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Zusammenfassung

Bei der Anwendung von Differential Privacy (DP)-Techniken zur Perturbation vonWorteinbettungen sind
die Verbesserung der Privatsphäre und die Beibehaltung der Nützlichkeit zwei gegensätzliche Ziele. In
dieser Arbeit wird untersucht, wie Worteinbettungen mit Hilfe von Differential Privacy effizient pertur-
biert werden können. Im Mittelpunkt steht dabei, die Auswirkungen verschiedener Ansätze zur Begren-
zung der Sensitivität und des Vektor-Mappings auf die Privatsphäre und die Nützlichkeit zu analysieren.
Wir untersuchen die theoretische Perspektive mithilfe theoretischer Privatsphäre-Garantien und führen
empirische Experimente durch, um die Auswirkungen der Ansätze auf nachgelagerte Natural Language
Processing (NLP)-Aufgaben zu beleuchten. Die Ergebnisse unserer Experimente zeigen, dass die Auswirkun-
gen auf den Kompromiss zwischen Privatsphäre und Nutzen für verschiedene Datensätze, Aufgaben, DP-
Mechanismen und Modelle sehr unterschiedlich sind. Die Wirkung der meisten Ansätze beschränkt sich
auf eine allgemeine Ergebnisverbesserung der NLP-Aufgaben. Diese Verbesserungen sind jedoch nicht
unbedingt mit einer Verbesserung des Kompromisses zwischen Privatsphäre und Nutzen verbunden.

Abstract

When applying Differential Privacy (DP) techniques to perturb word embeddings, enhancing privacy and
maintaining utility are two conflicting objectives. This study examines how word embedding vectors can
be efficiently perturbed using differential privacy. At the center of this, we will analyze the impact of
different approaches for bounding sensitivity and vector mapping on privacy and utility. We examine
the theoretical perspective through theoretical privacy guarantees and perform empirical experiments to
illuminate the approaches’ effects on downstream Natural Language Processing (NLP) tasks. Our experi-
ment results show that the effect on the privacy-utility trade-off largely differs for different datasets, tasks,
DP mechanisms, and models. The effect of most approaches is limited to a general improvement in per-
formance on the tasks, which is, however, not necessarily linked to an improvement with respect to the
privacy-utility trade-off.
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1 Introduction

Generative Artificial Intelligence and especially Large Language Models have become omnipresent in re-
cent years. More and more systems are based on or integrate such models. To train language models,
lots of text data is required. The entity training the model is often separate from the texts’ contributors
or authors. As the texts might contain sensitive information, the contributors might be hesitant to share
them with a third party. Thus, privacy concerns often hinder the development of new models or tailoring
models to specific use cases and data. A straightforward approach to hiding private information would be
sharing only vector representations, also called word embedding vectors, with a third party instead of the
original texts. This method, however, is insufficient to hide the private information contained in the input
texts [SR20]. Even though the vectors can mostly not be interpreted by a human without additional infor-
mation, it is still possible to recover the original texts from the vector representations. Further methods to
hide private information are hence required. This has led to the adoption of DP to the NLP domain with
the goal of providing privacy guarantees for word vector representations.
Using DP, one can add noise to word embedding vectors and thereby perturb and privatize them. Adding
more noise leads to stronger theoretical privacy guarantees [Xu+21a]. At the same time, addingmore noise
can impair the word’s semantics encoded in the word embedding vector and can harm the performance
of language models, which are trained with the perturbed word embedding vectors [Xu+21a]. Therefore,
it is important for the creation of effective privatized word embeddings to choose the amount of noise in
a way that provides as much privacy as possible while also harming the utility of the word embedding
vectors as little as possible. Previous research has used two methods to improve this trade-off between
privacy and utility. One is to limit the sensitivity of the embedding vectors before noise addition [FK21;
LHL20; Mah+22]. Roughly speaking, sensitivity in this context describes the maximum distance between
two embedding vectors [FK21]. The other method to improve the privacy-utility trade-off is mapping the
perturbed vectors after noise addition to another close-by word embedding vector from a fixed vocabulary
[Fey+20; Xu+21b]. There are different approaches for both methods. This thesis aims to explore the impact
of the different approaches on the trade-off between privacy and utility.
The following research questions have been defined to guide the achievement of the goal previously spec-
ified:

1. What approaches are there to privatize word embeddings by perturbing word vector representa-
tions?

2. How can we make these privatized word embeddings more effective?

3. What is the effect of different approaches to bounding sensitivity on privacy and utility for down-
stream NLP tasks?

4. What are the implications on privacy and utility resulting from mapping noisy word embeddings to
similar embedding vectors which are associated with real words?

The first research question will look into existing research to identify DP mechanisms, which can be
applied to perturbword embedding vectors. To answer the second research question, the goal will be to find
out which approaches can yield a better calibration of the DP noise or impose stronger privacy guarantees.
We will specifically focus on approaches to bounding sensitivity or mapping perturbed word embedding
vectors to close-by vectors associated with a word from the vocabulary. For the third and fourth research
questions, we will investigate these approaches’ effects on privacy and utility. Therefore, we will first
shed light on this from a theoretical perspective and analyze how the different approaches influence the
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amount of noise necessary to ensure DP and how their application affects theoretical privacy guarantees.
Afterwards, the approaches will be implemented in practical experiments to observe the implications for
NLP tasks.
After this introductory chapter, Chapter 2 of this workwill elaborate on the theoretical foundations around
DP, its application to the NLP domain, and the privacy-utility trade-off. In Chapter 3, existing research,
that is relevant to this work, will be discussed. We will especially concentrate on DP mechanisms as well
as the approaches for bounding sensitivity and vector mapping that are used. Chapter 4 will describe the
methodology for the practical experiments. The results and the implications on the privacy-utility trade-
off corresponding to experiments on approaches for bounding sensitivity will be presented in Chapter 5
and the results for the vector mapping approaches will be detailed in Chapter 6. Following this, Chapter
7 will discuss the main findings as well as limitations, which need to be kept in mind when interpreting
the experiments’ results. Furthermore, this chapter will state potential directions for future work. Finally,
this work concludes with a summary in Chapter 8.
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2 Foundations

Before practically applying different approaches for DP in Chapter 4, the theoretical foundations of DP
and relevant mechanisms will be introduced in this chapter. This chapter will also contain an introduction
to the approaches for bounding sensitivity and vector mapping, which will be compared to each other in
the later experiments.

2.1 Differential Privacy

DP was first introduced by [Dwo+06] for the privatization of data stored in databases. It allows to gain
insights about a population described in a database while preventing any data instance from being un-
ambiguously linked to a specific individual whom it refers to [Dwo+06]. In the context of databases, the
concept of DP is defined for two neighboring databases 𝐷 and 𝐷 ′.

Definition 2.1.1 (Neighboring databases). Let 𝐷 and 𝐷 ′ be two databases from the set of all possible
databases D with records 𝑣𝑖 , 𝑣 ′𝑖 for 𝑖 ∈ [𝑛]. The Hamming distance between two databases 𝐷 and 𝐷 ′ is
𝑑𝐻 (𝐷,𝐷 ′) = ∑𝑛

𝑖=1
��𝑣𝑖 − 𝑣 ′𝑖

��.
It represents the number of records on which 𝐷 and 𝐷 ′ differ, i.e., 𝑑𝐻 (𝐷, 𝐷 ′) =

��𝑖 : 𝑣𝑖 ≠ 𝑣 ′𝑖
��.

Two databases are called neighboring or adjacent if 𝑑𝐻 (𝐷,𝐷 ′) = 1, i.e., they differ in only one record.

Using the above definition of neighboring databases, we can now formally define DP.

Definition 2.1.2 (𝜖-Differential Privacy (𝜖-DP)). Let 𝜖 ∈ ℝ+
0. A randomized function A is 𝜖-differentially

private if for all databases 𝐷 and 𝐷 ′ differing in at most one record (i.e., with 𝑑𝐻 (𝐷, 𝐷 ′) = 1), and possible
outputs 𝑦 of A (i.e. 𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒 (A)),

ℙ[A(𝐷) = 𝑦] ≤ exp (𝜖) · ℙ[A(𝐷 ′) = 𝑦] (2.1)

This means that A fulfills 𝜖-DP if its output differs at most by a multiplicative factor of exp (𝜖) when
applied to databases differing in at most one record. Thus, Definition 2.1.2 provides indistinguishability
for the two inputs 𝐷 and 𝐷 ′, meaning that someone who is only presented the output of the mecha-
nism cannot distinguish if the original input was 𝐷 or 𝐷 ′. This explains why 𝜖-DP is sometimes called
𝜖-indistinguishability [Dwo+06]. We can say that the smaller the 𝜖 value, the stronger the indistinguisha-
bility, i.e., the harder it is to distinguish between potential inputs. If 𝑑𝐻 (𝐷,𝐷 ′) is not equal to one for all
pairs of inputs, then the above definition can also be applied transitively to provide a privacy guarantee
[Cha+13]. The randomized function A is also called (privacy) mechanism in the context of DP and the
parameter 𝜖 is referred to as the privacy budget. The privacy budget governs the amount of noise added
and quantifies the strength of the privacy guarantee [Fey+20]. Privacy budget and privacy guarantee are
inversely related. The smaller 𝜖 , the more noise is added, and the more indistinguishable and the more
protected are the two inputs 𝐷 and 𝐷 ′ [Hu+23]. For 𝜖 → 0, the mechanism provides absolute privacy as
its output becomes independent of the input. 𝜖 → ∞ describes the absence of privacy where A(𝐷) = 𝐷

[Fey+20; Xu+20]. In some cases, 𝜖-DP is too strict because it demands the inequality in Definition 2.1.2 to
be fulfilled even for outlier data points [Hoo+21]. The definition of 𝜖-DP is sometimes relaxed to (𝜖, 𝛿)-
Differential Privacy (also Approximate DP):

Definition 2.1.3 ((𝜖, 𝛿)-Differential Privacy ((𝜖, 𝛿)-DP)). Let 𝜖 ∈ ℝ+
0 and 𝛿 ∈ [0, 1] ∩ ℝ. A randomized

function A is (𝜖, 𝛿)-differentially private if for all databases 𝐷 and 𝐷 ′ differing in at most one record (i.e.,
with 𝑑𝐻 (𝐷, 𝐷 ′) = 1), and for all possible outputs 𝑦 (i.e. 𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒 (A)),

ℙ[A(𝐷) = 𝑦] ≤ exp (𝜖) · ℙ[A(𝐷 ′) = 𝑦] + 𝛿
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(𝜖, 𝛿)-DP relaxes 𝜖-DP such that the mechanism outputs on two neighboring databases are allowed to
additionally differ by an additive 𝑑𝑒𝑙𝑡𝑎 value. Hence, 𝛿 controls the strength of the relaxation. The smaller
this scalar is, the stronger the relaxation. It can be interpreted as the probability of two inputs not fulfilling
the privacy guarantee given by regular 𝜖-DP (Definition 2.1.2) [Hu+23]. Therefore, we want to see 𝛿 as
small as possible. For 𝛿 = 0, approximate DP falls back to regular 𝜖-DP.
When working with DP to privatize word embeddings, our inputs in the two definitions above are word
embedding vectors 𝑥 and 𝑥 ′ instead of databases 𝐷 and 𝐷 ′. A mechanism fulfilling Equation 2.1 for any
two such word embedding vectors yields 𝜖-DP. This means that any pair of word embeddings, that has
been privatized using this mechanism, is 𝜖-indistinguishable, i.e., the ratio between the probabilities that
they yield the same output is bounded by exp (𝜖). However, the above definition is less suitable for word
embeddings. It enforces the same level of privacy onto every pair of inputs because the Hamming distance,
and in particular the adjacency prerequisite, do not provide the possibility to adjust the privacy guarantees
depending on the distance between pairs of inputs [Fey+20]. Therefore, a generalization of 𝜖-DP is used
to account for the distance between input pairs and additionally enable the usage of different metrics to
measure this distance [Xu+20]. This generalization is called metric DP or𝑑X-privacy. Metric-DP originates
from the context of location data. The indistinguishability between two locations is scaled by their distance
and, therefore, locations that are further apart are easier to distinguish [Xu+20]. The same holds for the
application of metric-DP to word embeddings instead of locations. Words that are more distant in the
embedding space will have higher indistinguishability and, thus, be easier to distinguish, compared to
words that are closer [Car+23]. Metric-DP can be defined as follows:

Definition 2.1.4 (Metric Differential Privacy). Let 𝜖 ∈ ℝ+
0, X be a set with a metric 𝑑 : X × X → ℝ0,

and 𝑓 : X → ℝ𝑑 a function, whose output is to be privatized. A randomized function A𝑓 : X → Y is
𝜖𝑑X-differentially private if for any 𝑥, 𝑥 ′ ∈ X the distributions over outputs of A𝑓 (𝑥) andA𝑓 (𝑥 ′) satisfy the
following bound: for all possible output 𝑦 ∈ Y we have

ℙ[A𝑓 (𝑥) = 𝑦] ≤ exp (𝜖𝑑X (𝑥, 𝑥 ′)) · ℙ[A𝑓 (𝑥 ′) = 𝑦]

The above definition shows that the privacy guarantee in metric-DP also depends on a privacy budget
𝜖 just as in regular DP. However, this 𝜖 does not represent the same privacy level as the 𝜖 in regular 𝜖-DP
[Alv+18]. Therefore, privacy guarantees need to be carefully assessed. In metric-DP, the privacy guarantee
additionally depends on the metric 𝑑 . When Hamming distance is used as the metric 𝑑 , metric-DP reduces
to regular 𝜖-DP. Since this work considers word embeddings in Euclidean space, we follow [FK21] and
focus on the Euclidean metric. This metric works well to capture semantic similarity between words. For
the later experiments, we will only use DP mechanisms, which use Euclidean distance to allow for an
easier comparison between privacy guarantees.
DP comes with some useful properties that are valid for all randomized functions that fulfill 𝜖-DP, (𝜖, 𝛿)-
DP, or metric-DP. One of these properties, which will also be central to this work, is its closure under
post-processing. This property guarantees that the output of a differentially private algorithm will stay
differentially private if further post-processing is applied and its DP-guarantees will not incur any further
privacy loss [Dwo+06]. This can be formalized by the following proposition:

Proposition 2.1.1 (Closure under post-processing). Let g be a randomized function.
If A is an 𝜖-differentially private mechanism, then the mechanism A′ = 𝑔 ◦ A is 𝜖-differentially private.

This property allows to map word embedding vectors, privatized through a differentially private per-
turbation, to other, close-by embedding vectors without deteriorating the theoretical privacy guarantees.

2.1.1 Differential Privacy Mechanisms

Multiple randomized functions or mechanisms have been proposed in the literature to achieve metric-DP.
In the context of privatizing word embedding vectors, the randomized functions perturb input words or
word embedding vectors to privatized words or word embedding vectors and guarantee indistinguishabil-
ity for the original input [ZC22]. Typically, these functions are parametrized by a probability distribution
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[Hab21], which gives the mechanism its name. Random noise is drawn from this distribution to perturb
the input. This subsection will now provide details for some selected DPmechanisms relevant to this work.

Multivariate Laplace Mechanism

One of the most frequently used DPmechanisms is the Laplace mechanism [ZC22], where noise is sampled
from a Laplace distribution and added to the input. For the Laplace mechanism, we need to distinguish
between the Univariate and the Multivariate Laplace mechanism. The Univariate Laplace mechanism adds
noise drawn from a Univariate Laplace distribution to each element of an input vector to provide 𝜖-DP. The
Multivariate Laplace mechanism instead draws Laplace noise from an 𝑑-dimensional Laplace distribution
and adds it to the input to yield 𝜖-metric DP. Since 𝜖-metric DP is more suitable for privatizing word
embedding vectors, this work focuses on the Multivariate Laplace mechanism, which will later be applied
as part of the experiments. Its definition can be formalized as follows:

Definition 2.1.5 (Multivariate Laplace Mechanism). Let 𝜖 ∈ ℝ+
0 and 𝑓 : X → ℝ𝑑 . The Multivariate Laplace

mechanism is defined as A(𝑥) = 𝑓 (𝑥) + 𝜂, where 𝜂 is sampled from the 𝑑-dimensional Laplace distribution
with density 𝑝 (𝑧) ∝ exp (−𝜖 ∥𝑧∥2).

Theorem 2.1.1. The Multivariate Laplace mechanism in Definition 2.1.5 satisfies 𝜖-metric DP with respect
to the Euclidean distance.

Proof. To prove the theorem, we need to bound

ℙ[A(𝑥) = 𝑦]
ℙ[A(𝑥 ′) = 𝑦]

By definition of the Laplace mechanism, ℙ[A(𝑥) = 𝑦] = ℙ[𝑓 (𝑥) + 𝜂 = 𝑦]. Since 𝜂 is a random variable
distributed according to the density 𝑝𝜂 (𝑧) ∝ exp (−𝜖 ∥𝑧∥2), by the theorem on linear transformations of
random variables, we have 𝑝 𝑓 (𝑥 )+𝜂 (𝑧) ∝ exp (−𝜖 ∥𝑧 − 𝑓 (𝑥)∥2). Thus,

ℙ[𝑓 (𝑥) + 𝜂 = 𝑦]
ℙ[𝑓 (𝑥 ′) + 𝜂 = 𝑦] =

exp (−𝜖 ∥𝑧 − 𝑓 (𝑥)∥2)
exp (−𝜖 ∥𝑧 − 𝑓 (𝑥 ′)∥2)

= exp (𝜖 · (∥𝑧 − 𝑓 (𝑥 ′)∥2 − ∥𝑧 − 𝑓 (𝑥)∥2))
≤ exp (𝜖 · ∥𝑧 − 𝑓 (𝑥 ′) − 𝑧 + 𝑓 (𝑥)∥2)
≤ exp (𝜖 · ∥ 𝑓 (𝑥) − 𝑓 (𝑥 ′)∥2)

Now, for the metric 𝑑 being defined as 𝑑 (𝑥, 𝑥 ′) = ∥ 𝑓 (𝑥) − 𝑓 (𝑥 ′)∥2, we can continue as

exp (𝜖 · ∥ 𝑓 (𝑥) − 𝑓 (𝑥 ′)∥2) = exp (𝜖 · 𝑑 (𝑥, 𝑥 ′))

□

In the scenario considered in this work, we would like to privatize word embedding vectors. Thus, we
consider the embedding model Φ as our function 𝑓 , which we aim to privatize. The distance between two
words will be described via the Euclidean distance between the corresponding word embedding vectors,
i.e., 𝑑 (𝑥, 𝑥 ′) = ∥Φ(𝑥) − Φ(𝑥 ′)∥2. This choice for the distance metric is also reflected in the proof above so
that the proof is directly transferable to the privatization of word embeddings.
To sample from the 𝑑-dimensional Laplacian, one can follow the procedure described in [Wu+17]. First, a
vector 𝑣 ′ is sampled from a 𝑑-dimensional normal distribution

𝑝 (𝑥) = 1
(2𝜋)𝑑/2 |Σ|1/2

exp
(
−12 (𝑥 − 𝜇)𝑇 Σ−1(𝑥 − 𝜇)

)
(2.2)

where the mean 𝜇 is the 𝑑-dimensional zero vector to yield a zero-centered distribution. The covariance
matrix Σ is the identity matrix. The vector 𝑣 ′ is then normalized to unit length to yield a vector 𝑣 = 𝑣′

∥𝑣 ∥2
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following the uniform distribution on the 𝑑-dimensional unit sphere. Additionally, a noise magnitude 𝑙 is
sampled from a Gamma distribution with density 𝑝:

𝑝 (𝑥) =
𝑥𝑑−1 exp(−𝑥

𝜃
)

Γ(𝑑)𝜃𝑑

In the above density function, 𝜃 = 1/𝜖 . The final Laplacian noise can then be constructed by multiplying
𝜂 = 𝑙𝑣 .

Truncated Gumbel Mechanism

The Truncated Gumbel mechanism is a density-aware word substitution mechanism, which employs a
truncated Gumbel random noise for selecting amongst a list of perturbed word embeddings [Xu+21a]. It
was proposed by [Xu+21a] to limit the number of nearby words to be considered as compared to the Mul-
tivariate Laplace mechanism. The procedure is motivated by the observation that with the Multivariate
Laplace mechanism, there is a high probability for words in densely populated regions within the em-
bedding space being substituted with close but irrelevant words [Xu+21a]. Thus, the Truncated Gumbel
mechanism contains another sampling step, which leads to a narrower selection of potential substitute
words with similar meanings as the original word. This, in turn, yields better preservation of semantic
meaning duringword perturbations and better utility of models trained on those perturbedwords in down-
stream NLP tasks compared to the Multivariate Laplace mechanism [Xu+21a]. The complete procedure for
perturbing a single input word is described in Algorithm 1. Algorithm 1 first sets the number of candidate

Algorithm 1 Truncated Gumbel Mechanism
Input: Word 𝑥 ∈ W, privacy budget 𝜖 , word set W
Let Δ𝑚𝑎𝑥 = max𝑥,𝑥 ′∈W ∥Φ(𝑥) − Φ(𝑥 ′)∥2 be the maximum inter-word distance,
and Δ𝑚𝑖𝑛 = min𝑥,𝑥 ′∈W;

𝑥≠𝑥 ′
∥Φ(𝑥) − Φ(𝑥 ′)∥2 be the minimum inter-word distance within the embedding

space.
Let 𝑏 = 2Δ𝑚𝑎𝑥 · 1

𝑚𝑖𝑛{𝑊 (2𝛼Δ𝑚𝑎𝑥 ), ln (𝛼Δ𝑚𝑖𝑛 ) } , where 𝛼 = 1
3

(
𝜖 − 2(1+𝑙𝑛 |W| )

Δ𝑚𝑖𝑛

)
and𝑊 denotes the principal

branch of the Lambert-W function.

Sample 𝑘 ∼ 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑙𝑛 |W|; 1, |W|)
Find the top 𝑘 closest words to 𝑥 as u = [𝑢1, ..., 𝑢𝑘 ], where 𝑢1 = 𝑥

Compute the distances d = [𝑑1, ..., 𝑑𝑘 ], where 𝑑 𝑗 = ∥𝑥 − 𝑢 𝑗 ∥2 for all 𝑗 ∈ [𝑘]
Sample 𝑔1, ..., 𝑔𝑘

𝑖.𝑖 .𝑑.∼ 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝐺𝑢𝑚𝑏𝑒𝑙 (0, 𝑏,Δ𝑚𝑎𝑥 )
Set 𝑥 = 𝑢 𝑗 , where 𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑑1 + 𝑔1, 𝑑2 + 𝑔2, ..., 𝑑𝑘 + 𝑔𝑘 }
Return 𝑥

substitution words based on a value 𝑘 sampled from a Truncated Poisson distribution. Then, the 𝑘−1 near-
est neighbors to the input word 𝑥 with respect to the Euclidean distance are determined. Their respective
distances to 𝑥 are also saved for subsequent steps. Next, the distances to those candidate substitutions are
perturbed using i.i.d. random variables, sampled from a truncated Gumbel distribution. This distribution
is scaled using the privacy budget 𝜖 , and the maximum and minimum inter-word distance Δ𝑚𝑎𝑥 and Δ𝑚𝑖𝑛

within the embedding space. Additionally, the random variable drawn from this distribution is clipped
according to a truncation parameter 𝐶 , which is set to be the maximum inter-word distance Δ𝑚𝑎𝑥 . The
selection from the set of candidate embeddings is made based on the smallest perturbed distance to the
original input word 𝑥 . The algorithm yields a perturbed word embedding vector and associated real word
𝑥 .
Theorem 2.1.2. The Truncated Gumbel mechanism (Algorithm 1) satisfies 𝜖-metric DP with respect to the
Euclidean distance.

The proof for the above theorem can be found in [Xu+21a].
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2.1.2 Sensitivity

For mechanisms like the Laplace mechanism, its privacy-utility trade-off can be improved by calibrating
the amount of noise added by themechanism to the input sensitivity [Dwo+06], which is defined as follows
Definition 2.1.6 (𝐿𝑝-Sensitivity). The (global) sensitivity of a function 𝑓 : X → ℝ𝑑 is defined as

Δ𝑓 = max
𝑥,𝑥 ′∈X

∥ 𝑓 (𝑥) − 𝑓 (𝑥 ′)∥𝑝
∥𝑥 − 𝑥 ′∥𝑝

(2.3)

If the norm used in equation (2.3) is the Euclidean norm (𝐿2-norm), then we also speak of 𝐿2-sensitivity.

