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Abstract

In the last few years, consumers have become more than ever aware of their data sovereignty
and privacy. In addition, companies need more and more to collaborate but are also careful
with sharing their sensitive data. That created a bottleneck for the training of machine
learning models that typically needed a lot of data to be trained. Which created the need
for privacy-enhancing machine-learning technology like federated machine learning, a new
machine learning technique that promises to solve the privacy issues by training the machine
learning models on the client side instead of in a central server. Federated machine learning
has been growing in relevance in academia but not in the industry. One of the main reasons
is that the field is still lacking structure and the infrastructure that will accommodate its
adoption. For instance, there are multiple federated machine learning libraries currently
available but most of them lack the documentation that explains how to use them. They also
lack a lot of features and functionality necessary for building federated learning systems, and
they are not ready to be used in production.

This thesis aims to identify the different characteristics of existing federated learning
libraries and evaluate their suitability for an industrial application. First, a series of interviews
with industry experts will be conducted to understand their needs. Then, a literature review
of scientific literature, as well as the official documentation of the libraries and their features
will be done to be able to compare them. And finally, a benchmarking tool that compares the
non-functional characteristics of the libraries will be developed and demonstrated. By the end
of thesis, an overview of the Federated learning community preferences, a comprehensive list
of the libraries, their features, and non-functional differences, as well as a benchmark suite
will be delivered.
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1. Introduction

The lack of training data is often a bottleneck for ML applications. Problems are getting more
complex and solving higher complexity requires more training data. In centralized ML, data
needs to be collected from different data points. Training is conducted in a central server. This
centralization introduces a multitude of problems. Participants need to share their data with a
third party. It makes them lose sovereignty over their data and intellectual property. Training
these large models requires also large data centers and large communication bandwidth.
Federated learning emerged as a solution to this bottleneck. In federated learning, the central
server doesn’t train the model with the data collected from the clients but instead chooses
a machine learning model and distributes it to the different clients. The clients would then
train that model locally using their data and then send a gradient update to the server that
reflects the updates made to the client-side model during the training. The server then uses
a federated learning aggregation algorithm (e.g FedAvg) to combine the gradient updates
received from the different clients to update the global model [12]. This process provides a
certain level of privacy by design and keeps the sovereignty of the data on its owner’s side
since the model will be trained without the data leaving the devices of its owner. This solves
the privacy issues of traditional machine learning systems [12].

Since the introduction of Federated Learning by Google researchers in 2016 [12], academics
and engineers alike have been discussing the immense potential of the technology and its
multiple use cases. This potential might be helpful, especially in privacy-critical industries
which work with private data of customers like Finance, Insurance, or Healthcare. In these
industries, participants tend to be more careful with who they share their data with, since
any data breach could result in a well-being or financial loss. Despite the potential use cases
of the technology, real applications have rarely been seen. This is due to many reasons but
mainly to the complexity of the development of these systems. This need for a less complex
FL systems development has been recognized and some of the biggest tech companies started
developing FL libraries. To name some, Google published TFF [52] as part of the Tensorflow
Framework, IBM published IBM federated learning [65] and Webank published FATE [56]...
This has given FL practitioners a wide choice but also made it harder to pick a library for
their project. Since the library differed in terms of functionality, for instance in terms of
supported machine learning models, and in terms of quality, for instance, in terms of speed
of execution. The scientific literature about federated learning is mainly about the bottlenecks
of the technology and its open problems [12]. For instance, the involvement of thousands
of clients can lead to scalability and communication issues, and the training of the data on
the client-side makes the client responsible for their own data security. Even though there
have been some efforts to compare the FL libraries, these comparisons either don’t go into
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1. Introduction

the details of the differences other than the accuracy and the performance or were specific to
a use case (e.g IoT) or the choice of the compared libraries wasn’t explained. The scientific
literature still lacks a structured comparison of FL libraries.

This thesis aims to compare the FL libraries qualitatively and quantitatively in a struc-
tured and well-rounded manner. We conduct a qualitative comparison by opposing the
functionalities and features of each library. Also, we compare the quantitative capabilities by
benchmarking non-functional requirements such as scalability, performance, and efficiency.
Furthermore, this thesis aims to provide a benchmarking suite to be used in the future and
to reproduce its results. We aim to accomplish this structured comparison by answering the
following three research questions (RQs):

RQ1: What are the functional and non-functional requirements relevant for a federated
learning library, and what are the most important metrics to benchmark them?

RQ2: What are the different federated libraries available, and how do they differ in terms of
functionality?

RQ3: How could a modular software application that benchmarks the different federated
learning libraries using the metrics be developed?

