

- Motivation
- **Research Questions**
- **Channel Choice Determinants**
- **Data Collection**
- LLM-based Channel Navigation
- Prediction of Reasons
- Conclusion

- Motivation
- Research Questions
- Channel Choice Determinants
- Data Collection
- LLM-based Channel Navigation
- Prediction of Reasons
- Conclusion

How to improve customer service through multichannel navigation?

Insurance company wants to explore ways to improve customer journey through optimal channel usage

Company Environment ──●	• Problems — •	• Thesis Scope ——•		
Large European insurance company	Issues motivating the thesis	Reduce organizational complexity		
Call with human operator	Human operator-backed channels are expensive and are the bottleneck	German branch of the insurance company		
Chat with human operator	■ No insights into channel switching	Content focus: damage claims		
Self-service web forms	No insights into channel switching preferences/acceptance of customers	only		
Self-service app	No data available for this specific use case (neither with nor without labels)	Starting point for potential channel switch: call channel		
Process of interest: concierge bot in cus		2 0 #		
	ntent Recognition through voice-bot Identification of appropriate channel	Channel Suggestion to customer Call Agent OR Other channel		

- Motivation
- Research Questions
- Channel Choice Determinants
- Data Collection
- LLM-based Channel Navigation
- Prediction of Reasons
- Conclusion

How to improve customer service through multichannel navigation?

Guiding research questions

RQ1: In customer service centers, what are **relevant factors** for deciding the optimal channel for customer service requests?

- Structured literature review
- Interviews in case study company
- → List of decision factors

RQ2: How do different **input factors** and **prompt strategies influence the effectiveness of LLMs** in selecting appropriate communication channels for customer service requests?

- Independently test input factors
- Similarly test prompt strategies
- → Analyze performance

RQ3: How well do LLMs **predict the reasons** for choosing a customer service channel?

- Predict reasons for channel decisions with LLM
- → Compare similarities

- Motivation
- **Research Questions**
- Channel Choice Determinants
- **Data Collection**
- LLM-based Channel Navigation
- Prediction of Reasons
- Conclusion

7 Factors identified for comprehending channel choice

Lack of data requires understanding what drives the channel choice from customer side

- Customer channel choice determinants in customer care / services¹
- 2000 2024 (October)
- · EBSCO Host, Scopus, Web of Science

47 factors from 19 articles

Workshop and Interviews

- What factors should play a role in deciding the channel for the customer?
- 8 participants (5 in workshop, 3 in interviews)
- · Green field

46 factors from 4 interactions

	Factor Overview	
Only in Literature	Mentioned in Both	Only in Company
Gender	Age	App registration
Redress seeking	Comfort	Digital channels used before
Usage frequency	Channel affinity	End-customer vs. intermedi-
		ary
Marital status	Integration quality	Patience
Information need	Intent	Acute danger
Engagement level	Venting anger	Customer has all necessary
		data for process
Trust in security	Social / Personal connection	Customer authenticated
Privacy	Previously used channels	Digital process exists
Mobile identity	Infrastructure	Customer satisfaction with
		process
Relationship to company	Channel awareness	Process-transparency
Personal assertiveness	Openness to change	(Process cost)
(Hidden) cost	Perceived necessity (to use	Prioritization
	other channels)	
Region	Complexity	Customers' uncertainty
Income per region	Product risk	Potentially not saying the
		truth
Perceived reliability	Range of channel provision	Time already spent in channel
Current satisfaction	Channel usefulness	How visible is the phone
		number vs. other channel en
		tries
Perceived media richness	Availability	Pre-filled data available
Culture of customer	Service quality	Customer vs. family/
Income	Error risk	Multiple contact attempts in
		same channel
Working hours	Innovativeness	Language barrier
Ethical considerations	Previous claim	Multiple conctact attempts
		across channels
Company reputation		(Upselling potential)
Personal control		(Conversion rate)
Recommendation		<u> </u>
Physical constraints		
Cognitive abilities		
	ı	ı

1 Extended from: L. Wolf and M. Steul-Fischer (Dec. 2023)

250217 | Constantin Ehmanns | Master Thesis Final

- Motivation
- **Research Questions**
- **Channel Choice Determinants**
- **Data Collection**
- LLM-based Channel Navigation
- Prediction of Reasons
- Conclusion

Survey with over 700 people revealed customer preference

Survey with 709 insurance customers produced first data set in the problem space

Survey department offered logistic support for survey

We developed a questionnaire for our use case

709 customers* approached (through the department)

*Each participant worked on three scenarios

Participant is confronted with three scenarios ...