For the Univariate Laplace mechanism, it is crucial to bound the 𝐿1-sensitivity as we can otherwise not
ensure 𝜖-DP. For the Multivariate version of the mechanism, a bounded 𝐿2-sensitivity provides the pos-
sibility to use this additional knowledge about our embedding space to calibrate the noise added by the
mechanism accordingly. This means that instead of sampling the noise 𝜂 from the distribution defined in
Definition 2.1.5, we sample from a 𝑑-dimensional Laplace distribution with density 𝑝 (𝑧) ∝ exp

(
− 𝜖

Δ𝑓
∥𝑧∥2

)
.

This provides an alternative, calibrated version of the Multivariate Laplace mechanism. This mechanism is
for example used by [FK21], and satisfies 𝜖-metric DP. However, working with the calibrated Multivariate
Laplace mechanism limits the comparability of results. Even though it also provides 𝜖-metric DP with
respect to the same metric as the regular Multivariate Laplace mechanism, the 𝜖 values in their guarantees
are not comparable since the amount of noise used by the mechanisms are different. Therefore, for this
thesis, we choose not to calibrate the noise to the sensitivity even for the cases where it would be possible
due to bounded sensitivity. Consequently, we can compare theoretical privacy guarantees more straight-
forwardly. For example, it allows us to compare versions of the mechanism working without bounded
sensitivity to versions working with bounded sensitivity. In cases where we have bounded sensitivity but
do not calibrate the noise accordingly, the sensitivity is reflected in the theoretical privacy bound. This
can be illustrated by the following example:
Example 1. Consider a set of word embedding vectors in ℝ𝑑 , generated using an embedding model Φ.
We would now like to apply some transformation function 𝑓 to these embeddings before privatizing them
using the Multivariate Laplace mechanism A and training some NLP model on those embedding vectors.
Such a transformation could for example be a normalization or dimensionality reduction. While we will
show the concrete sensitivity bounds for such transformations in Chapter 4, wewill assume Δ𝑓 ≤ 𝐶 , where
𝐶 ∈ ℝ, for the purpose of this illustration. Using this bound and the Multivariate Laplace mechanism
without calibrating the noise (𝜂 is sampled from a distribution with density 𝑝𝜂 (𝑧) ∝ exp (−𝜖 ∥𝑧∥2)), we
can provide 𝜖 ·𝐶-metric DP. Let Φ(𝑥) and Φ(𝑥 ′) be two word embedding vectors and 𝑦 a perturbed word
embedding vector output by the Multivariate Laplace mechanism. Then,

ℙ[𝑓 (Φ(𝑥)) + 𝜂 = 𝑦]
ℙ[𝑓 (Φ(𝑥 ′)) + 𝜂 = 𝑦] ≤ exp (𝜖 · ∥ 𝑓 (𝑥) − 𝑓 (𝑥 ′)∥2)

≤ exp (𝜖 ·𝐶 · ∥Φ(𝑥) − Φ(𝑥 ′)∥2)
The second inequality follows from the bound on sensitivity. Since the noise in this example has not been
calibrated to the sensitivity bound we could directly compare this theoretical privacy guarantee to others
achieved in scenarios where there was no bound on sensitivity and we would not even have had the option
to calibrate the noise.
However, bounding sensitivity does not only have beneficial consequences for the Laplace mechanism.

Since the sensitivity largely depends on the possible distances between arbitrary pairs of inputs, the prob-
lems of determining a bound on sensitivity and on the maximum and minimum inter-word distances are
related. Thus, a bound on the sensitivity also affects the calibration of noise in the Truncated Gumbel
mechanism. This work examines different possibilities for such a transformation function 𝑓 to artificially
bound sensitivity before input to a DP mechanism. This will provide further options for targeted cali-
bration of the mechanism’s noise and is expected to affect privacy and utility in downstream NLP tasks.
The extent of these effects will be examined from a theoretical perspective as well as through practical
experiments.
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2.2 Privacy

DP techniques are often loosely described as privacy-providing. However, to better understand the guar-
antees that DP brings with it, a more differentiated view of the term privacy is necessary. Privacy is a
multifaceted concept, which [Boj+17] divide into three key components: transparency and consent, data
minimization, and anonymization of released aggregates [Bon+22]. The principle of transparency and
consent refers to users of a product or service understanding the usage of their data and approving it.
The objective of data minimization is to limit access to raw data at all stages throughout a computation.
Data anonymization entails that a released computation output does not reveal anything unique to an in-
dividual. Out of these three components, DP addresses data anonymization [Pon+23]. It allows to reason
about data anonymization in a formal, quantitative way and to provide anonymization guarantees. In this
work, we will use the term privacy to refer to the anonymization guarantees provided for text data used
in training models on NLP tasks. Since this work applies DP on a word-level to perturb word embedding
vectors, it provides anonymization on a word-level. Following the alternative description of DP, it grants
indistinguishability to individual words, meaning that, after perturbation, one cannot be sure which word
was the original input word. This is also often described as plausible deniability about the original input.
Privacy guarantees provided by DP can be assessed from two perspectives. On the one hand, one can for-
mally prove a bound like in Equation 2.1 for a specific mechanism to reason about its theoretical privacy
guarantees. Since this bound is defined via the privacy budget 𝜖 , this parameter is used to discuss and
related theoretical privacy guarantees. On the other hand, privacy guarantees can be practically assessed
by applying the respective mechanism to a concrete task that one would attribute to an adversary. In the
context of NLP, such an adversarial task can, for example, be the identification of pseudo-private infor-
mation from texts. Pseudo-private means that the information is not actually sensitive for the concrete
task at hand, however, it is easy to imagine that the same type of information could be sensitive in a dif-
ferent context. Thereby, one can simulate an adversarial setting to practically test the privacy guarantees
without actually endangering sensitive information. Many researchers use empirical privacy to quantify
these privacy guarantees. [CNC18; LHL20] use 1−𝑋 , where 𝑋 is a performance measure of the simulated
adversary, to measure empirical privacy. A higher value signals better empirical privacy.

2.2.1 Privacy-Utility Trade-off

When evaluating the effectiveness of DP methods, it is not sufficient to only consider the methods’ privacy
levels. Using DP methods comes with an inherent trade-off between privacy and utility such that stronger
privacy guarantees entail reduced utility [Pon+23]. Thus, in addition to privacy, one needs to monitor the
effects of DP methods on utility. In the best case, utility and privacy are both improved at the same time.
However, as we expect utility to decrease as privacy increases, it is desirable to see a larger increase in pri-
vacy than a reduction in utility. This characterizes a favorable privacy-utility trade-off from a perspective
focused on improving privacy. Most researches evaluate this trade-off by qualitatively comparing metrics
for empirical privacy and utility [CNC18; LHL20]. If privacy is increased at about the same extent as util-
ity is reduced, it can be assumed that an approach leads to a general perturbation of data and does not
specifically target an improvement in the privacy-utility trade-off. To characterize the change in privacy
and utility, we are comparing against baseline models.
Achieving a good trade-off is a challenging task. One of the reasons is that effects on privacy and utility
in NLP tasks can only be assessed after training a model on the respective task [Pon+23]. Therefore, other
influencing factors introduced during training implicate that the trade-off cannot be considered in isola-
tion. The privacy-utility trade-off is not only influenced by the dataset size, the amount of computation
used during training [Pon+23], and the design of the DP mechanism but also by its parameters such as the
privacy budget 𝜖 . While the first three factors are usually fixed per experiment, we can vary 𝜖 to balance
privacy and utility. This can help to assess the privacy level from a theoretic perspective if all other influ-
encing factors are kept constant. It needs to be noted that the 𝜖 value is not suitable to compare different
mechanisms but it can be used to assess the privacy guarantees for the same mechanism. During the later
experiments, we will evaluate empirical utility and privacy on two different datasets. We use a specific
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task for each dataset to determine utility and another task to determine privacy. This will help to delineate
the effects of the approaches that we are testing from effects, which might originate from specificities of
the different datasets or tasks.
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3 Related Work

Several works among existing literature consider the application of DP to perturb vector representations of
data from different domains. The following chapter will give a summary of the ones that are most relevant
to this thesis. We will reference works that apply DP through embedding vector perturbations. Our focus
will be on the ones that use different approaches for bounding sensitivity and vector mappings. Most of
the mentioned works stem from the NLP domain but we also include works from other domains that use
relevant approaches to bounding sensitivity or vector mapping.

3.1 Differential Privacy in NLP

While most existing works on DP deal with structured data, in recent years, the application of DP to
unstructured text data has received increasingly more attention. Since this thesis will also apply DP to
text data, we look into works from this context to learn about the characteristics of such applications.
[KMM22] discuss how DP can be adapted to NLP methods and shine a light on peculiarities that arise
from an application to this domain. In their work, they identify several challenges, including the need
to carefully balance privacy and utility and poor explainability, i.e., explaining if the text is private. As
[KMM22] elaborate, a core question in this context is what information needs to be privatized in a text.
The answer to this question also influences the level at which DP is applied in NLP [Hu+23]. While some
DP mechanisms can be employed on a word-, sentence- or document-level, it makes sense to focus on one
particular level for more targeted privacy guarantees. For example, [FK21] or [Mah+22] use word-level DP
and aim at protecting individual words. Applying DP on the word-level allows for better interpretability
of the perturbed text since the influence of the perturbation can be inspected for each word. Additionally,
one can theoretically provide different levels of privacy for each word depending on its individual privacy
requirements. While this specific question is out of the scope of this thesis, we will consider word-level
DP for its greater versatility.
Another work that focuses on DP in NLP is the work by [Hu+23]. They also look at the specificities of
DP in NLP and categorize its applications into two classes. In gradient perturbation based methods, DP
is provided by adding calibrated noise to the gradients of the loss during model training. In embedding
vector perturbation based methods, noise is added to embedding vectors for individual tokens to guarantee
DP. Since the focus of this work lies on the latter, we will take a closer look at existing methods from this
category in the following section.
Apart from the aforementioned theoretical perspectives on DP in NLP, several works practically apply DP
to different NLP tasks to investigate the corresponding privacy guarantees and performance. The works
that are of particular relevance to this thesis are listed in Table 3.1 and will be discussed in more detail in
Section 3.2.

3.2 Differential Privacy Through Embedding Vector Perturbation

As stated above, this thesis focuses on methods, that ensure DP through embedding vector perturbation,
i.e., adding calibrated noise to embedding vectors. We choose this type of method because of its advan-
tages compared to gradient perturbation based methods: they are less computationally expensive and the
mechanisms can be straight-forwardly applied, independent of the dataset [MWK22]. This section will
now look at the different mechanisms, which have been applied in this context in existing research.
One of themost commonly appliedmechanisms is the Laplacemechanism. Theworks of [KGD22; Mah+22;
Pan+20; PGG21] use its univariate version and add Laplace noise for each individual dimension of word-,
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respectively sentence embedding vectors to achieve 𝜖-DP. [FDM18; FK21; Fey+20; Qu+21; Xu+21b] make
use of the Multivariate Laplace mechanism to achieve 𝜖-metric DP. Due to its popularity and the fact that
the latter privacy guarantee is specifically suitable for text data, we will use this mechanism during our
later experiments. The definitions of the Laplace mechanism in the aforementioned works differ not only
with respect to the dimensionality of the sampled noise but also with respect to how noise is calibrated
and what happens before and after the application of noise. In [FK21] the amount of noise added depends
not only on the privacy budget 𝜖 but also on the input sensitivity while in [Fey+20] noise is calibrated only
to 𝜖 . Adding sensitivity to the calibration allows for a more targeted construction of noise. However, one
first needs to bound sensitivity to be able to integrate it. Section 3.3.1 will elucidate different approaches
that can be applied before adding the noise to ensure bounded sensitivity. Some works additionally map
perturbed embedding vectors to other close-by embedding vectors. For example, [Fey+20] define their
Laplace mechanism to contain the addition of Laplace noise as well as mapping perturbed embedding vec-
tors to their nearest neighbor. Our notation slightly deviates from their definition as we will only refer to
the noise addition without the additional vector mapping when talking about DP mechanisms. The differ-
ent approaches for vector mapping will be considered separately and will be discussed in Section 3.3.2.
The Mahalanobis mechanism, which [Xu+20] introduce, enhances the Multivariate Laplace mechanism
[Fey+20] by choosing an elliptical instead of a spherical noise distribution. This is achieved by calibrat-
ing the noise using Regularized Mahalanobis instead of Euclidean distance. Consequently, the mechanism
satisfies 𝜖-metric DP with respect to the Regularized Mahalanobis. In contrast, the Multivariate Laplace
mechanism’s privacy guarantee in [Fey+20] is with respect to the Euclidean distance. [Xu+20] compare
their mechanism to the latter in empirical experiments and find that it yields better privacy statistics while
utility stays consistent. Because of its similarity to the Multivariate Laplace mechanism, we will not in-
clude the Mahalanobis mechanism in our experiments.
In their 2019 work, [FDD19] consider the perturbation of word vector representations in Hyperbolic space
as they hypothesize that it is better suited to capture hierarchical and semantic information than the Eu-
clidean space. Therefore, they first transformwords to Poincaré word embeddings, which lie in Hyperbolic
space. This is where they apply DP by adding noise sampled from a Hyperbolic distribution.
Other works use versions of the exponential mechanism [MT07]. [Car+23] present a Truncated Exponen-
tial mechanism. It is defined for an arbitrary distance metric and provides 𝜖-metric DP on a word-level
with respect to the chosen metric. For their empirical experiments, [Car+23] elect Euclidean distance to
ensure comparability to the Multivariate Laplace mechanism. Further, [MMC22] suggest a DP mechanism
based on the exponential mechanism to provide 𝜖-DP for documents.
[Xu+21a] present the Truncated Gumbel mechanism in their work, which yields 𝜖-metric DP with respect
to the Euclidean distance on a word-level. This mechanism’s workings are fundamentally different from
those of, for example, the Multivariate Laplace mechanism. It does not perturb embedding vectors by di-
rectly adding noise to them but instead can be described as a perturbed nearest neighbor search. Therefore,
we select this mechanism as the second one to be used in our later experiments.
There are also some general limitations to embedding vector perturbation based methods on a word-level
which need to be noted. As [MWK22] mention, a privatized text will always have the same length (in
tokens) as the original input text. This can be critical since the length of a text could potentially also give
away information about the original text. Also, the longer an input text, the higher the privacy budget
required to perturb each of its words to privatize the whole text [MWK22]. Alternatively, if the same
privacy budget is to be used independent of the input text’s length, one needs to accept weaker privacy
guarantees for longer input texts. Since each word is perturbed individually, the changes incurred from
DP are predominantly semantic in nature and rarely syntactic [MWK22]. This further limits the leeway
of privatization and may result in grammatical errors in the output. These limitations should be kept in
mind since they will also be limitations of this thesis, which works with perturbations on a word-level.
Despite these limitations, there have already been reasonable performance results achieved [Fey+20; Xu+21a],
which, together with the favorable computational aspects, warrant the focus on embedding vector pertur-
bation based methods in this thesis.
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3.3 Enhancing the Privacy-Utility Trade-off

The central set screw to influence the trade-off between privacy and utility in DP is the amount of noise
added [Dwo+06]. While DP mechanisms require fixed noise distributions, their parameters can be chosen
in dependence on the privacy budget 𝜖 . For some mechanisms, parameters are additionally based on
characteristics of the embedding space, e.g., sensitivity [Dwo+06; FK21; Wu+17] or diameter [Xu+21a].
This is also one of the starting points for our investigations on enhancing the privacy-utility trade-off.
We will discuss the occurrences of relevant approaches in existing research in Subsection 3.3.1. Also,
one can make use of the post-processing property of DP to improve the utility of perturbed embeddings
for downstream applications without affecting privacy guarantees. One method that follows this path is
vector mapping approaches [Dwo+06]. Subsection 3.3.2 will outline different vector mapping approaches
that this thesis will consider.

3.3.1 Approaches for Bounding Sensitivity

In existing research, different approaches for bounding sensitivity have been used in various experiment
setups. Most works only consider one approach as a means to an end to achieve bounded sensitivity and,
for example, earn the possibility for a more targeted calibration of noise in DP mechanisms. However,
they do not compare different approaches with respect to their suitability and different approaches used
across works are not comparable because of the differences in their experiment setups. This thesis applies
them within a uniform experiment setup for proper comparison.
[LHL20] work with Univariate Laplace noise. They calibrate the noise to sensitivity after bounding it.
Therefore, they apply a normalization step before noise addition, which restricts the range of each entry
in the input vector to the interval [0, 1]. This is one of the approaches for bounding sensitivity, which we
will transfer to the Multivariate Laplace mechanism for our experiments. [LHL20] state that due to this
normalization step, the sensitivity of the input to the DP mechanism is 1. However, they overlook that
this value only reflects the sensitivity per dimension and needs to be aggregated across all of the input’s
𝑛 dimensions. This yields a true input sensitivity of 𝑛. [Mah+22] have later pointed out this error in the
sensitivity analysis.
[Mah+22] privatize document embedding vectors through a combination of a DP mechanism and adver-
sarial training. They also bound sensitivity before applying the Univariate Laplace mechanism. Since this
mechanism adds noise to each dimension of the input individually and subject to the 𝐿1-sensitivity, they
bound the length of the input with respect to 𝐿1-norm. Therefore, they normalize the embedding vectors
to unit length with respect to the 𝐿1-norm. The effect of this normalization is equivalent to bounding the
range of values for each dimension of the vector to the interval [0, 1]. [PGG21] use the same approach to
bound input sensitivity in their work. We will follow their example for one of our approaches to bounding
sensitivity. However, transferring it to the Multivariate Laplace mechanism requires normalization with
respect to the 𝐿2-norm.
[KGD22] train an encoder to transform words to latent space representations. During training, clipping is
applied to restrict the representations to a hyper-sphere of fixed radius. The latent space representations
are then perturbed by adding Univariate Laplacian or Gaussian noise. Due to the clipping, the representa-
tions come with bounded sensitivity. A similar clipping approach will be examined in this thesis. [Hab21]
later point out an error in the privacy analysis of [KGD22] and prove that the actual sensitivity value is
higher. [Hab21] further propose how the clipping approach can be modified such that the sensitivity as
originally stated by [KGD22] is true. Their proposal involves normalization to unit length with respect to
𝐿1-norm. This would, however, result in a much larger amount of noise being required and would, there-
fore, hurt utility [Hab21].
[LC21] examine differentially private image generation. Similar to the NLP domain, the sensitivity of
images’ vector representations is difficult to bound and can lead to a large amount of noise necessary
to provide DP. Therefore, [LC21] clip the values of the vector representations to the maximum observed
range of values based on the training data to bound the sensitivity before applying the Univariate Laplace
mechanism to each of a vector’s components. This allows them to provide 𝜖-DP on an image-level. We
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are interested if this approach can also be beneficial for NLP applications and, thus, we adopt it as another
one of our approaches to bounding sensitivity.
Sensitivity cannot only be bounded by limiting the maximum range of values but also by reducing the in-
put’s dimensionality. This is the approach taken by [FK21]. They investigate randomly projecting vector
representations of words to a lower-dimensional space by making use of the Johnson-Lindenstrauss (JL)
lemma before adding Multivariate Laplace noise. Thereby, the sensitivity of the vectors is bounded, and
calibrating the noise distribution to this sensitivity allows to alleviate the issue that the magnitude of noise
necessary to guarantee DP usually grows with the input’s dimensionality. The approach, which [FK21]
describe, provides (𝜖, 𝛿)-metric DP. While their theoretical considerations are applicable to vector repre-
sentations in general without specifying a certain DP level, in their practical implementations they test
the approach to achieve word- as well as sentence-level DP. Through utility analysis as well as experimen-
tal evaluations on NLP datasets [FK21] show that their approach outperforms the approach by [Fey+20],
which does not bound sensitivity. This makes the approach interesting for our later experiments.
[Pan+20] use a workaround to finding a general bound for input sensitivity. They instead estimate sensitiv-
ity from 10,000 randomly generated pairs of embedding vectors. This sensitivity value is then used to add
calibrated Univariate Laplace noise and achieve 𝜖-DP on a sentence-level. Similarly, for their Truncated
Gumbel mechanism, [Xu+21a], use concrete values to estimate the maximum and minimum inter-word
distance of their embedding space. Truncated Gumbel noise is then calibrated based on these values. Since
these measures are related to the definition of sensitivity, bounding those would also affect sensitivity. This
justifies why bounding sensitivity can also help to enhance the Truncated Gumbel mechanism. The au-
thors, however, do not implement any such bounding measures.
In the case of the exponential mechanism, instead of input sensitivity, one would bound sensitivity of the
utility function, which is a central element in constructing any variant of this type of mechanism. This
is usually achieved by choosing the utility function accordingly. Examples of such utility functions with
bounded sensitivity can be found in [MMC22] and [Car+23].

3.3.2 Approaches for Vector Mapping

Similarly to the situation with approaches to bounding sensitivity, different approaches for vector mapping
are scattered across different existing works. Most works only consider one specific approach at a time.
One of those is the research by [Fey+20]. While they do not take any specific measures to bound sensitivity
of the mechanism input, [Fey+20] use a vector mapping approach to end up with a real word from their
dictionary as the final output of their procedure. After perturbation with the Multivariate Laplace noise,
they map the perturbed embedding to its nearest neighbor embedding vector. In this work, we will use the
shorthand formulation of vector mapping to refer to mapping embedding vectors to other close-by embed-
ding vectors. Such vector mapping approaches do not affect the theoretical privacy guarantees because
they can be seen as a post-processing step to the actual application of DP [Dwo+06]. This makes such
approaches particularly interesting for improving the utility side of the privacy-utility trade-off without
hurting privacy. [FDD19] employ the same vector mapping approach to map perturbed Poincaré embed-
dings to their nearest neighbor embedding. Similarly, [Xu+20] map their perturbed embedding vectors to
their nearest neighbor with respect to the Regularized Mahalanobis distance. [Qu+21] explicitly inspect
the effect of using a vector mapping approach of mapping to the nearest neighbor in combination with
the Multivariate Laplace mechanism. They observe that including this vector mapping approach leads to
significantly improved utility as compared to not using any vector mapping approach. The gain in utility
is especially prevalent for smaller amounts of noise added.
An alternative to this vector mapping approach is introduced by [Xu+21b]. Instead of always mapping to
the nearest neighbor embedding after noise addition, they choose a balanced random selection between
the first and second nearest neighbor. We will adopt this approach for our experiments as an alternative
to mapping to the nearest neighbor only. For a potential further enhancement of this vector mapping
approach, [Xu+21b] continue to look into generalizing the vector mapping to selecting from the 𝑘 ≤ 2
nearest neighbor embeddings. They find that the biggest improvement in performance can be achieved by
choosing from the two nearest neighbors instead of only choosing the nearest neighbor. This improvement
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gradually levels off if we choose from more than the two nearest neighbors. Therefore, we will set 𝑘 = 2
when applying this vector mapping approach. While the study by [Xu+21b], thus, contains a comparison
of two different vector mapping approaches, they only perform this comparison in one specific experiment
setup. They do not consider any DP mechanisms except for the Multivariate Laplace mechanism. There-
fore, it remains unclear if their results would be reproducible in different experiment setups. This thesis
will expand on this by providing a comparison of approaches in further experiment setups.
The Truncated Gumbel mechanism by [Xu+21a] does not need to be combined with an additional vector
mapping approach because a noisy nearest neighbor selection is inherent to the procedure. The mecha-
nism does not perturb embedding vectors by directly adding noise to them but instead determines a ran-
dom number of nearest neighbors, adds truncated Gumbel noise to the distances between these neighbors
and the original embedding vector, and chooses the neighbor with the smallest noisy distance as output.
Therefore, the outputs of the mechanism are already real words. Similarly, the exponential mechanism
used by [Car+23] and [MMC22] makes vector mapping redundant because choosing embedding vectors
from a specified vocabulary is inherent to the mechanism. [KGD22] use the decoder part of their model’s
auto-encoder architecture to generate real words from perturbed word representations. This step is similar
in purpose to a vector mapping approach.
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4 Methodology

In this section, the setup for the empirical experiments will be described. The objective of the experiments
is to examine the effect of different approaches for bounding sensitivity and vectormapping on the privacy-
utility trade-off. First, details on the datasets, their preprocessing, and the tasks, that we evaluate on, are
given (Section 4.1). After that, we will talk about the models used in the experiments (Section4.3) and the
metrics, whichwill be used to evaluate themodels’ performancewith respect to privacy and utility (Section
4.2). The complete code base corresponding to the experiments is available in a GitHub repository1.

