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Abstract

This study systematically identifies arbitrage opportunities within Algorand’s decentralized finance (DeFi) ecosystem,
focusing on Automated Market Maker (AMM) platforms. Utilizing graph algorithms such as Bellman-Ford, alongside
optimization techniques, we introduce a system designed for real-time and historical data arbitrage exploration. While
this initial study focuses on select asset pairs and short time frames, it establishes a framework for future research.
The work combines theoretical and practical insights, suggesting that further refinement and broader implementation
could significantly increase arbitrage profitability.
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1. Introduction

Arbitrage has always been a cornerstone of efficient
markets, functioning as a self-regulating mechanism that
inherently brings an asset’s price to its equilibrium state
across different platforms [30]. The rise of decentralized
finance (DeFi), however, introduces new complexities
into the arbitrage landscape, necessitating innovative ana-
lytical tools and execution protocols. While these char-
acteristics add layers of efficiency and democratization
to financial markets, they also present unique challenges.
The identification and execution of arbitrage opportuni-
ties on blockchain networks involve navigating complex
landscapes of liquidity pools, competition of other arbi-
trageurs, and network latency, among other factors. This
paper aims to address these challenges by presenting a ro-
bust arbitrage system that operates in both real-time and
batch modes.
We begin by providing an examination of arbitrage oppor-
tunity detection methodologies, focusing on the applica-
tion of graph theory as well as optimal routing algorithms
for identifying negative cycles across token networks. We
then delve into optimizing transaction inputs, exploring
methods ranging from binary search algorithms to more

advanced techniques such as convex optimization. Last
but not least we try to apply these methods to historical
states to identify profit-generating transactions on Algo-
rand.

2. Background

2.1. Algorand Blockchain

The Algorand blockchain was introduced in a 2017
white paper by Turing Award winner Silvio Micali, and
its mainnet was subsequently launched in June 2019.
The blockchain’s native token, ALGO, serves a dual
role—both as a medium for transaction fees and as an es-
sential component in its consensus process [28].
Central to Algorand’s design is its consensus algorithm,
known formally as the Algorand Byzantine Fault Toler-
ance Protocol. Based on a Pure Proof-of-Stake (PPoS)
model, the protocol is engineered to deliver immediate
transaction finality and scalability. In each round, a com-
mittee of users is randomly selected to propose and vali-
date the next block. The random selection process is se-
curely managed through a Verifiable Random Function
(VRF), offering both unpredictability and cryptographic
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verifiability [20].
Algorand demonstrates capabilities that are particularly
conducive to the needs of decentralized applications re-
quiring high throughput and low latency. Whereas
Ethereum manages an average throughput of approxi-
mately 30 transactions per second (tps) [21], Algorand
is capable of handling up to 7,500 tps [20]. Moreover,
unlike Ethereum, which primarily utilizes a fee-based
transaction prioritization mechanism, Algorand typically
operates on a First-Come-First-Serve (FCFS) basis [16],
resorting to fee-based prioritization only under network
congestion [16]. Each transaction costs a minimal fee
of 0.001 ALGO, levied only upon successful execution
[20]. With a block time averaging around 3-4 seconds,
Algorand offers a level of speed advantageous for real-
time applications[20]. These factors makes Algorand a
compelling candidate for applications demanding rapid
transaction processing and minimal latency but also in-
troduces unique dynamics in the Maximal Extractable
Value (MEV) extraction dynamics that influence MEV
searchers’ strategies [19][18][33].
Algorand supports various transaction types like pay-
ments for native token transfers (ALGO), Algorand Stan-
dard Asset (ASA) transfers for non-native tokens, and Al-
gorand Smart Contract (ASC1) application calls. Addi-
tionally, Algorand provides atomic transaction capabili-
ties, a feature allowing for grouped transactions. In these,
a set of individual transactions are bundled into a group
transaction, identified by a unique identifier, and submit-
ted as a singular unit to the network. This guarantees
that the set of transactions either all execute successfully
or fail as a unit, offering a reliable mechanism for more
complex transactional activities [20]. ASC1s serve as
the backbone for decentralized applications on the Algo-
rand blockchain. Written in the robust Transaction Execu-
tion Approval Language (TEAL) and executed within the
Algorand Virtual Machine (AVM), each deployed ASC1
receives a unique ID upon deployment for streamlined
blockchain interactions [20].
On Algorand we distinguishe between two types of Smart
Contracts: Stateless and Stateful. Stateless Smart Con-
tracts serve as enhanced validators, ensuring transactions
meet specified conditions, whereas Stateful contracts han-
dle local and global states, much like traditional smart
contracts that build the foundation for decentralized and
trustless financial services [20].