"Bitte stellen Sie sich folgende Situation vor: Sie rufen den Kundenservice Ihres Versicherungsunternehmens an, sind aber noch nicht mit einem Mitarbeiter verbunden.

Sie haben versehentlich das Handy von einem Freund fallengelassen, dabei wurde es beschädigt.

Diesen simplen Haftpflichtschaden wollen Sie Ihrem Versicherungsunternehmen melden. Bisher hatten Sie die Versicherung noch nicht kontaktiert, um diesen Schaden zu melden."

... and asked questions about them

 How do you assess the following communication channels for reporting the previous situation?

The listed channels are: call/call-back, chat, website, app.

Each channel can be given one of three categories:

"preferred",

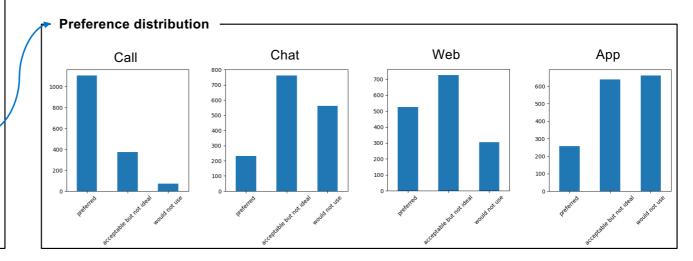
"not ideal but acceptable",

"would not use".

- Please justify why you chose preference
- And many more ...

Feature rich data set with 2127 scenario evaluations

Survey with 709 insurance customers produced first data set in the problem space


Resulting data set with 2127 data points Evaluation data set Variable Type Variable Level Numeric Previously used channels personal visit at broker, Categorical personal visit at home, video-call with broker, call with broker, hotline, e-mail, WhatsApp, chat with human, chatbot, customer portal, app, sms, web-form Maximum waiting time hotline satisfied Numeric [min] Numeric [min] Minimum waiting time hotline dissatisfied 5-Point Likert Scale Proneness to use new technology 5-Point Likert Scale Interest for AI Ease to use new software 5-Point Likert Scale Registration at customer portal Binary True, False Customer type Categorical Proprietary customer types (4) Available devices Categorical list tv, pc, laptop, tablet, e-book, phablet, smartphone, regular mobile, gaming console, voice assistant, media receiver, streaming box, smartwatch, hybrid pc Intent (type of damage) Categorical (liability, lost key, accident, break-in, pipedamage) case Complexity of claim Categorical Low, High preferred, acceptable but Preference for call channel Categorical not ideal, would not use Preference for chat channel preferred, acceptable but Categorical not ideal, would not use Preference for web channel Categorical preferred, acceptable but not ideal, would not use Preference for app channel Categorical preferred, acceptable but not ideal, would not use complexity, intent, previ-Ranking of relevance of given information Ranking of options ous claim Description of situation in own words Free text Was there necessary information missing to Binary decide the preference?

Data set manually labeled for useful utterances: ~73% remaining

Set aside 5 datapoints for fewshotting; split the remaining in 80% training and 20% test set

250217 | Constantin Ehmanns | Master Thesis Final

Not used: state, job type, school education, household size and number of children

- Motivation
- **Research Questions**
- **Channel Choice Determinants**
- **Data Collection**
- LLM-based Channel Navigation
- Prediction of Reasons
- Conclusion

Two levers: System instructions and input information

API-access only restricted LLM optimizations to prompt and input structure

System Instructions

Description of the problem and the intented outcome

Input

Detailing of the individual customers situation

API call to Azure OpenAl services (mostly GPT-4o-mini)

You are an assistant for a customer service center of an insurance company. Your goal is to help customers navigate to the appropriate channel based on a variety of factors which are given in the user prompt. The available channels are: Call, Chat, Self-Service Web, Self-Service App. Assign a label to each channel. The labels are: preferred, acceptable, undesired. Multiple channels with the same label are possible. Provide your answer as a JSON string with the channel names as key.