4.1 Tasks and Datasets

The experiments are performed on two different datasets to reduce the influence of the dataset on the
results: the Trustpilot dataset [HS15] and the AG News corpus2 [CGR05]. Since the effects on privacy and
utility are to be tested, two types of experiments will be carried out. One typewill be used to evaluate utility
and the other to evaluate privacy. Utility is evaluated using sensitivity analysis on the Trustpilot dataset
and topic classification on the AG News corpus. These tasks will also be called the main tasks or utility
tasks. We will mainly examine how the utility of models on these tasks changes for different approaches
and DP mechanisms with the goal of achieving as small as possible utility losses. Privacy is evaluated
on simulated adversarial tasks. One task will be the classification according to a semi-private variable
(gender) on the Trustpilot dataset and one will be the identification of selected named entities in texts
from the AG News corpus. We strive for as large of a privacy gain as possible for the privacy experiments.
All tasks are framed as classification problems. Sentiment analysis is performed as a classification of a
sentiment rating on a scale of 1-5 and topic classification uses six target classes. In the context of the
privacy experiments, gender identification is a binary classification problem. The identification of named
entities aims at identifying the presence of each of five selected named entities in the texts. The presence
of each one of these named entities is considered a separate attribute with binary outcome (1 for present
and 0 for not present) so that classification is carried out as multi-label classification where instances are
classified into multiple classes simultaneously in a single classification output. These classes are non-
exclusive since, in one text instance, several named entities might be present.
The two Trustpilot dataset and the AG News corpus are preprocessed as follows:

• Trustpilot Dataset: The Trustpilot dataset [HS15] contains text reviews. Each review is labelled
with a sentiment rating on a scale of 1-5 as well as the attributes gender, and location, which have
been self-provided by the authors of the reviews. On the sentiment scale, 1 represents the worst
sentiment and 5 represents very good sentiment. There are five subcorpora to the Trustpilot dataset,
which contain data from different regions. Since this research focuses on the English language, only
the UK and the US subcorpus are used since they predominantly consist of English-language reviews.
As done by [CNC18], the data is filtered for the instances with gender and birth year information.
All other data instances are excluded. The attribute gender will be considered private information
and will be used as a basis for the privacy experiments. It is transformed to a binary variable, where
1 corresponds to "male" and 0 corresponds to "female" sex. As [PGG21] mention, it is important to
note that a binary gender representation may not be generally comprehensive and is only due to
the dataset’s structure. After that, the reviews are filtered for the English-language ones using the
Python package langid [LB12] and only the reviews with language classified as English are kept.

1https://github.com/AlishaRiecker/master-thesis.git
2http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

https://github.com/AlishaRiecker/master-thesis.git
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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• AG News Corpus: The AG News corpus [CGR05] is a collection of news articles from different
sources. The news articles are categorized by the topic they deal with. During preprocessing of
the dataset, the categories that are especially infrequent, faulty, or hard to distinguish from other
categories (e.g., Top News or World) are excluded. This narrows the dataset down to the categories
Business (class 0), Sci/Tech (class 1), Software and Development (class 2), Entertainment (class 3), Sports
(class 4), and Health (class 5). Further, data entries with missing news text are neglected. Following
[CNC18], the fields title and description are concatenated to form the text which is later used as input
to the classifier. As private information, named entities in each news text will be considered as it
has also been done by [CNC18] and [LHL20]. Following their example, the named entities are first
identified through named entity recognition using the NLTK package [BLK09]. This work focuses
on five of the most frequently appearing named entities, which are iraq, china, united states, bush,
and british. We proceeded with only those data instances that contain at least one of these named
entities. This allows us to frame the named entity identification problem during the experiments as
a multi-label classification problem, where there is one class for each named entity and the goal is
to predict if a text instance contains a named entity simultaneously for all five classes.

Both datasets are scaled down to 70% of their size after preprocessing to accommodate limited compu-
tational resources during the experiments. Afterwards, the datasets are randomly split into a training set
(80%), a development set (10%), and a test set (10%). Table 4.1 provides a summary of the dataset sizes.

Dataset Train Set Dev Set Test Set

Trustpilot 104,055 13,006 13,007
AG News 140,510 17,563 17,564

Table 4.1 Dataset sizes (in number of data instances)

The distributions of classes among the attributes that will be classified vary depending on the respective
attribute. Most of them are skewed towards a majority class. Table 4.2 provides the individual attributes’
distributions.
Table 4.2 shows that for the sentiment attribute, class 4, which represents the category of the most posi-

tive sentiment, occursmuchmore frequently than the other classes. About 75% of all texts are very positive.
Class 0 (negative sentiment) is the second most frequent class, which is still much less frequent than class
4. The distribution of the attribute gender is more balanced. The majority of texts stem from male authors
(about 60%). The most frequent topic in the AG News corpus is class 3 (Entertainment). While the topics
Sports (class 4), Business (class 0), and Science/Tech (class 1) do occur with relatively similar frequencies in
the dataset, the topics Health (class 5) and Software and Development (class 2) are less frequent. Only about
0.93% of texts are on the topic Software and Development. For each of the five selected named entities,
class 1 signals the presence of a named entity, and class 0 stands for its absence. For all of the entities,
there are many more texts that do not contain the respective named entity than there are texts where it
is contained. Each named entity on average only occurs in about 1.67% of texts. These class distributions
should be kept in mind for the evaluation and interpretation of experiment performance. However, we
choose not to apply any sampling techniques to balance the class distributions to stay closer to a real-
world scenario. Experiments to investigate the influence of data distribution on privacy and utility are left
to future research.

4.2 Evaluation Metrics

The basis for evaluating the performance of the different models will be the F1 score. It measures the
exactness of a classification and is particularly suitable for skewed data distributions where one class is
considerably larger than the others [SMR08]. This corresponds to the situation as it exists for the tasks
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Dataset Task Attribute Class Ratio of Data Instances

Trustpilot
Sentiment Analysis Sentiment label

1 9.55%
2 2.77%
3 2.93%
4 9.42%
5 75.34%

Gender Identification Gender 0 39.71%
1 60.29%

AG News

Topic Classification Topic

0 21.67%
1 16.40%
2 0.93%
3 28.38%
4 24.67%
5 7.95%

NE Identification

NE 1 (iraq) 0 98.10%
1 1.90%

NE 2 (china) 0 98.48%
1 1.52%

NE 3 (united states) 0 98.05%
1 1.95%

NE 4 (bush) 0 98.52%
1 1.48%

NE 5 (british) 0 98.49%
1 1.51%

Table 4.2 Class distributions

that this work considers. The F1 score is first calculated for each individual class and then aggregated as
the unweighted mean across classes to a Macro F1 score. For brevity, this work will use the term F1 score to
refer to the Macro F1 score. Whenever the individual F1 scores on a class-level are discussed, they will be
explicitly referred to as F1 scores on a class-level. These class-level scores will predominantly be considered
in the context of the named entity identification, which is conducted as amulti-label classification problem.
The value of the F1 score lies in the interval between 0 and 1, with the maximum value 1 corresponding to
perfect classification [SMR08]. Since we evaluate the models with respect to empirical privacy and utility,
the usage of the F1 score will be different for the utility and privacy tasks. To assess the empirical utility of
a model, we will apply the model to the twomain tasks, sentiment analysis and topic classification, and use
the F1 scores achieved on these tasks as empirical utility metric. Higher empirical utility indicates better
performance, i.e., higher utility. Empirical privacy of a model will be evaluated based on the two privacy
tasks, gender and named entity identification. We follow [CNC18] and define the empirical privacy 1 − 𝐹 ,
where 𝐹 is the F1 score, as our privacy measure. Thus, empirical privacy corresponds to the inverse F1
score on the adversarial tasks. This means that the higher the empirical privacy, the worse the simulated
attacker’s performance on the privacy tasks, i.e., the higher is privacy. We will use the metrics empirical
privacy and utility to assess the performance of individual approaches and also compare the metrics to
those achieved on the baseline models to determine the absolute change in privacy and utility with respect
to the F1 score. These changes will tell us how applying a specific approach affects privacy and utility. For
an easier comparison of the change in utility and the change in privacy, we model the trade-off between
the two values as their sum. This is grounded on the assumption that DP leads to a decrease in utility and
an increase in privacy. Thus, whenever the sum is positive we gain more than we lose. Either the gain in
privacy is larger than the decrease in utility or the gain in utility is larger than the decrease in privacy.
This characterizes a favorable privacy-utility trade-off where privacy and utility are weighted equally. If
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the sum is negative, we either see a decrease in both, utility and privacy, or the decrease in utility is larger
than our gain in privacy. These scenarios correspond to an adverse privacy-utility trade-off if we assume
an equal weighting of privacy and utility. However, it needs to be noted that this is likely not the exact
weighting, which one would aim for in a real-world scenario. Since the reason for applying DP is likely
the goal to increase privacy, one would rather put a heavier weight on privacy. The weighting of utility
depends on how much of a decrease in utility the respective application can cope with. However, this
thesis focuses on a general examination of the privacy-utility trade-off. Thus, we deem the sum of the
change in utility and the change in privacy a suitable heuristic for assessing the trade-off. In addition to
privacy and utility, we consider the running times of the individual models to compare different methods
from the perspective of the computational effort they require.

4.3 Baselines for Experiments

Since both, utility and privacy, will later be quantified by comparing performance before and after applying
any approaches for limiting sensitivity, vector mapping, or adding differentially private noise, we first need
to train the baseline models for each task without the application of any approaches or noise.

4.3.1 Model Architecture

Two different types of models are employed in this work to explore if the effects of different approaches
also vary depending on the type of model used. We use a Long Short-Term Memory (LSTM) network and
a pre-trained version of a Bidirectional Encoder Representations from Transformers (BERT) model.

• LSTM: The LSTMmodel is a type of Recurrent Neural Network (RNN) andwas originally introduced
by [HS97]. LSTMs contain memory units, which allow to control the information flow through the
network and to remember information for longer as compared to the basic RNN [HS97]. Conse-
quently, it can learn long-term dependencies in sequential data, which makes it especially suitable
for processing text data. The first layer in the LSTM model is an embedding layer, which is con-
structed from 300-dimensional GloVe embeddings trained on a 6 billion token corpus [PSM14]. The
embedding layer is frozen so input words are always mapped to the same vectors during the train-
ing process, which essentially corresponds to a simple look-up. Thereby, we can simulate a scenario
where the input words are mapped to their corresponding embedding vector on the side of the
data contributor or author of the text before the third party training a model on the data gets access
[Qu+21]. It lays the foundation for the later experiments on perturbed embeddings, where the words
will also be transformed to their embedding representations and perturbed on the side of the data
contributor. The output of the embedding layer in the LSTM model is fed to an LSTM layer, before
being propagated through a dropout layer, and on to a linear layer for the final classification.

• BERT: For BERT, we use the pre-trained model BERT base (uncased), which has been introduced
by [Dev+19]. The model follows a transformers architecture and has been pre-trained on large
English-language corpora and two different unsupervised tasks [Dev+19]. It has been shown that
it can achieve state-of-the-art performance on a variety of tasks by fine-tuning with one additional
output layer [Dev+19]. We add a simple classifier layer on top of the pre-trained BERT model. As
with the LSTM, the pre-trained model’s embedding layer is frozen to mimic the implementation of
the embedding look-up on the side of the data provider. However, it needs to be noted that the
pre-trained model requires a text sequence, consisting of actual words, as input and constructs its
own, distinct embeddings from it. BERT does not embed texts word by word but instead on a more
granular word-piece level. Additionally, BERT works with positional embeddings, which carry the
position of a token within an input sequence, and segment embeddings, which signal the segment
or sentence to which a token belongs. Thus, we cannot use the same GloVe embeddings as for the
LSTM. Also, since we decided not to amend the pre-trainedmodel architecture, the later experiments
on perturbed embeddingswill use text-to-text perturbation, whichwill happen entirely beforemodel
input. We will provide more details on this setup in Section 4.4.
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4.3.2 Baseline Training

To create the baseline models, the LSTM and the pre-trained BERT models are then trained, respectively
pre-trained, on the training data set. Therefore, hyperparameter tuning is performed to achieve reasonable
performance on the different tasks. However, one should note here, that the focus of this research is not to
achieve a particularly strong performance of the baseline models. Thus, hyperparameter tuning was only
performed for the less computationally expensive LSTM model to keep the amount of required resources
within a reasonable frame. For the LSTM, different sets of hyperparameters are tried out through a grid
search and evaluated on the development data set. For each task, the hyperparameters with the best
performance with respect to the F1 score were chosen. The search values for the maximum length of
the input in number of tokens were 100, 500, or 𝑁𝑜𝑛𝑒 . 𝑁𝑜𝑛𝑒 represents the option of not imposing any
maximum length and instead feeding the complete input to the model. The size of the hidden layer was
chosen from {64, 128}, for dropout it was {0, 0.1, 0.3, 0.5}, and for the learning rate value from the set
{1e-3, 1e-4, 1e-5, 1e-6} were tried out. The batch size was set to 32 for all training runs since this value
had shown to yield good results in preliminary tests. Each LSTM model was trained three times for three
epochs. The number of epochs had been determined through preliminary tests, which showed that for
most tasks, model performance did either not improve beyond the third epoch or the model was learning
too slowly for the performance to catch up on results achieved with different hyperparameters. The choice
of three training runs allows observing the standard deviation in the model’s performance to assess the
robustness and reproducibility of performance. A single T4 GPU is used for training the LSTM models.
For the BERT model, instead of performing hyperparameter tuning, the best-performing hyperparameters
were chosen based on experiences shared in existing research. The reason for this is the higher amount
of computational resources required for fine-tuning BERT as compared to the LSTM. The maximum input
length of the pre-trained BERT model in use is 512 [Dev+19] so this value is adopted for fine-tuning
performed here. There is no need to specify values for hidden size and dropout since these values are
already inherent to the pre-trained model, thus, they will not be actively changed for fine-tuning. The
learning rate value is chosen to be 2𝑒 − 5, which is the same or similar to existing research fine-tuning
BERT [Dev+19], [Qu+21], [Che+23], [Du+23]. Just as with the LSTM, the batch size was set to 32 following
the examples for BERT fine-tuning by [Dev+19] and [Qu+21]. In order to further minimize computational
resource consumption each BERT model was only trained one time, for one epoch. Preliminary tests had
shown that the increase in performance with respect to the F1 score on the development set only increased
marginally beyond the first epoch. We used a single A100 GPU for those training runs. An overview of
the best-performing hyperparameters for each task and model can be found in Appendix A.1 as well as an
overview of the corresponding models’ performance over the different training runs on the development
set (Table A.2).

4.3.3 Baseline Performance

The performance of the baseline models on the test dataset with respect to empirical utility and privacy as
well as their average running times are stated in Table 4.3. The empirical utility values correspond to the F1
scores achieved on the main tasks of the respective datasets. The empirical privacy values are the inverse
of the F1 scores reached on the adversarial tasks. The running times are averages over the different training
runs and across the two tasks evaluated for each dataset and model. As mentioned above, these results
will serve as a baseline to evaluate different approaches using perturbed data during the later experiments.
Across all different tasks, the fine-tuned BERT model outperforms the LSTM model with respect to the F1
score. Consequently, BERT’s utility is higher while its privacy is lower. The most significant difference
exists for the main task on the AG News corpus where BERT achieves an empirical utility value which is
about 0.18 higher than that of the corresponding LSTM. The differences measured by empirical privacy are
rather small for the adversarial tasks. The best performance of both models with respect to the F1 score
has been attained on the named entity identification task. Therefore, we get small values for empirical
privacy on the AG News corpus. This task is performed as a multi-label classification so it makes sense to
additionally inspect the performance of the individual classes. For both models, class 4 which corresponds
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Dataset Model Empirical Empirical Avg. Running
Utility Privacy Time (in sec.)

Trustpilot LSTM 0.464 0.333 35.66
BERT 0.593 0.331 2270.72

AG News LSTM 0.608 0.041 47.25
BERT 0.783 0.031 3054.35

Table 4.3 Results from baseline model training on unperturbed data (empirical utility and privacy are based on the
test sets; running time is averaged over the different training runs and across main and adversarial tasks)

to the named entity bush, performs worse than the other classes. One reason for that might be the double
meaning of the term. While it is a synonym of shrub, in the AG News corpus, the term mostly refers
to the former president of the United States. This might lead to the term’s slightly worse identification.
Since for BERT only one training run is used to fine-tune, the average running times stated in Table 4.3
are essentially the averages across the respective main and the adversarial tasks for one training run each.
For the LSTMmodels, the running times are additionally averaged over the three training runs performed.
One can see that there is a significant difference between the time needed to train an LSTM versus fine-
tuning BERT. While the running time for an LSTM is about 35-50 seconds, it is about 40-50 minutes for
BERT. That means the latter takes about 65 times as long. We also observe that the average running times
for the AG News corpus are slightly higher (about 1.3 times higher) than for the Trustpilot dataset. This
is due to the fact that our training data set for AG News is larger (see Table 4.1).

4.4 Experiment Setup

The training setup during our experiments will be similar to the one used for training the baseline models.
For each task and dataset, we will adopt the hyperparameters, which have been found to perform best
during hyperparameter tuning of the baseline models. This enables a direct comparison of the models
trained on perturbed data versus the corresponding baseline models. At the same time, this probably does
not correspond to how it would be handled in practice. In practice, it would be more realistic for an entity
to perform hyperparameter tuning on the perturbed data since it probably does not even have access to
the original, unperturbed data. Thus, it would make the results of our experiments more realistic if we
also performed hyperparameter tuning for the perturbed data. We decided against doing this because of
the computational overhead that would arise from this. Saving this allows to perform a larger number of
experiments instead.
For each of our experiments, we compose an experiment setting by varying its components along different
dimensions. An overview of these different dimensions and the possible choices for each dimension is
given in Table 4.4.
We use the Multivariate Laplace and the Truncated Gumbel mechanism to perturb the input data while

guaranteeing DP. Then, we train an LSTM or BERTmodel on this perturbed data for the different NLP tasks
from two datasets. This forms the basic setup for our experiments. In addition to that, we vary different
components of the perturbation process to examine the effect of the different approaches to bounding
sensitivity and vector mapping. Figure 4.1 provides an overview of the perturbation process for the LSTM
and for BERT. The dashed elements in the process represent optional steps. Wewill gradually include these
in our experiments in order to investigate the associated effects on privacy and utility. For the LSTM, we
can in- or exclude the steps for bounding sensitivity as well as vector mapping to map to a word embedding
vector corresponding to a real word. For BERT, we can in- or exclude only the step for bounding sensitivity.
A vector mapping step always needs to be included since BERT expects text sequences consisting of real
words as input. Thus, the output of the perturbation pipeline for BERT is always such text sequences.
These are then fed to BERT’s embedding layer, which embeds them using its specific BERT embeddings.
The perturbation pipeline for the LSTMoutputs aword embedding vector. In case a vectormapping is used,
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Dataset Model DP Sensitivity Vector
𝜖Mechanism Approach Mapping

• Trustpilot
• AG News

• LSTM
• BERT

• Truncated
Gumbel

• Mulitvar.
Laplace

• Normalization to
unit length

• Normalization to
[−1, 1]𝑑

• Normalization to
observed range

• Clipping to ob-
served range

• Dimensionality
reduction (JL
lemma)

• Map to nearest
neighbor

• Randomlymap-
ping to first or
second nearest
neighbor

• No mapping

• 0.1
• 1
• 10
• 50
• 100
• 150

Table 4.4 Experiment dimensions for composing different experiment settings

Figure 4.1 Input perturbation for experiments for LSTM and BERT

this embedding vector corresponds to a real word from a fixed vocabulary. Within the model architecture,
the perturbation is built around the embedding layer such that perturbed word embeddings are directly
fed to the LSTM layer of the model.
Independent of the model used, we use GloVe embeddings to transform the original input words to word

embedding vectors Φ(𝑥). The different approaches for bounding sensitivity, described by the function
𝑓 are described in the next section. How to choose the noise 𝜂 that we add to ensure DP, depends on
the respective mechanism used. The different approaches, which will be used for the vector mapping
step represented by the function 𝑔, will be detailed in Section 4.6. In the case of the Truncated Gumbel
mechanism the last and the second to last step are combined into a single step. For each experiment setup,
we vary the privacy budget 𝜖 to examine the privacy-utility trade-off for different amounts of noise added.
We choose 𝜖 ∈ {0.1, 1, 10, 50, 100, 150}. Just as for baseline training, we utilize a single T4 GPU for the
experiments using an LSTM and an A100 GPU for the experiments using BERT.

4.5 Bounding Sensitivity

Bounding sensitivity (see Equation 2.3) has been identified as a promising approach for increasing the
utility of differentially privatized word embedding vectors while preserving their privacy guarantees. Dif-
ferent researchers have identified different approaches to achieve this as outlined in Chapter 3. One of the
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central questions that this work aims to answer is how these different approaches for estimating sensitivity
affect privacy and utility. To explore this question, the effects will be examined and compared theoretically
and through practical experiments. Which approaches have been selected for this endeavor is described
in the following. It is important to note that limiting sensitivity does not per se provide DP. It only assures
that the input to a DP mechanism has bounded sensitivity and thus, thereby it either affects the amount of
noise required by that mechanism or the privacy guarantees, which can be achieved. In the following, we
will describe the different approaches to bounding sensitivity and their implementation during the later
experiments in detail and deduce their effects on sensitivity. The effects on privacy and utility will then
be discussed in Chapter 5.

4.5.1 Normalizing to Unit Length

Normalizing embedding vectors to unit length before inputting them to a DPmechanism for noise addition
is a common practice in applications of DP as Chapter 3 outlines. The most straightforward way to achieve
this normalization is by applying a function 𝑓𝑛𝑜𝑟𝑚 (𝑧) = 𝑧

∥𝑧 ∥2 to an embedding vector 𝑧. This function maps
a vector to the unit sphere such that every output vector has length 1 with respect to the Euclidean norm.
Consequently, two outputs of 𝑓𝑛𝑜𝑟𝑚 can at the maximum be located at a distance of 2 from each other
if they are located opposite of each other on the unit sphere. Therefore, the distance between any two
outputs of 𝑓𝑛𝑜𝑟𝑚 can be upper bounded by 2 as follows:

∥ 𝑓𝑛𝑜𝑟𝑚 (Φ(𝑥)) − 𝑓𝑛𝑜𝑟𝑚 (Φ(𝑦))∥2 ≤ ∥ 𝑓𝑛𝑜𝑟𝑚 (Φ(𝑥)) + 𝑓𝑛𝑜𝑟𝑚 (Φ(𝑦))∥2
≤ ∥ 𝑓𝑛𝑜𝑟𝑚 (Φ(𝑥))∥2 + ∥ 𝑓𝑛𝑜𝑟𝑚 (Φ(𝑦))∥2

=





 Φ(𝑥)
∥Φ(𝑥)∥2






2
+





 Φ(𝑦)
∥Φ(𝑦)∥2






2

= 1 + 1
= 2

(4.1)

This inequality provides an upper bound to the numerator of 𝑓𝑛𝑜𝑟𝑚’s sensitivity. However, for the complete
sensitivity term, a dependence on the minimum distance between two arbitrary embedding vectors Φ(𝑥)
and Φ(𝑦) persists as Equation 4.2 shows.

Δ𝑓𝑛𝑜𝑟𝑚 = max
Φ(𝑥 ),Φ(𝑦)

∥ 𝑓𝑛𝑜𝑟𝑚 (Φ(𝑥)) − 𝑓𝑛𝑜𝑟𝑚 (Φ(𝑦)))∥2
∥Φ(𝑥) − Φ(𝑦)∥2

≤ max
Φ(𝑥 ),Φ(𝑦)

2
∥Φ(𝑥) − Φ(𝑦)∥2

=
2

min𝑥,𝑦 ∥Φ(𝑥) − Φ(𝑦)∥2

(4.2)

Thus, using the function 𝑓𝑛𝑜𝑟𝑚 to normalize embedding vectors to unit length, does not readily provide
a bound for the whole sensitivity term but only for the maximum distance between embeddings. We are
still going to examine this approach as part of our experiments and will use an estimate for the minimum
distance to reach an actual bound for the complete sensitivity term. We approximate the minimum dis-
tance in the embedding space by the minimum distance observed. Inspired by [LC21] who determine the
maximum distance between any two inputs to their DP mechanism based on the observed values from
their training data set, this work inserts the minimum distance between embedding vectors observed from
the training data to stand in for the range of possible values. While for GloVe embeddings, one could have
also determined the minimum distance based on the whole GloVe vocabulary instead of only the training
set, we decided against this because this would not work for other embedding models such as FastText
[Boj+17], where there it is difficult to determine a fixed vocabulary because embeddings are generated
based on word-pieces. Also, using the training dataset as a baseline for the estimate allows to speed up
the computationally expensive calculations of pairwise distances. Finally, for our GloVe embeddings, we
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determine the minimum distance to be approximately 0.7890 across both datasets, the Trustpilot and the
AG News dataset. Consequently, the sensitivity can be bounded as

Δ𝑓𝑛𝑜𝑟𝑚 ≲
2

0.7890
≈ 2.5349.