2.2. Decentralized Finance on Algorand

Financial applications built on various blockchains,
commonly known as DeFi, are an evolving set of appli-
cations that replicate existing services from the traditional
financial industry. Utilizing smart contracts, these appli-
cations on the Algorand blockchain cover a broad spec-
trum, from decentralized exchanges [5][13][11][7][4][3]
and options markets [12][14] to lending protocols
[8][5][15][9][6] and tokenized assets [10][2][1].
As of October 2023, the Total Value Locked (TVL) in Al-
gorand’s DeFi ecosystem was 43 million USD. The met-
ric, assessed in the native token ALGO, has remained sta-
ble on a year-over-year basis while observing growth over
a multi-year timeframe. Daily volume and daily active
addresses are key metrics for blockchain activity. The
daily volume for the last 12 months averaged at 4,050,000
ALGO, and the number of daily active addresses was ap-
proximately 33,0001. These metrics have been constant
on a year-over-year basis. Within the Algorand DEX
ecosystem, Tinyman and Pact each report a TVL of 8
million USD. In contrast, HumbleSwap manifests a lesser
but still noteworthy TVL of 1.6 million USD. Regarding
transactional volume for the month of September 2023,
Tinyman (version 1 and 2) indicated an average daily vol-
ume of 170,000 USD2. Pact followed with 133,000 USD3,
while HumbleSwap recorded 10,000 USD4. AlgoFi, a no-
table DeFi protocol in the Algorand ecosystem, ceased
operations in July 20235. Prior to its closure, the protocol
averaged a daily trading volume of 90,000 USD6.
Focusing in the scope of this research specifically on de-
centralized exchanges within the Algorand DeFi land-
scape, Tinyman and Pact offer flashloan capabilities.
Flashloans are a distinctive DeFi tool that permits users
to borrow assets without collateral but within the confines
of a single, atomic transaction. This opens the door for
sophisticated financial maneuvers such as arbitrage, col-
lateral shifting, and self-liquidation [29].

1https://defillama.com/chain/Algorand
2https://defillama.com/dexs/tinyman
3https://defillama.com/dexs/pact
4https://defillama.com/dexs/humble-defi
5https://finance.yahoo.com/news/
6https://defillama.com/dexs/algofi-swap
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2.3. Decentralized Exchanges

Conventional centralized cryptocurrency exchanges
manage a daily trade volume exceeding $20 billion7.
These platforms typically employ a Continuous Limit Or-
der Book architecture, wherein a centralized entity over-
sees the custody of customer assets and the settlement of
trades. Within this exchange design, an enumerated list of
all open orders is maintained, enabling real-time matching
of buyers and sellers. Orders undergo processing in the
sequence they are received, and the centralized exchange
operator assumes the role of intermediary, continuously
matching and recording orders on the books [27].
In contrast, Decentralized Exchanges (DEXs) leverage
smart contracts to facilitate trades, supplanting a tra-
ditional order-book with an Automated Market Maker
(AMM) model. In this paradigm, a smart contract man-
ages a liquidity pool, which maintains reserves of various
tokens and keeps them in a balanced ratio. The AMM
enables peer-to-peer trading at predetermined rates, gov-
erned by a mathematical construct known as the swap in-
variant [27][25].
One widely-used variant of the swap invariant is the
Constant-Product Market Maker (CPMM), which math-
ematically enforces that the product of the asset amounts
within the liquidity pool remains invariant across trades.
This enables the smart contract to perform automatic price
discovery. Users interact with the AMM by submitting
tokens, incurring a fee, and receiving the purchased to-
kens from the liquidity pool’s reserves. In the current
research context, focus is predominantly laid on DEXs
implementing the CPMM model. However, it should be
noted that there exist three primary types of swap invari-
ants: constant-product, weighted constant-product, and
bounded-liquidity constant-product. The arbitrage algo-
rithms discussed in subsequent sections are applicable to
all three types [27][25][22].
Price slippage pertains to the variance between the antic-
ipated and actual execution prices in a trade. The term
’expected price-slippage’ is used to denote the projected
price change, contingent on trading volume and liquidity
availability. Because this expected slippage is calculated
from a historical blockchain state, intervening fluctuations
between transaction submission and execution can result

7https://cryptorank.io/exchanges

in unanticipated slippage. The cumulative impact of both
expected and unexpected slippages determines the overall
market impact of a trade [23].

