs, though this raises concerns
about reproducibility and transparency when using proprietary models.

These capabilities offer researchers a flexible, high-performance toolkit for domain-specific
classification with limited supervision, underscoring the value of LLMs as both predictive
and exploratory tools [17].

While general-purpose LLMs like GPT-4, Llama 2, and ChatGLM 2 have shown remark-
able capabilities through instruction tuning and in-context learning, they often lag behind
specialized PLMs such as RoBERTa and DeBERTa in classification benchmarks [19]. This
discrepancy suggests that direct use of generative models for classification may not be op-
timal without additional adaptation. To address this, Zhang et al. [19] proposed RGPT,
a boosting-based framework that iteratively fine-tunes and ensembles LLMs to enhance
classification performance. Unlike traditional prompt engineering, RGPT dynamically adjusts
sample distributions and incorporates historical prediction errors, resulting in more robust,
task-adapted models. Experimental results show that RGPT outperforms both state-of-the-art
PLMs and LLMs across four benchmark datasets, with gains of up to 1.88% over the previous
best models.

Human evaluations further reveal that RGPT achieves classification accuracy exceeding the
average human annotator while requiring significantly less time. Ablation studies confirm
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that boosting and ensembling strategies unlock additional performance benefits beyond what
is achievable through individual fine-tuning [19].

In the context of hierarchical text classification, LLMs face additional challenges due
to the complexity of structured label taxonomies. Models like GPT-4 and Claude, while
effective in flat classification tasks, struggle when handling extensive class hierarchies in
zero-shot settings due to prompt length limitations and increased inference cost. To overcome
these limitations, TELEClass integrates LLMs with corpus-specific knowledge, offering a
structure-aware approach for low-supervision classification [20]. TELEClass enhances label
understanding via:

• Taxonomy Enrichment: LLMs generate class-indicative keywords (e.g., distinguishing
"conditioner" with terms like “moisture” or “soft hair” from “shampoo”).

• Core Class Annotation & Data Augmentation: LLMs assist in annotating unlabeled
documents and generating synthetic examples for underrepresented classes, reducing
annotation burdens and improving generalization.

TELEClass achieves results on par with or better than GPT-4 across datasets like Amazon-
531 and DBPedia-298 while drastically reducing inference cost. The study concludes that
targeted integration of LLMs into hierarchical classification frameworks can unlock significant
gains over zero-shot prompting and traditional weakly supervised techniques [20].

2.4 Prompt Engineering Strategies for Optimal LLM Responses

Prompt engineering involves designing and refining input queries to optimize interactions
with LLMs. This approach enhances the model’s ability to generate accurate, contextually
relevant, and meaningful responses, significantly influencing its effectiveness in various
applications. Practical prompt engineering hinges on clarity, precision, and contextual
relevance. Some foundational principles include:

• Define Objectives Clearly: Articulate the purpose of the prompt to guide the model’s
response effectively. For instance, specifying the desired output format or tone can
improve the result’s alignment with user expectations [21].

• Use Iterative Refinement: Iterating on prompts to refine outputs is essential. Rephras-
ing, adding context, and providing examples help achieve optimal results [22].

• Incorporate Context: Contextualizing prompts ensures that the model understands the
task better. For example, setting a role or scenario allows the AI to generate responses
tailored to specific needs [23].

• Adopt Frameworks: Frameworks like the Query Transformation Module (QTM) break
down input sentences into objectives and key points, improving comprehension and
output quality. Techniques such as zero-shot, few-shot, and cloze-based prompting
adapt the model’s capabilities to specific tasks [24].
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Beyond basic principles, advanced techniques have emerged to enhance the depth and
precision of LLM outputs:

• Chain-of-Thought Prompting: Encourages the model to process complex tasks step-by-
step, improving reasoning and accuracy [22].

• Role-Based Prompts: Assigning specific roles to the AI (e.g., “Act as a historian”) helps
tailor responses to the task’s nuances [21].

• Feedback Loops: Engaging the model iteratively with feedback improves current
outputs and informs future interactions [23].

Numerous challenges can arise when formulating prompts, such as preventing model
hallucinations (i.e., generating inaccurate or fabricated data) and addressing response biases.
Ethical practices including transparency in AI interactions and adherence to privacy guidelines
are paramount [21].

Prompt engineering has demonstrated utility across various domains, including education,
where it enables the co-creation of instructional content, and conversational AI, where it
optimizes chatbot interactions. Techniques like retrieval-augmented generation and purpose-
specific queries have expanded its potential to generate domain-specific outputs with minimal
data [24].

2.4.1 Zero-Shot and Few-Shot Prompting

Zero-shot and few-shot learning are essential techniques in prompt engineering, enabling
LLMs to perform tasks with minimal or no task-specific training. These approaches en-
hance the versatility of generative AI by leveraging the model’s pre-trained knowledge and
adaptability.

Zero-shot learning allows models to perform tasks without specific examples or prior task-
specific training. Instead, the model relies solely on its pre-trained understanding to generate
responses based on the prompt. This method is beneficial for general tasks or scenarios where
providing examples is impractical. Zero-shot learning demonstrates the model’s ability to
generalize across tasks using only its foundational training [24]. For example, when provided
with a query like, "Summarize the main points of this article", the model generates a response
without additional context or examples. The effectiveness of the technique depends heavily on
the clarity and specificity of the prompt, highlighting the need for precise prompt engineering
[23].

Few-shot learning takes this a step further by incorporating several examples to guide
the model’s behavior. These examples provide contextual cues that help the model better
understand the task and produce more accurate output. Few-shot learning bridges the gap
between zero-shot learning and extensive task-specific training, making it a flexible and
resource-efficient approach [24]. An example of a few-shot prompting might involve asking
the model to translate a sentence into a target language, accompanied by a few example
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translations. This setup allows the model to infer the desired format and output style,
improving the quality of its response[24].

Although both techniques work well, their application depends on the complexity of
the task. Zero-shot learning is ideal for general or straightforward queries, while few-
shot learning excels in scenarios requiring a more nuanced understanding or adherence to
specific formats[23]. In educational contexts, for example, zero-shot learning can generate
lesson summaries, while few-shot learning can refine those outputs by providing examples of
preferred styles or structures. These approaches are instrumental in developing conversational
models, summarization tools, and content generation systems[24].

Both zero-shot and few-shot learning rely heavily on the quality of the prompt. Poorly
constructed prompts can lead to irrelevant or nonsensical outputs. Moreover, ethical consider-
ations, such as ensuring accurate and unbiased information, remain critical[23]. Zero-shot
and Few-shot learning represent foundational techniques in prompt engineering, offering
robust solutions to leverage LLMs in diverse applications. Their effectiveness underscores the
importance of carefully designed prompts and iterative refinement processes.

2.4.2 Cloze-Based Prompting

Cloze-based prompting is a specific technique in prompt engineering that involves creating
fill-in-the-blank style prompts to guide LLMs toward generating precise and relevant outputs.
This approach is convenient in tasks requiring contextual comprehension and structured
responses[24]. In cloze-based prompting, a sentence or query is presented with certain parts
omitted, prompting the model to complete the missing sections. This technique enables the
model to focus on the specific information required to fill the gaps, leveraging its pre-trained
knowledge and context understanding [21].

For example:
Query: "The Statue of Liberty is located in ____."
Model Output: "New York."
This method structures the model’s task in a way that narrows its focus, improving accuracy
and relevance, especially in tasks involving factual information, language learning, or knowl-
edge retrieval [21] [24].

Cloze-based prompting is widely applicable across various domains:
Language Learning: Facilitates vocabulary building and grammar exercises by asking learn-
ers to fill in blanks, thereby reinforcing learning.
Content Creation: Aids in generating structured content, such as filling in missing data
points in a predefined format or creating summaries with guided input.
Knowledge Retrieval: Supports the extraction of specific pieces of information from a dataset
or knowledge base, making it useful for question-answering systems and academic research.

Despite cloze-based prompting’s advantages, it requires carefully designed prompts to ensure
clarity and avoid ambiguity. Poorly structured prompts may lead to irrelevant or nonsensical
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outputs. Additionally, the technique relies heavily on the model’s ability to infer context
accurately, which may vary depending on the model’s pre-training and fine-tuning[21]. As
generative AI continues to evolve, cloze-based prompting techniques are expected to integrate
multimodal elements (e.g., combining text with images or data tables) to address more com-
plex tasks. Additionally, adaptive cloze-based techniques that dynamically adjust prompts
based on user feedback or context could further enhance their applicability [24]. In summary,
cloze-based prompting represents a versatile and effective method in prompt engineering,
enabling precise and contextually relevant outputs across diverse applications. Its structured
approach makes it a valuable tool for optimizing LLMs’ performance in educational and
professional settings.

2.4.3 Chain-of-Thought Prompting

Chain-of-thought (CoT) prompting is an advanced prompt engineering technique that en-
hances reasoning capabilities in LLMs. By encouraging models to state their reasoning
processes step-by-step, CoT prompting improves the accuracy and depth of responses in
complex tasks [22]. Chain-of-thought prompting replicates human reasoning by breaking
down problems into smaller, logical steps. This structured approach enables LLMs to tackle
multi-step problems that require sequential thinking. For instance, when asked to solve a
math problem or generate an argument, the model is prompted to consider each part of the
problem sequentially, leading to more accurate and coherent responses[23].

CoT prompting has found applications across various domains, including education, con-
tent generation, and problem-solving in technical fields. Examples include:
Mathematics and Logical Reasoning: Breaking down calculations into smaller steps to
improve accuracy and transparency in problem-solving [22].
Content Structuring: Assisting in drafting essays or technical documents by generating
outlines and expanding each section step-by-step[23].
Teaching and Training: Enhancing AI-based educational tools to provide step-by-step expla-
nations can help learners grasp complex concepts more effectively [22].

By guiding the model through incremental steps, CoT prompting significantly reduces the
likelihood of generating irrelevant or incorrect outputs, particularly in tasks that demand
logical reasoning or contextual understanding [22]. However, CoT prompting requires well-
structured prompts and careful design to ensure effectiveness. Poorly designed CoT prompts
may lead to verbose or redundant outputs. Additionally, ethical considerations are vital to
ensure the transparency and reliability of the reasoning process [23].

As models become more sophisticated, CoT prompting techniques are likely to evolve,
incorporating multimodal reasoning (e.g., combining text, images, or numbers) and enabling
deeper contextual understanding. This evolution will further expand the potential applications
of CoT prompting in educational and professional settings. Chain-of-thought prompting
exemplifies the intersection of structured reasoning and prompt engineering, unlocking
new possibilities for complex problem-solving and content generation. By adopting CoT
techniques, practitioners can harness the full potential of LLMs to address complex challenges
[22].
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Prompt engineering bridges the gap between human intent and AI capability, embodying
both an art and a science. Its development as a disciplined practice ensures that LLMs deliver
on their promise of meaningful and effective human-machine interactions [22].

2.5 Semantic Compression and Distillation

Semantic summarization or distillation is a key task in NLP, designed to condense significant
texts into brief, coherent summaries while retaining the main ideas. It can be broadly divided
into extractive and abstractive methods, each addressing distinct challenges and applications.
Extractive summarization involves selecting key sentences directly from the source text,
ensuring relevance and semantic accuracy. In contrast, abstractive summarization generates
new sentences that capture the essence of the content, requiring advanced generative models
for fluency and coherence. Both approaches complement each other however, there is also
contextual distillation that mainly focuses on synthesizing non-redundant knowledge.

2.5.1 Extractive Summarization

Extractive summarization focuses on selecting sentences directly from the source text to
create concise summaries. As discussed in [25], this approach retains the original wording,
preserving semantic integrity and context. Techniques like graph-based models (e.g., LexRank,
TextRank) have been widely used, leveraging sentence similarity graphs to rank sentences
by centrality. These methods benefit domain-independent and large-scale applications, as
they do not require labeled data. However, challenges such as maintaining coherence and
reducing redundancy persist.

Recent advancements in extractive summarization have integrated knowledge distillation
techniques, as highlighted in [26]. Knowledge distillation leverages soft probability targets to
train smaller models, improving their generalization while capturing complex inter-sentence
relationships. This approach addresses traditional methods’ limitations, such as their inability
to model nuanced sentence-level features.

Ensuring summary coherence and developing standardized evaluation metrics is challeng-
ing however, some efforts to tackle these issues include concept-based methods, as mentioned
in [25], and innovative frameworks like the DPC, which exemplify how clustering techniques
can improve summarization efficiency and quality.

2.5.2 Abstractive Summarization

Abstractive summarization aims to generate summaries that are not merely extracted frag-
ments of the source text but reformulated sentences that encapsulate the core ideas. This
method relies heavily on advanced neural architectures and generative models. As described
in [27], abstractive summarization techniques increasingly utilize knowledge distillation to
train smaller student models, which mimic larger teacher models through pseudo-labels and
soft outputs. These methods enhance model efficiency and adaptability, even in low-resource
scenarios. The task of query-focused summarization (QFS), highlighted in the same study,
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exemplifies the potential of abstractive techniques. QFS models tailor summaries to specific
user queries, addressing challenges like domain adaptation through PEGASUS’s q-GSG
(query-aware Gap Sentence Generation) approaches. Additionally, synthetic datasets like
Query-CNNDM have been pivotal in mitigating data scarcity for abstractive models, enabling
their application in zero-shot and few-shot settings.

In the shell of multi-document summarization (MDS), [28] emphasizes the use of sequence-
to-sequence transformer models, such as BART and PEGASUS. These models excel in handling
long input sequences, although challenges like truncation and information loss persist.
Two-phase "extract-then-abstract" approaches have emerged as a solution, where extractive
methods reduce input size before generative summarization. This strategy enhances the
relevance and coherence of summaries.

Abstractive summarizaion has also facilitated advancements in long-text understanding,
as explored in [29]. Using gist detection, student models distilled from abstractive sum-
marization frameworks can effectively condense lengthy texts while maintaining semantic
richness. Techniques like pseudo-labeling and the shrink-and-fine-tune (SFT) method provide
computationally efficient pathways for training lightweight yet performant summarization
models.

Redundancy, coherence, and domain adaptation remain central obstacles to the field.
Innovations like heterogeneous graph neural networks (GNNs) and sequence-level knowledge
distillation continue refining abstractive summarization, ensuring scalability and contextual
accuracy in generic and specialized summarization tasks.

2.5.3 Contextual Distillation

Contextual Distillation refers to the transfer of higher-order structural and semantic relation-
ships that go beyond direct outputs or raw features. Unlike classical knowledge distillation
techniques, which typically rely on mimicking final logits or intermediate representations,
contextual distillation emphasizes the relationships among features, instances, or classes such
as similarities between feature vectors or inter-class structures [30].