Customer said: "Ich habe doch schonmal Bescheid gegeben, wegen dieser Sache mit meinem Schlüssel"; intent: lost key; complexity: low, existing claim: True; age: 32; previously used channels: ["call_hotline"; "visit_broker"; "chat"]; available devices: ["pc", "smartphone", "tablet"]; innovativeness: "low"

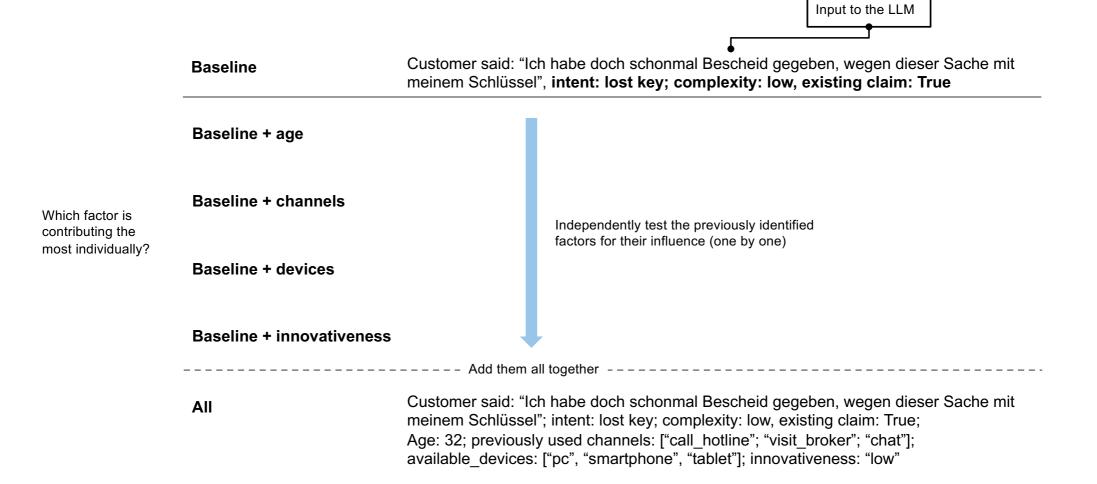
Output

channel preferences based on the input

```
"Call": "preferred",
"Chat": "preferred",
"Self-Service Web": "undesired",
"Self-Service App": "acceptable"
```

© sebis

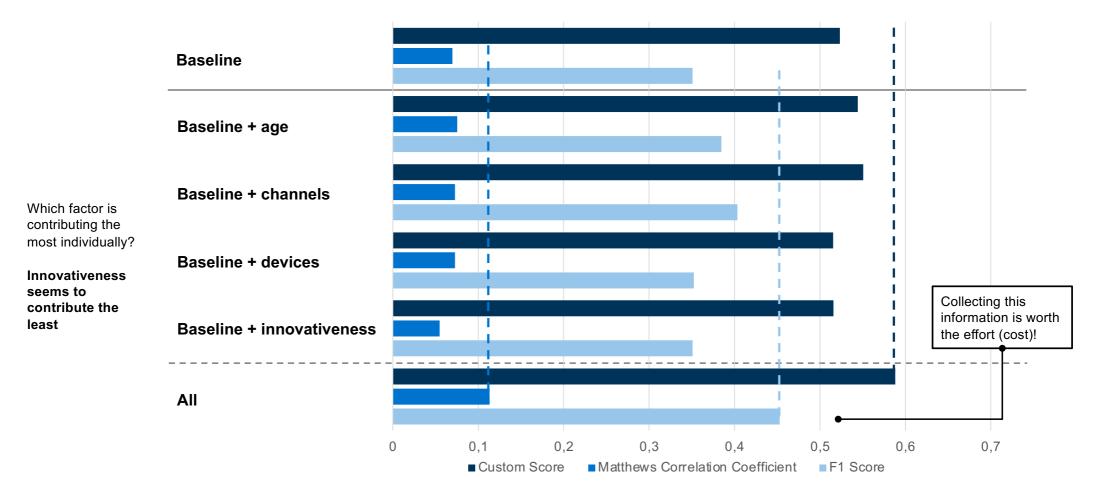
MCC, F1-Score and custom scoring for determining suitability



Selection of various metrics for comparing model performance

	F1-Score	Matthews Correlation Coefficient	Custom Score ²		
	Combining precision and recall through harmonic mean	Correlation score useful for unbalanced datasets with multiple classes ¹	Incorporating varying degrees of <i>true</i> : preferred vs. acceptable and preferred vs. would not use		
Range	[0, 1]	[-1, 1]	[0, 1]		
Interpretability	The higher, the better	1 means perfect prediction0 means random-1 means inverse prediction	The higher, the better		