This work additionally considers a slightly modified version of the normalization function 𝑓𝑛𝑜𝑟𝑚 , 𝑓𝑛𝑜𝑟𝑚 ,
which provides a real bound on sensitivity without requiring any approximations. This function 𝑓𝑛𝑜𝑟𝑚
only maps those vectors to the unit sphere, which have length larger than 1 with respect to the Euclidean
norm. Input vectors with a length smaller or equal to one are not modified. The function 𝑓𝑛𝑜𝑟𝑚 can be
formally expressed as

𝑓𝑛𝑜𝑟𝑚 (𝑥) =
{
𝑥 ∥𝑥 ∥2 ≤ 1
𝑥

∥𝑥 ∥2
∥𝑥 ∥2 > 1

(4.3)

Using 𝑓𝑛𝑜𝑟𝑚 instead of 𝑓𝑛𝑜𝑟𝑚 allows to upper bound the Euclidean distance between any two outputs of
𝑓𝑛𝑜𝑟𝑚 by the distance between any two inputs to the function:


𝑓𝑛𝑜𝑟𝑚 (𝑥) − 𝑓𝑛𝑜𝑟𝑚 (𝑦)




2
2
≤ ∥𝑥 − 𝑦∥22 (4.4)

Equation 4.4 further allows to bound the sensitivity of 𝑓𝑛𝑜𝑟𝑚 as Δ
𝑓𝑛𝑜𝑟𝑚

≤ 1. This follows from the fact that
Equation 4.4 holds for all pairs x and y and thus also for those, for which the ratio between the left- and
the right-hand side is maximal, which, in turn, corresponds to the definition of sensitivity.

4.5.2 Normalizing to the Interval [−1, 1]𝑑

Another approach to bounding sensitivity of the input to a DP mechanism that will be considered as part
of this work is normalizing embedding vectors such that all its entries are bounded by the interval between
−1 and 1. The idea is inspired by the normalization used by [LHL20] and [PGG21], who normalize to the
interval [0, 1]𝑑 . However, using an interval [−1, 1]𝑑 , which is symmetric around zero, can be assumed
to be more suitable when working with GloVe embeddings as they also allow both positive and negative
entries. This hypothesis has been confirmed through preliminary experiments. This normalization ap-
proach, which is also called min-max normalization or feature scaling, preserves the relationship between
the original input values [CAP18]. As outliers are also scaled to the interval [−1, 1]𝑑 , their impact will be
dampened. The normalization can be expressed by the function 𝑔𝑛𝑜𝑟𝑚 (𝑥) = 2 · 𝑥−min(𝑥 )

max(𝑥 )−min(𝑥 ) − 1 for an
input vector 𝑥 ∈ R𝑑 .
Similar to normalization to unit length, this approach allows to upper bound the distance between any
two outputs of 𝑔𝑛𝑜𝑟𝑚 :

∥𝑔𝑛𝑜𝑟𝑚 (𝑥) − 𝑔𝑛𝑜𝑟𝑚 (𝑦)∥2 =

√√√
𝑑∑︁
𝑖=1

| (𝑔𝑛𝑜𝑟𝑚 (𝑥))𝑖 − (𝑔𝑛𝑜𝑟𝑚 (𝑦))𝑖 |2

≤

√√√
𝑑∑︁
𝑖=1

4

≤ 2
√
𝑑

(4.5)

Inequality 4.5, provides an upper bound to the numerator of the sensitivity term while retaining sensitiv-
ity’s dependency on the minimum distance between two arbitrary embedding vectors. Thus, analogously
to Inequality 4.2, sensitivity is bounded as

Δ𝑔𝑛𝑜𝑟𝑚 =
2
√
𝑑

min𝑥,𝑦 ∥Φ(𝑥) − Φ(𝑦)∥2
. (4.6)
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Sincewe use 300-dimensional GloVe embeddings in thiswork,𝑑 is equal to 300 in this bound. Theminimum
distance in the denominator is again approximated based on the embeddings in the training dataset, which
yields

Δ𝑔𝑛𝑜𝑟𝑚 ≲
2 ·

√
300

0.7890
≈ 43.9050.

It should again be noted that the approximation used to reach this bound limits the generality of the bound.
As opposed to the approach using normalization to unit length, there is no straightforward modified ver-
sion of the normalizing function 𝑔𝑛𝑜𝑟𝑚 to circumvent this.

4.5.3 Normalizing to Observed Range

Similar to the normalization to the interval [−1, 1]𝑑 discussed before, we can also normalize embedding
vectors to an interval determined based on the observed range of values to bound sensitivity. We call the
function which formalizes this normalization ℎ𝑛𝑜𝑟𝑚 . The observed range of values is defined by an interval
[𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥 ] and can be estimated by setting the interval bounds to the minimum and maximum values of
embedding vectors as observed from the training data set’s tokens. This is also how [LC21] determine an
estimate for the range of possible values. The main advantage of applying ℎ𝑛𝑜𝑟𝑚 to an embedding vector
before inputting it to a DP mechanism is that the range of the inputs to the mechanism is known and thus,
allows to bound the distance between two arbitrary embedding vectors 𝑥 and 𝑦 in R𝑑 :

∥ℎ𝑛𝑜𝑟𝑚 (𝑥) − ℎ𝑛𝑜𝑟𝑚 (𝑦)∥2 =

√√√
𝑑∑︁
𝑖=1

| (ℎ𝑛𝑜𝑟𝑚 (𝑥))𝑖 − (ℎ𝑛𝑜𝑟𝑚 (𝑦))𝑖 |2

≤

√√√
𝑑∑︁
𝑖=1

(𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛)2

=

√︃
𝑑 · (𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛)2

=
√
𝑑 · (𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛)

(4.7)

As described in the previous sections, Equation 4.7 allows to bound the numerator of the sensitivity term
while retaining the sensitivity’s dependence on the minimum distance between two embedding vectors:

Δℎ𝑛𝑜𝑟𝑚 =

√
𝑑 · (𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛)

min𝑥,𝑦 ∥Φ(𝑥) − Φ(𝑦)∥2

Again, one can use the training data as a basis to determine approximations for the variables contained in
this bound. We find that the observed range can be bounded by the interval [−3.0639, 2.6668] for GloVe
embeddings. Setting 𝑑 = 300 to match the 300-dimensional GloVe embeddings used in this work, we can
calculate the final bound on sensitivity for this approach of

Δℎ𝑛𝑜𝑟𝑚 ≲

√
300 · (2.6668 + 3.0639)

0.7890
≈ 125.8031.

4.5.4 Clipping to Observed Range

Instead of normalizing to the observed range, we can alternatively clip the values in the embedding vectors
to this range. Depending on the two bounding values 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 , which determine the observed range,
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entries of embedding vectors are clipped to the closer bounding value whenever they fall outside of the
observed range. This procedure can be formalized by the following clipping function 𝑓𝑐𝑙𝑖𝑝

𝑓𝑐𝑙𝑖𝑝 (𝑥𝑖) =


𝑥𝑖 𝑥𝑖 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥 ]
𝑣𝑚𝑖𝑛 𝑥𝑖 < 𝑣𝑚𝑖𝑛

𝑣𝑚𝑎𝑥 𝑥𝑖 > 𝑣𝑚𝑎𝑥

Aswith normalization to the observed range, the values 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 are approximated based on theGloVe
embedding vectors contained in the training data. Applying 𝑓𝑐𝑙𝑖𝑝 allows to upper bound the sensitivity
Δ𝑓𝑐𝑙𝑖𝑝 by 1. This follows from the fact that we can bound the distance between two outputs of 𝑓𝑐𝑙𝑖𝑝 by the
distance between the two corresponding inputs 𝑥 and 𝑦:

∥ 𝑓𝑐𝑙𝑖𝑝 (𝑥) − 𝑓𝑐𝑙𝑖𝑝 (𝑦)∥22 = ∥ 𝑓𝑐𝑙𝑖𝑝 (𝑥)∥22 − 2∥ 𝑓𝑐𝑙𝑖𝑝 (𝑥)∥2∥ 𝑓𝑐𝑙𝑖𝑝 (𝑦)∥2 + ∥ 𝑓𝑐𝑙𝑖𝑝 (𝑦)∥22
≤ ∥𝑥 ∥22 − 2∥𝑥 ∥2∥𝑦∥2 + ∥𝑦∥22
= ∥𝑥 − 𝑦∥22

(4.8)

Inequality 4.8 follows from the fact that the absolute value of each entry | (𝑓𝑐𝑙𝑖𝑝 (𝑥))𝑖 | is smaller than or
equal to the corresponding entry of the input vector 𝑥𝑖 .

4.5.5 Dimensionality Reduction Using JL Lemma

One of the issues with adding noise according to a DP mechanism is that the amount of noise also grows
with the dimensionality of the input vector. For the Multivariate Laplace mechanism, the dimensionality 𝑑
determines the shape parameter of the Gamma distribution, which the noise magnitude is sampled from.
Thus, the larger 𝑑 is, the flatter the distribution’s density function becomes and the higher the probability
to draw larger noise magnitudes. In the case of the Truncated Gumbel mechanism, the dimensionality𝑑 in-
fluences the maximum and minimum inter-word distances and through those parameters also the amount
of noise added. To address this issue of the noise being larger for larger input dimensionality, [FK21] per-
form dimensionality reduction through random projection before feeding the projected vector to the DP
mechanism. Generally speaking, through dimensionality reduction, a high-dimensional data set can be em-
bedded into a lower-dimensional space. Themethod that [FK21] use is based on the Johnson-Lindenstrauss
Lemma, which grants that the distances between vectors are approximately preserved during dimensional-
ity reduction with a function 𝑓Φ. This characteristic of the dimensionality reduction also directly provides
a probabilistic bound on sensitivity [FK21]. Before formalizing this bound on the dimensionality reduction
function 𝑓Φ, one first needs to define a set’s Gaussian width [FK21]:

Definition 4.5.1 (Gaussian Width). Given a closed set X ⊂ ℝ𝑑 , its Gaussian width 𝜔 (X) is defined as:

𝜔 (X) = 𝔼𝑔∈N(0,1)𝑑

[
sup
𝑥∈X

⟨𝑥,𝑔⟩
]

(4.9)

Using this definition, one can now formalize the probabilistic bound on sensitivity provided by applying
the JL lemma for dimensionality reduction:

Lemma 4.5.1 (JL Lemma). Let Φ be an 𝑑 ×𝑚 matrix with i.i.d. entries from N(0, 1/𝑚). Let 𝛽 ∈ (0, 1). If

𝑚 = Ω

( (
𝜔 (𝑅𝑎𝑛𝑔𝑒 (𝑀 ) )+

√
𝑙𝑜𝑔 (1/𝛿

)2
𝛽2

)
, where 𝑅𝑎𝑛𝑔𝑒 (𝑀) ⊂ ℝ𝑑 denotes the range of the embedding model M and

𝜔 (𝑅𝑎𝑛𝑔𝑒 (𝑀)) its Gaussian width. Then,

ℙ
[
Δ𝑓Φ ≤ 1 + 𝛽

]
≥ 1 − 𝛿 (4.10)

Since this bound is probabilistic in nature, it is possible that there exist two word embedding vectors
𝑥 and 𝑥 ′ for which this bound fails. This is also relevant when analyzing the privacy guarantees for the
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combination of dimensionality reduction with a DP mechanism.
To use Lemma 4.5.1 for the practical experiments, it is crucial to determine the target dimensionality𝑚,
which the embedding vectors can be mapped to. Therefore, it is necessary to bound the Gaussian width of
the embedding model’s range 𝜔 (𝑅𝑎𝑛𝑔𝑒 (𝑀)). An additional requirement to this bound is that the resulting
value for the target dimension 𝑚 needs to be smaller than the original embeddings’ dimension 𝑑 . This
source dimension 𝑑 is equal to 300 in the case of this work. To fulfill this requirement, the following bound
on the Gaussian width for a finite subset of the Euclidean ball is used:

Lemma 4.5.2. Let X be a finite subset of the Euclidean ball of unit radius in ℝ𝑑 . Then,

𝜔 (X) ≤
√︁
2 · ln |X|. (4.11)

Proof. Let 𝑧 = 𝔼
[
sup𝑥∈X ⟨𝑥,𝑔⟩

]
and 𝜆 > 0.

Then,

exp (𝜆 · 𝑧) ≤ 𝔼

[
exp

(
𝜆 · sup

𝑥∈X
⟨𝑥, 𝑔⟩

)]
(4.12)

= 𝔼

[
sup
𝑥∈X

(exp (𝜆 · ⟨𝑥, 𝑔⟩))
]

(4.13)

≤
|X |∑︁
𝑖=1

𝔼 [exp (𝜆 · ⟨𝑥,𝑔⟩)] (4.14)

=

|X |∑︁
𝑖=1

exp 𝜆2

2 (4.15)

= |X| · exp 𝜆2

2 (4.16)

The first inequality follows from Jensen inequality and the penultimate step follows by definition of the
Gaussian moment-generating function.
Therefore, it holds that

exp (𝜆 · 𝑧) ≤ |X| · exp 𝜆2

2 (4.17)

⇔ 𝜆 · 𝑥 ≤ ln
(
|X| · exp

(
𝜆2

2

))
(4.18)

⇔ 𝑥 ≤ ln |X|
𝜆

+ 𝜆

2 (4.19)

Minimizing the right-hand side with respect to 𝜆 leads to choosing 𝜆 =
√︁
2 · ln |X|, which concludes the

proof. □

In our practical experiments, we first need to map the embeddings to the Euclidean ball of unit radius
to profit from the guarantees of Lemma 4.5.2. This can be achieved by normalizing the embedding vectors
to unit length. Even though this will incur an additional distortion to the embedding space, it enables
us to project to a reasonable target dimension. To transfer the theoretical guarantees to our practical
experiments, we use X to denote the set of unique word embedding vectors normalized to unit length. It
is important to note that the bound in Lemma 4.5.2 is independent of the source dimension 𝑑 and only
depends on the cardinality of X, i.e., on the size of the dataset. Since the dependence is logarithmical, the
relative reduction that can be achieved is especially large for datasets with larger cardinality of X. In the
experiments, |X| is determined from the cardinality of the whole dataset in terms of the number of unique
tokens. The reason for using the whole dataset as a point of reference is to get the most conservative
bound possible. For the Trustpilot dataset, this yields |X| = 72, 600, and for the AG News dataset, it is
|X| = 75, 378. The Gaussian widths of the two datasets can thus both be bounded by 4.74 making use of
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Lemma 4.5.2.
Following Lemma 4.5.1, the target dimension𝑚 for the experiments needs to be chosen at least as large

as
(
𝜔 ( |X | )+

√
ln (1/𝛿 )

)2
𝛽2 . The factor 𝛿 controls the probability with which the bound on the sensitivity holds.

While it is desirable for this probability to be high, a large 𝛿 counteracts this. At the same time, a larger
𝛿 provides the possibility to choose a smaller value for the target dimension𝑚, and therefore, achieve a
greater reduction in dimensionality. The experiments in the upcoming section make use of a value for 𝛿
of 1e-6 which is also used by [FK21] in all of their experiments. Since the parameter 𝛽 affects the privacy
guarantee, it is preferred to choose 𝛽 as small as possible to increase indistinguishability. On the other
hand, a small 𝛽 will limit the choices for the target dimension𝑚 to larger values, which is less welcome.
Through these relationships, 𝛽 also has a non-negligible influence on the privacy-utility trade-off. [FK21]
examine this influence by varying 𝛽 in their experiments. From their results, it is to be assumed that larger
values of 𝛽 are beneficial in practice. Based on this deduction [FK21] choose 𝛽 = 0.9 for their experiments
on NLP datasets. Following this example, the same value is chosen for the experiments. All in all, these
choices for the parameters allow to choose the target dimension as𝑚 ≥ 89 and bound sensitivity as

ℙ
[
Δ𝑓Φ ≤ 1.9

]
≥ 0.999999

4.6 Vector Mapping

As discussed in Chapter 3, there are several works that use vectormapping approaches as a post-processing
step to their DP mechanism in order to map perturbed words back to real words from a vocabulary or the
corresponding embedding vectors. The main benefit of employing such a vector mapping is that it makes
the output of a DP mechanism more interpretable by relating the output with real words from a known
vocabulary. This additionally improves the usability of the perturbed embeddings because they can then
also be used as input to models that have been trained on non-perturbed words. Without the vector
mapping a possibility to directly input the perturbed embedding vectors to the model would need to be
given. Using vector mapping approaches to post-process the outputs of a DP mechanism is especially
attractive since it does not interfere with the theoretical privacy guarantees provided by the mechanism.
This is ensured by the post-processing property of DP (Proposition 2.1.1). In the upcoming sections, we
will provide details on two different vector mapping approaches, which will then be examined in our
experiments.

4.6.1 Mapping to Nearest Neighbor

The most commonly used vector mapping approach maps a perturbed embedding vector to its nearest
neighbor embedding vector. As detailed in Chapter 3, this approach was first introduced by [Fey+20] who
use it as a post-processing step to the Multivariate Laplace mechanism. The nearest neighbor search is
usually carried out on a predefined set of vectors which is equivalent to the embedding vectors associated
with a fixed vocabulary. For this vocabulary, one could use the set of all word embeddings vectors, which
appear in the training dataset. In this work, we use a limited vocabulary consisting of 34,573 tokens which
is based on the vocabulary of the BERT model and different sets of popular words. This leads to a smaller
vocabulary than if we would construct it based on the training dataset and helps to speed up the nearest
neighbor search. Nearest neighbor search is generally a computationally expensive task to perform. To find
the nearest neighbor of only one specific vector the pairwise distances to all other vectors in the vocabulary
are required. However, there are sophisticated approximation methods to speed up the computation. We
also make use of such methods for this thesis and choose the Python package faiss [Joh+19] to perform the
nearest neighbor search. The package provides efficient algorithms for similarity search on vectors with
GPU support. It should be noted that the methods internally use compressed representations, which might
make results less precise. However, our preliminary results showed that computations can be greatly sped
up using this package so that we accept the potentially reduced precision.
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4.6.2 Random Choice Between First and Second Nearest Neighbor

Instead of deterministically mapping to the nearest neighbor embedding vector, we can use the approach
introduced by [Xu+21b] and randomly choose to map either to the first or the second nearest neighbor.
This approach follows from the motivation to make the reconstruction of an input word harder as it has
been observed that when only mapping to the first nearest neighbor, perturbed embedding vectors might
be mapped back to the original unperturbed embedding [Xu+21b]. This is especially the case for rare
words being located in sparse regions within the embedding space, which might still be closest to the
original word even after perturbation. Including the second nearest neighbor in the mapping procedure
allows to reduce the risk of reconstructing the original word, and therefore, secures privacy [Xu+21b].
The approach is implemented such that as a first step, both the first and the second nearest neighbors of
a perturbed embedding vector are determined. Then, one of them is randomly selected. The probability
for this selection depends on the perturbed embedding vectors distances to the first and second nearest
neighbor as well as on a tuning parameter 𝑡 ∈ [0, 1] [Xu+21b]. For 𝑡 → 1, the second nearest neighbor is
favored in the selection process while for 𝑡 → 0 the first nearest neighbor is favored. In the experiments
performed by [Xu+21b], they find that for 𝑡 ≤ 0.75, a higher value for 𝑡 results in better empirical privacy
for the same privacy budget 𝜖 . However, choosing 𝑡 = 1 does not enhance privacy any further. Therefore,
we choose to set 𝑡 = 0.75 in our experiments. [Xu+21b] also tested if it makes sense to generalize this
approach to selecting from the 𝑘 ≤ 2 nearest neighbor embeddings and found that performance can be
improved the most if we choose 𝑘 = 2 instead of 𝑘 = 1. This is why we also adopt the approach of selecting
from the 𝑘 = 2 nearest neighbors for our experiments. For the implementation of this approach, we again
use the nearest neighbor search from the faiss package [Joh+19] and map to vectors from our predefined,
limited vocabulary.
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5 Sensitivity Analysis

This chapter will discuss our experiments’ results for different approaches to bound sensitivity of the
input to a DP mechanism. Based on the respective bound deduced in the previous chapter, we will first
examine the effects of these bounds on privacy and utility for each approach. Specifically, we will consider
the effects of the bounds on the amount of noise required by a mechanism and the privacy guarantees
achieved. Then, we will analyze the empirical performance on the two datasets.

5.1 Preliminary Experiments with Unbounded Sensitivity

To determine the effect of each approach on the privacy-utility trade-off, we will now look at the results of
preliminary experiments, which consider the application of DP mechanisms only, without any approach
to bound sensitivity or vector mapping. The detailed results can be found in Table 5.1. We consider only
the LSTM model for the Multivariate Laplace mechanism since BERT would require an additional vector
mapping step to achieve text-to-text perturbation before model input. For the Truncated Gumbel mecha-
nism, we consider both, LSTM and BERT. Since the vector mapping is inherent to the Truncated Gumbel
mechanism, it allows the output of real words which can then be fed to BERT without any issues. Note
that for smaller 𝜖 values on the AG News corpus, the model’s performance is very low with respect to
the F1 score and resembles that of random guessing. It seems that in these cases the amount of noise
added is too big such that the model fails to provide reasonable results. As this is generally not desirable,
we exclude the corresponding results from our analysis as well as from Table 5.1. We highlight favorable
privacy-utility trade-offs where the privacy gain outweighs the utility loss in Table 5.1 in bold. The prelim-
inary results show that the Multivariate Laplace mechanism leads to smaller utility losses for increasing
𝜖 values while the privacy gain simultaneously becomes smaller. This is due to less noise being added by
the mechanism as 𝜖 increases. While it helps the performance on the main task, it also helps a potential
adversary, leading to smaller privacy enhancements. Across the different 𝜖 values and the two datasets we
mostly get negative values for our privacy-utility trade-off heuristic. This signals an unfavorable trade-off,
where we either lose more utility than we gain in privacy or we lose more privacy than we gain in utility.
Only for 𝜖 = 10 on the AG News corpus, we get a positive result for the trade-off since we see a larger
gain in privacy which compensates for the utility loss. The addition of Laplace noise increases the running
time for training a single model by about three minutes compared to the baseline scenario without any
noise added. This corresponds to an increase in running time of about 5%. The running time increases by
the same factor when using the Truncated Gumbel mechanism instead. This shows that the calculation
and addition of noise take the same amount of time for both mechanisms. For the Truncated Gumbel
mechanism, empirical utility and privacy values are more consistent across different 𝜖 values. We achieve
relatively high absolute utility and privacy values even for small privacy budgets. Using an LSTM, we see
small utility decreases across all privacy budgets 𝜖 . With respect to the change in privacy, the picture is
different for the two datasets. While the Truncated Gumbel mechanism decreases privacy on the Trust-
pilot dataset, it enhances it for the AG News corpus. Consequently, the privacy-utility trade-off shows
negative values on the former and mostly positive values on the latter. We also see different results for the
privacy-utility trade-off for BERT depending on the dataset. We notice an unfavorable trade-off between
privacy and utility on the Trustpilot dataset while results are favorable on the AG News corpus. On the AG
News corpus, using BERT after perturbation from the Truncated Gumbel mechanism even leads to gains
in both, privacy and utility, for some 𝜖 values. This corresponds to a favorable privacy-utility trade-off
independent of how we weigh privacy and utility. The perturbation of words before they are input into
the model adds about 10 minutes to the total training time for a BERT model.
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DP Model Dataset 𝜖
Change Change Trade-offMechanism in Utility in Privacy

LSTM

Trustpilot

0.1 -0.287 +0.259 -0.029
1 -0.287 +0.262 -0.025
10 -0.272 +0.261 -0.011
50 -0.090 +0.041 -0.049
100 -0.095 -0.004 -0.098

Multivariate 150 -0.029 +0.007 -0.022
Laplace

AG News

0.1 -* -* -*
1 -* -* -*
10 -0.416 +0.536 +0.120
50 -0.054 +0.009 -0.045
100 -0.022 +0.014 -0.008
150 -0.014 +0.005 -0.008

LSTM

Trustpilot

0.1 -0.014 -0.001 -0.015
1 -0.013 -0.002 -0.015
10 -0.014 -0.006 -0.020
50 -0.017 -0.004 -0.021
100 -0.019 +0.000 -0.019

Truncated 150 -0.018 -0.003 -0.021
Gumbel

AG News

0.1 -0.034 +0.017 -0.017
1 -0.014 +0.017 +0.004
10 -0.016 +0.014 -0.002
50 -0.013 +0.014 +0.001
100 -0.015 +0.016 +0.001
150 -0.015 +0.016 +0.002

BERT

Trustpilot

0.1 -0.014 -0.017 -0.031
1 -0.014 -0.028 -0.042
10 -0.005 -0.028 -0.033
50 -0.006 -0.028 -0.034
100 -0.006 -0.036 -0.042

Truncated 150 -0.004 -0.026 -0.030
Gumbel

AG News

0.1 -0.007 +0.024 +0.018
1 -0.001 +0.008 +0.007
10 +0.000 +0.008 +0.008
50 -0.023 +0.008 -0.016
100 +0.017 +0.013 +0.029
150 +0.003 +0.001 +0.003

* We have left out results where the model behaves like a random guesser.
Table 5.1 Performance of preliminary experiments using only DP mechanisms (without bounding sensitivity and
vector mapping) with respect to privacy and utility. Favorable trade-offs are indicated in bold.
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Sensitivity Approach Sensitivity* Mechanism Noise Parameters Privacy Guarantee

None

Multivariate 𝑑 = 300
𝜖-metric DP

Δ = ∞ Laplace 𝜃 = 1/𝜖
(unbounded) Truncated Δ𝑚𝑎𝑥 = 18.4198

𝜖-metric DPGumbel Δ𝑚𝑖𝑛 = 0.7890

Normalizing to
Δ ≤ 2.5349

Multivariate 𝑑 = 300 𝜖 · 2.5349-
Laplace 𝜃 = 1/𝜖 metric DP

Unit Length Truncated Δ𝑚𝑎𝑥 = 1.8962
𝜖-metric DPGumbel Δ𝑚𝑖𝑛 = 0.1298

Normalizing to Unit
Δ ≤ 1

Multivariate 𝑑 = 300
𝜖-metric DPLaplace 𝜃 = 1/𝜖

Length (adapted) Truncated Δ𝑚𝑎𝑥 = 1.8962
𝜖-metric DPGumbel Δ𝑚𝑖𝑛 = 0.1298

Normalizing to the
Δ ≤ 43.9050

Multivariate 𝑑 = 300 𝜖 · 43.9050-
Laplace 𝜃 = 1/𝜖 metric DP

Interval [−1, 1]𝑑 Truncated Δ𝑚𝑎𝑥 = 18.8451
𝜖-metric DPGumbel Δ𝑚𝑖𝑛 = 0.4773

Normalizing to
Δ ≤ 125.8031

Multivariate 𝑑 = 300 𝜖 · 125.8031-
Laplace 𝜃 = 1/𝜖 metric DP

Observed Range Truncated Δ𝑚𝑎𝑥 = 53.9977
𝜖-metric DPGumbel Δ𝑚𝑖𝑛 = 1.3676

Clipping to
Δ ≤ 1

Multivariate 𝑑 = 300
𝜖-metric DPLaplace 𝜃 = 1/𝜖

Observed Range Truncated Δ𝑚𝑎𝑥 = 18.4198
𝜖-metric DPGumbel Δ𝑚𝑖𝑛 = 0.7890

Dimensionality Δ ≤ 1.9 Multivariate 𝑑 = 89 (1.9𝜖, (1e-6)𝛿)-

Reduction with prob. Laplace 𝜃 = 1/𝜖 metric DP

using JL lemma 0.999999 Truncated Δ𝑚𝑎𝑥 = 2.2047 (𝜖, 𝛿)-
Gumbel Δ𝑚𝑖𝑛 = 0.0800 metric DP

* The sensitivity bounds for the different approaches have been derived in Chapter 4. For clarity, we
leave out the subscripts referring to the respective functions in this table (e.g., for normalization to
unit length, the sensitivity corresponds to Δ𝑓𝑛𝑜𝑟𝑚 ).