2.4. Convex Optimization

Convex optimization is a specialized subset of mathe-
matical optimization that focuses on the problem of min-
imizing a convex objective function over a convex do-
main, subject to convex inequality constraints. The formal
mathematical expression of a general convex optimization
problem is as follows [31]:

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, ...,m

In this formulation, x denotes the vector of optimization
variables, f0 : Rn → R serves as the objective function to
be minimized, and fi : Rn → R are the constraint func-
tions. The constants bi specify the upper bounds for each
constraint. An optimal vector x∗ achieves the minimum
value for the objective function while also satisfying all
given constraints [31]. A function f : Rn → R is deemed
convex if its domain, dom( f ), is a convex set, and it satis-
fies the following inequality for all x, y ∈ dom( f ) and for
all α ∈ [0, 1]:

fi(αx + βy) ≤ α fi(x) + β fi(y)

This definition extends naturally to constraint functions fi,
which must also be convex for the problem to be a convex
optimization problem [31].
Convex optimization problems can be solved reliably and
efficiently. While there is generally no analytical for-
mula for the solution, effective numerical methods exist
[31]. For our research purposes, we utilize CVXPY8, a
domain-specific language (DSL) for convex optimization.
This framework compiles high-level problem descriptions
into low-level standard forms required by solvers and in-
vokes these solvers to retrieve the optimal solution. The
available solvers implement various techniques, such as
interior-point methods, gradient descent, and simplex al-
gorithms [31].

8https://www.cvxpy.org/
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3. Related Work

In their seminal paper [27] Daian et al. kickstarted the
MEV discourse by exploring value extraction strategies
on Ethereum. The paper introduced Priority Gas Auctions
(PGAs), where bots bid up fees for transaction priority,
and highlighted this as a consensus security risk. In the
paper [22] Liyi Zhou and colleagues introduce automated
techniques for identifying profitable DeFi trades. One of
the key methods employed is the Bellman-Ford algorithm,
referred to as DEFIPOSER-ARB. This algorithm excels
in detecting DeFi transactions that form cycles, making it
particularly adept for arbitrage opportunities. Daniel En-
gel’s work [25] introduces a mathematical framework for
the composition of AMMs. Engel extends the concept of
AMMs beyond isolated entities, exploring how they can
be sequentially or parallelly composed. The paper for-
malizes composition operators for AMMs that manage
multiple asset classes, providing a model for complex,
multi-asset trading networks. Subsequent advancements
in multi-asset trades and optimal routing on decentralized
exchanges were contributed by Guillermo Angeris. His
work concentrated on leveraging constrained optimiza-
tion techniques to improve the efficiency of arbitrage op-
portunity identification, adding another layer of sophisti-
cation to the existing body of research. In his paper [24],
published in July 2021, he presents an innovative solution
by formulating various trade selection problems as con-
vex optimization problems. This formulation enables re-
liable and efficient solving, expanding the range of trade
possibilities within CFMMs. His subsequent work [17],
released in December 2021, tackles the problem of op-
timally executing orders involving multiple crypto assets
across a network of CFMMs. Interestingly, this paper also
incorporates the problem of identifying arbitrage oppor-
tunities within a network of CFMMs as a special case, or
alternatively, certifying the absence thereof.

4. Algorithmic Arbitrage Detection Strategies

In this section, we undertake a comprehensive inves-
tigation into computational strategies for arbitrage detec-
tion in DEXs. Arbitrage identification can be elegantly
modeled using graph theory, where tokens are abstracted
as vertices and their conversion rates act as directed edges
between these vertices [32]. Our analysis begins with

an exploration of traditional graph search algorithms that
are widely employed in mainstream financial markets for
detecting arbitrage opportunities within directed graphs
[32]. However, these conventional methods encounter
limitations when transposed to the context of DEXs, pri-
marily due to the unique price invariants introduced by
AMMs. To address these limitations, we introduce spe-
cialized approximation algorithms that leverage the dis-
tinct characteristics of asset-exchange graphs. We employ
methodologies such as adjacency matrix transformations
to effectively reduce the graph’s complexity. This, in turn,
narrows down the search space for identifying negative
cycles - these cycles are indicative of potential arbitrage
opportunities. Finally, we discuss the applicability of con-
vex optimization techniques for optimal routing within bi-
partite asset-exchange graphs, providing a more efficient
alternative for arbitrage detection. The primary focus of
this section is to outline the theoretical frameworks and
algorithmic methodologies that are critical to the domain
of arbitrage detection in decentralized finance. Detailed
discussion on the implementation specifics of these algo-
rithms will be reserved for later sections of this paper.

4.1. Negative Cycle Detection Algorithms in Directed
Graphs

To identify arbitrage opportunities DEXs on Algorand,
we recast the problem within the framework of a directed
graph G = (N, E). The objective is to leverage this graph-
theoretical representation for negative cycle detection, a
classic algorithmic challenge that reveals arbitrage poten-
tial [22].
Nodes The set N represents the collection of tokens,
where each asset is denoted by ci ∈ N.
Edges The set E encapsulates all directed edges between
nodes. An edge ei, j from asset ci to asset c j signifies the
availability of a liquidity pool for the involved assets.
Prices For each directed edge ei, j, a corresponding price
pi, j is defined as the most favorable exchange rate for an
infinitesimal quantity of asset ci converting into asset c j.
This rate can be ascertained by dividing the reserves of
asset c j by those of asset c j in the liquidity pool offering
the highest exchange rate.
Path Paths in the graph outline a sequence of asset con-
versions. For instance, the composition of edges e1,2 and
e2,3 with weights p1,2 and p2,3 formulates a path c1 −→

c2 −→ c3, which signifies converting 1 unit of token c1 into
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p1,2 ∗ p2,3 units of token c3.
Arbitrage An arbitrage opportunity is mathematically
represented as a closed path