A significant strand of this approach lies in symbolic contextual distillation, which seeks to
extract the embedded contextual understanding from LLMs and represent it in interpretable
forms. Rather than relying on response-based, feature-based, or relation-based methods,
this form of distillation captures latent, structured knowledge and expresses it symbolically
through logical rules, semantic frames, or knowledge graphs [31].

[27] introduces contextual distillation as a way that combines both abstractive and ex-
tractive summarization, specifically tailored for low-resource settings. Its method leverages
a teacher-student framework that generates query-specific abstractive summaries without
requiring direct supervision. It achieves this by distilling knowledge through context-aware
pseudo summaries going beyond surface-level extraction to target semantic relevance, domain
alignment, and summary quality via synthetic supervision.

Another important dimension of contextual distillation, especially in the shadow of LLMs,
involves black-box techniques. These do not require access to internal model parameters or
activations. Instead, knowledge is transferred through crafted natural language contexts such
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as examples, explanations, or instructions produced by teacher models like GPT-4 or PaLM.
This is particularly useful when the teacher models are closed-source or API-accessible only.

Three major paradigms exemplify this form of contextual distillation [32]:

• In-Context Learning (ICL): Knowledge transfer occurs through demonstrations embed-
ded in prompts, allowing student models to mimic output behaviors from input-output
pairs.

• Chain-of-Thought (CoT): Extends ICL by including intermediate reasoning steps or
rationales, enabling students to replicate both outputs and the underlying reasoning,
thus enhancing generalization.

• Instruction Following: Involves training student models on large-scale instruction
datasets generated by teacher models. This enables the students to align with task-
oriented prompts and achieve stronger zero-shot and generalization performance.

2.6 Clustering Techniques

Clustering is involved in a vast number of real-life applications as an unsupervised learning
technique that enables the discovery of latent structures and patterns within unlabelled
textual data. By grouping semantically or syntactically similar items such as words, sentences,
documents, or embeddings, clustering facilitates more efficient organization, understanding,
and processing of natural language at scale. Its strength lies in its ability to reveal hidden
relationships without the need for extensive labeled datasets, making it particularly valuable
in the early stages of data exploration or when working with large corpora.

A few applications utilizing clustering techniques in NLP would include topic modeling,
where documents are grouped by underlying themes; document de-duplication, which
helps identify similar or identical content across datasets; and word sense disambiguation,
which clusters words based on contextual meaning. Additionally, clustering is foundational
in building taxonomies, summarizing information, and enhancing information retrieval
systems by organizing search results into coherent groups such as retrieving user-preference
in recommendation systems such as in Figure 2.4 [33]. As the demand for scalable and
intelligent language technologies grows, clustering remains an essential tool for uncovering
structure and meaning within complex language data. Next are some crucial clustering
techniques that have consistently proven their value over time.

2.6.1 K-Means Clustering

K-Means Clustering is a commonly used method for dividing a dataset into K distinct, non-
overlapping subgroups or clusters. K-means clustering is well-known for its computational
efficiency and ease of interpretation. However, it assumes spherical clusters and it is sensitive
to the initial placement of centroids[34], which can sometimes lead to suboptimal clustering
solutions. As a result, it causes a bit of a struggle to decide the estimated number of clusters.
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Figure 2.4: Example Utilization of Clustering for User Preferences

2.6.2 Hierarchical Clustering

Hierarchical Clustering is a method of cluster analysis that seeks to build a hierarchy of
clusters. This approach is distinct in its use of an agglomerative algorithm, which starts
with each data point as a single cluster and then successively merges clusters until one
single cluster remains or a certain criterion is met. Ward’s method is particularly efficient in
minimizing the variance within each cluster[35]. Thus, it is advantageous for identifying the
precise number of clusters, which would usually vary from one domain to another.

2.6.3 Density Peaks Clustering

The Density Peaks Clustering (DPC) summarization framework is specifically designed to
jointly account for relevance and redundancy in extractive summarization. Unlike traditional
methods that handle redundancy as a post-processing step, DPC integrates both aspects
within a unified, one-pass selection process. The core idea introduced in [36] is that a concise
summary should consist of sentences that act as cluster centers, i.e., sentences with both high
density and high divergence relative to others. This stems from the observation that sentences
in a document can be grouped into latent subtopics, and identifying these central sentences
allows for broad yet focused coverage of the document content.
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2.7 Semantic Knowledge Representations

There are various ways to represent knowledge or data. Those representations include
complete sentences, context windows, tables, embeddings, triplets, graphs, and more. This
section will explore the most common used embedding models, including the most recent
ones and some worth mentioning earlier models.

2.7.1 Embeddings and Vector Representations

NLP has witnessed a significant transformation with the advent of embeddings and vector
representations to keep up with its non-ending use-cases [37]. These techniques have become
fundamental in enabling computers to process and interpret human language. Embedding
models convert words, sentences, and entire documents into dense, low-dimensional vector
spaces without altering the syntactic and semantic information. The focus has shifted
from static representations, such as Word2Vec and GloVe, to contextual embeddings that
adapt based on linguistic context. The most advanced models, often leveraging transformer
architectures, have demonstrated remarkable capabilities across diverse languages, including
English, German, and multilingual settings.

Contextual embeddings represent the forefront of NLP innovation. Unlike static embed-
dings, which assign a single vector to a word regardless of usage, contextual embeddings
dynamically adjust based on the surrounding text. Among the pioneers of this paradigm was
Embeddings from Language Models (ELMo), introduced by Peters et al. ELMo generates
embeddings through bidirectional LSTMs, considering both the left and right context of a
word[37]. However, transformer models have outperformed the architecture of ELMo, which
provides more efficient parallel computation and a deeper understanding of context.[38].

BERT, introduced by Devlin et al., marked a paradigm shift in NLP by employing a fully
bidirectional transformer architecture. Unlike earlier models that process text in a single
direction, BERT utilizes masked language modeling (MLM) to predict randomly masked
words within a sentence. This design enables BERT to capture bidirectional dependencies
and perform state-of-the-art tasks like question answering, named entity recognition, and sen-
timent analysis. Building on BERT, RoBERTa enhanced the pretraining process by eliminating
the Next Sentence Prediction (NSP) objective and training on significantly larger datasets.
RoBERTa’s optimization improved performance across multiple benchmark tasks without
introducing additional architectural complexity[39].

The growing need for multilingual NLP has led to the development of embedding models
capable of operating across diverse languages. Embedding models have revolutionized
monolingual tasks in English and German. For English, BERT and its variants dominate
benchmarks in tasks ranging from text classification to machine translation[39]. Similarly,
German NLP has benefited from multilingual models like mBERT and XLM-R (Cross-lingual
Language Model-Robust), alongside dedicated German models such as GottBERT, which
is pre-trained exclusively on German corpora. These advancements have improved tasks
like sentiment analysis, document classification, and syntactic parsing[37]. mBERT, although
lacking explicit cross-lingual training objectives, demonstrated impressive zero-shot transfer
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capabilities by leveraging shared subword tokenization and multilingual corpora. It laid the
groundwork for subsequent models like RemBERT (Retrieval-Enhanced BERT), which further
optimizes multilingual embeddings by integrating retrieval-based techniques to enhance
semantic alignment[37].

XLM and its successor XLM-R represent significant milestones. XLM combines masked
language modeling with translation language modeling, using parallel corpora to align
representations across languages[38]. XLM-R extends this approach by training on Com-
monCrawl data for over 100 languages, providing robust performance on multilingual tasks
such as cross-lingual natural language inference and unsupervised machine translation[39].
Another noteworthy evolution is T5 (Text-to-Text Transfer Transformer), which reframes all
NLP tasks into a text-to-text format. This approach unifies text generation, summarization,
translation, and classification under a single framework, making it versatile for both English
and multilingual tasks. By employing a text-infilling objective and pretraining on the Colossal
Clean Crawled Corpus (C4), T5 achieved state-of-the-art results in various domains[37].

2.8 AI-Generated Text Evaluation Methods

Evaluating generated text is critical in developing and assessing Natural Language Generation
(NLG) systems. Effective evaluation methods ensure these systems produce text that meets
the desired quality, coherence, and usability standards. Over time, evaluation methodologies
have evolved to balance human judgment and automated metrics, each addressing unique
aspects of text quality.

Text evaluation methods can be widely categorized into human-centric evaluations, auto-
matic metrics, and machine-learned metrics, as detailed in [40]. Each method serves distinct
purposes:

Human-Centric Evaluations: These involve direct human judgments and are often consid-
ered the gold standard for assessing fluency, coherence, and human likeness. However, they
are resource-intensive and can be inconsistent across evaluators.

Automatic Metrics: Metrics like BLEU, ROUGE, and METEOR rely on n-gram overlaps to
measure text similarity. These are computationally efficient but often fail to capture semantic
nuances.

Machine-Learned Metrics: These newer approaches leverage neural networks to evaluate
generated texts based on embeddings and semantic similarity, addressing some limitations of
traditional metrics.

Evaluating text generated by NLG systems is a nuanced task requiring multiple method-
ologies to assess different quality aspects. These methods balance human judgment and
automated systems, each addressing specific facets of evaluation. The paper [41] introduces
a unified toolkit for evaluating sentence representations across tasks like natural language
inference and semantic similarity, emphasizing the importance of standardized and cen-
tralized evaluation pipelines to improve reproducibility and fairness. According to [32],
effective evaluation hinges on capturing fluency, coherence, and task-specific relevance. It
suggests using diverse metrics tailored to the complexity of modern models like LLMs, as the
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evaluation process requires a combination of quantitative and qualitative approaches.

2.8.1 Human-Centric Evaluation

Human evaluation remains critical in capturing nuanced aspects like fluency, coherence,
and informativeness. However, as described in [42], the lack of standardized practices often
leads to inconsistencies. This study emphasizes using clearly defined criteria, such as fluency
and meaning preservation and recommends employing multiple annotators and reporting
inter-annotator agreement for more reliable results. However, [43] critiques these methods
as resource-intensive and inconsistent. Instead, it advocates for combining automatic and
human evaluations to triangulate results. It has also been noted in [44] that human evaluations
typically score text on grammaticality, coherence, and informativeness. Despite their reliability,
the inconsistency and cost of human evaluations remain significant drawbacks.

2.8.2 Automatic Metrics

Metrics like BLEU and ROUGE are extensively used for tasks such as summarization and
translation. However, their limitations are increasingly evident in open-ended tasks. For
instance, BLEU fails to capture semantic similarity, often producing high scores for text
with minimal informational content. While more recall-focused, ROUGE struggles with
long text generation where narrative and factual consistency are critical [40]. [45] also adds
METEOR to the precedent methods and highlights the limitations of such metrics, especially
for tasks requiring semantic understanding. It introduces word deletion-based evaluation as
an alternative, emphasizing its utility in local fidelity assessments. The limitations of such
metrics are also discussed in [41], which suggests evaluating representations on downstream
tasks to ensure broader applicability and reliability.

2.8.3 Machine-Learned Metrics

Recent advancements integrate machine-learned metrics to address the semantic gaps left
by traditional methods. [43] introduces mutual information-based objectives, leveraging
contextual embeddings to evaluate saliency and faithfulness without requiring human refer-
ences. This approach showcases promise for unsupervised settings. Recent advances have
introduced machine-learned metrics that employ contextual embeddings from models like
BERT to assess text quality. These models are adept at capturing deeper semantic relation-
ships. For instance, Sentence Mover’s Distance (SMD) evaluates text coherence by comparing
sentence embeddings and has demonstrated an improved correlation with human judgments
in summarization tasks [40].

Combining human judgment with automated metrics is emerging as a best practice for
robust evaluations. According to [42], hybrid methods that integrate task-specific metrics
with qualitative human assessments offer comprehensive insights into generated text quality.
Effective evaluation involves a mix of intrinsic and extrinsic methods. Standardized toolkits
like SentEval provide robust pipelines for evaluating sentence representations, while best
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practices for human evaluation ensure consistency and reproducibility. Together, these
approaches support the development of accurate and contextually appropriate NLG systems.
Integrating human feedback with advanced automated metrics can provide comprehensive
insights. [40] also supports blending intrinsic and extrinsic evaluations to better understand
surface-level and task-specific text quality.

24



3 Related Work

This chapter gathers a comprehensive overview of existing research to identify previously
proposed solutions, highlight their limitations, and outline promising directions for further
investigation aligned with the objectives of this thesis. In particular, it explores context
windowing techniques for semantic extraction, examines clustering-based approaches to
semantic grouping, investigates the potential of LLMs for text summarization, and addresses
prevailing challenges in text classification. By collecting these contributions and identifying
gaps in the previously carried-out related research topics, the chapter establishes the core
upon which the subsequent chapters build, highlighting the focal points of this thesis.

3.1 Context Windowing for Semantic Extraction

Context windowing is a foundational technique in semantic extraction tasks. It involves
segmenting text into manageable spans termed context windows to preserve semantic coher-
ence while enabling downstream tasks such as clustering, frame induction, and retrieval
augmentation. By maintaining the integrity of localized semantics, context windows facilitate
efficient and meaningful processing of linguistic data.

3.1.1 Importance and Utility of Context Windows

Context windows are essential in processing long text sequences, especially for models
that need to retain semantic coherence across input spans [46]. For instance, the Parallel
Context Windows (PCW) approach segments text into discrete chunks and restricts attention
mechanisms within each window using positional embeddings as illustrated in Figure 3.1 [47].
This technique not only enhances computational efficiency but also improves performance in
multi-hop question answering and retrieval-augmented generation.

In semantic frame induction, contextualized embeddings such as BERT’s are crucial for
distinguishing verb senses and their associated predicate-argument structures. These embed-
dings rely on context windows to cluster instances into coherent semantic frames, thereby
enabling accurate disambiguation of polysemous verbs [48].

In the domain of information retrieval, context windows have been shown to enrich queries
via semantic augmentation [46]. Window sizes directly affect clustering quality and alignment
with user intent. Shorter windows (e.g., 10 minutes) better capture immediate context,
improving search precision, especially in cold-start scenarios [47]. Models which utilize
advanced semantic embedding and consistent context semantics (SECS) leverage multi-view
consistency from context windows for more coherent clustering of high-dimensional sparse
text data [49].
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Figure 3.1: Illustration of LLM Training on PCW vs. Single Context Window

3.1.2 Context Window Extraction Approaches

This thesis builds on the methods proposed by Seibicke [50] for extracting and evaluating
context windows around class-specific keywords. The motivation stems from the inherent am-
biguity in natural language, where words like bank can denote different meanings depending
on context.

