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❖ T-MQA: Motivation
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Medical-QA:

● Constantly advancing 
medical knowledge

○ invalidates older info

● Redacted heavily cited 
papers

○ Sometimes not even 
updated in some 
academic publisher 
websites

● -> Need for a system

*Nov 2022: ChatGpt release

https://tessier-lavigne-lab.stanford.edu/issues-five-papers-and-planned-actions


❖ T-MQA: Motivation
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Trustworthy -> Private + Traceable:

● Data breaches of big tech companies
○ raises concern for personal medical data

● Medical information websites/blogs/social media without sources

● Solution -> LOCAL system + manual knowledge updates
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❖ T-MQA: Research Questions
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❖ T-MQA: Research Questions

RQ1: What is the best performing approach for medical question answering and do these 
approaches generalize well over diverse (or unseen) datasets?

RQ2: How can we accurately generate answers to medical questions using retrieved 
medical evidence (or knowledge) using LLMs and the RAG method (Retrieval-augmented 
generation)?

RQ3: Can we generate medically accurate explanations in a Q&A format for users to 
understand medical information easier?  
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● Dataset choices:
○ Examination discarded as mostly MCQ
○ BioASQ (experiments)

■ reliable and comparable, many features for future work
○ k-QA 

■ recent, high performance results, rigorous expert answers (no gen.)
○ HealthFC

■ from SEBIS, easier understanding - integration
○ Alpha KI Gen

■ from SEBIS, LLM generated Dataset, with expert checks

❖ T-MQA: Approach 

8© sebis

Clinical Examination Scientific Consumer

Question Does patient have 
abnormal BMI?

Antibiotics can be used 
to treat _?_. 
(e.g. MCQ: A/B/C)

Helicases are motor 
proteins that unwind 
_?_.

Can asthma be cured?

Answer BMI: 31.2, Yes C. Bacterial infections nucleic acid Asthma is chronic. It 
can be treated, but not 
cured.

Dataset k-QA - BioASQ HealthFC, AKI-Gen



● Framework choices:
○ Ollama vs Pytorch (hf, transformers, ..)

■ C++ vs Python
■ less RAM requirements

● Batch Processes (Embedding/Inference) -> currently Sequentially
○ M3 Max: no Metall GPU support
○ Sebis - Nvidia V100: not enough RAM

● Vector Store: 
○ FAISS (open-source) 
○ VectorDBs (perpetual updates)

■ Weaviate

● Web sources
○ PubMED (20M abstracts)
○ Wikipedia (6M pages)

❖ T-MQA: Approach 
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❖ T-MQA: Approach 
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● Automatic Evaluation Metrics:

○ ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

■ ROUGE compares an automatically produced summary or translation against a reference or set 
of reference (human-produced) summaries or translations

○ BART (Bidirectional and Auto-Regressive Transformers)

■ BARTScore uses pre-trained sequence-to-sequence models
● can be applied in an unsupervised manner

● Human Evaluation

○ Questionnaire (152 respondant)
○ Manual Annotation (Supervisor & Student)
○ Short Interview (2 interviews)



❖ T-MQA: System & Experiments
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❖ T-MQA: RAG System
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❖ T-MQA: RAG System
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❖ T-MQA: Experiments
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1. Number of Retrieved Documents Test

2. Query Augmentation: HyDE Test

3. LLM Inference Test

4. Keyword + Semantic Embedding Test

5. Pubmed vs Wikipedia Inference Test

6. Keyword frequency Test (BM25)

7. Automatic vs Human Evaluation Test



❖ T-MQA: Number of Retrieved Documents
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● Odd number of 
documents

● Optimal is 3-5

● 1: not enough info

● 9: non relevant info

● We keep 5 
○ to have most info 

with performance



❖ T-MQA: Query Augmentation: HyDE Test
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Hyde
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● Tested on BERT 
embedding variants

● increase in 
performance 
regardless of model



❖ T-MQA: LLM Inference Test
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● Significant increase in 
model size doesnt 
effect the RAG system