[c1
a1
−→ c2 . . . ck−1

ak−1
−−−→ ck]

that originates and terminates at the same asset c1, and
where the product of the price-ratios along the path
exceeds 1. This condition implies the possibility of
initiating a transaction with one unit of asset c1 and
concluding with more than one unit of the same asset,
thereby realizing a profit [32].
To formally align the arbitrage detection task with the
problem of identifying negative cycles in edge-weighted
digraphs, we introduce a logarithmic transformation of
the edge weights, which we subsequently negate. This
operation recasts the initial objective of identifying a
cycle with a product of weights exceeding unity into the
equivalent problem of locating a cycle whose sum of
transformed weights is negative [32].

x1 · x2 · . . . · xk > 1

⇔
1
x1
·

1
x2
· . . . ·

1
xk
< 1

⇔ ln
(

1
x1
·

1
x2
· . . . ·

1
xk

)
< ln(1)

⇔ ln
(

1
x1

)
+ ln

(
1
x2

)
+ . . . + ln

(
1
xk

)
< 0 (1)

Let the original edge weights be p1, p2, . . . , pk; after
applying the transformation, these weights become
ln

(
1
p1

)
, ln

(
1
p2

)
, . . . , ln

(
1
pk

)
. Thus, a cycle in the original

graph with a product p1 × p2 × . . . × pk > 1 corresponds
to a cycle in the transformed graph where equation (1)
holds [32].
In the context of a fully interconnected decentralized ex-
change network, the underlying directed graph manifests
as a complete graph. Although no algorithm currently
exists for efficiently identifying the optimal arbitrage
opportunity, i.e., the most negative cycle in the directed
graph, this paper will explore various approximation
techniques aimed at resolving this issue. It is worth
noting that the speed of an algorithm for identifying any
arbitrage opportunity is of paramount importance. A
trader equipped with the fastest algorithm has the po-
tential to systematically exploit a multitude of arbitrage

opportunities, thereby outperforming competitors relying
on slower algorithms.

Given the critical role of algorithmic speed in iden-
tifying arbitrage opportunities, the evolving sparsity of
the asset graph introduces another layer of complexity to
the problem. As we selectively incorporate more assets
into our network, the graph becomes increasingly sparse.
This is because lesser-known tokens generally have
trading pairs only with the base asset ALGO, resulting in
a linear increase in the number of edges as the number
of vertices grows, as illustrated by adjacency matrix of
the Algorand asset-network in figure B.2 in the appendix.
This sparsity not only influences the computational cost
but also the efficacy of various algorithms designed for
this specific arbitrage detection task. Understanding this
relationship is crucial for choosing the most suitable
algorithm, considering both its computational complexity
and its ability to quickly pinpoint arbitrage opportunities.
The Bellman-Ford Algorithm, originally designed to
find shortest paths in weighted graphs, can be modified to
detect negative cycles with an computational complexity
of O(|V | × |E|). In a sparse graph where the edge growth
is nearly linear, the algorithm remains computationally
viable even as the graph scales. It is adept at negative
cycle detection, making it indispensable for arbitrage
opportunity identification in sparsely connected DEX
networks [32].
Johnson’s Algorithm combines the Bellman-Ford
algorithm and Dijkstra’s algorithm to find shortest paths
between all pairs of vertices. While generally efficient
for sparse graphs, it may become less so in our specific
context as the graph becomes sparser with the addition of
more tokens. Therefore, Johnson’s Algorithm can be a
viable option for smaller subsets of tokens but may not
scale efficiently for the entire, increasingly sparse, DEX
network [32].
The Floyd-Warshall Algorithm is generally better suited
for dense graphs due to its O(|V |3) time complexity. How-
ever, as the graph we are considering grows sparser with
the addition of more selective assets, the Floyd-Warshall
Algorithm becomes less ideal for real-time operations.
Nonetheless, it could still be used for exhaustive offline
analysis or when working with a highly selective and
therefore smaller set of assets [32].
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4.2. Exploring Graph Properties via Adjacency Matrix
Transformations

Graph algorithms, especially those for path discovery,
can often be challenging to parallelize due to inherent
state dependencies during execution. For instance, the
discovery of a path in the graph often depends on infor-
mation about other paths, rendering naive parallelization
strategies ineffective. Given the high-frequency and com-
petitive nature of arbitrage in decentralized exchanges on
Algorand [33], there is a necessity to focus on specific
regions of the asset graph rather than exhaustively explor-
ing the entire space. Prioritization can be made based on
several criteria:

1. Asset Liquidity: Focusing on assets with higher liq-
uidity can increase the probability of successfully ex-
ecuting arbitrage opportunities.