Table 5.2 Theoretical Privacy Guarantees for Sensitivity Approaches
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5.2 Bounding Sensitivity

We will now analyze the different approaches for bounding input sensitivity and their effects on privacy
and utility from a theoretical perspective as well as based on the results achieved in the practical exper-
iments. From the theoretical perspective, we will mainly consider the amount of noise added as part of
the mechanisms and the theoretical privacy guarantees. Table 5.2 provides an overview of the sensitivity
bounds, noise parameters, and theoretical privacy guarantees for the different approaches to bounding sen-
sitivity. The practical implications will be deducted from the approaches’ performance on the test dataset
in downstream NLP tasks as described in Chapter 4.

5.2.1 Normalizing to Unit Length

As pointed out in Subsection 4.5.1, normalizing embedding vectors to unit length does not readily provide
a bound for the whole sensitivity term and so we use an estimate for the minimum distance of embeddings
in order to achieve a bound to sensitivity of 2.5349. For the Multivariate Laplace mechanism, this approach
does not influence the amount of noise added since the parameters in the multivariate Gaussian and the
Gamma distribution are not affected. However, its theoretical privacy guarantee for this approach is scaled
by the bound on sensitivity. We can show this by considering a mechanism A1 = A ◦ 𝑓𝑛𝑜𝑟𝑚 , which
concatenates the Multivariate Laplace mechanism A with 𝑓𝑛𝑜𝑟𝑚 :

ℙ [A1(𝑥) = 𝑦]
ℙ [A1(𝑥 ′) = 𝑦] ≤ exp

(
𝜖 · ∥ 𝑓𝑛𝑜𝑟𝑚 (Φ(𝑥)) − 𝑓𝑛𝑜𝑟𝑚 (Φ(𝑥 ′))∥2

)
≤ exp

(
𝜖 · Δ𝑓𝑛𝑜𝑟𝑚 ∥Φ(𝑥) − Φ(𝑥 ′)∥2

)
= exp (𝜖 · 2.5349 · ∥Φ(𝑥) − Φ(𝑥 ′)∥2)

(5.1)

Thus, the mechanism A1 satisfies 𝜖 · 2.5349-metric DP. When interpreting this theoretical privacy guar-
antee, one should mind the approximation used. Since it has been determined based on the training data
set, there is a chance that it does not hold for some embedding vectors in the development or test dataset.
Thus, the true theoretical privacy guarantee could be weaker. For the truncated Gumbel mechanism the
amount of noise added to perturb the distances is affected through the maximum andminimum inter-word
distances. As described in the previous chapter, normalization to unit length makes it possible to limit the
maximum distance between words by 2. The minimum inter-word distance can also be upper bounded
by 2. However, to calibrate the noise in the Truncated Gumbel mechanism more precisely, we use esti-
mates based on the training datasets for both values instead of these bounds. For the maximum inter-word
distance, we have Δ𝑚𝑎𝑥 = 1.8962; for the minimum inter-word distance, we get Δ𝑚𝑖𝑛 = 0.1298 from the
above approximation. It is important to note that these values have been determined after normalizing
all embedding vectors to unit length, and thus, are attributes of a transformed embedding space. Thus,
the amount of noise is influenced by the normalization for the Truncated Gumbel mechanism as opposed
to the Multivariate Laplace mechanism. However, this change in noise allows to achieve 𝜖-metric DP as
theoretical privacy guarantee.
Before looking at the results achieved in experiments using perturbed word embedding vectors, we use the
approach without additional noise from a DP mechanism. Therefore, we normalize all word embedding
vectors before using them to train the models on the different NLP tasks. These tests will later assist with
delineating the effect of normalization to unit length from the effect of DP perturbation. It can be assumed
that the distortion of the embedding space incurred by the normalization will be reflected in the perfor-
mance of a downstream model without any noise already. Note, that the tests will only be performed
using the LSTM model since we require real word inputs for BERT, which cannot be achieved without
additionally adding a vector mapping approach. A full overview of the results for all approaches using
unperturbed data can be found in Table 5.4. We notice that normalization to unit length leads to a slight
decrease in utility but also to a slight increase in privacy on both datasets compared to the baseline models.
It further improves the privacy-utility trade-off since the gain in privacy is larger than our loss in utility.
Note that this improvement purely stems from distortions in the embedding space caused by the approach.
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Sensitivity DP Model Dataset 𝜖
Change Change Trade-offApproach Mechanism in Utility in Privacy

LSTM

Trustpilot

0.1 -0.288 +0.265 -0.024
1 -0.286 +0.273 -0.013
10 -0.283 +0.268 -0.015
50 -0.278 +0.270 -0.008
100 -0.238 +0.199 -0.040

Normalization Multivariate 150 -0.093 +0.155 +0.062
to unit length Laplace

AG News

0.1 -* -* -*
1 -* -* -*
10 -* -* -*
50 -* -* -*
100 -0.276 +0.410 +0.134
150 -0.272 +0.088 -0.184

LSTM

Trustpilot

0.1 -0.072 +0.033 -0.039
1 -0.070 +0.028 -0.042
10 -0.092 +0.073 -0.019
50 -0.084 +0.073 -0.011
100 -0.081 +0.075 -0.006

Normalization Truncated 150 -0.093 +0.072 -0.021
to unit length Gumbel

AG News

0.1 -0.200 +0.388 +0.188
1 -0.224 +0.388 +0.164
10 -0.169 +0.331 +0.162
50 -0.169 +0.329 +0.161
100 -0.137 +0.332 +0.195
150 -0.133 +0.327 +0.194

BERT

Trustpilot

0.1 -0.014 -0.031 -0.045
1 -0.013 -0.030 -0.043
10 -0.010 -0.037 -0.048
50 -0.012 -0.029 -0.040
100 -0.011 -0.027 -0.038

Normalization Truncated 150 +0.005 -0.040 -0.035
to unit length Gumbel

AG News

0.1 -0.043 +0.011 -0.032
1 -0.005 +0.015 +0.010
10 -0.076 +0.011 -0.065
50 -0.014 +0.003 -0.011
100 -0.024 +0.006 -0.019
150 -0.025 +0.009 -0.017

* We have left out results where the model behaves like a random guesser.
Table 5.3 Performance of experiments on normalization to unit length (without vector mapping) with respect to
privacy and utility. Favorable trade-offs are indicated in bold.
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Dataset Sensitivity Approach Change Change Trade-offin Utility in Privacy

Trustpilot

Normalization to unit length -0.102 +0.173 +0.071
Normalization to unit length (adapted) -0.124 +0.103 -0.021
Clipping to observed range -0.032 +0.037 +0.004
Normalizing to observed range -0.026 +0.080 +0.053
Normalizing to the interval [−1, 1]𝑑 -0.021 +0.111 +0.091
Dimensionality reduction (JL lemma) -0.115 +0.218 +0.104

AG News

Normalization to unit length -0.010 +0.020 +0.010
Normalization to unit length (adapted) -0.002 +0.023 +0.021
Clipping to observed range +0.010 +0.009 +0.018
Normalizing to observed range -0.027 +0.018 -0.009
Normalizing to the interval [−1, 1]𝑑 -0.028 +0.027 -0.002
Dimensionality reduction (JL lemma) -0.188 +0.084 -0.105

Table 5.4 Performance of experiments using only approaches to bound sensitivity (without any DP mechanism or
vector mapping) with respect to privacy and utility. Favorable trade-offs are indicated in bold.

While these distortions seem to be favorable for our tasks, the approach on its own does not provide any
guarantees for enhancing privacy. The normalization of the word embedding vectors leads to a minimal
increase in running time of about three seconds compared to the baseline model. This is similar to what
we observe for other approaches to bounding sensitivity, which will also be discussed in the remainder of
this chapter.
Next, we consider normalization to unit length in combination with the Multivariate Laplace mechanism
for different values of 𝜖 (see Table 5.3). For this combination, we use the LSTM models because the lack
of a vector mapping approach is incompatible with using BERT. On the AG News corpus, we are again
omitting results where the models fail to learn and just mimic a random guesser. Across all 𝜖 values, the
combination of normalization to unit length with the Multivariate Laplace mechanism leads to decreases
in utility and increases in privacy as compared to the baselines. As 𝜖 increases, the utility loss as well as
the privacy gain becomes smaller. This can be explained by the amount of noise added through the mech-
anism becoming lower as 𝜖 increases. As less noise is added, the absolute values for empirical utility and
privacy become closer to those of the baselines. Overall, the gain in privacy cannot offset the utility loss
in most cases, which leads to a negative privacy-utility trade-off. Only for larger 𝜖 values, can we reach a
favorable trade-off. Therefore, using this combination of approaches only makes sense if one has a large
privacy budget at one’s disposal. This is rather unlikely in practice.
As we can see from Table 5.3, the results look different with the Truncated Gumbel mechanism and depend
on which model is used. Using an LSTM model, we again notice a decrease in utility and an increase in
privacy across different 𝜖 values. However, for this mechanism, these changes are more consistent across
privacy budgets 𝜖 . Larger privacy budgets, i.e., smaller amounts of added noise, do not necessarily lead to a
smaller decrease in utility or a smaller increase in privacy. With respect to the privacy-utility trade-off, we
further need to distinguish between the two datasets. For the Trustpilot dataset, the increases in privacy
are counterbalanced by larger decreases in utility, resulting in negative values for the trade-off between
the two values. For the AG News, the privacy gains are more pronounced so the privacy-utility trade-off
is positive. This shows that the dataset and corresponding tasks also have a noticeable influence on the
privacy-utility trade-off. Examining this influence is not the subject of this work but might be of interest
to future work. The values for the privacy-utility trade-off are similar for different values of 𝜖 . Hence, an
advantage of the Truncated Gumbel mechanism is that it does not depend as much on the privacy bud-
get and one can achieve a reasonable privacy-utility trade-off also for smaller 𝜖 values compared to the
Multivariate Laplace mechanism. Considering this in light of the previously discussed theoretic privacy
guarantees, it is reasonable to assume that the more targeted calibration of noise in the Truncated Gumbel
mechanism can partially compensate for the changes in the 𝜖 value to provide more consistent perfor-
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mance. If we use BERT instead of an LSTM, the privacy-utility trade-off is negative for the majority of
experiments. On the Trustpilot dataset, privacy is even decreased when applying the approach. This can
be explained by the BERT model yielding higher F1 scores on the privacy task than the baseline, which
corresponds to a potential adversary achieving better results and, therefore, harms privacy. Thus, even
though BERT leads to better model performance, this is not necessarily beneficial for the privacy-utility
trade-off if it also helps a potential adversary.
Overall, normalization to unit length can further enhance the privacy-utility trade-off for some combina-
tions of DP mechanism and model type. This can be recognized by comparing the just discussed results to
those of the preliminary results from Section 5.1. Additionally, results can differ depending on the dataset
and corresponding main and adversarial tasks. In our experiments, normalization to unit length achieves
the best result with a combination of the Truncated Gumbel mechanism and an LSTM model on the AG
News dataset. Since normalization to unit length itself does not add significantly to the running time of
the models, the running time of its combination with a DP mechanism is mainly determined by the latter.
Therefore, we end up with a running time which is increased by about three minutes as compared to the
baseline model for the LSTMs. For BERT, running time is again conditioned on the pre-computation of the
perturbation, which takes about 10 minutes for the training and development dataset per model.
Using 𝑓𝑛𝑜𝑟𝑚 as a modified version of 𝑓𝑛𝑜𝑟𝑚 allows to bound sensitivity with Δ

𝑓𝑛𝑜𝑟𝑚
≤ 1 as detailed in the

previous chapter. In combination with the Laplace mechanism, this approach can be used to guarantee
𝜖-metric DP while the function does not affect the amount of noise added. The theoretical privacy bound
can be shown analogously to the calculations in Inequality 5.1. Since the bound on sensitivity does not rely
on any approximations in this case, the privacy guarantee holds for any input vectors. When we combine
𝑓𝑛𝑜𝑟𝑚 and the Truncated Gumbel mechanism, the amount of noise required again depends on the maxi-
mum and minimum inter-word distances, similar to the non-adapted normalization function 𝑓𝑛𝑜𝑟𝑚 . Also,
as with the non-adapted normalization function, maximum and minimum distances are estimated based
on the training datasets to calibrate noise more pointedly. This yields the same values Δ𝑚𝑎𝑥 = 1.8962 and
Δ𝑚𝑎𝑥 = 0.1298 as before. Using these values in the calibration of noise for the Truncated Gumbel mecha-
nism provides 𝜖-metric DP.
As with the non-adapted normalization, we now look at the effects of 𝑓𝑛𝑜𝑟𝑚 without any additional noise
in the results of our preliminary experiments (see Table 5.4). Since 𝑓𝑛𝑜𝑟𝑚 does not transform all areas of
the embedding space in the same way, we expect a more severe distortion of the embedding space from
this adapted normalization approach. The expectation is fulfilled for the Trustpilot dataset. The adapted
version of normalization to unit length leads to a larger decrease in utility and a smaller privacy gain than
the non-adapted version. This results in a negative privacy-utility trade-off. The opposite is true for the
AG News corpus. We get a positive trade-off value, which is even larger than for the non-adapted version
of the normalization approach. The situation for this dataset fits what would be expected based on the
theoretical privacy guarantees. The guarantee for the non-adapted version is larger as it is scaled by this
approach’s sensitivity so one would expect this approach to provide less privacy than the adapted version.
However, our empirical results cannot confirm this theory-based assumption across datasets. From the
results of the preliminary experiments, we can also not confirm the assumption that the adapted version
of normalization to unit length introduces a stronger distortion of the embedding space.
We continue to investigate the validity of this assumption for the combination of the adapted normaliza-
tion to unit length with the two DP mechanisms. The detailed results for these experiments can be found
in Table 5.5. For the Multivariate Laplace mechanism, we do again see utility losses and privacy gains,
which become smaller as 𝜖 values increase. Overall, the utility losses are larger than the gains in privacy
so we end up with a negative privacy-utility trade-off for the majority of those experiments. Many of the
values are also smaller than for the non-adapted version of the normalization to unit length.
For the combination of the approach with the Truncated Gumbel mechanism, we distinguish between the
different types of models used. Using an LSTM, the results are again different for the two datasets. While
the privacy-utility trade-off is negative for all privacy budgets 𝜖 on the Trustpilot dataset, it is positive for
the AG News corpus. Also, we observe that similarly to the preliminary experiments, the adapted ver-
sion of the normalization improves the privacy-utility trade-off on the AG News corpus compared to the
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Sensitivity DP Model Dataset 𝜖
Change Change Trade-offApproach Mechanism in Utility in Privacy

LSTM

Trustpilot

0.1 -0.289 +0.258 -0.032
1 -0.287 +0.255 -0.032
10 -0.286 +0.253 -0.033
50 -0.275 +0.255 -0.020

Normalization 100 -0.217 +0.200 -0.017

to unit length Multivariate 150 -0.141 +0.134 -0.007

(adapted) Laplace

AG News

0.1 -* -* -*
1 -* -* -*
10 -* -* -*
50 -* -* -*
100 -0.272 +0.321 +0.049
150 -0.229 +0.106 -0.123

LSTM

Trustpilot

0.1 -0.198 +0.052 -0.146
1 -0.201 +0.052 -0.149
10 -0.100 +0.056 -0.043
50 -0.096 +0.053 -0.043

Normalization 100 -0.097 +0.033 -0.064

to unit length Truncated 150 -0.103 +0.027 -0.076

(adapted) Gumbel

AG News

0.1 -0.136 +0.342 +0.207
1 -0.133 +0.380 +0.247
10 -0.135 +0.353 +0.219
50 -0.131 +0.396 +0.265
100 -0.130 +0.329 +0.198
150 -0.137 +0.319 +0.182

BERT

Trustpilot

0.1 -0.031 -0.031 -0.061
1 -0.008 -0.001 -0.008
10 -0.012 -0.043 -0.054
50 +0.003 -0.008 -0.006

Normalization 100 +0.001 -0.032 -0.031

to unit length Truncated 150 +0.001 -0.037 -0.036

(adapted) Gumbel

AG News

0.1 -0.033 +0.002 -0.031
1 -0.010 +0.001 -0.009
10 -0.011 +0.008 -0.003
50 -0.012 +0.010 -0.002
100 -0.009 +0.004 -0.004
150 -0.022 +0.002 -0.020

* We have left out results where the model behaves like a random guesser.
Table 5.5 Performance of experiments on the adapted version of normalization to unit length (without vector map-
ping) with respect to privacy and utility. Favorable trade-offs are indicated in bold.
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non-adapted version. It seems like this approach better suits this dataset and the corresponding tasks’ re-
quirements. BERT again leads to negative privacy-utility trade-offs independent of the 𝜖 value. The model
does not only improve performance on the target task but also yields performance gains for the simulated
adversary. Independent of the model used, the values of the privacy-utility trade-off do not differ a lot for
different privacy budgets 𝜖 of the Truncated Gumbel mechanism. This further supports our hypothesis
that the results for the Truncated Gumbel mechanism are less dependent on the privacy budget and that
even a small privacy budget can suffice to achieve a comparably good privacy-utility trade-off.
To answer the question if it is generally beneficial to use the adapted version of normalization to unit
length, we compare against the preliminary results described in Section 5.1. One can say that it again
depends on the combination of DP mechanism and model type if the privacy-utility trade-off is improved.
Our experiments show that it is the combination of the Truncated Gumbel mechanism and an LSTMmodel
on the AG News dataset that achieves the biggest improvement on the trade-off. Since this is also the com-
bination with the most favorable privacy-utility trade-off when no approach to bounding sensitivity is
applied, one could further put forward the alternative hypothesis that the adapted version of the normal-
ization reinforces previously existing results.

5.2.2 Normalizing to the Interval [−1, 1]𝑑

By making use of an estimate for the minimum distance between arbitrary embedding vectors, we were
able to upper bound sensitivity by 43.9050 in Subsection 4.5.2. Since no parameters of the Multivariate
Laplace mechanism are affected by the normalization to the interval [−1, 1]𝑑 , it also does not influence the
amount of noise added by this mechanism. However, the theoretical privacy guarantee that this combina-
tion provides is again scaled by the bound on sensitivity. A mechanism A2 = A ◦ 𝑔𝑛𝑜𝑟𝑚 , which combines
the Multivariate Laplace mechanism A with normalization to the interval [−1, 1]𝑑 using 𝑔𝑛𝑜𝑟𝑚 provides
𝜖 · 43.9050-metric DP:

ℙ [A2(𝑥) = 𝑦]
ℙ [A2(𝑥 ′) = 𝑦] ≤ exp

(
𝜖 · ∥𝑔𝑛𝑜𝑟𝑚 (Φ(𝑥)) − 𝑔𝑛𝑜𝑟𝑚 (Φ(𝑥 ′))∥2

)
≤ exp

(
𝜖 · Δ𝑔𝑛𝑜𝑟𝑚 ∥Φ(𝑥) − Φ(𝑥 ′)∥2

)
= exp (𝜖 · 43.9050 · ∥Φ(𝑥) − Φ(𝑥 ′)∥2)

(5.2)

When interpreting this theoretical privacy guarantee, we need to again keep in mind that it is based on an
approximation and consequently, might not hold on other datasets. The guarantee further suggests that
normalization to the interval [−1, 1]𝑑 provides less privacy for the same values of 𝜖 than normalization to
unit length because of the weaker privacy guarantee, which comes from the higher value for sensitivity.
The later experiments will reassess if this assumption also holds in practical applications. In the case of the
Truncated Gumbel mechanism, the theoretical privacy guarantee is not affected by normalization to the
interval [−1, 1]𝑑 so that the mechanism provides 𝜖-metric DP. Instead, the approach’s effects are already
considered during the noise calibration within the mechanism as it changes the maximum and minimum
inter-word distances, which are parameters of the noise calibration. While the inter-word distances can
generally be bounded by 2

√
𝑑 , or by 34.64 for our 300-dimensional GloVe embeddings, we again use esti-

mates based on the training data set for more accurate values and a more targeted noise calibration. After
normalization to the interval [−1, 1]𝑑 , the maximum inter-word distance of the embedding space can be
estimated to be about Δ𝑚𝑎𝑥 = 18.8451 and the minimum inter-word distance to be about Δ𝑚𝑖𝑛 = 0.4773.
We use these values for first experiments without any additional noise from a DP mechanism to check
how big the effect of only the normalization to the interval [−1, 1]𝑑 is, i.e., how much of an influence the
distortion of the embedding space has that comes with it. As Table 5.4 shows, utility decreases to about
the same extent on both datasets. However, this decrease can only be balanced out by a larger privacy gain
for the Trustpilot dataset. Thus, we observe a positive privacy-utility trade-off. For the AG News corpus,
the privacy-utility trade-off is hurt by normalization to the interval [−1, 1]𝑑 .
We now continue with the experiments that combine the normalization to the interval [−1, 1]𝑑 with the DP
mechanisms to examine how this approach for bounding sensitivity performs in this setting. An overview
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Sensitivity DP Model Dataset 𝜖
Change Change Trade-offApproach Mechanism in Utility in Privacy

LSTM

Trustpilot

0.1 -0.288 +0.274 -0.014
1 -0.291 +0.268 -0.022
10 -0.279 +0.258 -0.020
50 -0.058 +0.069 +0.011