Manual Approaches

• Basic: Fixed number of tokens before and after the keyword.

• Naive: Includes syntactic dependencies using tools like spaCy.

• Dependency-Based: Dynamically expands the window via syntactic relations.

Machine Learning Approaches

Supervised models (e.g., Random Forest, XGBoost, Gaussian classifiers) label tokens as
inside/outside the window based on features like POS tags, dependency labels, and distance
to keyword. Post-processing ensures inclusion of semantically meaningful tokens and the
keyword itself [50].
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Evaluation and Integration

Precision, recall, and F1 scores quantify model performance. Expert evaluations favored
Gaussian models for producing longer, semantically rich spans. Extracted windows also
support clustering (e.g., K-means) to classify contexts into semantic classes. The approach
was validated on domain-specific corpora such as the German Business Registry [50].

3.1.3 Temporal Dynamics in Context Windowing

Vuong et al. [46] examined how different temporal windows (10 minutes, 1 hour, 1 day)
affect semantic extraction. Short windows outperformed longer ones in cold-start scenarios
by leveraging recent non-search digital behavior. Conversely, long-term contexts provided
benefits for informational queries.

They employed Dirichlet–Hawkes Processes (DHP) for topic modeling, demonstrating
that recency has a significant semantic weight. These findings emphasize the need for
intent-aligned window sizing in semantic distillation pipelines [46].

3.1.4 Applications in Information Extraction

In the Semantic Web context, context windows facilitate entity extraction and linking by
aligning mention surroundings with candidate entity representations [51].

• Keyword-Based Context: Local token analysis for disambiguation.

• Variable Window Sizes: Adjusted to balance performance and accuracy depending on
the document type.

• Collective Disambiguation: Joint consideration of multiple entity mentions.

Contextual features exploited include strings, co-occurring terms, entity graphs, ontological
categories, and syntactic structures. Context windows also support joint inference models
(e.g., JERL, Babelfy) and aid in detecting previously unseen entities [51].

Context windowing is widely considered as a critical enabler for semantic extraction in
both traditional NLP pipelines and modern LLM-based architectures. From verb sense disam-
biguation to long-context retrieval, adaptive context window strategies ensure the preservation
of semantic coherence and scalability. As methods for extending context horizons become
more robust and data-efficient, the integration of context-aware modeling promises even
greater precision and generalization in knowledge distillation systems.

3.2 Semantic Grouping via Clustering

Semantic grouping through clustering integrates clustering techniques with context windows
to enable effective semantic knowledge extraction. Context windows in NLP highlight
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semantic and sequential relational dependencies, producing refined representations for
downstream tasks. Clustering captures patterns and organizes semantically similar contexts
to enhance knowledge generalization.

3.2.1 Clustering with Contextual Embeddings

Clustering is widely used in applications that involve organizing semantically similar ele-
ments into coherent structures. It supports improved structure, retrieval, and representation
of textual knowledge. Recent advancements use contextual embeddings and multi-view
representations to tackle traditional limitations such as sparsity and high dimensionality. By
incorporating multiple perspectives such as syntactic, semantic, and metadata multi-view
clustering aligns diverse views to generate consistent and interpretable clusters [49].

Transformer-based embeddings (e.g., BERT) have revolutionized clustering by capturing
fine-grained semantic relationships. These contextualized embeddings allow clustering
models to handle nuanced meanings. For example, clustering verbs and arguments into
semantic frames enhances representation and disambiguation [48]. In retrieval systems,
clustering helps segment user queries and behaviors into semantically meaningful units,
aligning outcomes more closely with user intent [47].

3.2.2 Traditional and Semantic Clustering Approaches

Semantic clustering differs from traditional clustering by emphasizing conceptual rather
than lexical similarity. While Bag-of-Words (BoW) and vector space models often fail due to
synonymy and polysemy, semantic clustering incorporates ontologies and contextual analysis
to group documents more meaningfully [52].

Techniques in Semantic Clustering [52]:

• Ontology-based clustering: Uses domain knowledge bases (e.g., WordNet) to identify
semantic relations.

• Latent Semantic Analysis (LSA): Projects documents into a latent concept space.

• Word Sense Disambiguation (WSD): Assigns contextually correct senses to words.

• Concept weighting: Enhances TF-IDF with semantic context.

Benefits:

• Improves accuracy through conceptual similarity.

• Resolves lexical ambiguity.

• Supports synonym-aware and cross-lingual clustering.

• Enhances evaluation metrics such as precision, recall, and F-measure.
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Architectures and Algorithms:

• Preprocessing (tokenization, stop-word removal, stemming)

• Semantic enrichment via ontology mapping

• Algorithms:

– Bisecting K-Means: Efficient for large-scale datasets.

– Hierarchical Agglomerative Clustering (HAC): Builds a cluster hierarchy.

– Self-Organizing Maps (SOM): Visualizes high-dimensional data.

Similarity Measures: Cosine similarity is commonly used post-transformation into concept
space.

Challenges:

• Scarcity of high-quality ontologies.

• WSD dependency.

• Difficulties in benchmarking and evaluation.

3.3 Leveraging LLMs for Text Summarization

The advent of LLMs, such as GPT-3, GPT-4, and Llama, has significantly reshaped the
field of Automatic Text Summarization (ATS), transitioning it from rigid, paradigm-specific
techniques to more flexible, generative approaches. Unlike earlier models limited to either
extractive or abstractive summarization, LLMs enable paradigm-agnostic summarization,
seamlessly blending both approaches within a single framework in the form of contextual
knowledge distillation [53].

3.3.1 Key Advantages of LLMs in ATS

LLMs offer several compelling advantages over traditional models in the summarization
domain as highlighted in [53]:

• In-context and Few-shot Learning: They exhibit strong performance in zero-shot and
few-shot settings, reducing the dependence on task-specific training data.

• Generative Flexibility: LLMs can easily switch between extractive, abstractive, and
contextual knowledge distillation (hybrid summarization) via prompt modifications,
without altering the underlying architecture.

• Superior Output Quality: Their training on massive and diverse corpora results in
summaries that are fluent, coherent, and semantically rich.
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3.3.2 Categories of LLM-Based Summarization Techniques

LLM-based summarization have been categorized according to [53] into:

• Prompt Engineering: Custom prompts guide LLMs in summary generation. Techniques
include template-based prompts, Chain-of-Thought (CoT) prompting, agent-based
pipelines, and Retrieval-Augmented Generation (RAG).

• Fine-tuning: Domain-specific fine-tuning using either internal parameter adjustments
or adapter modules enhances summarization capabilities.

• Knowledge Distillation: LLMs act as teachers to train smaller models, enabling efficient
summarization in low-resource settings.

3.3.3 Taxonomy and Trends in LLM-based Summarization Research

LLM-based summarization research has evolved into three major directions [54]:

• Benchmarking Studies: Evaluation across datasets like CNN/DailyMail and XSum has
revealed strengths in coherence and fluency, but challenges remain with hallucinations,
lead bias, and factual accuracy.

• Modeling Studies: Innovations include structured prompt design (e.g., PromptSum,
SumCoT), multi-agent frameworks (e.g., SummIt, ImpressionGPT), distillation pipelines
(e.g., InheritSumm), and chain-of-thought summarization.

• Evaluation Studies: Traditional metrics (ROUGE, BLEU) are increasingly supplemented
with LLM-based evaluators (e.g., GPTScore, G-Eval), offering improved correlation with
human judgment.

3.3.4 Uncertainty-Aware Summarization with LLMs

Preserving semantic uncertainty in summaries is an emerging focus. Recent work explores
LLMs’ ability to identify and retain lexical and semantic uncertainty expressions during
summarization [55]. Using GPT-4 with XML-guided annotation, the study shows improved
alignment and iterative feedback learning, achieving high precision and recall in preserving
uncertainty in generated summaries.

3.3.5 Aspect-Based Summarization via Fine-tuned LLMs

Fine-tuning open-source LLMs such as Llama2, Mistral, Gemma, and Aya using the OASUM
dataset has shown significant improvements in aspect-specific summarization [56]. Techniques
like QLoRA and PEFT enhance performance across standard metrics and GPT-4-based
evaluations, with Llama2-13b-FT leading in quality and generalization across domains.
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3.3.6 Multi-LLM Summarization Frameworks

To mitigate challenges in long-document summarization, multi-LLM frameworks have been
proposed [57]. These include centralized models for best-summary selection and decentralized
architectures that use consensus mechanisms for generation and evaluation. This approach
demonstrates significant gains (up to 3×) over single-LLM baselines in terms of ROUGE,
BLEU, and factuality.

3.3.7 Topic-Driven Summarization (TDS)

LLMs also show promise in Topic-Driven Summarization (TDS), where structured outputs are
guided by document objectives or user-defined topics [58]. Using GPT-4o’s extended context
window (up to 128k tokens), models can generate table-of-contents, guiding questions,
and context-aware summaries. This method surpasses traditional prompting strategies
and facilitates both summarization and classification tasks, particularly for unstructured
documents.

3.3.8 Evaluation and Limitations

Despite their strengths, LLM-based summarization methods face several challenges [53]:

• Factual Hallucinations: Tendency to generate plausible yet incorrect information.

• Prompt Sensitivity: Outputs vary significantly with minor prompt changes.

• Computational Overhead: High resource requirements for inference and fine-tuning.

Nevertheless, LLMs continue to redefine the state-of-the-art in ATS due to their generaliza-
tion ability and human-like summary generation.

3.4 Text Classification Applications & Hurdles

Text classification is a foundational task in NLP with a wide array of real-world applications,
including sentiment analysis, spam detection, product reviews, news categorization, email
sorting, question answering, customer support automation, and consumer complaint handling.
As the demand for intelligent document organization and real-time information retrieval
increases, both multi-class and multi-label classification techniques have gained prominence
[59].

3.4.1 Applications of Text Classification

Multi-label classification is particularly crucial when a document may belong to multiple
categories simultaneously, which is an increasingly common requirement in domains like
finance and consumer protection. For example, a single consumer complaint may include
elements of “Credit Cards” and “Debt Collection,” or an email may reference invoice numbers,
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payment confirmations, and dispute-related content, necessitating labels like “Request for
Invoice” and “Dispute” [59].

Traditional supervised text classification methods rely heavily on large, annotated datasets.
Deep learning models such as CNNs and RNNs have achieved strong performance in this
space but require tens of thousands of labeled documents per task [60]. In response to
the high labeling cost, researchers have explored semi-supervised, weakly-supervised, and
zero-shot learning methods as scalable alternatives.

Semi-supervised approaches reduce annotation needs by incorporating unlabeled data
through augmentation and graph-based learning techniques. Zero-shot classification attempts
to infer labels for previously unseen categories using semantic representations but still
depends on supervised training for seen classes. Weakly-supervised methods like LOTClass
go a step further by using only label names without document-level annotations to achieve
competitive results, making them attractive for low-resource domains [60].

3.4.2 Challenges and Future Directions in Text Classification

Despite advances in modeling techniques, several key challenges persist in building effective
text classification systems which were made clear in both research papers [59] & [60]:

• Contextual Complexity: Traditional models such as Word2Vec and Bag-of-Words fail to
capture deep contextual relationships, especially in multi-label classification tasks.

• Entity Ambiguity: Extracting entities such as dates, invoice numbers, and payment
details for accurate labeling is difficult without robust Named Entity Recognition (NER)
systems.

• Text Variance: Emails and complaint texts vary significantly in length and structure,
making it hard to design models that generalize across diverse formats.

• Performance Bottlenecks: Transformer-based models like BERT achieve state-of-the-
art results but are computationally expensive, posing limitations for real-time and
industrial-scale deployments.

• Imbalanced Datasets: Some categories are underrepresented (e.g., “Virtual Currency”
vs. “Credit Cards”), leading to biased models and poor performance on minority
classes.

• Overlapping and Hierarchical Labels: Classes often have hierarchical relationships (e.g.,
“Prepaid Cards” under “Credit Cards”), complicating label definitions and evaluation
metrics.

• Label Name Ambiguity: Single-word labels like “business” can be vague. While meth-
ods like LOTClass expand these into richer category vocabularies, semantic ambiguity
remains a challenge.
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• Contextual Disambiguation: Words may represent different categories depending on
context. For instance, “sports” can refer to both activities and product types.

• Sparse Supervision: When using minimal supervision (e.g., label names only), models
struggle to generalize without enhancements like masked category prediction and
self-training.

• Implicit Sentiment or Topic Representation: Some documents encode meaning through
subtle cues like sarcasm or comparison, requiring deep contextual models to uncover
true intent.

• General vs. Specific Labels: Highly general labels lack precision, whereas overly
specific ones demand domain expertise for effective construction.

• Error Propagation: In self-training pipelines, incorrect pseudo-labels can reinforce errors
across iterations.

Due to the previously mentioned limitations, most of the current text classification-based
researches follow the hybrid models direction that blend contextual understanding with
structured entity extraction to handle the complexities of modern text classification [59].
Thus, this thesis topic handles and supports lots of those major limitations. First, it tackles
Contextual Complexity and Contextual Disambiguation by leveraging LLMs equipped
with windowed semantic extraction, enabling the capture of nuanced relationships beyond
surface-level word co-occurrence. Through Semantic Grouping via Clustering, the work
reduces Label Name Ambiguity and handles Overlapping and Hierarchical Labels by
distilling contextually grounded archetypes that better reflect latent label structures. Moreover,
the proposed framework improves robustness under Sparse Supervision by using label-
driven prompt engineering combined with unsupervised clustering approaches, reducing
dependence on large annotated datasets. Finally, by constructing domain-specific archetypes
and focusing on semantically cohesive contexts, the approach narrows the gap between
General vs. Specific Labels and enhances model interpretability across highly variable and
imbalanced textual data distributions.
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4 Methodology

This chapter outlines the methodology employed in this study, presenting a complete overview
of the entire pipeline. It begins with a high-level description of the workflow, followed by
detailed sections covering the datasets utilized, the text embedding models applied, and
the clustering of domain-specific context windows. It then delves into the generation of
domain-specific archetypes, concluding with the evaluation techniques used to assess the
effectiveness and validity of the proposed approach.

4.1 Pipeline Overview

Figure 4.1: Thesis Work Pipeline Illustration

In this section, a pipeline overview of the thesis work is traversed to get a general idea
of the flow as shown in Figure 4.1. Starting with the already implemented context window
extraction pipeline. A brief summary of the previously implemented pipeline includes the
following steps:

1. Defining Domain Seed Keywords: A foundational set of seed keywords was carefully
curated through expert elicitation, targeted domain literature review, and established
taxonomies related to the intended domain. These seed terms served as high-precision
anchors, representative of the core semantic dimensions of each target class. Drawing
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from the methodology proposed by [61], seed keywords were intentionally limited to
unigrams to maintain precision in downstream keyword evaluation and to align with
the lexical patterns typical to the domain corpus.