Which input factor makes a difference? API-access only restricted LLM optimizations to prompt and inputs



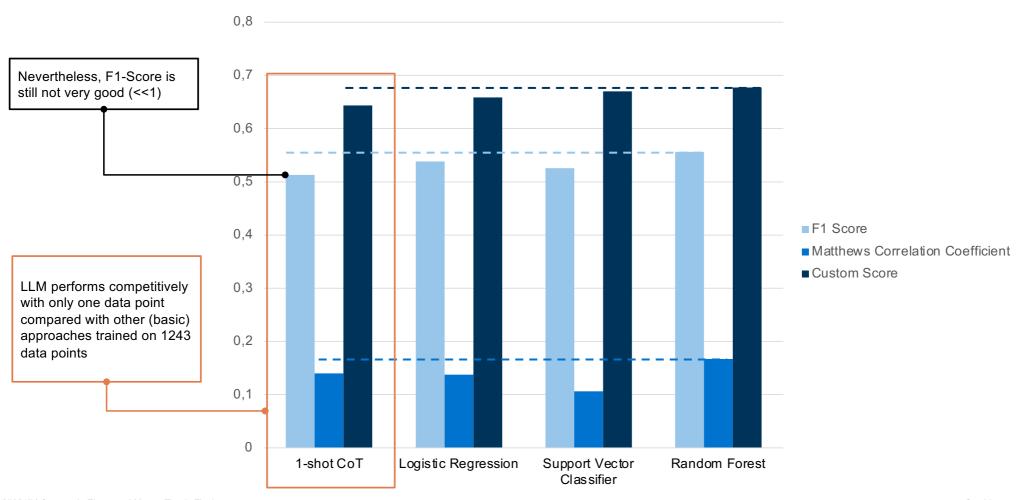
250217 | Constantin Ehmanns | Master Thesis Final

The more the merrier ... adding all input factors improves performance

Innovativeness seems to be the least strong contributor as standalone factor

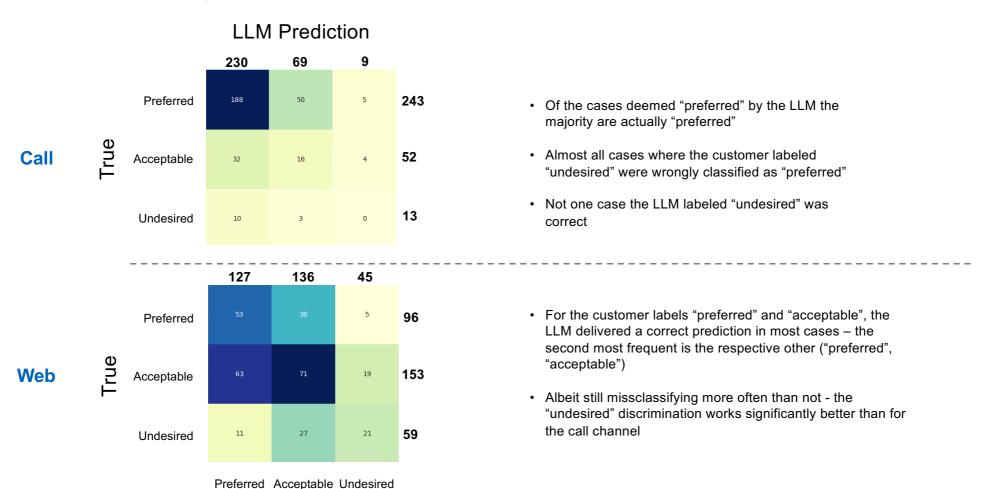
Which prompt strategy works the best?

Independently test few-shots, channel descriptions and prompt types against each other


Baseline (BL)	Hand-crafted prompt based on prompt library from Anthropic for classifier						
Few-shots -	3-shot better than BL	vs.	5-shot better than BL				
Channel descriptions	Bullets worse than BL	vs.	JSON vs. worse than BL		Plain worse than BL		
Prompt Type	LLM-generated better than BL	vs.	(Short) Zero-shot Chain-of-Thought better than BL	VS.	Zero-shot Chain-of-Thought better than BL	VS.	Tree-of-Thought worse than BL