Normalization 100 -0.025 +0.048 +0.024

to the inter- Multivariate 150 -0.019 +0.052 +0.033

val [−1, 1]𝑑 Laplace

AG News

0.1 -* -* -*
1 -* -* -*
10 -* -* -*
50 -0.207 +0.050 -0.156
100 -0.096 +0.024 -0.072
150 -0.096 +0.026 -0.070

LSTM

Trustpilot

0.1 -0.034 +0.075 +0.041
1 -0.036 +0.080 +0.044
10 -0.038 +0.075 +0.037
50 -0.039 +0.073 +0.034

Normalization 100 -0.031 +0.064 +0.033

to the inter- Truncated 150 -0.036 +0.070 +0.034

val [−1, 1]𝑑 Gumbel

AG News

0.1 -0.195 +0.157 -0.038
1 -0.176 +0.154 -0.022
10 -0.193 +0.146 -0.047
50 -0.193 +0.152 -0.041
100 -0.194 +0.150 -0.043
150 -0.193 +0.154 -0.039

BERT

Trustpilot

0.1 -0.037 -0.025 -0.062
1 -0.036 -0.007 -0.043
10 -0.004 +0.001 -0.003
50 -0.001 -0.032 -0.034

Normalization 100 -0.002 -0.030 -0.032

to the inter- Truncated 150 -0.002 -0.034 -0.036

val [−1, 1]𝑑 Gumbel

AG News

0.1 -0.016 +0.007 -0.009
1 -0.038 +0.004 -0.034
10 -0.013 +0.012 -0.001
50 -0.004 +0.006 +0.002
100 -0.028 +0.003 -0.025
150 -0.006 +0.008 +0.003

* We have left out results where the model behaves like a random guesser.
Table 5.6 Performance of experiments on normalization to the interval [−1, 1]𝑑 (without vector mapping) with
respect to privacy and utility. Favorable trade-offs are indicated in bold.
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of the corresponding results is given in Table 5.6. The experiments’ results show that the combination
with the Multivariate Laplace mechanism yields utility losses as well as simultaneous privacy gains for
all 𝜖 values. The privacy-utility trade-off is however only positive for 𝜖 ∈ {50, 100, 150} on the Trustpilot
dataset. In all other experiments, this mechanism does not achieve favorable trade-offs.
For the combination of normalization to the interval [−1, 1]𝑑 with the Truncated Gumbel mechanism, it
is striking that the results for the privacy-utility trade-off again seem to be connected with the dataset
respectively the corresponding tasks. When using an LSTM model, we achieve positive privacy-utility
trade-offs for all values of 𝜖 on the Trustpilot dataset while on the AG News corpus, all values are neg-
ative. Since the results on the two datasets are converse this time with Trustpilot yielding better results
than AG News, we hypothesize that the dataset and tasks are one of the main factors when deciding on a
specific combination of approaches and DP mechanisms. We see that we can get very different results for
the privacy-utility trade-off for the same dataset depending on which methods and approaches we com-
bine. When using BERT, the privacy-utility trade-off is negative for most of the experiments. Only for 𝜖
equal to 50 and 150 on the AG News corpus, the trade-off yields a positive value. However, the values are
still close to zero and there are no further patterns visible in the experiment results for this model so we
cannot make any assumptions about how these effects might be related to the model or the experiment
setup.
Finally, to derive if normalization to the interval [−1, 1]𝑑 generally improves the privacy-utility trade-off,
we come back to our preliminary experiments where no measures for bounding sensitivity were taken (see
Section 5.1). We notice that the best choice for a mechanism and additional approaches strongly depends
on the dataset at hand as well as the tasks that are chosen to evaluate performance on this dataset. For our
experiments, it would be advisable to include normalization to the interval [−1, 1]𝑑 when working with
the Trustpilot dataset and a combination of the Truncated Gumbel mechanism and an LSTM because this
is the setting where it leads to an improved privacy-utility trade-off, independent of the privacy budget
𝜖 . If the available privacy budget is large enough it might also make sense to consider the Multivariate
Laplace mechanism and an LSTM. However, this mechanism only reaches an improved trade-off if small
amounts of noise are added, i.e., large 𝜖’s are used.

5.2.3 Normalizing to Observed Range

The sensitivity using normalization to the observed range can be upper bounded by 125.8031 as detailed
in the previous chapter. From this bound, we can deduce that combining this approach with the Multivari-
ate Laplace mechanism provides 𝜖 · 125.8031-metric DP. To formally derive the guarantee, we consider a
mechanismA3 = A ◦ℎ𝑛𝑜𝑟𝑚 combining the Multivariate Laplace mechanism A with normalization to the
observed range represented by ℎ𝑛𝑜𝑟𝑚 :

ℙ [A3(𝑥) = 𝑦]
ℙ [A3(𝑥 ′) = 𝑦] ≤ exp (𝜖 · ∥ℎ𝑛𝑜𝑟𝑚 (Φ(𝑥)) − ℎ𝑛𝑜𝑟𝑚 (Φ(𝑥 ′))∥2)

≤ exp
(
𝜖 · Δℎ𝑛𝑜𝑟𝑚 ∥Φ(𝑥) − Φ(𝑥 ′)∥2

)
= exp (𝜖 · 125.8031 · ∥Φ(𝑥) − Φ(𝑥 ′)∥2)

While the theoretical privacy guarantee is scaled by the bound on sensitivity, the amount of noise added
as part of the mechanism does not incur any changes from the normalization approach. For the Truncated
Gumbel mechanism, it is again the other way around. The privacy guarantee is not influenced by normal-
ization to the observed range and can be stated as 𝜖-metric DP. The noise added by the mechanism changes
as the parameters maximum andminimum inter-word distance need to be adapted after the normalization.
Based on estimates from our training dataset after normalizing all its embedding vectors to the maximum
observed range of [−3.0639, 2.6668], we set the maximum inter-word distance Δ𝑚𝑎𝑥 to 53.9977 and deter-
mine the minimum inter-word distance to be Δ𝑚𝑖𝑛 = 1.3676. We can see that the distances between word
embedding vectors are larger than before the normalization, which leads to spreading the vectors more
widely within the observed range. This can also be influenced by outlier values.
To begin our discussion of the results achieved from practical experiments, we again first look at the ef-
fects of applying only normalization to the observed range without combining the approach with any DP
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Sensitivity DP Model Dataset 𝜖
Change Change Trade-offApproach Mechanism in Utility in Privacy

LSTM

Trustpilot

0.1 -0.289 +0.261 -0.028
1 -0.289 +0.262 -0.028
10 -0.144 +0.124 -0.020
50 -0.025 +0.039 +0.013

Normalization 100 -0.021 +0.037 +0.016

to observed Multivariate 150 -0.031 +0.041 +0.010

range Laplace

AG News

0.1 -* -* -*
1 -* -* -*
10 -0.338 +0.159 -0.178
50 -0.066 +0.019 -0.048
100 -0.061 +0.012 -0.049
150 -0.061 +0.012 -0.048

LSTM

Trustpilot

0.1 -0.018 +0.026 +0.008
1 -0.029 +0.022 -0.006
10 +0.002 +0.025 +0.027
50 -0.008 +0.024 +0.016

Normalization 100 -0.000 +0.027 +0.027

to observed Truncated 150 -0.002 +0.025 +0.023

range Gumbel

AG News

0.1 -0.114 +0.026 -0.088
1 -0.111 +0.023 -0.088
10 -0.112 +0.025 -0.086
50 -0.112 +0.026 -0.086
100 -0.111 +0.027 -0.084
150 -0.110 +0.023 -0.086

BERT

Trustpilot

0.1 -0.016 -0.011 -0.028
1 -0.025 -0.029 -0.054
10 -0.024 -0.014 -0.038
50 -0.024 -0.041 -0.065

Normalization 100 -0.026 -0.030 -0.055

to observed Truncated 150 -0.026 -0.022 -0.048

range Gumbel

AG News

0.1 -0.026 +0.011 -0.014
1 -0.019 +0.011 -0.009
10 -0.012 +0.009 -0.003
50 -0.017 +0.005 -0.012
100 -0.022 +0.010 -0.012
150 -0.010 +0.010 -0.000

* We have left out results where the model behaves like a random guesser.
Table 5.7 Performance of experiments on normalization to observed range (without vector mapping) with respect
to privacy and utility. Favorable trade-offs are indicated in bold.
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mechanism (see Table 5.4). We find that the privacy-utility trade-off looks different for the two datasets.
While we get a positive value for the Trustpilot dataset, the trade-off is negative for the AG News corpus.
This might be an indication that the performance of this approach also depends on the dataset on which
it is evaluated.
We examine if this pattern persists when the normalization to the observed range is combined with the
Multivariate Laplace mechanism. Indeed, Table 5.7 shows positive values for the privacy-utility trade-off
for the largest three 𝜖 values on the Trustpilot dataset because here the privacy gain is larger than the
utility loss. For all other values of 𝜖 , both on the Trustpilot dataset and the AG News corpus, the privacy-
utility trade-off is negative because the privacy gain is too small to balance out the utility loss.
If we combine normalization to the observed range with the Truncated Gumbel mechanism, we again need
to look at the results for the two different models separately. For the LSTM, we observe the same trend as
for the Multivariate Laplace mechanism, where the experiments on the Trustpilot dataset perform better
than those on the AG News corpus. On the Trustpilot dataset, the trade-off is positive for five out of the
six 𝜖 values. These positive trade-offs are all due to the privacy gain being larger than the utility loss. It
is also notable that these utility losses are only very minor with values close to zero. On the AG News
corpus, utility losses are larger and, thus, outweigh the privacy gains leading to negative values for the
privacy-utility trade-off. When using BERT with the Truncated Gumbel mechanism, we do not observe
these different effects for the two datasets. Here, all values for the privacy-utility trade-off are negative in-
dependent of the dataset and the 𝜖 value. For the Trustpilot dataset, we even get privacy losses in addition
to the utility losses. This has already been observed previously and is due to the model outperforming the
baseline on the adversarial task (gender identification), which leads to lower privacy.
The decision if it is reasonable to include normalization to the observed range when working with DP
mechanisms depends on the dataset used. We compare the results using the normalization to those of
the preliminary experiments where no measures for bounding sensitivity were taken (see Section 5.1) and
notice that normalization improves the privacy-utility trade-off only on the Trustpilot dataset while it can
even be harmful in the case of the AG News dataset. On the Trustpilot dataset, we see better trade-offs
for several of our experiments, especially using an LSTM. This effect exists independent of which of the
mechanisms is used. On the AG News corpus, trade-offs that are positive without the normalization turn
out negative if it is included. Compared to other, previously discussed approaches to bounding sensitivity,
normalization to the observed range does not seem to perform worse even though the theoretical privacy
guarantee, which we have calculated for this approach, is much weaker.

5.2.4 Clipping to Observed Range

With the approach of clipping embedding vectors to fall into the observed range of values, sensitivity can
be bounded as Δ𝑓𝑐𝑙𝑖𝑝 ≤ 1 as shown in the previous chapter. As a consequence of this bound, the application
of 𝑓𝑐𝑙𝑖𝑝 to the input of the Multivariate Laplace mechanism yields 𝜖-metric DP. We can formally describe
this privacy guarantee by considering a mechanism A4 = A ◦ 𝑓𝑐𝑙𝑖𝑝 , which combines the Multivariate
Laplace mechanism A with the clipping function 𝑓𝑐𝑙𝑖𝑝 :

ℙ [A4(𝑥) = 𝑦]
ℙ [A4(𝑥 ′) = 𝑦] ≤ exp

(
𝜖 ·



𝑓𝑐𝑙𝑖𝑝 (Φ(𝑥)) − 𝑓𝑐𝑙𝑖𝑝 (Φ(𝑥 ′))



2

)
≤ exp

(
𝜖 · Δ𝑓𝑐𝑙𝑖𝑝 ∥Φ(𝑥) − Φ(𝑥 ′)∥2

)
= exp (𝜖 · ∥Φ(𝑥) − Φ(𝑥 ′)∥2)

Thus, for this approach to bounding sensitivity, the theoretical privacy guarantee for the Multivariate
Laplace mechanism is not weakened by a perceptible scaling with the sensitivity bound. Also, none of
the mechanism’s noise parameters are affected by the clipping so the noise magnitude does not change
due to this approach. When combining the clipping to the observed range with the Truncated Gumbel
mechanism, we get the same theoretical privacy guarantee of 𝜖-metric DP as for the combination with the
Multivariate Laplace mechanism. However, the noise added via this mechanism is affected by changes in
its parameters, the maximum and minimum inter-word distances. Because we determined our observed
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Sensitivity DP Model Dataset 𝜖
Change Change Trade-offApproach Mechanism in Utility in Privacy

LSTM

Trustpilot

0.1 -0.291 +0.259 -0.032
1 -0.288 +0.265 -0.023
10 -0.271 +0.253 -0.018
50 -0.062 +0.034 -0.029

Clipping to 100 -0.014 +0.024 +0.010

observed Multivariate 150 -0.015 -0.007 -0.022

range Laplace

AG News

0.1 -* -* -*
1 -* -* -*
10 -0.412 +0.512 +0.100
50 -0.057 +0.013 -0.045
100 -0.033 +0.005 -0.029
150 -0.034 +0.004 -0.030

LSTM

Trustpilot

0.1 -0.052 +0.019 -0.032
1 -0.027 -0.002 -0.029
10 -0.033 -0.003 -0.036
50 -0.050 -0.003 -0.053

Clipping to 100 -0.042 +0.010 -0.032

observed Truncated 150 -0.048 +0.014 -0.034

range Gumbel

AG News

0.1 -0.030 +0.014 -0.016
1 -0.030 +0.013 -0.017
10 -0.029 +0.011 -0.018
50 -0.030 +0.011 -0.018
100 -0.003 +0.015 +0.012
150 +0.000 +0.015 +0.015

BERT

Trustpilot

0.1 +0.013 -0.022 -0.009
1 +0.013 -0.028 -0.014
10 +0.015 -0.014 +0.002
50 +0.015 -0.031 -0.015

Clipping to 100 +0.015 +0.059 +0.074

observed Truncated 150 +0.015 -0.036 -0.021

range Gumbel

AG News

0.1 -0.007 +0.002 -0.005
1 -0.045 +0.009 -0.036
10 -0.015 +0.001 -0.014
50 +0.000 +0.004 +0.004
100 -0.012 +0.010 -0.002
150 -0.026 +0.002 -0.024

* We have left out results where the model behaves like a random guesser.
Table 5.8 Performance of experiments on clipping to observed range (without vector mapping) with respect to
privacy and utility. Favorable trade-offs are indicated in bold.
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range based on the values occurring in the training datasets, there are no vectors in the training dataset,
which would fall outside of this range and would be clipped. Thus, estimating the maximum andminimum
inter-word distance from the training data after applying the clipping yields the same values as for the
original embeddings. We get a maximum inter-word distance of Δ𝑚𝑎𝑥 = 18.4198 and a minimum inter-
word distance of Δ𝑚𝑖𝑛 = 0.7890.
We now examine the effects of only the clipping approach on our downstream NLP tasks to see how the
potential distortion of the embedding space incurred from the clipping affects their performance. From the
results in Table 5.4, we see that the clipping seems to have a beneficial effect on the privacy-utility trade-off
since it yields a positive value for both datasets. In the case of the AG News corpus, it even leads to an
increase in utility. This means that it improves the model’s performance on the main task with respect to
the F1 score. Based on these results, we expect the approach to be especially beneficial for the utility side
of the trade-off and to lead to smaller utility losses.
Keeping this in mind, we now continue to look at the approach’s performance if we use it together with
the Multivariate Laplace mechanism. The results in Table 5.8 indicate a loss in utility as well as an increase
in privacy for the majority of 𝜖 values. However, in most of these cases, the utility loss is larger than the
privacy gain resulting in a negative privacy-utility trade-off. The only cases of positive values for the
trade-off are for 𝜖 = 100 on the Trustpilot dataset and for 𝜖 = 10 on the AG News corpus. Thus, there does
not seem to be a dependence on the dataset.
When using the Truncated Gumbel mechanism and an LSTM, most of the experiments also yield negative
values for the privacy-utility trade-off. For some of the smaller 𝜖 values in the Trustpilot dataset, we
even observe negative values for the change in privacy, i.e., privacy losses. This signals that performance
on the gender identification task is better than for the baseline model, which corresponds to helping the
simulated adversary. Putting this into the context of our preliminary experiments, this approach seems to
generally have a beneficial influence onmodels’ performance with respect to the F1 score. Thereby, it does,
however, not only aid utility but also a potential adversary, which can lead to a decrease in privacy. For the
combination of the Truncated Gumbel mechanism and the LSTM, there are only two cases of a positive
privacy-utility trade-off. Those are achieved for 𝜖 equal to 100 and 150 on the AG News corpus. If we
combine this mechanism with BERT, we also observe a positive trade-off for some of the 𝜖’s. A big part of
those can be explained by increased utility for the respective experiments. In some cases, this occurrence
is further supported by a decrease in privacy. This confirms our hypothesis that clipping to the observed
range yields a general improvement in models’ performance which does not only help utility but also a
potential adversary. It can, hence, be harmful to the privacy-utility trade-off.
The comparison with results of the preliminary experiments without bounded sensitivity (see Section 5.1)
further supports this observation. Unlike previously considered approaches, with clipping to the observed
range, there is no combination of DPmechanism and model which clearly outperforms others with respect
to the privacy-utility trade-off. The results rather seem to be dependent on which privacy budget 𝜖 is used.
Also, unlike for previously considered approaches, we do not notice any relation with the dataset being
used as there is no combination of mechanism and model which yields better results on only one of the
two datasets. This can, however, also be seen as an advantage such that the approach might provide a
favorable privacy-utility trade-off independent of the dataset if an appropriate DP mechanism and model
are picked.

5.2.5 Dimensionality Reduction Using JL Lemma

As stated in the previous chapter, dimensionality reduction using the JL lemma, as done by [FK21], pro-
vides a probabilistic bound on sensitivity such that the probability that Δ𝑓Φ ≤ 1.9 is at least 0.999999. Con-
sequently, when used before input to the Laplace mechanism, this dimensionality reduction guarantees
(1.9𝜖, 1𝑒−6)-metric DP. The 𝛿 in this privacy guarantee reflects the probabilistic nature of the sensitivity’s
bound. Due to this, it is theoretically possible that there are two embedding vectors for which the bound
on sensitivity, and as a result, this privacy guarantee does not hold. This needs to be kept in mind when
working with this theoretical guarantee. For the Multivariate Laplace mechanism, we also need to note
that the amount of noise the mechanism adds is affected by the dimensionality reduction. The reduced
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Sensitivity DP Model Dataset 𝜖
Change Change Trade-offApproach Mechanism in Utility in Privacy

LSTM

Trustpilot

0.1 -0.287 +0.264 -0.022
1 -0.283 +0.263 -0.021
10 -0.282 +0.265 -0.017
50 -0.260 +0.249 -0.011

Dimensionality 100 -0.193 +0.239 +0.046

reduction Multivariate 150 -0.225 +0.070 -0.155

(JL lemma) Laplace

AG News

0.1 -* -* -*
1 -* -* -*
10 -* -* -*
50 -0.336 +0.691 +0.355
100 -0.344 +0.333 -0.011
150 -0.332 +0.287 -0.045

LSTM

Trustpilot

0.1 -0.158 +0.232 +0.074
1 -0.157 +0.119 -0.039
10 -0.160 +0.110 -0.050
50 -0.159 +0.107 -0.052

Dimensionality 100 -0.154 +0.106 -0.048

reduction Truncated 150 -0.158 +0.108 -0.050

(JL lemma) Gumbel

AG News

0.1 -0.352 +0.599 +0.248
1 -0.332 +0.585 +0.253
10 -0.320 +0.608 +0.288
50 -0.290 +0.584 +0.294
100 -0.293 +0.506 +0.213
150 -0.290 +0.492 +0.202

BERT

Trustpilot

0.1 -0.039 -0.016 -0.056
1 -0.018 -0.031 -0.049
10 -0.019 -0.028 -0.047
50 -0.021 +0.017 -0.004

Dimensionality 100 -0.003 -0.035 -0.038

reduction Truncated 150 -0.004 -0.023 -0.027

(JL lemma) Gumbel

AG News

0.1 -0.010 +0.009 -0.001
1 -0.012 +0.010 -0.002
10 -0.031 +0.005 -0.025
50 -0.010 +0.008 -0.002
100 -0.020 +0.001 -0.019
150 -0.020 +0.021 +0.002

* We have left out results where the model behaves like a random guesser.
Table 5.9 Performance of experiments on dimensionality reduction using the JL lemma (without vector mapping)
with respect to privacy and utility. Favorable trade-offs are indicated in bold.
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dimensionality of the input vectors𝑚 = 89 will lead to a reduced noise magnitude. When combining the
dimensionality reduction approach with the Truncated Gumbel mechanism, the amount of noise is also
affected by the dimensionality reduction. After dimensionality reduction, we can estimate the maximum
inter-word distance as Δ𝑚𝑎𝑥 = 2.2047 based on the training datasets. The minimum inter-word distance
can be estimated as Δ𝑚𝑖𝑛 = 0.0800. As we can see, these values have been greatly reduced through dimen-
sionality reduction. Using noise that has been calibrated using these inter-word distances, the combination
of dimensionality reduction and the Truncated Gumbel mechanism provides (𝜖, 𝛿)-metric DP.
As with the approaches considered before, we begin our discussion of experiment results by looking at the
performance of models using only dimensionality reduction without any added noise from a DP mecha-
nism (see Table 5.4). On both datasets, the approach leads to a decrease in utility and an increase in privacy.
However, for the AG News corpus, the privacy gain is smaller than the utility loss so that it cannot outbal-
ance it resulting in a negative privacy-utility trade-off. The trade-off for the Trustpilot dataset, on the other
hand, is positive as we gain more privacy than what we lose with respect to utility. We note that compared
to other approaches, this one shows stronger effects already in those preliminary experiments. The de-
crease in utility is larger than for other approaches. This also applies to the privacy gain. When looking at
the absolute values for empirical privacy and utility, we notice great reductions in the performance of the
downstream NLP tasks. This gives rise to the assumption that the dimensionality reduction leads to strong
distortions within the embedding space, which generally hurts the performance of downstream models.
At the same time, the dimensionality reduction speeds up model training so that including this approach
does not lead to an increased running time for model training. The time needed to map embedding vectors
to a lower dimensional embedding space is balanced out by the reduced model training time.
We next combine the dimensionality reduction with the Multivariate Laplace mechanism. This yields the
expected decreases in utility and increases in privacy across all 𝜖 values as can be seen from Table 5.9.
We note that these changes in utility and privacy are strikingly large. When added together the decrease
in utility mostly outweighs the privacy gains so the privacy-utility trade-off is negative. We only achieve
positive trade-offs for 𝜖 = 100 on the Trustpilot dataset and for 𝜖 = 50 on the AG News corpus.
The alternative combination of dimensionality reduction with the Truncated Gumbel mechanism performs
more consistently across different values for the privacy budget 𝜖 . When using an LSTM, the outcome
seems to depend on the dataset. While the values for the privacy-utility trade-off are negative for the
majority of experiments on the Trustpilot dataset, all experiments on the AG News corpus yield positive
trade-offs. Therefore, the dimensionality approach seems to work well in this exact setting. If BERT is used
instead of the LSTM, the decreases in utility are smaller. The same applies to the privacy gains on the AG
News corpus. On the Trustpilot dataset, we see privacy losses for most of the experiments. This pattern
exhibits how BERT can deal better with the distortions in the embedding space incurred by the dimen-
sionality reduction. The model’s performance with respect to the F1 score is overall very high and similar
to the baseline score. Still, since this also benefits the simulated adversary, the privacy-utility trade-off
mostly turns out negative.
The comparison to the experiments without the dimensionality reduction (Section 5.1) reveals that incor-
porating the approach only helps in certain settings. In our experiments, including the approach only
significantly improves the privacy-utility trade-off for the Truncated Gumbel mechanism and an LSTM
while other settings hurt the trade-off. Thus, the dataset, DP mechanism, and model greatly influence the
privacy-utility trade-off, which we can reach when incorporating the approach. However, we also need
to keep in mind that it likely hurts the performance of the models with respect to the F1 score due to
distortions in the embedding space. Even though the JL lemma ensures limited distortion of the distances
between pairs of embedding vectors, these still seem too large not to affect performance in downstream
NLP tasks. It can be assumed that some of these distortions also originate from projecting embedding vec-
tors to the unit ball before the dimensionality reduction. But, it is difficult to separate the corresponding
effects in the results of our experiments.
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6 Vector Mapping

This chapter examines the experiment results for different vector mapping approaches and combinations
of approaches for bounding sensitivity and vector mapping approaches. We use the Multivariate Laplace
mechanism to add noise. The Truncated Gumbel mechanism is not considered in combination with the
vector mapping approaches because a vector mapping step is already inherent to the mechanism. Thus,
its outputs are word embedding vectors corresponding to real words. In the subsequent discussion, we
focus on the empirical results from the experiments to derive the effects of vector mapping approaches
on privacy and utility in downstream NLP tasks. There is no need to discuss the theoretical perspective
here since the vector mapping approaches are a post-processing step of the DP mechanism; thus, they do
neither influence the amount of noise added nor the theoretical privacy guarantees. We will analyze the
performance of the approaches for different tasks on the test datasets with respect to the F1 score.