2. Domain Keywords Extraction: Leveraging the curated seed keywords, an expanded set
of class-specific domain keywords was generated using an iterative guided keyword
extraction strategy. This process built upon a modified version of the KEYBERT frame-
work, in which corpus embeddings were bypassed in favor of seed-centric similarity
scoring. Each batch of the corpus was processed using cosine similarity between candi-
date and seed embeddings, scored via a hybrid averaging and max-scoring scheme, and
incrementally enriched with high-ranking candidates mirroring the two-stage scoring
and dynamic seed augmentation proposed in the referenced method. This allowed the
pipeline to progressively refine and densify the keyword representation space for each
semantic class over multiple iterations [61].

3. Filtering Extracted Domain Keywords: To ensure the semantic integrity of the domain-
specific keyword sets, a comprehensive hybrid filtering strategy by [62] was used. This
included an initial clustering phase, primarily using recursive hierarchical clustering
methods optimized by adaptive distance thresholds and followed by corrective refine-
ment via geometric techniques such as convex hull and circle-based enclosures. These
techniques isolate and exclude keywords lying outside clusters tightly associated with
class seed keywords. Subsequently, advanced outlier detection algorithms like Isolation
Forest and Local Outlier Factor were applied, leveraging contamination metrics aligned
with clustering-derived outlier ratios. Finally, a semantic validation step was conducted
using cosine similarity scores enhanced by lexical and conceptual expansions from
WordNet and ConceptNet, ensuring that only contextually relevant and semantically
coherent keywords were retained.

4. Extracting Domain Context Windows: For each filtered domain keyword, multiple
context windows were collected from the corpus. These context windows were defined
using the techniques introduced by [50] and also referred to in the Subsection 3.1.2, cap-
turing the surrounding semantic and syntactic environment. Examples from resulting
context windows related to sports domain include: [’the big ten coaches were’, ’five players’,
’is vc bet 39 s heaviest liability ahead of this week 39 s australian pga championship’, ’eye for
sports a week later the tape of the fight between the indiana pacers and the detroit fans sticks’,
’controversy over the bowl championship series’, ’by bullying tactics from their opponents’, ’look
now but there s a bit of drama building in the quot other quot league championship series’, ’take
on mcgrady yao debut since rotations are usually shorter during preseason games players have’,
’fans players brawl indiana s ron artest’, ’39 union deadlocked the national hockey league and its
players ended’, ’trafficking and its long running guerrilla war than baseball players’, ’england
players sepp blatter the president of football 39 s world governing body fifa will tell’, ’reveal
their hands this week as olympic chiefs scrutinize their plans for holding the world 39 s greatest
sporting extravaganza’, ’do or die for braves astros cbc sports online the situation is’, ’cup over
finland cbc sports online canada]
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4.2. DATASETS

Utilizing the previously illustrated pipeline, context windows are extracted for each domain
based on the datasets described in the following section. These context windows are then
clustered using various clustering algorithms alongside embedding models to produce
semantically coherent clusters. Each cluster is expected to represent a sub-domain or sub-
topic within the main domain. This clustering step is critical, as it facilitates the next phase
by structuring the input LLMs to generate domain archetypes more effectively.

In the next phase, multiple LLMs are experimented. Tailored prompts are designed and
fed into the LLMs with the clustered context windows from the previous step to generate
domain archetypes. The output is then cleaned and re-parsed to ensure it conforms to the
desired format and structure.

The final phase is evaluation, which consists of four components:

1. Semantic Search: Comparing the similarity between two datasets’ full-texts versus the
similarity between one dataset’s full-texts and the other’s generated archetypes.

2. Classifier Fine-tuning: Fine-tuning text classifiers on the original full-text data and
comparing their performance when fine-tuned on the generated archetypes.

3. Human Evaluation: Conducting a survey in which participants compare archetypes
generated by different LLMs for the same domain and cluster, to determine human
preference.

4. Cluster Uniqueness Assessment: Comparing the clustering of archetypes from mixed
domains to clustering of full-text documents from mixed domains, to assess whether
the archetype-based clusters exhibit greater domain separation and uniqueness.

4.2 Datasets

To evaluate the effectiveness of the proposed approach for semantic extraction and class
archetype distillation, five diverse textual datasets are involved in this thesis work. These
datasets span multiple domains such as sports journalism, general news classification, and
topic-based news grouping. This selection ensures a wide-scope evaluation across various
content genres, linguistic styles, and label granularities.

4.2.1 OnlySports Dataset

The OnlySports dataset is a curated sports-focused news dataset that contains over 864M
samples for only sports category. It includes articles with rich semantic variation, as it
comprise a diverse range of content including not only news articles, but also blogs, match
reports, interviews, and tutorials, making it ideal for testing contextual windowing in
narrowly-defined domains [63].
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4.3. TEXT EMBEDDING MODELS

4.2.2 AG News

AG News is a well-known benchmark for text classification. It comprises 120,000 training and
7,600 test samples categorized into four high-level news topics: World, Sports, Business, and
Sci/Tech. Its simplicity and balance make it an excellent dataset for baseline performance
evaluation [64].

4.2.3 BBC News

This dataset features 2,225 news articles from the BBC, distributed across five topics: business,
entertainment, politics, sport, and tech. Despite its smaller size, it is useful for early-stage
validation and qualitative analysis [65].

4.2.4 20 Newsgroups

A classic dataset used in topic modeling and clustering, the 20 Newsgroups dataset contains
nearly 19,000 forum posts across 20 discussion categories. Its high class count and informal
language pose a suitable challenge for fine-grained semantic grouping [66].

4.2.5 HuffPost News Category Dataset (Short Descriptions)

The HuffPost dataset includes over 200,000 entries labeled across 42 fine-grained news
categories. While each entry links to a full article, the actual article content is not explicitly
provided. Instead, the short descriptions accompanying each entry were utilized as the
primary textual input. These concise short descriptions add a challenge for semantic analysis
and enable robust evaluation of large-scale clustering and archetype discovery tasks [67].

Table 4.1 summarizes the key characteristics of each dataset, including their domain,
number of classes, total samples, and respective sources.

Dataset Name Domain Classes Samples Source
OnlySports Sports 1 1,727,979,830 HuggingFace
AG News News Articles 4 127,600 HuggingFace
BBC News News Categories 5 2,225 Kaggle
20 Newsgroups Forum Posts 20 18,846 Kaggle
HuffPost News Online News 42 209,527 Kaggle

Table 4.1: Overview of Employed Datasets

4.3 Text Embedding Models

To enable effective clustering of context windows and news article representations, dense
vector embeddings were generated using two state-of-the-art transformer-based models:
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4.4. DOMAIN CONTEXT WINDOWS CLUSTERING

jinaai/jina-embeddings-v3 and sentence-transformers/all-mpnet-base-v2. Both mod-
els transform text into semantically meaningful embeddings, making them well-suited for
unsupervised clustering tasks.

4.3.1 Jina AI Embeddings v3

The jinaai/jina-embeddings-v3 model [68] is a multilingual, instruction-tuned transformer-
based encoder optimized for semantic similarity tasks across diverse domains. It produces
768-dimensional embeddings and supports input texts in over 100 languages. Developed by
Jina AI, this model emphasizes dense clustering performance and is tuned for real-world
retrieval and ranking tasks.

4.3.2 MPNet Base v2

The sentence-transformers/all-mpnet-base-v2 model, based on Microsoft’s MPNet ar-
chitecture, is a widely used benchmark for sentence-level embeddings. It offers strong
general-purpose performance across a variety of NLP tasks such as semantic search, cluster-
ing, and sentence similarity. This model also outputs 768-dimensional vectors and is trained
on large-scale datasets with contrastive learning objectives.

4.4 Domain Context Windows Clustering

In this section, the focus is on clustering the context windows extracted from the domain-
specific data. The goal is to group windows that exhibit similar patterns, thereby uncovering
cohesive substructures that can aid in subsequent phase. Two main approaches are examined:

1. Recursive Hierarchical Clustering on both the full set of windows and on a reduced
subset of selected windows.

2. Density Peaks Clustering to discover representative clusters based on local density and
divergence.

The overall workflow involves generating the context windows, preparing their feature
embeddings as discussed in last section, and then feeding these vectors into the respective
clustering algorithms.

4.4.1 Recursive Hierarchical Clustering: Full vs. Selected Windows

Recursive Hierarchical Clustering (RHC) leverages the iterative, top-down process of classical
agglomerative clustering to refine the cluster structure. Initially, all context windows (the “full”
set) are clustered, then recursively focus on each major cluster to explore deeper partitions if
needed. The main steps are:

1. Feature Extraction: Represent each context window with a feature-embedding.
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4.4. DOMAIN CONTEXT WINDOWS CLUSTERING

2. Initial Clustering: Apply hierarchical agglomerative clustering to the entire set of
windows using ward linkage method.

3. Recursive Partitioning: For each identified subcluster, check for internal heterogeneity.
If the cluster is sufficiently large or diverse via density measure threshold, apply
hierarchical clustering again, thus “splitting” it further.

4. Comparison of Full vs. Selected Windows:

• Full Windows: Use all available windows to capture a broad representation of
the domain. This can reveal coarse-grained groupings and may expose interesting
high-level patterns but could introduce noise.

• Selected Windows (Trigram Filtering): Instead of including all windows, a domain-
driven tri-gram based approach is borrowed to filter out overlapping or redundant
context windows. This strategy could result in more cohesive groupings and
reduces overall complexity, although, it risks discarding some nuanced variations.

A cluster example using full-windows iterative hierarchical clustering and jinaai/jina-
embeddings-v3 in domain sport about evaluations and reactions to a sports game sub-domain
is: Cluster 83: [’m satisfied the game was handled’, ’been very interesting to watch the game’, ’the game
arguably the highlight of the draw is’, ’are pleased but move on to the next game’, ’had a chance to win
the game’, ’felt we did enough to win the game’, ’was a very intense occasion and a very destructive
game’, ’thought it was a horrible game in the first half and it was not much better in the second’,
’everything we could have done to win the game’, ’was a hell of a tough game’, ’are all disappointed we
lost the french game’, ’controlled the game in the first half but we knew that they would come out and
try everything after half’, ’think we played quite well and it was a very good game’, ’had three chances
to win the game’, ’knew all along that we would be a huge threat particularly the first game’, ’chance
we had before this game’, ’had a superb game’, ’was amazing to watch but never did i think the french
could lose that game’, ’was a great game’, ’had an awesome game’, ’are playing a great team game’,
’fantastic with the players and the coaches’, ’played a very good game’, ’are still very disappointed with
our last game’, ’missed another chance to seal the game’, ’enjoyed the game’]

4.4.2 Density Peaks Clustering

Density Peaks Clustering (DPC) is a distinct approach that identifies cluster centers by looking
for points in the feature space characterized by high local density and large distance from
points with higher density. Once these cluster centers are identified, other points are assigned
to the nearest cluster center. The key steps in DPC procedure as introduced in [36] are:

1. Distance Computation: Compute pairwise Euclidean distances among the context
windows.

2. Local Density Estimation: For each window, estimate its density by counting the
number of points within a specified distance cutoff or by summing distance-based
weights.
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3. Distance to Higher-Density Points: For each window, measure how far it is from the
nearest point with a higher density.

4. Cluster Center Identification: Points that combine (i) high density and (ii) large distance
to any higher-density neighbor are flagged as cluster centers.

5. Assignment of Remaining Points: Non-center windows are assigned to the nearest
cluster center. This typically yields a user-defined number of clusters based on density
thresholds.

This method complements hierarchical clustering by giving the chance to uncover potential
clusters without strictly imposing a global linkage criterion. In many cases, DPC can detect
small but dense clusters of windows that might remain undetected by traditional hierarchical
methods.

4.5 Generation of Domain-Specific Archetypes

The core step in the methodology involves the generation of domain-specific archetypes that
summarize the thematic essence of each cluster of semantically similar context windows.
These archetypes serve as a backbone for downstream tasks such as domain-specific classi-
fication, reasoning, and pattern interpretation. This step was realized through an iterative
process involving prompt engineering, lightweight LLM experimentation, batch-wise cluster
grouping, and robust output parsing and validation mechanisms.

4.5.1 Prompt Design

A range of prompt structures were experimented with to guide the LLMs toward producing
high-quality, interpretable archetypes. The early approaches included minimal prompts with
and without contextual cluster examples, but they often yielded generic or repetitive outputs.
To overcome this, Chain-of-Thought prompting was adopted to encourage deeper reasoning
over the thematic structure of the clusters. In scenarios where certain clusters consistently
failed to generate meaningful archetypes, cloze-style prompting was tested, framing the task
as if prompting the LLM, if you cannot generate an archetype for any of the clusters, just
place an empty string, so that would challenge the LLM to generate an archetype.

Consequently, the final prompt was explicitly designed to instruct the model to output
an empty string for both the rule and examples fields in cases where a coherent archetype
could not be generated. This also ensured structural consistency in the output JSON while
transparently signaling gaps in coverage.

After iterative refinement, the prompt evolved into a structured and explicit system message,
which clearly delineated the role of the model, the format of the expected output, and post-
generation constraints. Notably, the prompt enforced:

• Domain-specific language.
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• One archetype per cluster.

• A strict output format in JSON, including fallback behavior for low-signal clusters.

The prompt also embedded a final consistency check directive that validated the one-to-one
mapping between clusters and archetypes, helping reduce hallucinations and misalignment
in the generated output.

The final prompt structure used is shown in Figure 4.2. This prompt structure guaranteed
consistent, machine-parseable output and prevented extraneous commentary or reasoning
from polluting the final archetypes.

4.5.2 Utilized LLMs & Quantization

Numerous language models were evaluated for their ability to generate high-fidelity archetypes
across multiple domains. The focus was on lightweight, instruction-tuned models to ensure
fast inference and ease of deployment. The models experimented with included:

• Qwen2.5-1.5B-Instruct [69]

• Gemma-2B

• Mistral-7B-v0.3

• Phi-3.5-Mini-Instruct

• OpenBMB-MiniCPM-4B [70]

• Phi-4-14B

• Meta-Llama-3-8B [71]

• DeepSeek-R1-Distill-Qwen-14B [72]

• DeepSeek-R1-Distill-Llama-8B [72]

Where applicable, quantized variants of the larger models were used to balance memory
efficiency and generation quality. Specifically:

• Phi-4 and DeepSeek-R1-Distill-Qwen-14B were used in 4-bit quantized versions.