2. Arbitrage Lenght: Limiting the number of hops in a
cycle can reduce computational complexity. It also is
lowering the chance that other traders might interfere
with the arbitrage opportunity.

To facilitate both efficient runtime and potential paral-
lelizability, we utilize an Adjacency Matrix to represent
the directed graph of asset pairs. The Adjacency Ma-
trix offers a compact way to represent the directed graph,
where each vertex signifies a specific asset and each edge
represents a trade opportunity between two assets. It
serves as an efficient data structure for the graph, partic-
ularly for sparse graphs like our network [32]. By em-
ploying an Adjacency Matrix, we can make efficient use
of matrix operations to infer about the graph’s properties
and to detect arbitrage cycles.
By understanding and exploiting the properties of ad-
jacency matrices, we can develop more efficient algo-
rithms tailored to the specific characteristics of the arbi-
trage graph, leading to quicker and more effective identi-
fication of profitable opportunities.

4.2.1. Matrix Exponentiation-Based Path Analysis
Leveraging the properties of adjacency matrices and

their exponentiation can provide rich framework for effi-
cient arbitrage detection. However, it’s important to note
that conclusions about the graph’s topological structure
are not always straightforward. Some arbitrage cycles
may be unattainable within the graph due to the necessity

for a specific number of hops, while other cycles could
pose computational difficulties due to their high degree of
path variability, making them less suitable for certain al-
gorithms.
In DEXs, we employ an adjacency matrix M to illustrate
the interconnections between various tradable tokens (il-
lustrated in figure B.2 in the appendix). The process of
exponentiating this matrix to a powern, denoted as Mn,
yields a new adjacency matrix. In this new matrix, the
element (Mn)[i][ j] encapsulates the sum of the weights
for all unique paths from vertex i to vertex j that involve
exactly n edges. By leveraging matrix exponentiation at
varying powers, one can unearth arbitrage cycles of differ-
ent lengths within the asset network. If binary weights are
used in the original adjacency matrix, the exponentiated
matrix reveals the number of distinct paths between ver-
tices i and j, rather than a sum of path weights (as shown
in figure C.3 in the appendix for 3-hop arbitrages). This
information can be invaluable for analyzing the intricacy
of prospective arbitrage cycles within the asset network.
This method also allows for strategic filtering of portions
of the token graph that are irrelevant for specific arbi-
trage opportunities, particularly when a given number of
hops is unfeasible for successful arbitrage. Furthermore,
the knowledge of the number of potential cycles can aid
in the efficient parallelization of computational tasks (as
will be shown in later sections). The matrix exponentia-
tion approach allows us to focus on efficient subsets of the
graph, thereby omitting regions where arbitrage might be
improbable due to hop constraints (white regions in fig-
ure C.3 in appendix). This granularity facilitates work-
load parallelization, particularly when balanced against
the number of cycles revealed by the diagonal of the ex-
ponentiated matrix. This method’s applicability extends
beyond just cycles; it can also inform us about individual
trading paths such as from USDT to USDC.

4.2.2. Trace-Based Discovery of Negative Cycles in Ad-
jacency Sub-Matrices

The introduction of a trace-based discovery paradigm
provides a sophisticated mechanism for isolating negative
cycles, convertible into actionable arbitrage opportunities.
Distinct from previous methods, this approach leverages
the properties of adjacency matrices, allowing for paral-
lelizable computations. Importantly, the exchange rates
that constitute arbitrage cycles are located along the di-

6



agonal entries of the matrix. It should be emphasized
that the principal diagonal of the original matrix encodes
self-cycling of assets, which are not of relevance for arbi-
trage in our specific application. To overcome this case,
a circular leftward shift on the matrix enables the ex-
traction of each cycle’s information along the diagonal.
The trace of each iteratively transformed matrix serves
as a criterion for identifying profitable arbitrage cycles.
This methodology is amenable to generalization for cy-
cles of arbitrary length n. Notably, for 2-hop cycles, the
Hadamard product of the adjacency matrix A and its trans-
pose AT streamlines the identification process. Any entry
in the resultant matrix that exceeds 1 signifies a potential
arbitrage route. Currently, this elegant form of simplifica-
tion is not extendable to cycles of greater length.
The value of this trace-based method lies in its computa-
tional efficiency, which becomes particularly essential for
real-time arbitrage hunting in Decentralized Exchanges.
This is especially beneficial given the sparsity character-
istics of the asset trading graph, allowing for more fo-
cused and quicker analyses. Most critically, this technique
can be dynamically applied to tokens for which the state
of the respective liquidity pools change due to incoming
transactions. This creates an immediate and direct way
to compute possible arbitrages that might arise as a con-
sequence of transactions which can be backrun, adding
another layer of precision and reactivity to the arbitrage
detection process.