● More recent models 
have better training, so 
they also perform 
better

● Open/closed source 
difference minimal
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❖ T-MQA: Keyword + Semantic Embedding Test
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❖ T-MQA: Pubmed vs Wikipedia Inference Test
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● Pubmed was better for 
same model



❖ T-MQA: Keyword frequency Test (BM25)
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● Including more 
keywords increased 
the performance 
slightly



❖ T-MQA: Automatic vs Human Evaluation Test
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❖ T-MQA: Automatic vs Human Evaluation Test
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❖ T-MQA: Automatic vs Human Evaluation Test
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NLI Methods:
● BERT 

○ similar to human eval of 2 people (Student + Supervisor)
○ 120 Annotations out if 1000 

● GPT 
○ too optimistic
○ trying to convince

Hallucination: 
● Prometheus vs Human Eval

○ Harmlessness: humans more critical
○ Reasoning: similar



❖ T-MQA: Human Evaluation (Blind Test)
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34© sebisRagip Volkan Tatlikazan, Developing Systems for Reliable Medical Question Answering Outline: Motivation  –  RQs 1:Approach - 2:System - 3:Users  –  Timeline

● 12 Blind Questions

○ Dataset
○ Web source
○ Embedding Method
○ Inference Model

❖ T-MQA: Human Evaluation (Blind Test)
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❖ T-MQA: Human Evaluation (Blind Test)



❖ T-MQA: Human Evaluation (Open Test)
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❖ T-MQA: RAG System
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❖ T-MQA: Human Evaluation (Open Test)



● 1 Open Question

○ Answer backtracking

❖ T-MQA: Human Evaluation (Open Test)
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vs



40© sebis

1 Question1 Response
❖ T-MQA: Human Evaluation (Open Test)



❖ T-MQA: Key Takeaways
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● Ollama is reliable, even IBM - Nvidia is using it (with triton as alternative)
○ Batch processes (embedding / inference) will also added soon as 

issue is active
○ PyTorch 

■ doesn’t support batch processes it on MPS 
■ needs more than a V100 (16GB) on CUDA

● PubMED performed better for automatic evaluation than Wikipedia as web 
source

● Dataset based comparison
○ Depends on dataset category

■ (e.g. consumer, research)
● for definition/explanation bm25 with low word freq. reqs.  

■ (e.g. clinical)
● for reasoning hybrid, with high word freq. reqs.   

RQ1 Approach: 

❖ T-MQA: Key Takeaways
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RQ2 System: 

❖ T-MQA: Key Takeaways
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● Number of documents converged to 5 abstracts for best performance

● HyDE was beneficial regardless of the model used

● LLM NLI & BERT NLI Answers for
○ tertiary classification category (Ent., Nat., Contra.) 
○ correlation ranges between 0.3 to 0.45 

● BERT is conservative for NLI Evaluation compared to LLMs

● Allowing more keywords to be embedded by BM25 increased 
performance



❖ T-MQA: Key Takeaways
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RQ3 User/Eval: 

● LLM Hallucination Evaluation with Prometheus 
is less critical than humans for Harmlessness, but similar for Reasoning 
prompts

● BERT NLI is more similar to human evaluation than LLMs
○ In percentage of Entailment categories

● Answer backtracking makes people more critical when evaluating LLM
answers compared to showing all the relevant context 
(150 responses to 1 Question)

● Privacy not much of a concern, choosing sources was satisfactory 
(2 interviews)



❖ T-MQA: Future Work
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❖ T-MQA: Future Work
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❖ Future Work for User Interface

❖ Future Work for the System



❖ T-MQA: Future Work for User Interface

→ Possible UI extensions (nice to have) ←

Medical Report PDF Upload / OCR

Language Simplification / German - English Translation

Text-to-Speech ←→ Speech-to-Text
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❖ T-MQA: Future Work for the System

Perplexica: (Local Running Perplexity)
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Ollama X HF: (locally running any hf model w/o setup or pytorch) 

❖ T-MQA: Future Work for the System
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❖ T-MQA: Future Work for the System

Paper-QA2:
(agentic,
has RAG for evidences,
citation backtracking)
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