• DeepSeek-R1-Distill-Llama-8B and Llama-3 8B were used in 8-bit quantized form.

These smaller or quantized models were found to be sufficiently capable of handling
structured prompt-following and domain archetypes generation, especially when paired with
robust prompting strategies.

41



4.5. GENERATION OF DOMAIN-SPECIFIC ARCHETYPES

Figure 4.2: Final LLM Prompt for Clusters’ Archetypes Generation
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4.5.3 Batch-Wise Cluster Grouping for Token Efficiency

Given LLMs’ token context window limitations, clusters were first grouped into batches that
respected each model’s maximum token limit. To accomplish this, a dynamic tokenizer-based
grouping function was developed. It tokenized each cluster and accumulated them until just
under the token threshold, ensuring that no batch exceeded the model’s capacity.

In cases where an individual cluster was too large to fit even by itself, it was truncated
incrementally by removing context windows until it met the token requirement as shown
in Figure 4.3. This enabled robust inference across varying domain cluster sizes while
minimizing the risk of context overflow.

Figure 4.3: Grouping Clusters per each LLM Call According to Model’s Tokenizer limit

4.5.4 Output Parsing and Validation

Given the occasional instability of LLM outputs especially with longer responses or edge cases,
a post-generation validation and extraction step was implemented. Initially, the prompt
itself attempted to enforce a JSON-formatted output matching the number of input clusters.
However, occasional model hallucinations, formatting errors, or additional comments could
break the structure.

To address this, a Python-based cleaning and extraction utility was developed. This parser:

1. Extracts all valid { ... } JSON-like objects from the raw response.

2. Cleans anomalies such as:
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• Trailing commas

• Extra quotes

• Non-JSON comments

3. Validates structural integrity of each object.

4. Filters objects with missing or empty rule and examples fields.

5. Tracks and reports cluster indices with missing archetypes.

Furthermore, each archetype corresponding to a cluster would be a concatenation of the
rule field, followed by examples field from the LLM generated JSON object. This ensured
structural consistency across the final archetype set and made the pipeline resilient to mal-
formed outputs, ensuring every cluster had a corresponding entry, even if that entry was
marked empty. In cases where valid JSON extraction failed, diagnostic printouts were used
for manual debugging and batch-specific refinement.

Illustrations for LLMs archetypes outputs generation for the same sports domain cluster
given in Subsection 4.4.1 after concatenating rule and examples fields are shown in Table 4.2
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LLM Generated Archetype

OpenBMB-
MiniCPM-4B

Intensity, opportunities, and emotional responses during and
after games. Highly competitive games, chances created,
intense occurrences, feelings of victory or defeat, overall game
evaluations, reactions to close calls or missed opportunities.

Phi-4 Post-match analyses reflecting satisfaction, intensity, and
opportunities missed in sports engagements. Contentment
with handling of event proceedings. Observational interest in
high-profile matches. Highlight status attributed to pivotal
fixtures. Forward-looking mindset post-victory/defeat.
Missed scoring opportunities lamented. Intensity
characterized by aggressive tactics. Critique of poor
initial-half performance. Comprehensive effort
acknowledgment despite loss. Tactical dominance discussed
alongside expected counter-strategies. Recognition of strong
collective performance. Multiple near-success instances
recounted. Anticipatory threats identified pre-contest.
Reflective consideration of preceding challenges.
Commendation of exceptional individual displays. Surprise
reactions to unexpected defeats. Overall positive assessment
of engaging contests. Team cohesion praised amid adversity.
Collaborative spirit between athletes and mentors emphasized.
Disappointment voiced concerning recent losses. Regrettable
unseized decisive moments.

Meta-Llama-3-8B Player performances, emotions, and reactions post-game.
Solid game, disappointing loss, feeling good throughout the
game.

Mistral-7B-v0.3 Post-match analysis and sentiments expressed by teams and
individuals. Satisfaction with the game. Intense occasion.
Destructive game. Disappointment over losing the French
game. Controlling the game. Great game, fantastic game.

Table 4.2: Generated Archetypes by LLMs for Game Evaluation Cluster Example

4.6 Evaluation Techniques

This chapter presents the chosen evaluation approaches to evaluate the effectiveness and
validity of the proposed approach. It covers a range of techniques, including semantic search
to assess similarity comparisons between the domain’s full-text, and generated archetypes,
fine-tuning of text classifiers using both full-text and distilled archetypes to compare classi-
fication accuracy, and a human evaluation survey designed to gather qualitative feedback
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and validate the semantic coherence, and multiple LLMs outputs variations of generated
archetypes. Additionally, clustering experiments are conducted on both the archetypical rules
representations and the original full-text data to analyze their structural consistency, semantic
grouping capabilities, and domains disjointness.

4.6.1 Semantic Search

As an initial step to evaluate the semantic coherence and label alignment of the generated
archetypes, two types of semantic search experiments are conducted. These experiments
assess how well archetypes capture the underlying semantics of domain-specific texts and
test the generated archetypes’ scope coverage in comparison with the corresponding original
full-text.

Semantic Search with Archetypes from Multiple LLMs

In the first evaluation, archetypes generated by several distinct LLMs were used, including
Mistral-7B, Phi-4, MiniCPM-3B, and Meta-Llama-3-8B, to form an archetypal corpus for
semantic search. Each archetype was associated with a label derived from its corresponding
cluster’s dataset domain. A pre-classified dataset was used as the query set, with each query
labeled according to its ground truth category.

Both the query texts and the model-generated archetypes were embedded using the
jinaai/jina-embeddings-v3 model via the SentenceTransformer framework. For each query,
the top 3 most semantically similar archetypes from each model’s corpus were retrieved using
cosine similarity. Then, the predicted label (derived from the top match and from the most
frequently occurring label among the top 3) was compared to the query’s actual label.

Performance was evaluated using two metrics:

• Top-1 Accuracy: The percentage of queries for which the top retrieved archetype’s label
matched the ground truth label.

• Top-3 Majority Accuracy: The percentage of queries where the most frequent label
among the top 3 matches corresponded to the true label.

Direct Semantic Search Between Texts of Similar Domains

In the second evaluation, the inherent semantic similarity between full-text samples is
examined across datasets belonging to the same or similar domains. Thus, instead of using
archetypes, raw texts from one dataset (used as the corpus) are directly compared against
another dataset (used as the query set), ensuring both originated from the same general
domain.

Using the same embedding model, both the corpus and the queries were encoded and
performed top-3 nearest neighbor search using semantic search. As with the previous
evaluation, both top-1 and top-3 accuracy were computed by comparing the predicted labels
to the ground truth labels of the query texts.
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This setup serves as a strong baseline for testing the representational effectiveness of
full-text semantic embeddings. It also provides a comparison point for evaluating the utility
of archetypes in capturing semantic distinctions and highlights the overlap between datasets
from similar domains. It is expected that the generated archetypes would cover the same
scope as the original datasets’ full-text.

4.6.2 Fine-Tuning Text Classifiers on Archetypes vs. Full Text

In order to evaluate the generalization of archetype-based representations in supervised clas-
sification tasks, a series of fine-tuning experiments were conducted using three transformer-
based models: roberta-base, deberta-v3-base, and bert-base-cased. First, experiments
were conducted with 3 epochs for each classifier trained on same data, to point out the best
one. Then, the top model was fine-tuned on full-text dataset at a time and on archetypes that
had been generated by various LLMs at another time. Experiments were carried out over 1, 3,
and 5 training epochs to observe performance trends under varying training durations.

Dataset Preparation

For archetype-based training, archetypes were first extracted and grouped based on their
source LLM. Each archetype was associated with a semantic label, and the resulting datasets
were structured into tabular form. Labels were mapped to integer identifiers to be used as
class indices.

For full-text fine-tuning, existing labeled datasets were employed. Label-to-integer map-
pings were also generated and saved for consistency during inference and evaluation.

Training Procedure

All models were fine-tuned using the HuggingFace Trainer API. The following steps were
followed during training:

• Tokenization: Text inputs were tokenized using each model’s respective tokenizer, with
truncation and padding applied to a maximum sequence length of 512 tokens.

• Splitting: Each dataset was divided into training and validation subsets using an 80/20
split.

• Training Configuration: A learning rate of 2 × 10−5, weight decay of 0.01, and batch
size of 8 were applied. Models were evaluated and checkpoints saved at the end of each
epoch.

• Epoch Variants: Each configuration was trained separately for 1, 3, and 5 epochs to
assess training efficiency and generalization performance.
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Evaluation Methodology

Upon completion of training, the models were evaluated on other test datasets from the
same domain as the training data. The evaluation was performed in inference mode, with
computations carried out on GPU. For each text input, the predicted class label was obtained.

The following metrics were used to assess performance:

• Accuracy measures the proportion of correctly predicted samples and is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and
false negatives, respectively.

• Precision indicates the proportion of positive identifications that were actually correct:

Precision =
TP

TP + FP

• Recall represents the proportion of actual positives that were correctly identified:

Recall =
TP

TP + FN

• F1-score is the harmonic mean of precision and recall:

F1 = 2 × Precision × Recall
Precision + Recall

These metrics were computed and averaged for each test dataset classification results.

Comparison Criteria

It is anticipated that generated archetypes would generalize more than datasets’ full-text
in text-classification downstream tasks. The results obtained from archetype-based fine-
tuning were compared against those derived from full-text fine-tuning using the same model
architectures and training configurations. This comparison was used to assess the degree
to which distilled archetypes preserved classification-relevant information. It also served to
highlight the potential of LLM-generated archetypes as efficient and compact representations,
particularly in scenarios with limited computational resources or when training time is
constrained.
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4.6.3 Human Survey & Feedback

To evaluate the alignment between AI-generated summaries and human interpretations,
a structured survey titled “A Survey on Text Generalization for Classification” was designed
and conducted. The goal of the survey was to analyze non-domain experts preferences
for the various LLMs’ generated archetypes and check if those preferences match previous
evaluations’ results. The survey consisted of grouped text excerpts from the business domain
for classification purposes from clusters generated from both AG News and BBC News
datasets.

Survey Design and Purpose

The survey was structured into four distinct clusters of text excerpts, labeled A, B, C, and
D. Each cluster was composed of short snippets derived from business-related news arti-
cles. These clusters were curated to cover a diverse range of themes within the business
domain, such as corporate governance, financial regulation, reporting delays, and economic
developments as shown in Figure 4.4.

For each cluster, four AI-generated summaries were provided including Mistral-7B, Phi-4,
MiniCPM-3B, and Meta-Llama-3-8B, each produced by a different model. Participants were
instructed to evaluate each summary in the context of its corresponding text cluster. The
evaluation was conducted to determine the summary’s effectiveness in terms of content
coverage, interpretability, and relevance.

The following questions were addressed through the survey for each cluster (A, B, C, D)
and for each resulting summary (1, 2, 3, 4):

• How relevant and meaningful is Summary A-1 according to the provided clustered
business domain text in Cluster A?

• Does Summary A-1 cover the complete variety of the content provided by the clustered
business domain text in Cluster A?

• Is Summary A-1 easy for non-experts in the business domain to comprehend?

4.6.4 Participant Recruitment via Prolific

The survey was distributed through the Prolific platform1, a widely used participant re-
cruitment service for academic and industrial research. To ensure high-quality responses, a
pre-screened group labeled Qualified AI Taskers was selected.

This group consisted of individuals who had successfully passed Prolific’s internal AI
Task Assessment, which evaluates reasoning, fact-checking, and writing skills. As shown in
Figure 4.5, this cohort comprised 1,211 verified participants at the time of survey deployment.

By targeting this specific group, a higher degree of reliability, comprehension, and engage-
ment with the task was ensured, which is particularly important for evaluating complex tasks
involving summarization and content generalization.

1https://www.prolific.com
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Figure 4.4: Example of a survey section showing the presentation of a text cluster with
multiple AI-generated summaries
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Figure 4.5: Qualified AI Taskers group on Prolific

Evaluation Criteria

Each summary was evaluated using three Likert-scale questions as shown in Figure 4.9, with
ratings provided on a scale from 1 to 5:

1. Coverage of Content: Ratings ranged from “Very little coverage” (1) to “Complete
coverage” (5), and were used to measure how comprehensively the summary reflected
the original cluster.

2. Ease of Comprehension: Ratings ranged from “Impossible to comprehend” (1) to
“Very easy to comprehend” (5), and were used to assess the clarity of the summary for
non-experts.

3. Relevance: Ratings ranged from “Irrelevant” (1) to “Highly relevant” (5), and were used
to judge how closely the summary aligned with the main themes of the original text.

To ensure attentiveness, two attention-check questions were embedded randomly through-
out the survey’s sections, prompting participants to deliberately select a specified option
as shown in Figure 4.8. Additionally, text boxes were included to allow for open-ended
qualitative feedback as illustrated in Figure 4.6.

Participant Demographics

Demographic information was collected to contextualize responses based on participants’
backgrounds as shown in Figure 4.7. The following information was gathered:

• Age range

• Highest completed level of education

• Current occupation and role

• Domain of expertise (e.g., AI, Finance, Education)
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Figure 4.6: Open-ended feedback section where participants provided suggestions for im-
proving summary clarity and coverage

• Self-assessed technical proficiency (scale of 1–5)

The survey results would provide insights about users preferences whether for example,
longer summaries or archetypes are preferred than shorter ones, which LLM generate simpler,
clearer, and complete archetypes. The survey is also expected to inform future improvements
which could be taken into consideration in generalization models and evaluation frameworks,
particularly in domains where precision, clarity, and semantic completeness are essential.

4.6.5 Clustering of Generated Archetypes vs. Full Text

To evaluate the semantic disjointness of the domains’ generated archetypes, a comparative
clustering analysis was conducted between the original full-text segments and their corre-
sponding archetypes. The focus of this evaluation was to determine whether the distilled
archetypes, produced via prompt-based generation by multiple LLMs, yield more coherent
and domain-specific clusters compared to the original texts.

A mixed-domain corpus was first clustered using both k-means and recursive hierarchical
clustering algorithms. Subsequently, archetypes corresponding to each original segment gen-
erated by multiple LLMs were subjected to the same clustering procedures. All textual inputs
were embedded into high-dimensional semantic space using jinaai/jina-embeddings-v3 to
ensure consistency across representations.

