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Background & Motivation : Complexity and Performance of LLMs

Moore's Law for LLMs
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Large Language Models (LLMs) have grown
drastically in size.

Transformer architecture coupled with improved
hardware.

Research focuses on enabling long-text
comprehension of LLMs.

Context window extension techniques aim to
increase the input size LLMs can process
effectively.
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Background & Motivation : Generative Text Summarization Tum

Data is as accessible as never before.

* However, its sheer amount makes it difficult to process information effectively.

« Automatic and accurate text summarization helps mitigate the difficulty of processing large amounts of
data.

« From summarizing articles with a few thousand tokens to books with millions of tokens, LLMs are used
across various domains to generate summaries.

« Comprehension of extremely long sequences is increasingly important for generating useful
summarizations.

« Effective summarization requires long-range dependency comprehension and information retrieval.
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Background & Motivation: Context Window Extension Techniques

« Researchers developed numerous techniques for
extending the context window size of LLMs.

* Increasing the input length enhances semantic
understanding and enables LLMs to capture long-
range dependencies [2].

Positional embedding techniques:

« ALIiBi

» Positional Interpolation and YaRN
 LongRoPE

Specialized Attention Mechanism and Memory
Retrieval:

 Focused transformer
 Landmark attention
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Figure 2. An illustrative example to show RoPE embedding under different interpolation methods. Upper: RoPE under direct extrapolation.
Middle: Rescaled RoPE under linear positional interpolation. Down: LongRoPE fully exploits the identified two non-uniformities, leading
to varied interpolation and extrapolation across RoPE dimensions at different token positions.

[3]
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Background & Motivation: Benchmarking Long Context Window LLMs

« Many summarization benchmarks rely on standard n-gram metrics like ROUGE, F1,
or simple perplexity.

« XL2-bench, LongBench, InfinityBench, L-eval, etc., use standard metrics to provide
general performance indicators and neglect semantic nuances and contextual
details.

« Proven benchmarks can only test models with a limited context window size (max.
ca. 10k tokens).

« How and where information is derived to generate the output is not measured.
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Background & Motivation: Benchmarking Long Context Window LLMs

« Benchmarking the discussed context window extension techniques on the open source
Llama-2/3 model.

» Investigating the effect of incrementally increasing the context window length.

» Exploring the effect of feeding more information to the model.

* Using a relatively small testing corpus enables human evaluation.

» Visualizing performance trends across multiple context window lengths using mock-up tools.

» Mapping information of the generated summarization to their origin in the document. Where
does the model derive its information, depending on the input length and the technique.
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Background & Motivation: Benchmark Dataset Decision

« Many different datasets are used to evaluate the text summarization performance of LLMs.

Deciding on a dataset:

« Average sequence length
 Domain

« Language

RedPajama-Data-V2:

« Widely used dataset containing 30T documents.

« Multilingual text summarization tasks.

* Includes arXiv, a dataset that includes scientific articles.

» Filter dataset upon sequence length, language, and domain.
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Research Questions TLTI

m What are the most effective techniques for extending the context window of LLMs? J
/

How do LLMs use the information contained in their context? Do LLMs benefit from a A

long context window for text summarization? Is the model able to pay attention to all parts
of the document, or is it clustered toward some parts?

A )

How can we adequately test the quality of text summarization of LLMs? Does the quality
of the generated summary improve if more content of the article is passed?
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Methodology TUT

Benchmarking/comparing
results

Literature Review Benchmark Implementation
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Timeline Tum

June July August September  October November

Literature Research

Prepare benchmark

Benchmark various techniques
/Registration

Analyze results

Writing Thesis

Proof-Reading

Registration
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