4.3. Optimal Routing in Bipartite Graphs

Finding arbitrage opportunities may seem straightfor-
ward at first glance; however, identifying significantly
profitable transactions across a diverse array of tokens and
decentralized exchanges is a more intricate task. Tradi-
tional methods tend to rely on greedy search algorithms
that focus solely on immediate conversion rates, often ig-
noring the liquidity constraints present in AMMs. In this
section, we elevate the discussion to optimal arbitrage,
particularly within the context of CFMMs. Supported by
Guillermo Angeris’ contributions, we apply convex opti-
mization techniques. Importantly, these techniques do not
merely identify arbitrage opportunities; they enable us to
find the optimal set of trades that maximize overall arbi-
trage profit across a multitude of CFMMs [24][17].

4.3.1. Definition of the Search Space
The search space for our optimization problem is de-

signed to address the complex task of optimally executing
an order that involves multiple tokens across a network of
CFMMs. Earlier graph representations were limited, cap-
turing only the maximum exchange rates and losing other
essential information. This necessitates a novel struc-
tural approach. We model our ecosystem consisting of m
CFMMs, each indexed by i = 1, . . . ,m , interacting with
a universe of n distinct tokens, indexed by j = 1, . . . , n.
The number of tokens traded by each CFMM i is repre-
sented by ni, constrained by 2 ≤ ni ≤ n [17]. This setup
can be abstracted as a bipartite graph. On one side of the
bipartition, we have m vertices representing the CFMMs.
The other side contains n vertices representing the differ-
ent tokens. An edge is drawn between a vertex from the
CFMM group and a vertex from the token group if and
only if that particular CFMM trades the associated token
[17].

4.3.2. CFMM Trading Functions
In the case of a CFMM denoted as i, we use the terms ∆i

and Λi to refer to the tendered and received asset-vectors,
respectively. These vectors are signifying the quantities of
tokens transacted with the CFMM. For a trade (∆i,Λi) to
be deemed valid by CFMM i, it must satisfy the equation

ϕi(Ri + γ∆i − Λi) = ϕi(Ri),

where ϕ is the trading function of the CFMM. Ri are the
current reserves of the CFMM, and γi ∈ (0, 1] is the asso-
ciated trading fee. An example of such a trade function is
the geometric mean, applicable to all DEXs on Algorand
[24][17].

ϕi(R) = (R1 · · ·Rni)1/ni

The asset-vectors ∆i and Λi of one DEX can be summed
across all CFMMs, producing a network trade vector.
The resulting n-vector Ψ encapsulates the net amount of
each token transacted across the network. We define a
utility function U : Rn → R ∪ {−∞} that quantifies the
desirability of a trade Ψ to a searcher. The utility function
can be specified as U(z) = πT z, where π ∈ R. In this
context, πi is interpreted as the market-price associated
with each token i [17].
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4.3.3. Stating the Constrained Optimal Routing Problem
The convex optimization problem we aim to solve is

defined over a network of CFMMs. Each CFMM, denoted
by i, has its own trading function ϕi, trading fees γi, and
reserve amounts Ri ∈ R+. Additionally, we define Ai as
the mappings of tokens to their corresponding CFMMs.
Our primary objective is to maximize the utility function
U(Ψ), which quantifies the benefit gained from executing
a series of trades across the network [17].
The constraints that must be satisfied for each trade are
governed by each CFMM’s swap invariant, trading fees,
and reserve amounts. Our optimization problem together
with these constraints and the objective function can be
formally stated as follows [24][17]:

maximize U(Ψ)

subject to Ψ =

m∑
i=1

Ai(Λi − ∆i)

ϕi(Ri + γi∆i − Λi) ≥ ϕi(Ri), i = 1, . . . ,m
∆i ≥ 0,Λi ≥ 0, i = 1, . . . ,m.

We aim to identify a set of valid trades that would maxi-
mize the trader’s utility, given the constraints. This forms
the crux of what we refer to as the Optimal Routing
Problem. Solving this optimization problem yields the
n-vector Ψ, encapsulating the net amount of each token
traded across the network. By sifting through the trade
vectors of each CFMM, one can discern the specific trades
that constitute this optimal network trade [24][17].
While a detailed proof of the convex nature of this prob-
lem is beyond the scope of this work, we refer readers to
[17] for a comprehensive proof. Regardless of the overall
complexity behind the optimization, it can be solved with
domain-specific languages like CVXP, even for large net-
works [31].