The clustering outputs were then analyzed for domains’ disjointness by inspecting the
distribution of domain labels within each cluster. By comparing the clustering results of the
full text and generated archetypes across different LLMs and clustering methods, insights into
the effectiveness of archetypal distillation for semantic abstraction and domain disambiguation
were obtained.
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Figure 4.7: Demographic questionnaire used to collect information on participants’ age, edu-
cation, profession, domain, and technical skills

53



4.6. EVALUATION TECHNIQUES

Figure 4.8: Embedded attention-check question instructing participants to select the middle
answer to ensure attentiveness
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Figure 4.9: Evaluation questions used to assess summary quality in terms of coverage, clarity,
and relevance
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5 Results

This chapter presents the outcomes of the evaluation methods introduced in the methodology
chapter. It begins with a comparative analysis of semantic search performance when using the
full-text dataset versus the generated archetypes. This is followed by an evaluation of multiple
text classifiers, identifying the most effective one for fine-tuning. Fine-tuning is conducted in
two configurations: once using the original full-text and once using archetypes generated by
various LLMs. This comparison aims to assess whether the archetypes generalize better than
raw text data.

In addition to classification performance, computational aspects such as training time and
efficiency are reported. The chapter also includes a detailed analysis of the survey responses,
highlighting participant preferences for archetypes based on interpretability, relevance, and
completeness. Lastly, the degree of domain disjointness exhibited by the full-text data
compared to the generated archetypes is evaluated, offering insights into their ability to
separate and encapsulate semantic domains.

Table 5.1 provides an overview of the dataset sizes and the domains involved in all
evaluation experiments whose results are detailed in the following sections. The most
common domains among all datasets were chosen which are sport, business, and tech. All
experiments except the survey and initial text classifiers comparison are carried out twice,
once with BBC dataset behaving as the source knowledge base, and another time with AG
News dataset.

Dataset Size Domains

AG News 10,000 Sport, Business, Tech
BBC 1,423 Sport, Business, Tech
Only Sport 6,660 Sport
Short Descriptions 9,540 Business, Sport
20 News Groups 1,947 Sport

Table 5.1: Datasets Details used for Evaluation and Training

5.1 Semantic Search Evaluation Results

Initially, the focus is drawn towards the idea if the LLMs’ generated archetypes cover the
same scope as the original full-text data. Thus, semantic search is utilized and results are
shown in the next two subsections. The evaluation metric used is the accuracy.
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5.1. SEMANTIC SEARCH EVALUATION RESULTS

5.1.1 BBC Dataset Generated Archetypes vs. Full-Text

Table 5.2 shows that when BBC dataset acts as the base knowledge, mistral-7B model achieves
the highest results compared to the other models except for short descriptions dataset which
meta-llama-3-8B outperforms in this case. However, as shown in Table 5.3, archetypes’ results
exceed BBC full-text except for AG dataset.

Model AG Only Sport 20 News Groups Short Descriptions

mistral-7B 0.7450 0.8715 0.9004 0.6313
mistral-7B (Top-3) 0.7664 0.9038 0.9178 0.6552

microsoft/phi-4 0.7446 0.8749 0.9070 0.6173
microsoft/phi-4 (Top-3) 0.7620 0.8927 0.9024 0.6329

miniCPM3-4B 0.7390 0.8326 0.8629 0.6201
miniCPM3-4B (Top-3) 0.7532 0.8581 0.8798 0.6312

meta-llama-3-8B 0.7246 0.8736 0.8870 0.6610
meta-llama-3-8B (Top-3) 0.7469 0.8925 0.9070 0.6741

Table 5.2: BBC archetypes semantic search accuracy results across various LLMs and datasets.
Top-3 indicates averaged score from top-3 retrieved results. Bold values indicate
the highest score in each column.

Dataset Accuracy@1 Accuracy@3

AG 0.8303 0.8439
Only Sport 0.8539 0.8877
20 News Groups 0.8038 0.8731
Short descriptions 0.6589 0.6541

Table 5.3: BBC full-text semantic search accuracy across four datasets. Accuracy@1 is for the
top retrieved result, while Accuracy@3 is averaged over the top-3 retrieved results.

5.1.2 AG Dataset Generated Archetypes vs. Full-Text

Dataset Accuracy@1 Accuracy@3

Short Descriptions 0.6878 0.7055
20 News Groups 0.9111 0.9384
BBC 0.9416 0.9684
Only Sport 0.9351 0.9514

Table 5.4: AG full-text semantic search accuracy across four datasets. Accuracy@1 is for the
top retrieved result, while Accuracy@3 is averaged over the top-3 retrieved results.
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5.2. INITIAL TEXT CLASSIFIERS COMPARISON

Model Short Descriptions 20 News Groups BBC Only Sport

mistral-7B 0.7531 0.9553 0.9198 0.9668
mistral-7B (Top-3) 0.7755 0.9569 0.9346 0.9736

microsoft/phi-4 0.7427 0.9471 0.9233 0.9686
microsoft/phi-4 (Top-3) 0.7642 0.9563 0.9381 0.9773

miniCPM3-4B 0.7501 0.9605 0.9058 0.9721
miniCPM3-4B (Top-3) 0.7642 0.9671 0.9219 0.9794

meta-llama-3-8B 0.7563 0.9471 0.9163 0.9650
meta-llama-3-8B (Top-3) 0.7769 0.9527 0.9346 0.9734

Table 5.5: AG archetypes semantic search accuracy results across various LLMs and datasets.
Top-3 indicates averaged score from top-3 retrieved results. Bold values indicate
the highest score in each column.

As illustrated in both Tables 5.4 & 5.5, LLMs’ archetypes’ semantic search accuracies across
all datasets is more than full-text’s accuracies except for BBC dataset, when AG dataset acts
as the knowledge base.

5.2 Initial Text Classifiers Comparison

The following step is to examine whether the LLM-generated archetypes generalize better than
the full-text when fine-tuned on different text classifiers. To this end, three top-performing
classifiers were initially fine-tuned on the BBC full-text dataset for three epochs, then eval-
uated on the BBC, 20 news groups, and short descriptions datasets. As shown in Table 5.6,
both deberta-v3-base and roberta-base performed well. However, due to time constraints, the
roberta-base model was selected to proceed with the full-text versus archetypes comparison,
as it demonstrated a significant performance advantage over deberta-v3-base on the short
descriptions dataset.

Model BBC 20 News Groups Short Descriptions

bert-base-cased 0.9937 0.4429 0.2462
deberta-v3-base 0.9906 0.7116 0.3090
roberta-base 0.9942 0.6530 0.6963

Table 5.6: Accuracy of text classifiers across different datasets. Bold values indicate the best
accuracy per dataset.
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5.3. BBC DATASET FINE-TUNING: ROBERTA-BASE TEXT CLASSIFIER

5.3 BBC Dataset Fine-Tuning: Roberta-Base Text Classifier

The main and one of the most crucial evaluation steps was to compare fine-tuned roberta-base
model with full-text versus archetypes as mentioned before, to check if LLMs’ generated
archetypes would generalize on other datasets more than full-text. All of the subsequent
fine-tuning experiments were carried out with 1, 3, and 5 epochs. The evaluation metrics
used are accuracy, precision, recall, and F1-score. In this section, BBC dataset behaves as the
the knowledge base, so all archetypes and full-text data results are based on fine-tuning BBC
data. The next section will cover the results when AG dataset behaves as the knowledge base.

5.3.1 AG Dataset

Model Accuracy Precision Recall F1-Score

1 Epoch

microsoft/phi-4 0.0000 0.00 0.00 0.00
meta-llama-3-8B 0.0000 0.00 0.00 0.00
miniCPM3-4B 0.4449 0.43 0.44 0.36
mistral-7B 0.0165 0.64 0.02 0.03
BBC Full-Text 0.8894 0.89 0.88 0.88

3 Epochs

microsoft/phi-4 0.8169 0.91 0.82 0.86
meta-llama-3-8B 0.8257 0.88 0.83 0.84
miniCPM3-4B 0.8459 0.91 0.85 0.87
mistral-7B 0.8403 0.90 0.84 0.86
BBC Full-Text 0.8507 0.88 0.85 0.85

5 Epochs

microsoft/phi-4 0.8349 0.90 0.83 0.86
meta-llama-3-8B 0.8426 0.90 0.84 0.87
miniCPM3-4B 0.8151 0.89 0.82 0.84
mistral-7B 0.8056 0.89 0.81 0.83
BBC Full-Text 0.8628 0.88 0.86 0.86

Table 5.7: Classification performance of BBC dataset’s archetypes vs. full-text on AG dataset
across 1, 3, and 5 epochs. Bold values indicate the highest score in each column per
epoch. Underlined bold values indicate the overall highest score in each column.
Bold models indicate the best model per epoch. Underlined bold models indicate
the overall best model in each column.
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5.3.2 Only Sport Dataset

Model Accuracy Precision Recall F1-Score

1 Epoch

All Models 0.0000 0.00 0.00 0.00
BBC Full-Text 0.8551 1.00 0.86 0.92

3 Epochs

microsoft/phi-4 0.9081 1.00 0.91 0.95
meta-llama-3-8B 0.9272 1.00 0.93 0.96
miniCPM3-4B 0.8835 1.00 0.88 0.94
mistral-7B 0.8778 1.00 0.88 0.93
BBC Full-Text 0.9013 1.00 0.90 0.95

5 Epochs

microsoft/phi-4 0.9029 1.00 0.90 0.95
meta-llama-3-8B 0.9203 1.00 0.92 0.96
miniCPM3-4B 0.8994 1.00 0.90 0.95
mistral-7B 0.8635 1.00 0.86 0.93
BBC Full-Text 0.9126 1.00 0.91 0.95

Table 5.8: Classification performance of BBC dataset’s archetypes vs. full-text on Only Sport
dataset across 1, 3, and 5 epochs. Bold values indicate the highest score in each
column per epoch. Underlined bold values indicate the overall highest score in
each column. Bold models indicate the best model per epoch. Underlined bold
models indicate the overall best model in each column.
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5.3.3 Short descriptions Dataset

Model Accuracy Precision Recall F1-Score

1 Epoch

microsoft/phi-4 0.0000 0.00 0.00 0.00
meta-llama-3-8B 0.0000 0.00 0.00 0.00
miniCPM3-4B 0.4882 0.29 0.49 0.37
mistral-7B 0.0017 0.54 0.00 0.00
BBC Full-Text 0.6826 0.91 0.68 0.78

3 Epochs

microsoft/phi-4 0.5729 0.93 0.57 0.70
meta-llama-3-8B 0.6582 0.94 0.66 0.77
miniCPM3-4B 0.6189 0.96 0.62 0.75
mistral-7B 0.6567 0.96 0.66 0.78
BBC Full-Text 0.7947 0.91 0.79 0.85

5 Epochs

microsoft/phi-4 0.5399 0.93 0.54 0.67
meta-llama-3-8B 0.6240 0.94 0.62 0.74
miniCPM3-4B 0.6493 0.95 0.65 0.77
mistral-7B 0.6537 0.94 0.65 0.77
BBC Full-Text 0.7967 0.89 0.80 0.84

Table 5.9: Classification performance of BBC dataset’s archetypes vs. full-text on short de-
scription dataset across 1, 3, and 5 epochs. Bold values indicate the highest score in
each column per epoch. Underlined bold values indicate the overall highest score
in each column. Bold models indicate the best model per epoch. Underlined bold
models indicate the overall best model in each column.
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5.3. BBC DATASET FINE-TUNING: ROBERTA-BASE TEXT CLASSIFIER

5.3.4 BBC Dataset

Model Accuracy Precision Recall F1-Score

1 Epoch

microsoft/phi-4 0.0000 0.00 0.00 0.00
meta-llama-3-8B 0.0000 0.00 0.00 0.00
miniCPM3-4B 0.4065 0.42 0.41 0.28
mistral-7B 0.0000 0.00 0.00 0.00
BBC Full-Text 0.9944 0.99 0.99 0.99

3 Epochs

microsoft/phi-4 0.8805 0.97 0.88 0.92
meta-llama-3-8B 0.9423 0.98 0.94 0.96
miniCPM3-4B 0.9374 0.98 0.94 0.96
mistral-7B 0.9346 0.98 0.93 0.96
BBC Full-Text 0.9993 1.00 1.00 1.00

5 Epochs

microsoft/phi-4 0.9332 0.98 0.93 0.95
meta-llama-3-8B 0.9459 0.98 0.95 0.96
miniCPM3-4B 0.9332 0.98 0.93 0.96
mistral-7B 0.9121 0.97 0.91 0.94
BBC Full-Text 0.9993 1.00 1.00 1.00

Table 5.10: Classification performance of BBC dataset’s archetypes vs. full-text on BBC dataset
across 1, 3, and 5 epochs. Bold values indicate the highest score in each column per
epoch. Underlined bold values indicate the overall highest score in each column.
Bold models indicate the best model per epoch. Underlined bold models indicate
the overall best model in each column.
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5.3.5 20 News Groups Dataset

Model Accuracy Precision Recall F1-Score

1 Epoch

All Models 0.0000 0.00 0.00 0.00
BBC Full-Text 0.7946 1.00 0.79 0.89

3 Epochs

microsoft/phi-4 0.9147 1.00 0.91 0.96
meta-llama-3-8B 0.9240 1.00 0.92 0.96
miniCPM3-4B 0.8603 1.00 0.86 0.92
mistral-7B 0.8485 1.00 0.85 0.92
BBC Full-Text 0.7946 1.00 0.79 0.89

5 Epochs

microsoft/phi-4 0.8860 1.00 0.89 0.94
meta-llama-3-8B 0.9373 1.00 0.94 0.97
miniCPM3-4B 0.9183 1.00 0.92 0.96
mistral-7B 0.8891 1.00 0.89 0.94
BBC Full-Text 0.9281 1.00 0.93 0.96

Table 5.11: Classification performance of BBC dataset’s archetypes vs. full-text on 20 news
groups dataset across 1, 3, and 5 epochs. Bold values indicate the highest score in
each column per epoch. Underlined bold values indicate the overall highest score
in each column. Bold models indicate the best model per epoch. Underlined bold
models indicate the overall best model in each column.
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5.4 AG Dataset Fine-Tuning: Roberta-Base Text Classifier

The rest of the classifier’s fine-tuning results continues in this section, with AG acting as the
knowledge base.

