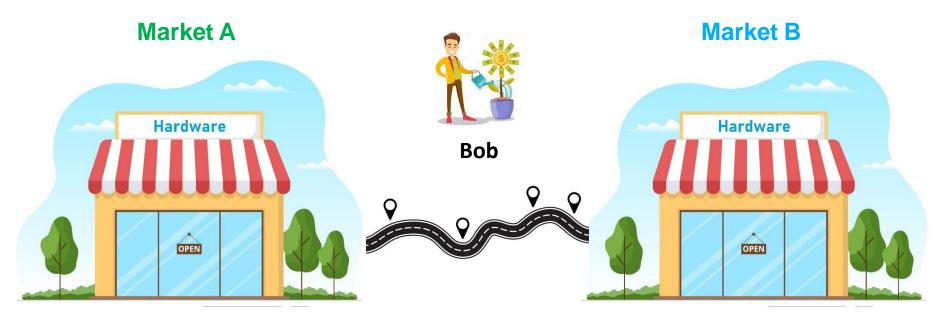


Detection and Analysis of Cross-Chain Arbitrages Between Ethereum and Polygon

Murad Muradli

16.12.2024, Master's Thesis Final Presentation

Chair of Software Engineering for Business Information Systems (sebis)
Department of Computer Science
School of Computation, Information and Technology (CIT)
Technical University of Munich (TUM)
wwwmatthes.in.tum.de


Outline

- **Background & Motivation**
- **Research Questions**
- Methodology
- Results
- Discussion & Future Work

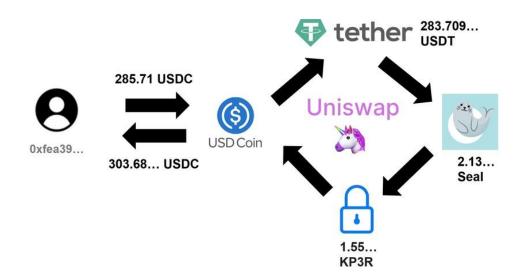
Single-Network Atomic Arbitrage: The Hardware Store Example

- Located in the western part of town.
- Price of hammers: \$10
- Lower demand, leading to lower prices.

- Located in the eastern part of town.
- Price of hammers: \$15
- Higher demand, leading to higher prices.

Single-Network Atomic Arbitrage: In Blockchains

DEX: Decentralized exchange


- Peer-to-peer trading without intermediaries.
- Users control their own funds.

Arbitrage Opportunities:

- Price discrepancies between DEXes
- Buy low on one DEX, sell high on another.

Impact on Market:

- Promotes price consistency across DEXes.
- Generally seen as beneficial.

[Researchgate] Cylic Arbitrage in Decentralized Exchange Markets

[Blocknative] The Fundamentals of Cross-Chain MEV

Cross-Network Non-Atomic Arbitrage

Bob sees that hammers are cheaper in Town A than in B. He plans to buy hammers in Town A and sell them in Town B for profit. However, he needs a bridge to access the Market in town B.

Challenges associated with the bridge:

- Time delay: Transport time can affect profits.
- *Transportation cost:* Fees for using the bridge reduce profits.

Polygon PoS

Polygon PoS:


- A Layer 2 scaling solution (side-chain) for Ethereum.
- Compatible with the Ethereum Virtual Machine (EVM)
- Support for a wide variety of DeFi apps:
 - Aave, SushiSwap, QuickSwap, Uniswap etc.

Key takeaways:

- Cross-chain arbitrages do happen, though not very frequent.
- Lesser-known tokens used due to high-volatility of popular tokens.

Open questions:

- Improve heuristics to increase coverage.
- How can we identify the revenue-fee rate of arbitrages?

[Master's Thesis Danut Ilisei]

Research Questions

RQ 01

What is the state-of-art literature on cross-domain profiting strategies in the context of blockchains?

RQ 02

How can we develop a methodology to detect cyclic arbitrages between Ethereum and Polygon PoS using the Polygon bridge?

