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Background & Motivation : Complexity and Performance of LLMs

• Large Language Models (LLMs) have grown 
drastically in size.

• Transformer architecture coupled with improved 
hardware.

• Research focuses on enabling long-text 
comprehension of LLMs.

• Context window extension techniques aim to 
increase the input size LLMs can process 
effectively.
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Background & Motivation : Generative Text Summarization

• Data is as accessible as never before.

• However, its sheer amount makes it difficult to process information effectively.

• Automatic and accurate text summarization helps mitigate the difficulty of processing large amounts of 
data. 

• From summarizing articles with a few thousand tokens to books with millions of tokens, LLMs are used 
across various domains to generate summaries.

• Comprehension of extremely long sequences is increasingly important for generating useful 
summarizations.

• Effective summarization requires long-range dependency comprehension and information retrieval.
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Background & Motivation: Context Window Extension Techniques

• Researchers developed numerous techniques for
extending the context window size of LLMs.

• Increasing the input length enhances semantic
understanding and enables LLMs to capture long-
range dependencies [2].

Positional embedding techniques:
• ALiBi
• Positional Interpolation and YaRN
• LongRoPE

Specialized Attention Mechanism and Memory 
Retrieval:
• Focused transformer
• Landmark attention
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Background & Motivation: Benchmarking Long Context Window LLMs
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• Many summarization benchmarks rely on standard n-gram metrics like ROUGE, F1, 
or simple perplexity.

• XL2-bench, LongBench, InfinityBench, L-eval, etc., use standard metrics to provide 
general performance indicators and neglect semantic nuances and contextual 
details.

• Proven benchmarks can only test models with a limited context window size (max. 
ca. 10k tokens).

• How and where information is derived to generate the output is not measured.



Background & Motivation: Benchmarking Long Context Window LLMs
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• Benchmarking the discussed context window extension techniques on the open source 
Llama-2/3 model.

• Investigating the effect of incrementally increasing the context window length.

• Exploring the effect of feeding more information to the model.

• Using a relatively small testing corpus enables human evaluation.

• Visualizing performance trends across multiple context window lengths using mock-up tools.

• Mapping information of the generated summarization to their origin in the document. Where 
does the model derive its information, depending on the input length and the technique.



Background & Motivation: Benchmark Dataset Decision
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• Many different datasets are used to evaluate the text summarization performance of LLMs.

Deciding on a dataset:
• Average sequence length
• Domain
• Language

RedPajama-Data-V2: 
• Widely used dataset containing 30T documents.
• Multilingual text summarization tasks.
• Includes arXiv, a dataset that includes scientific articles.
• Filter dataset upon sequence length, language, and domain.



Research Questions
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RQ1 What are the most effective techniques for extending the context window of LLMs?

RQ3 How can we adequately test the quality of text summarization of LLMs? Does the quality 
of the generated summary improve if more content of the article is passed?

RQ2
How do LLMs use the information contained in their context? Do LLMs benefit from a 

long context window for text summarization? Is the model able to pay attention to all parts 
of the document, or is it clustered toward some parts?
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Timeline
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Literature Research

Prepare benchmark

Benchmark various techniques
/Registration

Analyze results

Writing Thesis

Proof-Reading
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