6.1 Mapping to Nearest Neighbor

We start our discussion by considering the results for the Multivariate Laplace mechanism with the ad-
ditional post-processing step of mapping perturbed word embedding vectors to their nearest neighbors.
Table 6.1 provides a corresponding overview. We can see that if we use the nearest neighbor mapping with
an LSTM, we always get a decrease in utility across all 𝜖 values for both datasets. Overall, utility decreases
less for larger values of 𝜖 . This fits the theoretical assumption of introducing less noise for larger 𝜖’s. The
less noise we introduce, the more accurate the classification becomes. With respect to empirical privacy,
we notice differences between the two datasets. For the Trustpilot dataset, mapping to nearest neighbor
embeddings yields privacy gains for 𝜖 ∈ {0.1, 1, 10} but privacy losses for larger 𝜖 values. For the AG
News corpus, privacy increases for 𝜖 greater or equal to 10. We do not get reasonable results for smaller 𝜖
values as the F1 score on this task is zero. This is likely due to the model’s inability to learn any reasonable
relationship in the data for the smaller 𝜖 values which correspond to larger amounts of noise being added.
Thus, the results resemble those of a random guesser. We can assume that the seemingly large increases
in privacy for smaller 𝜖’s on the Trustpilot dataset are due to the same reason. Therefore, even though the
privacy change might look promising for some of the smaller 𝜖’s, it might not be advisable to take this
approach. For the larger 𝜖 values, the model’s performance becomes more similar to the baseline model’s.
With respect to the privacy-utility trade-off, this means that while we get positive values for the smaller
𝜖’s, these are to be considered with caution as they are most likely due to too strong perturbations of the
word embedding vector which lead to the model just randomly guessing its predictions. For the larger 𝜖
values, there is either a decrease in both utility and privacy (Trustpilot dataset) or utility decreases more
strongly than privacy (AG News corpus). Both cases do not represent a favorable trade-off. For BERT, we
also end up with negative privacy-utility trade-offs. The reasons behind these are different for the two
datasets. For the Trustpilot dataset, there is an increase in utility but a loss in privacy. Since the latter is
larger, the trade-off turns out negative. This shows that BERT in combination with vector mapping seems
to help the performance of both tasks with respect to the F1 score, which helps utility but hurts privacy.
For the AG News corpus, utility decreases to a greater extent than the privacy gain, resulting in a negative
privacy-utility trade-off. If we compare the running times of model training including the nearest neighbor
mapping to the ones using the same setup but without the mapping, we notice a growth of about three
minutes for the LSTM. For BERT, the perturbation of words adds about 10 minutes to the training of a
model for one experiment setup.
Now, we compare the results of combining the Multivariate Laplace mechanism and the mapping to the
nearest neighbor to the results of using only the DP mechanism without the vector mapping. Note that
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Vector DP Dataset Model 𝜖
Change Change Trade-offMapping Mechanism in Utility in Privacy

Trustpilot
LSTM

0.1 -0.284 +0.285 +0.002
1 -0.284 +0.288 +0.003
10 -0.285 +0.267 -0.018
50 -0.088 -0.014 -0.101
100 -0.059 -0.012 -0.071
150 -0.061 -0.008 -0.068

BERT 150 +0.005 -0.036 -0.031Nearest Multivariate
Neighbor Laplace

AG News
LSTM

0.1 -* -* -*
1 -* -* -*
10 -0.225 +0.534 +0.309
50 -0.041 +0.003 -0.038
100 -0.019 +0.004 -0.015
150 -0.014 +0.004 -0.010

BERT 150 -0.008 +0.005 -0.002

* We have left out results where the model behaves like a random guesser.
Table 6.1 Performance of experiments on combining the Multivariate Laplace mechanism with mapping to the
nearest neighbor (without bounding sensitivity) with respect to privacy and utility. Favorable trade-offs are indicated
in bold.

results for using only the Multivariate Laplace mechanism have already been discussed separately in Sec-
tion 5.1 and are visualized in Table 5.1. This comparison reveals that the size of the utility decreases is
approximately the same in both situations, so one can assume that the vector mapping approach does not
substantially influence utility. On the other hand, empirical privacy seems to be negatively affected by the
vector mapping as the results show smaller increases in privacy or even privacy losses for some 𝜖’s which
do not occur without the vector mapping. This is also reflected in the values for the privacy-utility trade-
off, which are primarily negative and further from zero than for the experiments without vector mapping.
Overall, the vector mapping seems to especially harm privacy. A possible reason is that perturbed words
are being mapped back to the original word by the mapping and thereby help the simulated adversary.
Overall, incorporating the mapping to the nearest neighbor to the usage of the Multivariate Laplace mech-
anism does not yield an improved trade-off between privacy and utility as compared to not including it.
We continue to investigate if the situation changes after including different approaches for bounding sensi-
tivity. These have already been discussed separately in the previous chapters. Table 6.2 gives an overview
of the results of including these approaches on top of the nearest neighbor mapping. In the table, we
have again left out the results for the AG News corpus, where the model fails to learn because too much
noise is added. This is the case for the smallest two to four 𝜖 values. Additionally, we only performed
experiments for 𝜖 = 150 on BERT to save some computational effort. We selected this value of 𝜖 because
previous experiments have shown that the Multivariate Laplace mechanism mostly achieves its most fa-
vorable privacy-utility trade-offs for this value of 𝜖 . Therefore, we believe that it is a good selection to gain
an impression of how BERT would perform for a particular combination of approaches and allow for fu-
ture research to perform more extensive experiments where reasonable. To learn how the vector mapping
affects the different experiment settings, we will also compare the results in Table 6.2 to the corresponding
experiment settings without any vector mapping, which have been described in Chapter 5.
For normalization to unit length, the privacy-utility trade-off is negative across all 𝜖 values and for both
datasets. Even though the absolute values of these numbers are small, they are still comparably more
negative than without the inclusion of the vector mapping. Also, without the vector mapping, we saw a
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positive trade-off for 𝜖 = 150 on the Trustpilot dataset and 𝜖 = 100 on the AG News corpus. This compar-
ison strengthens our assumption that mapping to the nearest neighbor introduces additional distortions
to the embedding space, which reduces performance on downstream tasks. However, if we consider the
changes in privacy and utility, we see that with the added vector mapping, there is a smaller decrease in
utility but also a smaller enhancement of privacy. Therefore, it is more likely that the mapping helps both,
the performance of the main task and the simulated adversary on the privacy tasks. Thereby, the adversary
seems to have a larger gain in performance, which then leads to a worse privacy-utility trade-off.
The picture looks different for the adapted version of normalization to unit length. Across different 𝜖
values, the decrease in utility is smaller if the nearest neighbor mapping is included. There is even an
increase in utility for the two largest 𝜖’s on the Trustpilot dataset. However, vector mapping also helps
the simulated adversary as it leads to smaller increases in privacy. Overall, the privacy-utility trade-off
differs for the different datasets and 𝜖 values. On the Trustpilot dataset, we receive a favorable trade-off
for 𝜖 = 100 when including vector mapping while without it all trade-off values were negative. We do not
have a favorable privacy-utility trade-off on the AG News corpus for any value of 𝜖 when including the
vector mapping. Without the vector mapping, the trade-off is positive for 𝜖 = 100. For the BERT model,
there is no favorable privacy-utility trade-off for either of the two datasets.
Including the vector mapping in addition to the clipping to observed range approach has a similar effect.
For most of the experiments, we notice a larger utility so it can be assumed that vector mapping helps
performance on the main tasks. At the same time, it helps the adversary with the privacy tasks, which
results in less private models. The only experiment, where the privacy-utility trade-off is increased using
the mapping is for 𝜖 = 10 on the AG News dataset. Here, privacy and utility are increased, leading to a
trade-off, which is about four times as good as compared to not including the mapping. In the absence of
any other positive trade-off, one can consider this an outlier. Again, for BERT, we do not get a favorable
trade-off for any of the datasets if we include the mapping to the nearest neighbor.
If we include normalization to the observed range the effects differ depending on the dataset. On the
Trustpilot dataset, the nearest neighbor mapping provides favorable privacy-utility trade-offs, which are
also clearly improved compared to not including the mapping. This is mostly due to a smaller decrease
in utility and slightly worse privacy. However, since the effect on utility is larger, it does not show in the
trade-off. For the AG News corpus, there is a degradation of the privacy-utility trade-off visible. This can
be explained by a larger decrease in utility while privacy grows stronger under vector mapping. For the
two experiments on BERT, the privacy-utility trade-off is again negative for both two datasets.
A similar pattern shows for normalization to the interval [−1, 1]𝑑 when combined with the nearest neigh-
bor vector mapping. Here, we also get a favorable privacy-utility trade-off for the Trustpilot while the
trade-off is negative for the AG News corpus. However, the trade-off for the Trustpilot dataset would be
even better if we do not use the vector mapping. The vector mapping has the effect of a smaller decrease
in utility but it also shrinks the increase in privacy. The same trends apply to the AG News corpus. Since
we already have a negative privacy-utility trade-off without the vector mapping, including it impairs the
trade-off even more. Again, BERT fails to achieve a favorable trade-off in our two experiments on this
model type.
For dimensionality reduction using the JL lemma, there is not a clear pattern visible. It is difficult to judge
how the privacy-utility trade-off changes when the nearest neighbor vector mapping is included as for
some 𝜖 values the trade-off is improved while for others it is reduced. This also applies to both datasets.
However, the trade-off is mostly negative for the dimensionality reduction approach anyway, even with-
out the vector mapping, so this situation does not change when the mapping is included. The BERT model
yields negative privacy-utility trade-offs in this experiment setting as well.
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Vector Sensitivity Dataset Model 𝜖
Change Change Trade-offMapping Approach in Utility in Privacy

Trustpilot
LSTM

0.1 -0.292 +0.290 -0.002
1 -0.292 +0.290 -0.002
10 -0.292 +0.290 -0.002
50 -0.283 +0.282 -0.001
100 -0.130 +0.118 -0.012

Normali- 150 -0.129 +0.009 -0.119
Nearest zation to BERT 150 -0.007 -0.035 -0.041
Neighbor unit length

AG News
LSTM

0.1 -* -* -*
1 -* -* -*
10 -* -* -*
50 -* -* -*
100 -0.162 +0.126 -0.037
150 -0.106 +0.053 -0.053

BERT 150 -0.015 +0.010 -0.005

Trustpilot
LSTM

0.1 -0.292 +0.290 -0.002
1 -0.292 +0.290 -0.002
10 -0.292 +0.290 -0.002
50 -0.289 +0.286 -0.002

Normali- 100 +0.120 +0.118 +0.074

zation to 150 +0.066 +0.009 -0.014
Nearest unit length BERT 150 -0.002 -0.029 -0.030
Neighbor (adapted)

AG News
LSTM

0.1 -* -* -*
1 -* -* -*
10 -* -* -*
50 -* -* -*
100 -0.179 +0.130 -0.049
150 -0.149 +0.021 -0.128

BERT 150 -0.019 +0.002 -0.017

Trustpilot
LSTM

0.1 -0.288 +0.287 -0.001
1 -0.286 +0.284 -0.002
10 -0.279 +0.239 -0.040
50 -0.034 +0.029 -0.005

Normali- 100 -0.009 +0.018 +0.008

zation to 150 -0.012 +0.017 +0.005
Nearest the interval BERT 150 +0.003 -0.031 -0.028
Neighbor [−1, 1]𝑑

AG News
LSTM

0.1 -* -* -*
1 -* -* -*
10 -* -* -*
50 -0.131 +0.027 -0.103
100 -0.131 +0.020 -0.111
150 -0.129 +0.020 -0.109

BERT 150 -0.014 +0.002 -0.011

Trustpilot
LSTM

0.1 -0.278 +0.273 -0.005
1 -0.282 +0.275 -0.008
10 -0.003 +0.048 +0.045
50 -0.004 +0.023 +0.020

Normali- 100 -0.006 +0.024 +0.018

zation to 150 -0.003 +0.025 +0.022



6.2 Random Choice Between First and Second Nearest Neighbor

53

Nearest observed BERT 150 -0.023 -0.037 -0.060
Neighbor range

AG News
LSTM

0.1 -* -* -*
1 -* -* -*
10 -0.102 +0.044 -0.058
50 -0.099 +0.030 -0.069
100 -0.107 +0.027 -0.080
150 -0.107 +0.028 -0.078

BERT 150 -0.016 +0.003 -0.013

Trustpilot
LSTM

0.1 -0.287 +0.289 +0.002
1 -0.279 +0.289 +0.010
10 -0.273 +0.260 -0.013
50 -0.078 -0.005 -0.083

Clipping 100 -0.074 -0.006 -0.080

to 150 -0.047 -0.005 -0.051
Nearest observed BERT 150 +0.020 -0.028 -0.008
Neighbor range

AG News
LSTM

0.1 -* -* -*
1 -* -* -*
10 -0.198 +0.601 +0.403
50 -0.036 +0.001 -0.034
100 -0.016 +0.003 -0.013
150 -0.019 +0.004 -0.017

BERT 150 -0.012 +0.004 -0.008

Trustpilot
LSTM

0.1 -0.292 +0.290 -0.002
1 -0.292 +0.290 -0.002
10 -0.292 +0.290 -0.002
50 -0.276 +0.264 -0.011

Dimen- 100 -0.206 +0.056 -0.150

sionality 150 -0.209 +0.088 -0.120
Nearest Reduction BERT 150 -0.041 -0.031 -0.072
Neighbor (JL lemma)

AG News
LSTM

0.1 -* -* -*
1 -* -* -*
10 -* -* -*
50 -0.443 +0.777 +0.334
100 -0.324 +0.237 -0.087
150 -0.259 +0.226 -0.033

BERT 150 -0.016 +0.012 -0.004
Table 6.2 Performance of experiments on combining the Multivariate Laplace mechanism with mapping to the
nearest neighbor and different approaches for bounding sensitivity with respect to privacy and utility. Favorable
trade-offs are indicated in bold.
* We have left out results where the model behaves like a random guesser.

6.2 Random Choice Between First and Second Nearest Neighbor

To examine this vector mapping approach, we again begin by comparing the results for using only the
Multivariate Laplace mechanism to those where we additionally add the mapping to a random choice be-
tween the first and second nearest neighbor. The results for the Multivariate Laplace mechanism without
the vector mapping approach have been talked about in Section 5.1 and are detailed in Table 5.1. We will
now check if adding the random vector mapping step improves the privacy-utility trade-off. A detailed
overview of the corresponding results can be found in Table 6.3.
We see that the mapping approach always leads to a decrease in utility across all 𝜖 values, datasets, and
models. For some of the 𝜖 values used with the LSTM, for example, 𝜖 = 100 on the Trustpilot dataset, this
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Vector Mapping Dataset Model 𝜖 Change Change Trade-off
in Utility in Privacy

Trustpilot LSTM

0.1 -0.287 +0.289 +0.003
1 -0.288 +0.289 +0.001
10 -0.288 +0.246 -0.042
50 -0.036 -0.002 -0.038

Randomly 100 -0.037 -0.002 -0.038

choose 150 -0.063 -0.005 -0.068

1st or 2nd BERT 150 -0.001 +0.000 -0.001

nearest

AG News LSTM

0.1 -* -* -*

neighbor 1 -* -* -*
10 -0.229 +0.657 +0.428
50 -0.031 +0.002 -0.029
100 -0.031 +0.002 -0.029
150 -0.029 +0.002 -0.027

BERT 150 -0.018 +0.020 +0.003

* We have left out results where the model behaves like a random guesser.
Table 6.3 Performance of experiments on combining theMultivariate Laplacemechanismwithmapping to a random
choice between the first and second nearest neighbor (without bounding sensitivity) with respect to privacy and
utility. Favorable trade-offs are indicated in bold.

decrease is smaller than if there was no vector mapping. The changes in empirical privacy are typically
larger for smaller 𝜖’s. In many cases, this is due to the fact that the noise added by the mechanism is
too large and the model, therefore, resembles a random guesser. Whenever this was very obvious from a
model’s performance metrics, we excluded the corresponding results from the table. While we also gain
privacy for the larger 𝜖 values, we notice that one can achieve larger privacy values if the vector mapping
is not included. Together with the results on utility, we assume that the vector mapping approach helps
the performance of all models in the same way. Thus, they perform better on the utility as well as on
the privacy tasks, while the latter is less desirable because this would be helping a potential adversary.
Depending on which task it helps more, the privacy-utility trade-off is affected. For the majority of the ex-
periments, the trade-off is unfavorable. The effect of the vector mapping on the trade-off varies. For some
experiments, the trade-off is pushed towards a less negative, better value, while for others, it becomes
worse. The BERT model achieves a positive trade-off for the AG News corpus and a slightly negative one
for the Trustpilot dataset. Judging from these results, BERT might profit more from this vector mapping
approach. Overall, it is unclear from the results if mapping perturbed word embedding vectors to a random
choice between their first or second nearest neighbor improves the privacy-utility trade-off over not using
any vector mapping.
With respect to the running times, we again see an increase of about three minutes for LSTM training in
comparison to the experiment setup, which is the same apart from the vector mapping. This is approxi-
mately the same growth in running time as we have seen for the first vector mapping approach, mapping
to the nearest neighbor embedding.

Also for this vector mapping approach, we next combine it with the different approaches for bounding
sensitivity to see if the vector mapping does have a positive effect on the trade-off between privacy and
utility for them. The detailed results are presented in Table 6.4 and also compared against those from
experiments on the same sensitivity approach but without any vector mapping as described in Chapter
5. This will help to assess how large the effect of the vector mapping approach is. Note that in Table 6.4,
results are excluded if the model obviously fails to learn and rather behaves like a random guesser. This
was the case for some of the smaller 𝜖 values, which most likely led to too much noise being added and
the model not being able to cope with it. As before, experiments using BERT were restricted to 𝜖 = 150 to
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limit some computational effort.
Normalization to unit length yields a decrease in utility and a gain in privacy across all values of 𝜖 and
for both datasets. For most experiments, we lose less of our utility if we include the mapping to a random
choice of the first and second nearest neighbor. For the empirical privacy, there is no clear pattern visible.
Some experiments profit from the vector mappings while others do not. The same applies to the privacy-
utility trade-off. Nevertheless, there is a greater number of experiments, where the trade-off improves if the
vector mapping is included. For the BERT model, we get a negative trade-off for the Trustpilot dataset but
a positive one for the AG News corpus. With the adapted version of this normalization to unit length, we
achieve very similar results. There are also more experiments, where the privacy-utility trade-off benefits
from including this vector mapping approach. Furthermore, using BERT results in similar trade-offs on
both datasets as with the non-adapted version of this sensitivity approach.
The approach that clips embedding vectors to the observed range also seems to profit from adding the
vector mapping. We do experience a loss in utility for this combination. However, incorporating the
mapping makes this loss smaller for almost all experiments on the two datasets. The change in privacy
is mostly negative for the Trustpilot dataset and mostly positive for the AG News corpus. However, we
cannot make any statement about the vector mapping’s effect on privacy since the results vary for different
values of 𝜖 . As a consequence, the privacy-utility trade-off is negative for most of the settings where the
model performs better than random guessing. Only for the LSTM on the AG News corpus with an 𝜖 of
10, do we notice a positive trade-off since the gain in privacy is larger than the loss in utility. Also for the
other 𝜖 values on AG News, the trade-offs improve slightly over the experiments without vector mapping
but they still come up negative. BERT yields a negative privacy-utility trade-off for both datasets but the
value achieved on the AG News corpus is not very far from zero.
When combining normalization to the observed range with the random vector mapping approach, we see a
different picture. Including the vector mapping seems to lead to a stronger decrease in utility than leaving
it out. At the same time, the privacy gain becomes smaller for many of our experiments. Overall, this leads
to negative values for the privacy-utility trade-off in themajority of experiments. Without vector mapping,
we received a higher number of positive trade-off values for normalization to the observed range.
If we include normalization to the interval [−1, 1]𝑑 with the vector mapping approach, we get utility
decreases for 𝜖 ≤ 50 on the Trustpilot dataset and increases for all larger values. On the AG News dataset,
utility is reduced for all values of 𝜖 . The values for the change in utility signal a slight improvement in
utility when using the random mapping procedure on the Trustpilot dataset, while there are decreases on
AG News. Thus, with respect to utility, the vector mapping seems to have a positive influence only in the
case of the Trustpilot dataset. With respect to privacy, we see an inverse effect. While privacy is enhanced
for all 𝜖 values, the AG News corpus seems to profit more. On this corpus, we get a stronger enhancement
in privacy by including the vector mapping. On the Trustpilot dataset, using the mapping seems to shrink
the privacy gains. Still, we get generally favorable trade-offs for the majority of the 𝜖 values. Additionally,
for all 𝜖 , the trade-off is improved when the vector mapping is included. On the AG News corpus, there
are only negative trade-offs and no clear improvement over not using the vector mapping is perceptible.
BERT yields negative trade-offs in the experiments on both datasets.
For dimensionality reduction using the JL lemma, there is no clear picture noticeable across different 𝜖
values, which would tell us if utility and privacy profit or are harmed by the vector mapping approach.
This is partly due to the approach leading to large performance decreases for all tasks, which further
distort the changes in privacy and utility. In general, we see utility decreases and privacy enhancements
for all experiments. With respect to the trade-off between the two, there are positive values for 𝜖 = 100
on Trustpilot and for 𝜖 ∈ {50, 100} on AG News. Thus, using the vector mapping approach gives us one
more instance of a positive trade-off. Whenever the trade-off is positive for the dimensionality reduction
approach with a vector mapping, it increases in absolute value when the randommapping is incorporated.
BERT yields a negative trade-off on Trustpilot and a positive one on AG News.
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Vector Sensitivity Dataset Model 𝜖
Change Change Trade-offMapping Approach in Utility in Privacy

Trustpilot
LSTM

0.1 -0.292 +0.290 -0.002
1 -0.292 +0.290 -0.002
10 -0.292 +0.290 -0.002
50 -0.275 +0.281 +0.005

Randomly 100 -0.126 +0.125 -0.001

choose Normali- 150 -0.099 +0.125 +0.026

1st or 2nd zation to BERT 150 -0.101 +0.018 -0.083

nearest unit length

AG News
LSTM

0.1 -* -* -*

neighbor 1 -* -* -*
10 -* -* -*
50 -* -* -*
100 -0.208 +0.306 +0.099
150 -0.162 +0.157 -0.005

BERT 150 -0.053 +0.097 +0.044

Trustpilot
LSTM

0.1 -0.292 +0.290 -0.002
1 -0.292 +0.290 -0.002
10 -0.292 +0.290 -0.002
50 -0.284 +0.286 +0.002

Randomly Normali- 100 -0.097 +0.083 -0.014

choose zation to 150 -0.171 +0.098 -0.073

1st or 2nd unit length BERT 150 -0.078 +0.016 -0.063

nearest (adapted)

AG News
LSTM

0.1 -* -* -*

neighbor 1 -* -* -*
10 -* -* -*
50 -* -* -*
100 -0.204 +0.357 +0.153
150 -0.207 +0.156 -0.052

BERT 150 -0.033 +0.097 +0.064

Trustpilot
LSTM

0.1 -0.287 +0.288 +0.001
1 -0.289 +0.287 -0.002
10 -0.260 +0.251 -0.010
50 -0.023 +0.048 +0.025

Randomly Normali- 100 +0.011 +0.051 +0.062

choose zation to 150 +0.010 +0.042 +0.052

1st or 2nd the interval BERT 150 +0.010 -0.029 -0.019

nearest [−1, 1]𝑑

AG News
LSTM

0.1 -* -* -*

neighbor 1 -* -* -*
10 -* -* -*
50 -0.208 +0.053 -0.155
100 -0.208 +0.049 -0.159
150 -0.106 +0.050 -0.056

BERT 150 -0.019 +0.005 -0.014

Trustpilot
LSTM

0.1 -0.279 +0.267 -0.013
1 -0.280 +0.267 -0.013
10 -0.044 +0.015 -0.028
50 -0.027 +0.016 -0.011

Randomly Normali- 100 -0.027 +0.019 -0.008

choose zation to 150 -0.007 +0.026 +0.019
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1st or 2nd observed BERT 150 -0.001 -0.017 -0.018

nearest range

AG News
LSTM

0.1 -* -* -*

neighbor 1 -* -* -*
10 -0.128 +0.046 -0.081
50 -0.079 +0.018 -0.060
100 -0.081 +0.019 -0.062
150 -0.081 +0.019 -0.062

BERT 150 -0.020 +0.004 -0.016

Trustpilot
LSTM

0.1 -0.289 +0.286 -0.003
1 -0.287 +0.289 +0.001
10 -0.264 +0.245 -0.018
50 -0.018 -0.010 -0.027

Randomly Clipping 100 -0.017 -0.010 -0.027

choose to 150 -0.013 -0.003 -0.016

1st or 2nd observed BERT 150 +0.004 -0.036 -0.031

nearest range

AG News
LSTM

0.1 -* -* -*

neighbor 1 -* -* -*
10 -0.204 +0.564 +0.360
50 -0.011 +0.004 -0.007
100 -0.013 +0.005 -0.009
150 -0.011 +0.007 -0.004

BERT 150 -0.006 +0.001 -0.005

Trustpilot
LSTM

0.1 -0.292 +0.290 -0.002
1 -0.292 +0.290 -0.002
10 -0.292 +0.290 -0.002
50 -0.286 +0.248 -0.038

Randomly Dimen- 100 -0.178 +0.246 +0.068

choose sionality 150 -0.160 +0.159 -0.001

1st or 2nd Reduction BERT 150 -0.123 +0.003 -0.120

nearest (JL lemma)

AG News
LSTM

0.1 -* -* -*

neighbor 1 -* -* -*
10 -* -* -*
50 -0.428 +0.933 +0.505
100 -0.393 +0.475 +0.082
150 -0.262 +0.209 -0.053

BERT 150 -0.053 +0.120 +0.067
Table 6.4 Performance of experiments on combining theMultivariate Laplacemechanismwithmapping to a random
choice between the first or second nearest neighbor and different approaches for bounding sensitivity with respect
to privacy and utility. Favorable trade-offs are indicated in bold.
* We have left out results where the model behaves like a random guesser.
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7 Discussion

The following chapter summarizes our main findings, discusses limitations, and outlines potential objec-
tives for future research.