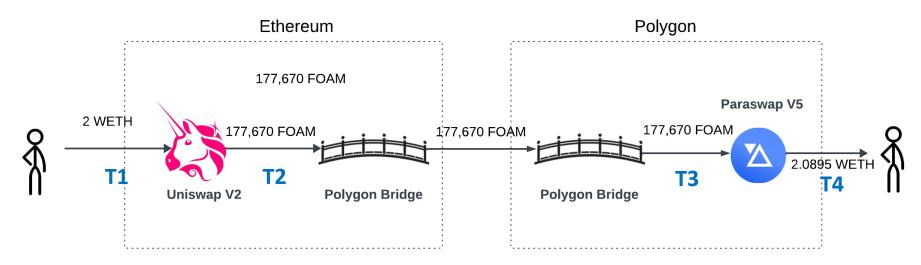
How can we devise heuristics to identify both successful and unsuccessful arbitrages?

RQ 03

Who executes cross-chain arbitrages between Ethereum and Polygon, and how frequent and profitable are these arbitrages?

- Which tokens are used for profiting and how long are the bridging times?
- Is the Ethereum leg of the arbitrage submitted to the public mempool?

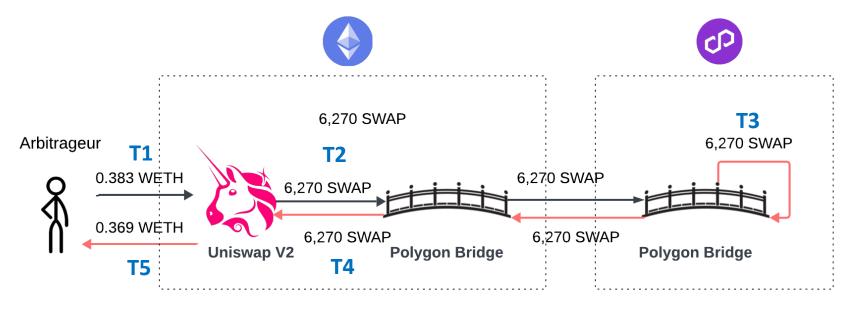
RQ 04


How do our obtained results compare to other profit-making strategies observed on blockchains?

Number of occurrence and profitability compared to strategies such as atomic arbitrages,, and sandwich attacks.

Definitions

Successful Arbitrage



- Arbitrageur starts on the source chain, transfer their assets into the target chain.
- And concludes the arbitrage with an additional swap on the target chain.

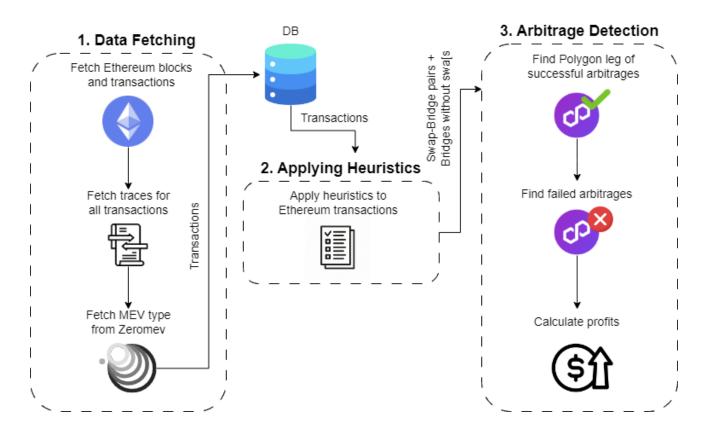
Definitions

Failed Arbitrage Attempt

- Arbitrageur starts on the source chain, transfer their assets into the target chain.
- But instead of concluding the arbitrage on the target, he transfers his assets back to the source chain.
- Possibly reason: arbitrage opportunity may have "expired" by the time tokens were bridged into the target chain.

Definitions

Public Transactions:

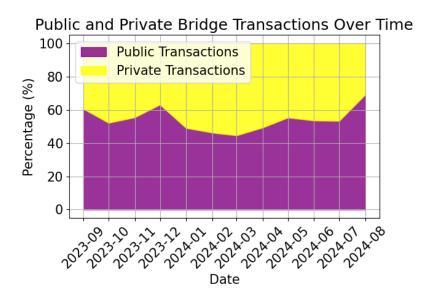

- Broadcast to the public mempool.
- Visible to validators and block builders.
- Risk: Vulnerable to front-running (e.g., high-value arbitrages or liquidations).

Private Transactions:

- Directly submitted to block builders via private channels.
- Advantage: Prevents exposing sensitive details, reducing risks like front-running.