4.4. Transaction Input Optimization for Arbitrage Execu-
tion

Identifying negative cycles through established graph
algorithms suggests the existence of arbitrage opportuni-
ties within a graph. However, these opportunities become
actionable only when the initial input amount for the trade
in the arbitrage loop is optimized. Therefore, the overar-
ching aim of input optimization is to maximize the prof-
itability of the arbitrage opportunity at hand [22]. In the

following, we explore various methodologies to achieve
this granular level of input optimization.

• Binary Search-Based Input Optimization An ini-
tial method involves utilizing binary search algo-
rithms, a technique previously explored in [22]. This
approach leans on previously formulated equations
for CPMMs [26]. The output for a given input in a
arbitrage cycle can thus be calculated. The efficiency
of this method can be further elevated by judiciously
choosing the initial search boundaries.

• Convex Optimization-Based Input Tuning A more
advanced method involves the application of convex
optimization techniques. In this context, the search
space of the convex optimization is tailored to con-
tain only the CFMMs that are pertinent to the assets
involved in the targeted arbitrage cycle. In contrast
to heuristic methods, convex optimization is adept at
isolating the exact optimal trade inputs by directly
solving for the global optimum [17].

The convex optimization approach is generally favored
for its ability to precisely find the global minimum and its
superior runtime efficiency, making it the go-to method
for optimal arbitrage execution.

5. Implementation & Infrastructure

The application project implementation accompanying
this paper is engineered to function in two operational
modes: real-time processing and batch processing of his-
torical data. While the current implementation focuses
solely on batch processing for historical states, this paper
further explores how real-time processing could be effi-
ciently implemented.

5.1. Infrastructure Set-Up

Utilizing third-party node APIs, such as those offered
by Algonode.io, was deemed unsuitable for real-time
analysis in our use-case. This necessitated the set-up of
a dedicated participation node specifically for the appli-
cation project. The Algorand Foundation recommends a
hardware configuration comprising 8 vCPUs, 16 GB of
RAM, a 100 GB NVMe SSD or its equivalent, and a 1
Gbps low-latency internet connection [20].
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In order to minimize latency further, our infrastructure
was configured to connect to a geographically nearby re-
lay node hosted at Technical University Munich. Con-
nection to these nodes is specified during the initiation
of the ”goal node start -p ipaddress:port” com-
mand. Multiple relay nodes can be managed by providing
a semicolon-separated list of nodes [20].
For arbitrage detection, we employed a client listening
mechanism connected directly to our node, designed to
quickly react to detected opportunities, as outlined in the
next section.

5.2. Implementation

This section elaborates how the theoretical concepts
discussed earlier can be engineered into a functional ar-
bitrage system. From real-time and batch data retrieval to
algorithmic decision-making, this part of the paper pro-
vides an in-depth look into the workflow.

5.2.1. Data Retrieval
In the real-time setup, we leverage the API

capabilities of our Algorand node. Our client
continuously listens to our node by invoking the
/v2/status/wait-for-block-after/round end-
point9. When the node receives this HTTP request, it sets
up an internal wait channel that unblocks upon reach-
ing the desired round, effectively notifying us of new
blocks. This way, we are asynchronously alerted about
new blocks, offering potential transactions to backrun.
Multiple incoming requests are managed by an internal
queue in the Algorand node. Further advancements could
involve customizing the node’s source code to directly
notify us of incoming transactions. Such enhancements
could bypass transaction validation and concentrate
solely on parsing DEX application calls.
For batch data retrieval, we expect data to be available in
a format where each liquidity pool’s reserves are given
for each block of a certain time period.

5.3. Implementation and Analysis of Arbitrage Strategies

Prior to the discussion on arbitrage algorithms, it is es-
sential to clarify the initial setup regarding which tokens

9https://github.com/algorand/go-algorand/algod/api/server/v2/

will be used for realizing profits and how their prices are
sourced. For the purposes of this research, ALGO, goBTC,
PEPE, and certain stablecoins such as USDT, USDC have
been chosen as the tokens in which to take profits. As for
the price data, we source real-time valuations for the to-
kens through the Binance API10.
Our real-time arbitrage detection algorithm operates con-
tinuously, constantly monitoring incoming blocks for
swap transactions. Upon identifying a swap, it updates the
adjacency matrices representing the maximal exchange
rates for each feasible trading cycle (both 2 and 3-hop). It
then iteratively shifts and evaluates these matrices to look
for negative cycles, which indicate profitable arbitrage op-
portunities. If such a cycle is found, the algorithm uses
convex optimization to find the optimal inputs and then
executes the arbitrage trade.