5.4.1 AG Dataset

Model Accuracy Precision Recall F1-Score

1 Epoch

microsoft/phi-4 0.9037 0.91 0.90 0.90
meta-llama-3-8B 0.9059 0.91 0.91 0.91
miniCPM3-4B 0.8946 0.90 0.89 0.89
mistral-7B 0.8956 0.89 0.90 0.89
AG Full-Text 0.9615 0.96 0.96 0.96

3 Epochs

microsoft/phi-4 0.9039 0.91 0.90 0.90
meta-llama-3-8B 0.8838 0.89 0.88 0.88
miniCPM3-4B 0.8989 0.90 0.90 0.90
mistral-7B 0.8906 0.89 0.90 0.89
AG Full-Text 0.9775 0.98 0.98 0.98

5 Epochs

microsoft/phi-4 0.9037 0.91 0.90 0.90
meta-llama-3-8B 0.8926 0.89 0.89 0.89
miniCPM3-4B 0.9019 0.90 0.90 0.90
mistral-7B 0.9013 0.90 0.90 0.90
AG Full-Text 0.9861 0.99 0.99 0.99

Table 5.12: Classification performance of AG dataset’s archetypes vs. full-text on AG dataset
across 1, 3, and 5 epochs. Bold values indicate the highest score in each column per
epoch. Underlined bold values indicate the overall highest score in each column.
Bold models indicate the best model per epoch. Underlined bold models indicate
the overall best model in each column.
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5.4.2 Only Sport Dataset

Model Accuracy Precision Recall F1-Score

1 Epoch

mistral-7B 0.9677 1.00 0.97 0.98
miniCPM3-4B 0.9638 1.00 0.96 0.98
meta-llama-3-8B 0.9488 1.00 0.95 0.97
microsoft/phi-4 0.9209 1.00 0.92 0.96
AG Full-Text 0.9081 1.00 0.91 0.95

3 Epochs

mistral-7B 0.9523 1.00 0.95 0.98
miniCPM3-4B 0.9649 1.00 0.96 0.98
meta-llama-3-8B 0.9832 1.00 0.98 0.99
microsoft/phi-4 0.9308 1.00 0.93 0.96
AG Full-Text 0.9041 1.00 0.90 0.95

5 Epochs

mistral-7B 0.9131 1.00 0.91 0.95
miniCPM3-4B 0.9578 1.00 0.96 0.98
meta-llama-3-8B 0.9730 1.00 0.97 0.99
microsoft/phi-4 0.9146 1.00 0.91 0.96
AG Full-Text 0.8996 1.00 0.90 0.95

Table 5.13: Classification performance of AG dataset’s archetypes vs. full-text on only sport
dataset across 1, 3, and 5 epochs. Bold values indicate the highest score in each
column per epoch. Underlined bold values indicate the overall highest score in
each column. Bold models indicate the best model per epoch. Underlined bold
models indicate the overall best model in each column.
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5.4.3 Short descriptions Dataset

Model Accuracy Precision Recall F1-Score

1 Epoch

mistral-7B 0.7115 0.90 0.71 0.78
miniCPM3-4B 0.7835 0.90 0.78 0.84
meta-llama-3-8B 0.7748 0.91 0.77 0.84
microsoft/phi-4 0.6211 0.94 0.62 0.74
AG Full-Text 0.7613 0.92 0.76 0.83

3 Epochs

mistral-7B 0.5706 0.94 0.57 0.68
miniCPM3-4B 0.7893 0.92 0.79 0.85
meta-llama-3-8B 0.7949 0.89 0.79 0.84
microsoft/phi-4 0.6036 0.96 0.60 0.73
AG Full-Text 0.7686 0.91 0.77 0.83

5 Epochs

mistral-7B 0.6071 0.95 0.61 0.73
miniCPM3-4B 0.7369 0.91 0.74 0.81
meta-llama-3-8B 0.7379 0.90 0.74 0.79
microsoft/phi-4 0.6074 0.96 0.61 0.74
AG Full-Text 0.7751 0.89 0.78 0.83

Table 5.14: Classification performance of AG dataset’s archetypes vs. full-text on short de-
scriptions dataset across 1, 3, and 5 epochs. Bold values indicate the highest score
in each column per epoch. Underlined bold values indicate the overall highest
score in each column. Bold models indicate the best model per epoch. Underlined
bold models indicate the overall best model in each column.
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5.4.4 BBC Dataset

Model Accuracy Precision Recall F1-Score

1 Epoch

mistral-7B 0.9761 0.98 0.98 0.98
miniCPM3-4B 0.9796 0.98 0.98 0.98
meta-llama-3-8B 0.9838 0.98 0.98 0.98
microsoft/phi-4 0.9810 0.98 0.98 0.98
AG Full-Text 0.7518 0.86 0.75 0.74

3 Epochs

mistral-7B 0.9564 0.96 0.96 0.96
miniCPM3-4B 0.9712 0.97 0.97 0.97
meta-llama-3-8B 0.9761 0.98 0.98 0.98
microsoft/phi-4 0.9733 0.97 0.97 0.97
AG Full-Text 0.9114 0.93 0.91 0.91

5 Epochs

mistral-7B 0.9684 0.97 0.97 0.97
miniCPM3-4B 0.9768 0.98 0.98 0.98
meta-llama-3-8B 0.9810 0.98 0.98 0.98
microsoft/phi-4 0.9866 0.99 0.99 0.99
AG Full-Text 0.8481 0.90 0.85 0.85

Table 5.15: Classification performance of AG dataset’s archetypes vs. full-text on BBC dataset
across 1, 3, and 5 epochs. Bold values indicate the highest score in each column per
epoch. Underlined bold values indicate the overall highest score in each column.
Bold models indicate the best model per epoch. Underlined bold models indicate
the overall best model in each column.
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5.4.5 20 News Groups Dataset

Model Accuracy Precision Recall F1-Score

1 Epoch

mistral-7B 0.9379 1.00 0.94 0.97
miniCPM3-4B 0.9414 1.00 0.94 0.97
meta-llama-3-8B 0.9327 1.00 0.93 0.97
microsoft/phi-4 0.8844 1.00 0.88 0.94
AG Full-Text 0.6538 1.00 0.65 0.79

3 Epochs

mistral-7B 0.9070 1.00 0.91 0.95
miniCPM3-4B 0.9548 1.00 0.95 0.98
meta-llama-3-8B 0.9697 1.00 0.97 0.98
microsoft/phi-4 0.9091 1.00 0.91 0.95
AG Full-Text 0.7365 1.00 0.74 0.85

5 Epochs

mistral-7B 0.8783 1.00 0.88 0.94
miniCPM3-4B 0.9111 1.00 0.91 0.95
meta-llama-3-8B 0.9276 1.00 0.93 0.96
microsoft/phi-4 0.8593 1.00 0.86 0.92
AG Full-Text 0.6667 1.00 0.67 0.80

Table 5.16: Classification performance of AG dataset’s archetypes vs. full-text on 20 news
groups dataset across 1, 3, and 5 epochs. Bold values indicate the highest score in
each column per epoch. Underlined bold values indicate the overall highest score
in each column. Bold models indicate the best model per epoch. Underlined bold
models indicate the overall best model in each column.
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5.5 Computational Efficiency of Fine-Tuning: Full-Text vs.
Archetypes

Tables 5.17 & 5.18 reveal computational efficiency-related results. The tables show the time
taken for each of AG and BBC datasets to be fine-tuned by the classifier with 1, 2, and 3
epochs. Table 5.19 shows the GPU configuration used to run all experiments.

Model 1 Epoch 3 Epochs 5 Epochs

microsoft/phi-4 20 44 67
meta-llama-3-8B 17 40 61
miniCPM3-4B 18 41 65
mistral-7B 18 42 66
BBC Full-Text 48 136 229

Table 5.17: Training times (in seconds) for fine-tuning classifier on BBC full-text dataset &
archetypes. Bold values indicate the lowest training time in each column.

Model 1 Epoch 3 Epochs 5 Epochs

mistral-7B 49 129 210
miniCPM3-4B 46 126 207
meta-llama-3-8B 44 121 198
microsoft/phi-4 47 127 208
AG Full-Text 2676 7872 13115

Table 5.18: Training times (in seconds) for fine-tuning classifier on AG full-text dataset &
archetypes. Bold values indicate the lowest training time in each column.

Component Specification

GPU Model NVIDIA Tesla V100-PCIE-16GB
CUDA Version 12.4
Driver Version 550.54.15
Memory 16 GB

Table 5.19: GPU configuration used during experiments
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5.6. SURVEY ANALYSIS

5.6 Survey Analysis

This section contains aggregated results collected from 100 participants about the conducted
survey to assess human’s archetypes general preferences in addition to which of the models’
archetypes exceeds the others in terms of context windows’ clusters interpretability, relevance,
and completeness for the domain.

5.6.1 Overall LLMs’ Archetypes Preferences

Figure 5.1 explicitly shows that phi-4 model’s archetypes were preferred among all other
models’ archetypes by the majority of participants.

5.6.2 Averaged Archetypes’ Interpretability, Relevance, and Completeness

Figure 5.2 suggests that phi-4 model’s archetypes were favoured among all other models’
archetypes in terms of comprehension, relevance, and coverage, whether for all aggregated
results, aggregated roles, or particpants who work in computer science and AI field. However,
there was just one slight difference in archetypes’ comprehension by the ones who work in
AI and computer science field in which Mistral model exceeded Phi-4.

5.6.3 Participants Feedback Summary

Participant feedback revealed a strong preference for summaries/archetypes that they were
way easier to comprehend, particularly when dealing with complex or jargon-heavy content.
Some found summaries that attempted to infer causality or meaning not explicitly stated in
the original content to be misleading or unhelpful. A recurring issue was the fragmented
nature of the cluster source of context windows, which often lacked sufficient context or were
contradictory, making summarization inherently difficult. Despite the challenges, numerous
participants appreciated the study’s depth and intellectual demand, describing it as interesting,
well-designed, and even "artful" in some cases.

5.7 Domains’ Disjointness Comparison: Archetypes vs. Full-Text
Clustering

To assess the capability of archetype-based representations in capturing semantically distinct
domains, this section presents a comparative analysis between archetypes and full-text in-
puts using two widely-adopted clustering approaches: K-means and recursive hierarchical
clustering. The evaluation is conducted on both the AG News and BBC datasets, with the
latter extended to include the additional categories politics and entertainment to test the
generalizability of domain separability. As K-means clustering configuration must include a
specific number of clusters, it was inputted equals to the number of given domains.
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5.7. DOMAINS’ DISJOINTNESS COMPARISON: ARCHETYPES VS. FULL-TEXT CLUSTERING

The valid and invalid clusters labels shown in Figures 5.3 & 5.4 & 5.5 & 5.6 refer to whether
the generated clusters are composed of one domain (valid) or mixed domains (invalid). The
corresponding results agree that archetypes result in more significantly separable domains
than full-text, which signals to more domains’ disjointness specifically in recursive hierar-
chical clustering. This analysis seeks to answer whether archetypes can better encapsulate
the structural boundaries between domains compared to their full-text counterparts, thus
offering more disjoint and semantically coherent groupings.
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5.7. DOMAINS’ DISJOINTNESS COMPARISON: ARCHETYPES VS. FULL-TEXT CLUSTERING

(a) Overall distribution of LLM-preferred archetypes across all partici-
pant groups

(b) Archetype preferences by participants in the Computer Science
and AI fields

(c) Archetype preferences segmented by role: Researcher, Data Scientist,
and Industry Professional

Figure 5.1: LLMs’ archetype preferences across overall participants, disciplines, and roles.
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5.7. DOMAINS’ DISJOINTNESS COMPARISON: ARCHETYPES VS. FULL-TEXT CLUSTERING

(a) Overall averaged ratings for archetype interpretability, relevance, and
completeness

(b) Average ratings by Computer Science and AI participants

(c) Average ratings per role: Researcher, Data Scientist, Industry Profes-
sional

Figure 5.2: Averaged ratings for archetype interpretability, relevance, and completeness across
different groups.
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5.7. DOMAINS’ DISJOINTNESS COMPARISON: ARCHETYPES VS. FULL-TEXT CLUSTERING

(a) CPM (Archetype-based) (b) microsoft/phi-4 (Archetype-based)

(c) Llama (Archetype-based) (d) Mistral (Archetype-based)

(e) Full-Text

Figure 5.3: AG Dataset: K-Means (Archetype-based + Full-Text Clustering)
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5.7. DOMAINS’ DISJOINTNESS COMPARISON: ARCHETYPES VS. FULL-TEXT CLUSTERING

(a) CPM (Archetype-based) (b) microsoft/phi-4 (Archetype-based)

(c) Llama (Archetype-based) (d) Mistral (Archetype-based)

(e) Full-Text

Figure 5.4: AG Dataset: Recursive Hierarchical (Archetype-based + Full-Text Clustering)
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5.7. DOMAINS’ DISJOINTNESS COMPARISON: ARCHETYPES VS. FULL-TEXT CLUSTERING

(a) CPM (Archetype-based) (b) microsoft/phi-4 (Archetype-based)

(c) Llama (Archetype-based) (d) Mistral (Archetype-based)

(e) Full-Text

Figure 5.5: BBC Dataset: K-Means (Archetype-based + Full-Text Clustering)
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5.7. DOMAINS’ DISJOINTNESS COMPARISON: ARCHETYPES VS. FULL-TEXT CLUSTERING

(a) CPM (Archetype-based) (b) microsoft/phi-4 (Archetype-based)

(c) Llama (Archetype-based) (d) Mistral (Archetype-based)

(e) Full-Text

Figure 5.6: BBC Dataset: Recursive Hierarchical (Archetype-based + Full-Text Clustering)
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6 Discussion

This chapter presents an overall discussion of the findings, focusing on the study implications,
interpreting the results in area of the research objectives, the limitations of the study and
proposes directions for future work.

6.1 Study Implications

The findings of this thesis reveal compelling implications for the future of NLP and unsuper-
vised representation learning. At a high level, the results suggest that semantically meaningful,
interpretable, and functionally useful text archetypes can be distilled from unlabeled data us-
ing LLMs with rivaling, and in some cases surpassing, that of traditional supervised pipelines.
This serves as a crucial step toward label-free NLP, where high-level understanding and
categorization of data become attainable without explicit human annotation.

The Bigger Picture: Toward Zero-Label NLP

While this study utilized benchmark labeled datasets for evaluation purposes, the core
methodology of clustering and archetype distillation was agnostic to those labels. The
labels were only used as ground truth references, not as inputs to the system. This raises a
provocative question: what if there were no labels at all? The methods developed and evaluated
here demonstrate that it is feasible to infer structure, semantics, and even downstream
task suitability from purely unlabeled corpora. The ability to synthesize archetypes that
cluster cleanly by topic and perform well in zero-shot or few-shot settings hints at a powerful
paradigm: unsupervised semantic structuring.