Methodology

Overview


- Analyzed 2.61M Ethereum blocks (Sep 2023 Aug 2024).
- Identified 23,404 cross-chain arbitrages (0.89% of blocks).
 - **16,812** cyclic, **6,592** non-cyclic.
 - 1,296 failed arbitrages; 1,092 recovered via additional swaps.
- 58% Ethereum → Polygon, 42% Polygon → Ethereum.
- Total profit across all arbitrages \$733,396.72

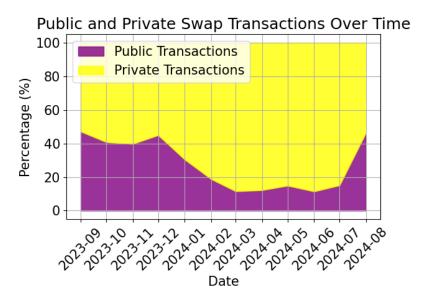
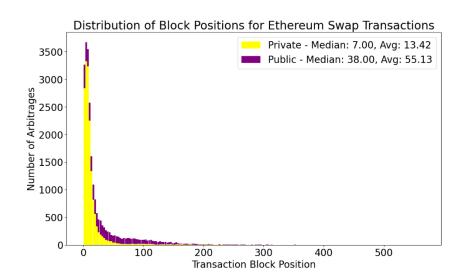
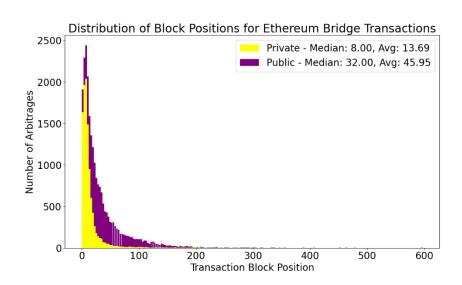

Aspect	Results from [58]	Our Detection	
Timeframe	Nov-04-2023 to Mar-23-2024	Nov-04-2023 to Mar-23-2024	
Successful Arbitrages	4,488	10,684	
Failed Arbitrages	158	554	
$\mathbf{ETH} \to \mathbf{POL}$	58%	41.21%	
$\mathbf{POL} o \mathbf{ETH}$	42%	58.79%	

Table 1. Comparison to prior work by Danut Ilisei

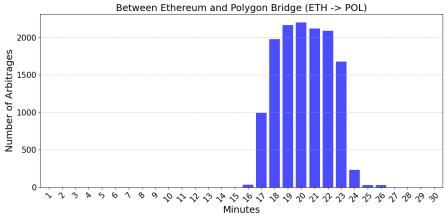
Transparency

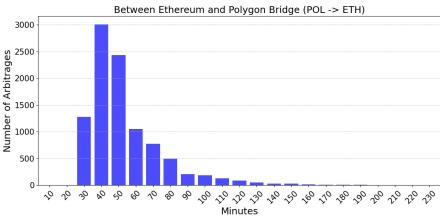




- Bridge Transactions: 45.35% private, 54.65% public.
- Swap Transactions: 70.23% private, 29.77% public.
- Swaps are more private, likely due to higher-value trades and the need to avoid front-running

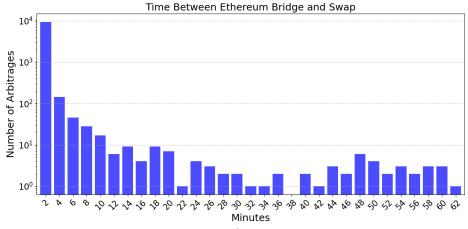
Block positions

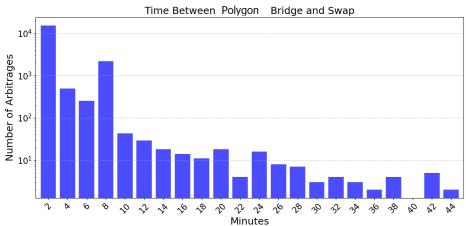




- Both bridge and swap transactions are concentrated in the top positions within blocks.
- On average, private transactions in both categories show a stronger tendency to cluster toward the highest positions.