250217 | Constantin Ehmanns | Master Thesis Final

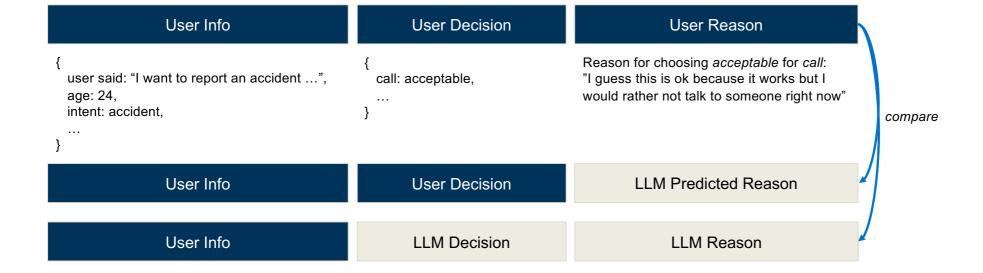
Exploratory search showed (1-shot) CoT as strong prompt candidate


1-shot Chain-of-Thought performs similar to basic data-driven ML techniques on the test set

Varying performance per channel

For the web channel, the LLM-classifier works better than for the call channel

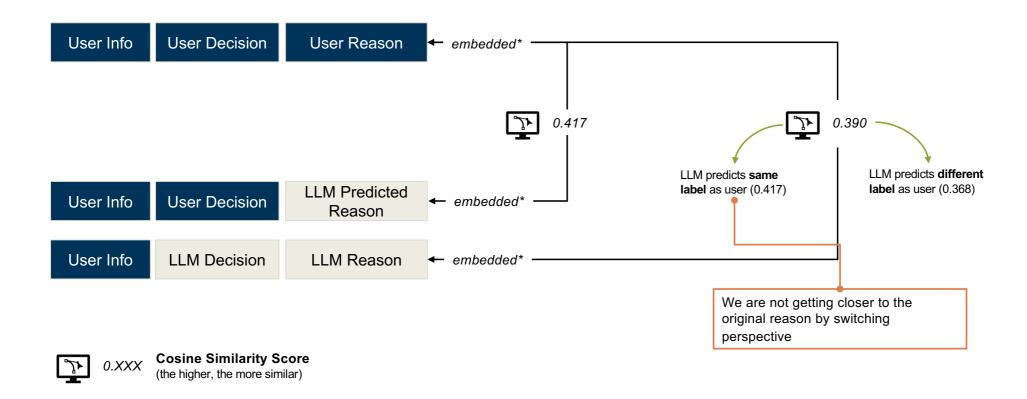
Note: an ideal classifier would have a diagonal matrix for a confusion matrix


- Motivation
- **Research Questions**
- **Channel Choice Determinants**
- **Data Collection**
- LLM-based Channel Navigation
- Prediction of Reasons
- Conclusion

Can the LLM predict the reasons behind the decision?

Masking different information to see how well the LLM predicts the reasons behind a channel preference

Featured in the data set as well



This simply builds on the regular classification task

When making same decision, LLM for itself and LLM relating with user match

Cosine based similarity measure on the embedded reasons

Can the LLM predict the reasons behind the decision?

Masking different information to see how well the LLM predicts the reasons behind a channel preference

Top 10

entries based on similarity – Exemplary shared concepts

- "Don't work well with apps"
- · Call takes too much time
- Prefer direct contact / direct issue resolution (via call)
- Prefer calling in general

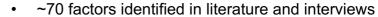
Bottom 10

entries based on similarity – Exemplary differences (empty fields excluded)

- User sentences very short (ok, no, no idea) while LLM produced longer sentences
- LLM provided more detailed reasons ("I like chat because there is no queue...")

250217 | Constantin Ehmanns | Master Thesis Final

- Motivation
- **Research Questions**
- **Channel Choice Determinants**
- **Data Collection**
- LLM-based Channel Navigation
- Prediction of Reasons
- Conclusion


Summary

Reflection on the initial research questions

RQ1: In customer service centers, what are **relevant factors** for deciding the optimal channel for customer service requests?

Age, Intent, Previous Channels, Infrastructure,
 Complexity, Innovativeness, Previous Claim deemed most appropriate for this project

RQ2: How do different **input factors** and **prompt strategies influence the effectiveness of LLMs** in selecting appropriate communication channels for customer service requests?

- The more input factors, the better
- Few-shots and Chain-of-Thought boosts performance
- LLM can compete with data-based approaches
- · Classifier performance not excellent

RQ3: How well do LLMs **predict the reasons** for choosing a customer service channel?

- Varying degree of similarities of predicted reasons
- High overlap possible for relatable reasons