In a system where block times are commonly situated

Algorithm 1 Real-time Arbitrage Detection for 2,3 hops
Initialize
set up adjacency matrices with maximal exchange rates
for feasible 2,3-hop cycles
while True do

parse transactions of incoming block
if swaps found then

retrieve affected assets
Update affected adjacency matrices
for each affected adjacency matrix do

for each column do
perform circular left shift
calculate trace of matrix
if negative cycle then

find optimal inputs
execute arbitrage

end if
end for

end for
end if

end while

within a 3 to 4-second window, there exists a unique av-
enue to search for maximally profitable arbitrage cycles
as opposed to greedily. This segment elucidates an al-

10https://www.binance.com/en/binance-api
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gorithm tailored for batch processing, engineered to dis-
cover the highest-yielding arbitrage opportunities within
these quasi-constant block-time intervals. This algorithm
navigates the graph complexity of base token ALGO, by
allowing parallelized operations that start from varying to-
kens. It identifies all possible n-hop cycles beginning and
ending with a specific asset. Importantly, the actual ar-
bitrage is not restrict to the starting point initially chosen.
The rationale behind this is that arbitrage cycles are inher-
ently cyclical; thus, the starting point is arbitrary, allowing
for multiple interpretations of the cycle’s beginning and
end, as long as the product of exchange rates is higher
than 1.
This algorithm is designed to quickly identify the most

Algorithm 2 Arbitrage Detection for Batch Processing
for non-base tokens do

get n-hop cycles for token
get pools building the cycles
for each profit-token in cycle do

if Bellman-Ford then
build directed graph out of pools
find negative cycles
find input using convex optimization

else
run optimization on pool subset
parse trade-vectors to infer order

end if
if arbitrage found then

execute arbitrage
end if

end for
end for

profitable arbitrage opportunities within the typical block-
time range. It leverages parallel processing and reduced
network graphs for efficient computation.

6. Analysis and Results

We successfully implemented the batch processing al-
gorithm to serve as a proof of concept for our arbitrage
system. Our data scraping modules targeted multiple
DEXs on the Algorand blockchain, including Tinyman
versions 1 and 2, Pact, and HumbleSwap yielding up to

62 tokens. It is noteworthy that due to the high latency
of the software SDK for internal operations, we chose not
to include HumbleSwap in our analysis. A comprehen-
sive visualization of the network, delineating the relations
between various assets and DEXs, is provided in the Ap-
pendix (see figure A.1 in appendix). This visual repre-
sentation serves to elucidate the complexity and intercon-
nectedness of the DeFi landscape on Algorand.
We conducted a trial run of our algorithm on a single
day’s worth of data from October 5, 2023. The algorithm
identified a total of 524 events where asset swaps took
place in liquidity pools, as captured by our DEX reserve
scraper. The algorithm successfully detected arbitrage op-
portunities at the granularity of individual blocks. How-
ever, the profitability from these opportunities was gen-
erally marginal, mostly manifesting in microcents. This
limitation likely stems from our decision to focus at this
point in time solely on maximal exchange rates, thereby
discriminating against liquidity.
Our preliminary results suggest several avenues for future
research and improvement. For instance, our current algo-
rithm restricts its search to cycles; expanding the scope to
include paths would allow for a more thorough investiga-
tion of arbitrage opportunities involving equivalent assets
like stablecoins or wrapped ALGO. Additionally, start-
ing the search from less liquid, smaller coins appears to
yield more arbitrage opportunities, suggesting that initiat-
ing with a flash loan could be a promising strategy.

7. Conclusion

This work serves as an investigation into the intrica-
cies of arbitrage opportunities within the Algorand de-
centralized financial ecosystem. By presenting advanced
methodologies and implementing them in a bespoke en-
vironment, it successfully identifies actionable arbitrage
avenues for a select set of asset pairs. While the analy-
sis is limited to short periods and specific token pairs, the
findings demonstrate the potential for profitable arbitrage
opportunities.
The examination of the techniques—ranging from graph-
based algorithms for negative cycle detection to sophisti-
cated input optimization strategies —establishes a frame-
work for future research. The study’s limitations in scope
also point toward the expansive possibilities for future
work. By broadening the asset pairs and time horizons
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considered, alongside incorporating emerging algorithms
and technologies, we anticipate a marked increase in ar-
bitrage profitability.
In summary, this paper serves as a blueprint in the rapidly
evolving landscape of Algorand-based decentralized fi-
nance, offering both theoretical insights and practical
frameworks for further exploration and enhancement.
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Appendix A. Graphical Representation of Algorand DEX Trade Network

Figure A.1: Network Graph Depicting Trade Pathways Among Algorand DEXs
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Appendix B. Matrix Representation of Algorand DEX Trade Network

Figure B.2: Binary Adjacency Matrix Representation of Algorand DEX Trade Pathways
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Appendix C. Quantitative Analysis of Trade Pathways using Matrix Exponentiation

Figure C.3: Matrix Exponentiation Analysis of Unique Path Lengths between Algorand DEX Assets
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