7.1 Main Findings

Our experiments as well as the theoretical considerations have led to some interesting findings regarding
different factors influencing the privacy-utility trade-off.

Differential Privacy Mechanisms

We learned that the Multivariate Laplace as well as the Truncated Gumbel mechanism can be used to
guarantee DP for individual word embeddings. Our experiments showed that they can both yield positive
privacy-utility trade-offs, where the gain in privacy exceeds the loss in utility. For the Multivariate Laplace
mechanism, there is a strong dependence on the privacy budget 𝜖 such that an increasing 𝜖 leads to smaller
utility losses as well as smaller privacy gains. Thus, positive trade-offs between privacy and utility can
often only be achieved for larger privacy budgets. For smaller privacy budgets, the large amount of noise
added by this mechanism might hinder a downstream model from learning and cause it to behave like
a random guesser. To spot this, one should not only look at the privacy-utility trade-off but also at the
performance of tasks with respect to metrics like the F1 score. The Truncated Gumbel mechanism exhibits
better chances of reaching a reasonable privacy-utility trade-off also for smaller values of 𝜖 since empirical
utility and privacy values are more consistent across different 𝜖 values. However, if one has a large privacy
budget at hand, the Multivariate Laplace mechanism might be a reasonable choice because it has the
potential to outperform the Truncated Gumbel mechanism. Our results suggest that for smaller privacy
budgets, the Truncated Gumbel mechanism is the better option.

Dependency on Evaluation Datasets and Tasks

We further noticed that the same mechanism can yield different results for the privacy-utility trade-off on
different datasets in our experiments. We assume that this is not only due to characteristics of the dataset
but can also be attributed to the tasks, which have been chosen to evaluate empirical utility and privacy on
the respective dataset. A possible explanation for the differences in the results is that certain approaches
are better suited for providing privacy for the respective dataset and tasks. Alternatively, it might be that
some tasks are easier to privatize through DP than others. Providing indistinguishability for individual
words might have a greater impact on the performance of a simulated adversary because of the task’s
design.

Theoretical and Empirical Privacy Guarantees

The influence of the dataset and tasks on the experiments’ results could be one reason why we cannot
establish a clear connection between theoretical privacy guarantees and empirical results for privacy and
utility. In our experiments, stronger privacy guarantees do not seem to be related to larger gains in privacy
or a more favorable privacy-utility trade-off.
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Model Selection

Moreover, the type of model used in the downstream tasks affects empirical privacy and utility as well as
the trade-off between the two. Already for the baseline models, BERT consistently outperforms the LSTM.
During the experiments, BERT seems to cope better with the noise introduced by the DP mechanisms
and attains F1 scores similar to the baselines on the perturbed data. Thereby, it makes part of the noise
additions ineffective and leads to smaller utility losses and smaller privacy gains than an LSTM. While
smaller utility losses are generally desirable, smaller privacy gains are not. In some cases, BERT even led
to reductions in empirical privacy, which corresponds to giving the adversary an advantage and harms
privacy. Thus, when using DP for BERT, one should keep in mind that better performance with respect to
a metric like the F1 score does not necessarily go hand in hand with an enhanced privacy-utility trade-off.

Approaches to Bounding Sensitivity

Since the privacy-utility trade-off is influenced by the dataset and task it is evaluated on as well as by
the DP mechanism and model used, we cannot make a generally valid statement about how an approach
to bounding sensitivity enhances the privacy-utility trade-off. Still, all approaches achieved a favorable
trade-off in at least one of the settings. In many of our experiment setups, combining the Truncated Gum-
bel mechanism and an LSTM achieved the most favorable privacy-utility trade-off across different values
of 𝜖 . Thus, this combination can be a good starting point when deploying DP mechanisms for privatizing
word embedding vectors.
When using dimensionality reduction with the JL lemma, we noticed that this approach seems to cause
strong distortions to the embedding space, which generally hurts the performance on downstream tasks.
While in some settings this may come with an improvement in the privacy-utility trade-off, other ap-
proaches might achieve similar improvements without hurting model performance as much. Some ap-
proaches, like clipping to the observed range, generally lead to an improved performance of downstream
models with respect to the F1 score. Thereby, they do not only help utility but also a potential adversary
as they enhance performance on the privacy task, which results in a decrease in privacy. This makes it a
gamble whether the positive effect on the utility task is larger than the negative effect on the privacy task.
Its outcome will determine if there is an improvement in the privacy-utility trade-off.

Approaches to Vector Mapping

The results for our experiments where perturbed embedding vectors are mapped to their nearest neighbor
suggest that such a mapping generally increases model performance. Thereby, the utility losses compared
to the baselines are smaller but privacy gains also become smaller simultaneously. Overall, this often
negatively affects the privacy-utility trade-off. We hypothesize that this is due to perturbed words being
mapped back to the original word during the nearest neighbor mapping. Since there is a high risk that
this harms privacy, we do not see any benefit from incorporating the mapping to the nearest neighbor.
We observe the same effects when we choose a random mapping to either the first or the second nearest
neighbor as our vector mapping approach. It also seems to result in general increases in performance
on downstream tasks, which improves utility but simultaneously supports a potential adversary. The
noisy vector mapping, inherent to the Truncated Gumbel mechanism, seems to work better than a vector
mapping approach added to the Multivariate Laplace mechanism since it can improve the privacy-utility
trade-off more reliably.

Running Times

With respect to the running times, we notice that the DP mechanisms are the primary source of addi-
tional running time. For a single model’s training, the running time increases by three minutes for both,
the Multivariate Laplace mechanism and the Truncated Gumbel mechanism compared to the baseline sce-
nario with unperturbed word embeddings. However, if the perturbations need to be pre-computed, as is
the case for BERT, we need to budget more time for these pre-computations. This is also due to the vector
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mapping step that needs to be added for the computation of the perturbations for BERT. In general, the
computation of nearest neighbors for vector mapping further adds to the running time. Using the opti-
mized and approximating computations provided by the Python package faiss [Joh+19], this increase in
running time can be kept at a negligible level. Adding approaches to bounding sensitivity only increases
the running times in the order of seconds. Thus, it can be advisable to try out different approaches for a
concrete use case to see if one of the approaches can support the privacy-utility trade-off for the respective
setting.

7.2 Limitations

It should be noted that the presentwork and the results of the experiments are subject to several limitations,
which confine the generality of our observations.

Evaluation Datasets and Tasks

A strong limitation of this work follows from the dependency of empirical privacy and utility on the dataset
and tasks that are used to determine the former. Our experiment results show that the privacy-utility
trade-off can vary largely for different datasets and tasks. It raises the question of the extent to which the
different datasets’ results are comparable since they have been determined using different dataset-specific
tasks. While the gender identification task aims to identify information implicitly contained in the texts,
the named entities, which are the target of the other privacy task, are explicitly present. DP provides
indistinguishability between individual words so it can be assumed that it is better suited to mask words
than implicit features of the texts. Consequently, it can be assumed that the suitability of tasks to evaluate
privacy varies, naturally leading to differences in the results.
Another difficulty linked to the selection of tasks arises especially if utility and privacy tasks for one
dataset have very different performance levels to begin with. For example on the AG News corpus using
an LSTM, our baseline for empirical utility is about 0.608 while our baseline for empirical privacy is about
0.041. Thus, an absolute deviation of, for instance, 0.01 would have a different scope and impact in the
two cases. Considering relative deviations instead would also not solve the issue. Then, we would see
deviations larger than 1000% if, for example, empirical privacy increases to about 0.5. Consequently, the
changes in privacy and utility are not directly comparable, especially in situations where the baseline
performances of the privacy and utility tasks are very different. In the case of this work, we furthermore
observed strong skewness with class distributions of the different tasks. It is also unclear if and how this
might affect privacy and utility.

Privacy-Utility Trade-off Metric

In addition to this, there is a lack of a generally suitable way to quantify the privacy-utility trade-off. We
use a simple sum of empirical privacy and utility as a heuristic for the trade-off. Thereby, privacy and
utility are weighted equally. By definition, this measure turns out positive whenever our privacy gain
outweighs the utility loss. This characterizes a favorable privacy-utility trade-off. However, the sum is
also positive if there is a utility gain larger than the privacy loss. Since the main purpose of applying
DP is to provide privacy guarantees, this outcome does not align with the underlying goal. We identify
such cases during our evaluation by considering the changes in empirical privacy and utility in addition
to the heuristic for the trade-off. This way we can determine if a positive value actually signals a favorable
privacy-utility trade-off. However, it would be desirable to have a more suitable metric for quantifying
the trade-off, which emphasizes the favorable scenario. Using a weighted sum where privacy is weighted
more heavily might be a straightforward approach. However, this would also require a careful choice of
the weighting which might further depend on the concrete use case.
Alternatively, a more targeted metric for empirical privacy could make the changes in privacy and utility
more independent. While it does logically make sense that an increase in privacy is connected to a decrease
in utility, the way they are defined in this work results in them behaving very similarly. Per our definition,



7 Discussion

62

both metrics are based on the F1 score and one is the inverse of the other. Even though they are evaluated
on separate tasks, it is not surprising that their values exhibit reverse but similar trends. This, in turn,
makes it difficult to derive meaningful insights about the privacy-utility trade-off because the reverse
effects of empirical privacy and utility make it likely that they cancel each other out. The approaches to
bounding sensitivity and the vector mapping approaches mainly target utility improvement since they do
not provide any privacy guarantees by themselves. At the same time, they should not cause decreases in
privacy. However, the direct connection between the two metrics makes it difficult to isolate these effects.

Selection of Mechanisms, Parameters, and Models

For our work, DP mechanisms and models were selected based on current research trends. We have se-
lected more than one for our experiments to see if any patterns persist across different mechanisms and
models. However, this limited selection cannot paint a complete picture of the approaches’ influence on
the privacy-utility trade-off.
Also, there are other potential influencing factors, which have not been examined in this work. The im-
plementations of many of the methods used are based on assumptions about their parameters. For the
Truncated Gumbel mechanism, the maximum and minimum inter-word distances are central parameters
that determine the amount of noise the mechanism adds. In many of the experiment settings where we
apply the mechanism, we use estimates for these parameters based on our training dataset. These approx-
imations might not be valid for the development or test datasets, let alone for other data corpora than the
ones we are working with. This limits the validity and generality of the theoretical privacy guarantees we
provide. Additionally, it is unclear how the estimates’ limited validity affect the mechanism’s reliability
and results.
The implementation of our dimensionality reduction approach using the JL lemma heavily relies on the
target dimension, which we approximate via a bound on the Gaussian width (see Lemma 4.5.2). Using a
different bound could considerably influence our experiment results for this approach. The same holds
for the parameters 𝛽 and 𝛿 , which we choose based on the research of [FK21]. For our vector mapping
approach, which randomly selects either the first or the second nearest neighbor embedding, we had to
define a tuning parameter to govern the probability of choosing the first or second nearest neighbor. Al-
though we followed [Xu+21b] and set the tuning parameter to their best-performing value, it might not
be the most suitable choice for each of our experiment settings.
Due to computational constraints, we had to cut out some of the originally planned experiments. Neither
adding differentially private noise through the Multivariate Laplace or the Truncated Gumbel mechanism
nor any of our approaches lead to considerable increases in running time. Still, due to the sheer number
of experiments performed in this work, we had to carefully choose and restrict our experiment settings.
Therefore, we had to cut out some other DP mechanisms that we had originally planned to examine next
to the Multivariate Laplace and the Truncated Gumbel mechanism. It would have been too expensive to
perform all experiments for varying values of 𝜖 for further DP mechanisms. Conditioned by the original
plan to compare against further DP mechanisms, we chose not to calibrate the noise of the Multivariate
Laplace mechanism to the sensitivity even for the experiment setting where sensitivity is bounded and
such a calibration would have been possible. Not calibrating the noise would have facilitated the compar-
ison with other DP mechanisms. In hindsight, now that we are only considering the Multivariate Laplace
and the Truncated Gumbel mechanism, the comparison between those would have profited if the Laplace
noise had been calibrated to sensitivity. This would allow us to also compare across the two mechanisms
how the different approaches affect the amount of noise added. Without this calibration, for the Multi-
variate Laplace mechanism, only the theoretical privacy guarantees are affected by the approaches while,
for the Truncated Gumbel mechanism, it is the noise. Thus, we are now limited to observing the changes
in noise or theoretical privacy guarantees for each of the mechanisms individually.
The comparison between our two choices of models, LSTM and BERT, should be done with caution be-
cause of the differences in their perturbation processes. For the LSTM, we directly perturb the embeddings
that the models work with and build the perturbation process around the model’s embedding layer. For
BERT, we prepend the perturbation process to the model. The perturbation process returns real words,



7.3 Future Work

63

which are put back together to text sequences. The model then uses them to construct its own embeddings.
We only compare BERT to LSTM with an additional vector mapping step such that the two settings are
more similar. However, the additional embedding step might be part of the reason why we often observe
differences in the privacy-utility trade-off for the two different models.

Computational Constraints

Another restriction of the results of our experiments, which results from computational constraints, is
that we limited the experiments using BERT and a Multivariate Laplace mechanism to only using 𝜖 = 150.
Including experiments also for the other 𝜖 values, would have given a more complete picture.
Due to the computational constraints we also refrained from performing additional hyperparameter tun-
ing during the experiments and instead used the same parameters that yielded superior results during
hyperparameter tuning for the baseline models. As a consequence, it can be assumed that the overall
model performance during the experiments could have been higher if the hyperparameters had been co-
ordinated with the respective experiment setting. That would also better fit how it would be handled in a
real-world scenario. Here, the entity who is training the model would only have access to the perturbed
data and would, therefore, perform hyperparameter tuning on the perturbed data. During hyperparameter
tuning, we should not just select the best-performing hyperparameter set with respect to the F1 score even
if this corresponds to common practice. Keeping in mind the metrics we are using for empirical privacy
and utility, purely looking at the F1 score gives utility an advantage. It essentially corresponds to selecting
the hyperparameter set, which yields the best utility, and completely neglecting the privacy aspect.

7.3 Future Work

There are several possible directions for future work, which could help tackle the aforementioned limita-
tions.

Evaluation Datasets and Tasks

To mitigate the strong dependency of the privacy-utility trade-off on the dataset and tasks used for the
evaluation, it should be explored how different datasets and tasks impact privacy and utility. Furthermore,
it needs to be examined which datasets and tasks are suitable for examining empirical privacy and utility
after applying DP mechanisms. Thereby, one should not only consider the tasks for evaluating privacy
and utility separately but also mind that the two tasks should go well together so that they both contribute
equally to the privacy-utility trade-off. In the course of this research, it could also be explored how class
distributions affect the adequacy of tasks for the evaluation. In the long run, it would be great to have a
fixed set of carefully chosen datasets and tasks, which could be used to evaluate any kind of methods with
respect to their impact on the privacy-utility trade-off.

Privacy-Utility Trade-off Metric

A second important research direction is that of a metric to quantify the privacy-utility trade-off. As
described in the previous section, there are several shortcomings associated with the heuristic that was
used in our experiments. Future research could look into possible alternatives that allow for a combined
view of privacy and utility. Ideally, the effects of privacy and utility are decoupled so that they do not
both depend on the same evaluation metric. A metric for the privacy-utility trade-off should prioritize the
improvement of privacy since the primary goal of implementing DP is to safeguard privacy. Also, it should
allow to adapt the weighting of privacy and utility in accordance with concrete use cases and the respective
relevance of privacy and utility to them. A better-tailored metric for empirical privacy and utility could
also help during hyperparameter tuning on perturbed data so that this does not need to happen only based
on the F1 score and can better incorporate the privacy aspect.
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Different Differential Privacy Levels

This work focuses on word-level DP, where each word is perturbed individually and we gain indistin-
guishability guarantees for those individual words. As it has been pointed out in existing research, there
are some disadvantages of word-level DP [MWK22]. For example, the perturbed output of a text sequence
using word-level DP will always be of the same length as the input sequence, which can also leak infor-
mation about the input [MWK22]. Such risks can be overcome by considering sentence-, document-, or
user-level DP. It might, thus, also be an interesting question to examine how the approaches to bounding
sensitivity and vector mapping affect the privacy-utility trade-off if DP is provided on a different level
instead. On the other hand, DP on a word-level provides the advantage that different words could be per-
turbed using different amounts of noise and, thereby, be masked more or less strongly than others. This
can be based on the privacy risk associated with the individual words. While there is already current re-
search that deals with this topic, it might also be interesting to consider the different approaches examined
in this thesis in the context of such adapted privacy allocations.

Further Experiments

To continue the present work and get a more complete picture of different approaches to bounding sen-
sitivity and vector mapping, future research should expand our experiments by considering variations of
the parameters and estimates, which have been used in this thesis. This concerns, for example, the bound
and parameters used for dimensionality reduction via the JL lemma or the tuning parameter for randomly
mapping perturbed embedding vectors to either their first or second nearest neighbor. Additionally, one
could generally look at further DP mechanisms, apart from the Multivariate Laplace and the Truncated
Gumbel mechanism, and how they are influenced by the integration of the different approaches. In the
course of this, one could also try out the Multivariate Laplace mechanism with noise calibrated to the
sensitivity for the experiment settings with bounded sensitivity and compare to our results.
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8 Conclusion

This thesis aimed to examine how usingDP in combinationwith different approaches to bounding sensitiv-
ity and vector mapping influence the privacy-utility trade-off in downstream NLP tasks. We identified five
approaches to bounding sensitivity and two approaches for vector mapping and evaluated them through
their combination with the Multivariate Laplace and the Truncated Gumbel mechanism. For the evalu-
ation, we first explored the implications of the different approaches from a theoretical perspective. We
derived theoretical privacy guarantees and examined how the amount of noise added by the mechanisms
is influenced if sensitivity is bounded or if perturbed word embedding vectors are mapped to the near-
est neighbor. After that, we performed extensive practical experiments for different combinations of DP
mechanisms and approaches to bounding sensitivity and vector mapping.
Our experiments showed that changes in empirical privacy and utility can be governed through the pri-
vacy budget 𝜖 for the Multivariate Laplace mechanism. In most cases, larger privacy budgets are related
to smaller utility losses while, at the same time, they are also linked to smaller privacy gains. However, it
needs to be noted that it is important for the privacy gains to be larger than the utility losses to end up with
a favorable trade-off between the two. The Truncated Gumbel mechanism performs more consistently for
different values of 𝜖 and can, therefore, provide smaller utility losses and larger privacy gains for smaller
privacy budgets. Therefore, if the available privacy budget is small the Truncated Gumbel mechanism
might be a more reasonable choice. If one has a large privacy budget at hand, it could also be worthwhile
to give the Multivariate Laplace mechanism a try since it could potentially also yield better results in such
cases. When incorporating different approaches to bounding sensitivity and vector mapping we noticed a
general increase in performance of downstream tasks for many of them. While their integration can lead
to smaller utility losses, we often observe an improved performance of the simulated adversary simultane-
ously. This corresponds to reduced privacy gains and, thus, rarely improves the privacy-utility trade-off.
We assume that the observation of this effect can largely be attributed to interdependencies between the
metrics for empirical privacy and utility which are both based on the F1 score and one is the inverse of
the other. Therefore, it is hard to delineate the effects on privacy and utility for the different approaches
in our practical experiments. Our results further suggest that the influence on the privacy-utility trade-off
largely depends on the respective experiment setting. We frequently noticed differences in the results for
the same approach and DP mechanism depending on the privacy budget 𝜖 , model, dataset, and tasks used.
There was no clear pattern visible indicating that certain combinations might work better together than
others. Therefore, it is advisable to test the approaches on a concrete use case to see if they can improve
the privacy-utility trade-off. Since the approaches themselves can be implemented with relatively low
additional computational effort, the effort of such tests mainly depends on the computational costs of the
underlying model and experiment setup. A good starting point might be the combination of the Truncated
Gumbel mechanism and an LSTM, which led to a favorable privacy-utility trade-off more often than other
settings in our experiments.
We detected several limitationswhich generally restrict the empirical evaluationwith respect to the privacy-
utility trade-off. First, the interdependencies between metrics for empirical privacy and utility make it
difficult to separate any effects on these variables from each other. Secondly, it is difficult to put the two
variables in relation to each other due to the lack of a quantitative metric for the privacy-utility trade-off.
Another limitation is linked to the strong dependency of experiment results on the dataset and tasks used.
Therefore, future research should focus on improving the metrics for measuring empirical privacy and
utility as well as the trade-off between the two. Additionally, datasets and tasks, on which these metrics
are evaluated, should be carefully selected. This will greatly aid empirical evaluations in the context of DP
and make it easier to perform and assess experiments similar to those performed in this thesis.
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A Appendix

A.1 Hyperparameter Choices for Baseline Models

Dataset & Task Model Max. Length Hidden Size Learning Rate Dropout

Trustpilot: Sentiment Analysis LSTM 500 64 1e-3 0.1
Trustpilot: Sentiment Analysis BERT 512 - 2e-5 0
Trustpilot: Gender Identification LSTM None 64 1e-3 0.1
Trustpilot: Gender Identification BERT 512 - 2e-5 0
AG News: Topic Classification LSTM None 64 1e-5 0
AG News: Topic Classification BERT 512 - 2e-5 0
AG News: NE Identification LSTM 100 128 1e-3 0
AG News: NE Identification BERT 512 - 2e-5 0

Table A.1 Hyperparameter Choices for Baseline Models

A.2 Performance of Baseline Models on Development Datasets

Dataset Model Avg. Acc. Std. Acc. Avg. F1 Std. F1 Avg. Time Std. Time
& Task (in sec.) (in sec.)

Trustpilot: Sentiment LSTM 58.61% 0.0046 0.4582 0.0073 33.29 0.7819
Analysis BERT 79.35% 0 0.6021 0 2265.07 0
Trustpilot: Gender LSTM 69.44% 0.0013 0.6633 0.0025 38.03 0.7992
Identification BERT 66.47% 0 0.6647 0 2276.36 0
AG News: Topic LSTM 69.87% 0.0150 0.5887 0.0194 43.72 0.5549
Classification BERT 83.38% 0 0.7865 0 3052.01 0
AG News: NE LSTM 99.89% 2.46e-05 0.9626 0.0004 50.77 0.4508
Identification BERT 99.90% 0 0.9663 0 3056.69 0

Table A.2 Performance of unperturbed baseline models on the development dataset (averages are over three training
runs for LSTM and one training run for BERT
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Acronyms

BERT Bidirectional Encoder Representations from Trans-
formers

DP Differential Privacy

JL Johnson-Lindenstrauss

LSTM Long Short-Term Memory

NLP Natural Language Processing

RNN Recurrent Neural Network
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