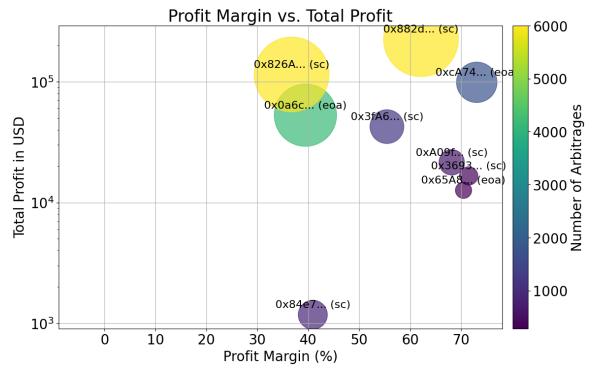
Durations





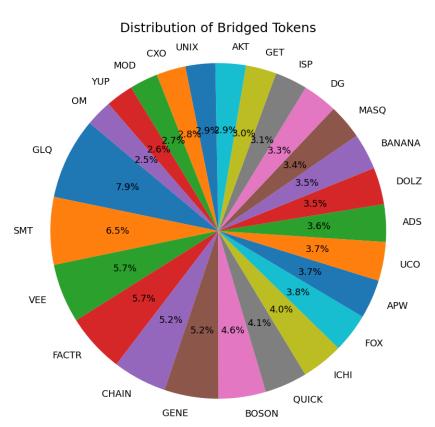
- Average bridging time from Ethereum to Polygon is ~19 minutes.
- From Polygon to Ethereum it's ~48 minutes.
- Difference is due to the checkpointing process, which is part of Polygon's security model.

Durations



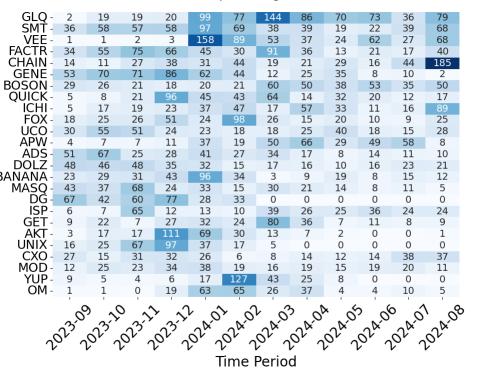
Majority of these transactions occur within a minute of each other E.g., on Polygon, the average time difference of 57.39 seconds

Durations



- A small minority of searchers are responsible for much of the network activity.
- 85.68% of all arbitrages are conducted by top 6 searchers.

Tokens


- Stablecoins and highly liquid tokens rarely used due to low fees and quick price corrections on CEXs/DEXs.
- Cross-chain arbitrages focus on less liquid tokens primarily traded on DEXs.
- Extended bridging times reduce the appeal of stablecoins.

Tokens

Symbol

Heatmap of Bridged Tokens

Some tokens (e.g., SMT, FACTR) show consistent usage.

- 175

- 150

oor - 0f Arbitrages

50

- 25

- 0

- Long-tail tokens: DG, UNIX (shortlived popularity).
- BANANA: Consistent usage, indicating sustained community interest.

Comparison

Category	Data Source	Count	Profit
Cross-Chain Arbitrages	Our Results	23,400	\$743,368.86
Atomic Arbitrages (Ethereum)	Dune, EigenPhi	> 3.6 million	> \$300 million
Atomic Arbitrages (Polygon)	[52]	7.7 million	> \$213 million
Sandwich Attacks	Dune, EigenPhi	> 1.5 million	> \$48 million

Table 2. Comparison of cross-chain arbitrages with other profit-making strategies

- 23,404 detected (Ethereum-Polygon only); Ethereum also engages with other blockchains.
- Atomic arbitrages include all Ethereum DEXes
- Non-atomic arbitrage challenges: costs (bridging fees, coinbase transfers); risks (liquidity across networks, bridging delays, missed opportunities).
- Arbitrageurs focus on low-risk, high-certainty trades.

Discussion and Future Work

01

Arbitrages

Cross-chain arbitrages do occur, but in far less numbers their atomic counterparts, i.e., ~0.89% of all blocks 02

Searchers

Most of the network activity is concentrated in the hands of 6 searchers.

03

Tokens

High liquidity or more well-known tokens are not bridged. Arbitrageurs opt for less-know tokens 04

Future Work

Future work can focus on more EVM-compatible chains and investigate non-bridge-based arbitrage opportunities.

M.Sc.

Murad Muradli

murad.muradli@tum.de

Technical University of Munich (TUM) TUM School of CIT Department of Computer Science (CS) Chair of Software Engineering for Business Information Systems (sebis)

Boltzmannstraße 3 85748 Garching bei München

+49.89.289.17132 matthes@in.tum.de wwwmatthes.in.tum.de