A Paradigm Shift for Domain Adaptation and Corpus Exploration

In domains where annotation is prohibitively expensive (e.g., legal, biomedical, multilingual,
or low-resource languages), this framework offers an efficient alternative. Instead of relying
on labeled samples to bootstrap task-specific systems, one can generate domain-specific
archetypes, organize them semantically via clustering, and then fine-tune small classifiers or
search engines on top of these distilled representations. This drastically lowers the barrier for
deploying NLP tools in new or specialized domains.
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6.2. RESULTS INTERPRETATIONS

6.2 Results Interpretations

This section focuses on illustrating the results presented in the results chapter. It starts by
analyzing the performance of various LLMs, highlighting key insights into their capabilities
for semantic abstraction. This is followed by a comparison of classification outcomes using the
original full-text data versus the generated archetypes, revealing their utility in downstream
tasks. The discussion then explores the interpretability, domain relevance, and completeness
of the archetypes, assessing how well they capture the semantic richness of the original full-
text. Further, it examines the disjointness between domain texts and archetypes to determine
whether the generated representations offer non-redundant and non-mixed domains insights.

6.2.1 Insights from LLMs Performance

The performance of the evaluated LLMs varied considerably in terms of reliability, con-
sistency, and ability to produce well-structured JSON outputs. Models such as Gemma-2B,
Phi-3.5-Mini-Instruct, and Qwen2.5-1.5B-Instruct frequently exhibited prompt and rule
repetition, inconsistent output formatting, and general unreliability. These issues made them
unsuitable for tasks requiring structured and strict adherence to the prompt specifications.

In contrast, Mistral-7B-v0.3, OpenBMB-MiniCPM-4B, Phi-4, and Meta-Llama-3-8B showed
notably better results. These models generally adhered well to prompt constraints and
produced more consistent outputs. Mistral-7B-v0.3, in particular, demonstrated strong
capability by generating nearly all archetypes correctly. While Meta-Llama-3-8B used in its
8-bit quantized form showed promising performance, it occasionally failed to complete the
full set of archetypes, likely due to formatting errors.

The DeepSeek-R1-Distill-Qwen-14B (4-bit quantized) and DeepSeek-R1-Distill-Llama-8B
(8-bit quantized) models generated lengthy responses that often did not only focused on
including the archetypical JSON objects, but also other reasonings. Thus, both tended to
exceed token limits due to excessive reasoning and verbose outputs, resulting in incomplete
or malformed JSON structures. These models also introduced noise such as Chinese charac-
ters and extra tokens that disrupted JSON syntax, reducing their effectiveness despite their
advanced architectures.
Phi-4, in its 4-bit quantized form, showed high accuracy and consistency with minimal

omissions. Similarly, OpenBMB-MiniCPM-4B, though unquantized, occasionally produced out-
put with missing keys or unexpected language artifacts. Overall, while some of the more
recent models showed stronger performance, increased model size did not consistently lead to
better results. In fact, several smaller models such as OpenBMB-MiniCPM-4B, Meta-Llama-3-8B,
and Mistral-7B-v0.3 outperformed their larger counterparts in reliability and output for-
matting. It is also worth noting that all models used in this study fall within the category of
lightweight LLMs, selected for their deployability and efficiency.
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6.2. RESULTS INTERPRETATIONS

6.2.2 Classification Performance: Domain Full Text vs. Generated Archetypes

This section compares the classification performance of models trained on domain full-text
datasets with those trained on generated archetypes. The evaluation spans both AG News
and BBC datasets, leveraging semantic search, accuracy, precision, recall, and F1-score metrics.

For the AG dataset as shown in heatmap Figures 6.2, the classifier trained on archetypes
achieved competitive results across all metrics. In particular, its F1-scores and overall accu-
racy approached or even surpassed those of the full-text baseline on several classes. This
suggests that despite their abstraction, the archetypes retained high discriminative power in
downstream classification tasks. Similar trends were observed in the BBC dataset observed in
heatmap Figures 6.1, where archetype-based training resulted in relatively higher classifica-
tion scores, highlighting the effectiveness of distilled representations in maintaining semantic
alignment with class labels, even though that was not for all datasets as AG dataset’s case.
However, this could be because of the very small dataset size of BBC compared to the AG
dataset.

The former also explains why fine-tuning the classifier with the BBC dataset for 1 epoch
shows almost zero accuracies and other metrics in most cases. A deeper look reveals that the
average number of archetypes generated for one domain in the BBC dataset is 69, whereas
for the AG dataset it is 502. Thus, during 1 epoch training on the BBC dataset, the model
has significantly fewer examples and semantic archetypes to learn meaningful patterns
from, leading to underfitting. This scarcity not only limits the generalization capacity of
the classifier but also reduces its exposure to the diverse semantic structures necessary for
robust learning. In contrast, the AG dataset provides a richer and more varied archetypal
landscape, allowing the model to quickly establish meaningful feature representations even
with minimal fine-tuning.

In addition to classification tasks, semantic search evaluations provided deeper insight into
the representational fidelity of the archetypes. Across both AG and BBC settings, archetypes
generated by mistral-7B, phi-4, miniCPM3-4B, and meta-llama-3-8B achieved high semantic
retrieval accuracy when evaluated on diverse datasets including short descriptions, BBC
and AG, and domain-specific splits like only sport and 20 news groups datasets. The
performance improvement when averaging over top-3 retrieved results (Top-3 accuracy)
further demonstrated the robustness of archetypes in capturing class semantics. However,
performance varied slightly across datasets. Full-text representations were marginally more
effective on very short or ambiguous text segments, while archetypes excelled in settings
requiring clarity and conceptual consistency. Notably, models such as meta-llama-3-8B and
miniCPM3-4B consistently delivered top scores in Top-3 semantic retrieval, underscoring their
generative precision and domain fidelity.

Overall, the results validate the potential of LLM-generated archetypes as viable and
lightweight alternatives to full-text corpora for both classification and semantic retrieval
tasks, specially meta-llama-3-8B. They demonstrate that, when crafted with high-quality
prompts and appropriate LLMs, archetypes can encapsulate key class-level semantics and
offer competitive performance across evaluation paradigms.
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6.2. RESULTS INTERPRETATIONS

(a) Top Accuracies (b) Top F1-scores

(c) Top Precisions (d) Top Recalls

Figure 6.1: Heatmaps visualizing the classification performance of a RoBERTa classifier fine-
tuned on BBC full-text and archetype representations across five target datasets.
Each heatmap highlights the top values achieved for Accuracy, Recall, F1-Score,
and Precision, regardless of the number of fine-tuning epochs.

6.2.3 Archetypes Interpretability, Domain Relevance, and Completeness

This section evaluates the generated archetypes based on human-centered criteria, specifically
interpretability, domain relevance, and completeness. A multi-faceted survey was conducted
involving non-domain experts, but participants who are good in filling AI-related surveys to
qualitatively assess the outputs of various LLMs, including Mini-CPM, Llama-3.2, Mistral,
and Phi-4.

Across all respondents, Phi-4 emerged as the most preferred model by a significant margin.
In terms of overall model selection counts, Phi-4 accounted for approximately half of all
choices across categories, with Mistral and Llama-3.2 following distantly, and Mini-CPM
being least preferred. This strong preference for Phi-4 was consistent not only in general
preference data but also across professional roles and disciplinary backgrounds.

Evaluation scores along three key dimensions Relevance, Coverage, and Comprehension
further followed these trends. Phi-4 consistently achieved the highest mean ratings across
all three dimensions, with particularly notable performance in Relevance (4.14), Coverage
(4.01), and Comprehension (3.96). Other models such as Mistral and Llama-3.2 performed
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6.2. RESULTS INTERPRETATIONS

(a) Top Accuracies (b) Top F1-scores

(c) Top Precisions (d) Top Recalls

Figure 6.2: Heatmaps visualizing the classification performance of a RoBERTa classifier fine-
tuned on AG full-text and archetype representations across five target datasets.
Each heatmap highlights the top values achieved for Accuracy, Recall, F1-Score,
and Precision, regardless of the number of fine-tuning epochs.

moderately well, but were outperformed by Phi-4 in all aspects. Notably, Mini-CPM scored the
lowest, suggesting limited effectiveness in capturing domain-specific semantics and providing
interpretable, complete archetypes.

It is important to note, however, that these subjective assessments do not necessarily align
with earlier findings from the classification tasks. One likely reason for this divergence is that
Phi-4’s archetype outputs were noticeably longer nearly double the length of those generated
by other models. This increased verbosity may have contributed to the perception of higher
coverage and comprehension among survey participants, as longer texts are often intuitively
associated with completeness.

6.2.4 Analysis of Domain Full Text vs. Archetypes Disjointness

Following, classification results insights, clustering on archetypes particularly those gener-
ated by high-performing LLMs such as Phi-4, Llama-3.2, Mini-CPM, and Mistral produced
substantially better domain disjointness. utilizing recursive hierarchical clustering, all four
models consistently yielded large numbers of valid clusters across domains. For instance,
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6.3. LIMITATIONS

Phi-4’s archetypes for AG News were clustered into dozens of domain-pure groups for tech,
sport, and business, with fewer mixed-domain clusters compared to full-text. BBC hierar-
chical clustering reflected similar improvements, especially in domains like entertainment
and politics, which were otherwise more prone to semantic overlap in full-text clustering.

K-Means remained less effective for both raw texts and archetypes, suggesting that its
underlying assumption of spherical clusters may not suit the nuanced semantics of either
representation. However, even utilizing K-Means, LLM-based archetypes achieved valid
clusters for certain domains (e.g., sport and politics in the BBC dataset), which was not
achieved when on full-text.

6.3 Limitations

Despite the promising performance of archetype-based representations and their potential
to enhance domain disjointness, this study is not without limitations. These limitations are
important to contextualize the findings and inform future work.

Length Bias in Human Evaluation

One of the most notable limitations emerged during the human evaluation phase. Specifically,
models like Phi-4 consistently received higher ratings across dimensions such as interpretabil-
ity, comprehension, and completeness. However, this trend may partially stem from a length
bias. Phi-4’s archetypes were significantly longer often double the average length of outputs
from other models. As longer texts may intuitively appear more complete and detailed,
participants may have been predisposed to equate verbosity with coverage and depth, even if
not all added content was substantively beneficial. This possible conflation between quantity
and quality introduces a subjective skew that may not accurately reflect the inherent semantic
value of the outputs.

Inconsistencies Between Classification and Survey-Based Results

Another limitation lies in the misalignment between quantitative classification results and
qualitative human preferences. While some models (e.g., Mini-CPM) demonstrated strong
classification performance, their archetypes were not always rated highly by human evaluators.
Conversely, Phi-4, which underperformed in certain classification scenarios, was the most
preferred in subjective evaluations. This inconsistency suggests that performance metrics alone
may not fully capture the qualities valued in human-centric use cases such as interpretation,
domain understanding, or content summarization.

Restricted Evaluation Scope

The current evaluation is limited to two news classification datasets: AG News and BBC News.
While these datasets offer a manageable benchmark for evaluating archetype disjointness and
interpretability, they do not reflect the complexity of more nuanced domains (e.g., biomedical,
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legal, or multilingual corpora). Furthermore, the domain labels in both datasets are relatively
coarse-grained, which may mask finer-grained interpretive challenges that would arise in
more sophisticated cases.

6.4 Future Work

To build upon the findings of this study and address its limitations, several directions for
future research are proposed:

Expand Evaluation to Complex and Fine-Grained Domains

Future work should explore archetype extraction and clustering in more nuanced and high-
stakes contexts, including:

• Biomedical, legal, or financial domains with highly specialized vocabulary.

• Multilingual corpora to test cross-lingual consistency and domain abstraction.

• Fine-grained multi-label settings, where documents span overlapping or hierarchical
topic structures.

This would validate the generalizability of the proposed approach and identify domain-
specific challenges.

Investigate Model-Specific Archetype Styles

Given the variations in archetype length and style across LLMs (e.g., Phi-4 vs. Mini-CPM),
future research should investigate:

• How architectural or alignment differences shape summarization behavior.

• Whether archetype verbosity correlates with redundancy, or informativeness.

• How these properties influence human preference and downstream task utility.

This could inform future prompt design and model selection strategies for generating
interpretable archetypes.

Together, these directions aim to create a more principled, fair, and scalable framework for
evaluating and deploying domain-disjoint, complete, and human-interpretable archetypes.
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7 Conclusion

This thesis introduced a promising framework for the distillation of semantically coherent and
domain-representative archetypes from textual corpora by leveraging LLMs. The approach
motivated by the growing need for domain interpretable, compact, and disjoint summaries
demonstrated that archetype generation can facilitate the understanding of abstract domain
structures while preserving semantic completeness. Through a multi-stage pipeline involving
context windowing, semantic grouping via clustering, and archetypal generation with prompt-
based LLM queries, this study operationalized a workflow capable of extracting interpretable
representations across diverse topics.

The key contributions of this research are as follows:

• Domain Archetypes Generation: A pipeline is proposed to generate semantically
disjoint archetypes per domain using hierarchical clustering and LLM-driven contextual
distillation, offering an alternative to traditional full-text classification pipelines.

• Model Evaluation via Dual Metrics: A dual evaluation strategy is introduced combining
quantitative classification-based assessments (semantic search, accuracy, F1, precision,
recall) and qualitative human-centric dimensions (interpretability, domain relevance,
completeness).

• Human-Centric Evaluation Insights: Through a survey involving domain experts and
practitioners, insights about certain models were uncovered, particularly Phi-4, was
consistently preferred in terms of comprehension and coverage though this preference
was potentially skewed by text length.

• Domain Disjointness Analysis: Clustering techniques were experimented on both
full-text and archetype representations, revealing that archetype-based clusters are
significantly more domain-pure and interpretable, especially when using hierarchical
clustering.

• LLM Comparison and Behavior Analysis: The thesis also documented varied behaviors
across LLMs e.g., Phi-4 tended to generate longer outputs with more explicit labeling,
while Llama-3 maintained coherence and stylistic conciseness highlighting architectural
and alignment influences on output style.

This work contributes to the broader understanding of how LLMs can be repurposed for
interpretable NLP, specifically in conditions where human readability and domain fidelity
matter more than raw predictive power. By treating archetypes as disjoint, and complete
semantic anchors, the focus is drawn towards structured symbolic representations that can
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aid in explainability, content moderation, educational summarization, and domain-centric
retrieval.

Despite the promising results, this study is not without limitations. Most notably, length
bias in human evaluation, and the coarse granularity of the AG and BBC datasets could limit
the full generalizability of the approach. Furthermore, archetype content, while disjoint at the
domain level, may still vary subtly within sub-topics.

To strengthen and extend this line of inquiry, future work should explore controlled
normalization of outputs to eliminate verbosity bias in human evaluation, and apply this
framework in high-complexity or multilingual domains (e.g., biomedical, legal).
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