2



2. Background

2.1. Machine Learning

Machine Learning is a subdiscipline of artificial intelligence. To be able to define what
machine learning is, the definition of artificial intelligence needs to be established first. The
term artificial intelligence was coined by Professor John Mccarthy in 1955 [1]. He defined
it as “The science and engineering of making intelligent machines, especially intelligent
computer programs. It is related to the similar task of using computers to understand human
intelligence, but AI does not have to confine itself to methods that are biologically observable.”
As such, intelligent beings should be able to complete tasks that typically require cognitive
intelligence.

Learning from past experiences is a characteristic of cognitively intelligent animals such as
humans and the same tasks that require cognitive intelligence to be completed, also require
the ability to learn and draw conclusions from past experiences [2]. The parallel to that
in machines is dubbed “Machine Learning”. Machine Learning is the ability of a machine
to gain knowledge and understanding from data. It covers a wide range of methods and
processes for designing and implementing algorithms based on statistical models that enable
machines to draw conclusions from data, as well as, predict outcomes of certain events based
on the patterns discovered in that data. The main premise is that the more a machine learning
system is trained the better its performance will be [2].

Multiple machine-learning techniques have been developed throughout the years. Most of
them fall into one of three categories, reinforcement learning in which agents learn to interact
with the data by rewarding certain behavior and punishing others (e.g DQN and DDPG),
unsupervised learning which is used to explore the data (e.g clustering and dimensionality
reduction), or supervised learning which is used to predict future outcomes based on the data
(e.g regression and classification)[3]. Only supervised and unsupervised learning techniques
are relevant to this thesis. Figure 1 illustrates the taxonomy of Machine Learning that are
relevant.

3



2. Background

Figure 1.: Taxonomy of the different Machine Learning methods (source: own work, based
on [3]).

2.1.1. Foundations of Machine learning

Machine learning systems use stochastic methods to fulfill their functions. To explain the
difference between the different types of machine learning (supervised and unsupervised
learning) and what federated learning is. Also, some statistics and machine learning terminol-
ogy need to be defined. For instance, Machine learning models train on instances of labeled
and unlabeled data by optimizing their loss function to make predictions. The data instances
have multiple features across different dimensions. To improve the predictions of a Machine
Learning model, the parameters of the model could be configured. Thus terms like a model,
a parameter, a feature, an instance, a dimension, labeled and unlabeled data, and loss (cost)
function also need to be defined [7]:

• Model is the output of the machine learning algorithm after being trained on its given
data. A model is expected to be given input data and gives back an output which is a
prediction based on the patterns it discovered while being trained on that data [7].

• Dataset is a collection of data that represents the observations captured on a certain
population. The rows of the table are called instances, while the columns are called
features. The data in a given dataset could be either labeled or unlabeled [7].

• Attributes is an umbrella term for all the variables presented in a dataset. Features and
Instances are both considered attributes [7].

• Parameter is a variable internal to the model that can be configured to make the
predictions of that model more accurate. The parameter is configured automatically by
the model when being trained [7].

• .Dimensions are used to describe the number of features in a dataset. For instance, a
dataset that has n features is a n-dimensional dataset and can be represented on an
n-dimensional space with n coordinates [7].

4



2. Background

• Instance is an observation of a specific object within the population that constitutes the
dataset [7].

• Feature is a measurement of an attribute for a specific instance in the database [7].

• Labeled data is data that comes with tags that help identify some of its characteristics,
properties, and classifications. It is typically used in supervised learning to make
predictions [7].

• Unlabeled data is data that comes without tags. It is typically used in unsupervised
learning to find patterns [7].

• Loss function/Cost function is a mathematical tool used to evaluate how accurate a
machine learning model is in predicting certain outcomes. The goal of machine learning
models typically is to minimize their loss (cost) function and to give the most accurate
prediction possible based on the given dataset [7].

2.1.2. Unsupervised Learning

When data is unlabeled, unsupervised learning techniques are used to identify patterns in the
data. Unsupervised learning techniques can be leveraged to explore the data without labeling
it. It is not as complex and does not require as much effort to set up as supervised learning
techniques since the labeling is usually done by humans which makes it more cost and time
intensive. However, unsupervised learning is less effective at predicting future outcomes [3].

Clustering is done by grouping the different data points of a dataset into multiple cohorts
to explore the data [3]. Data points are grouped into patterns of data based on their distance
from each other (e.g Euclidean distance) in an N-dimensions space. These patterns are dubbed
clusters [2]. There are multiple clustering techniques used in machine learning. K-mean,
Hierarchical, and Density-based clustering are among the most used [3]. Figure 2 illustrates
an exemplary set of clustered data points.

Figure 2.: Hierarchy of Clusters (source: [2]).

K-mean Clustering: The user selects a parameter K that presents the number of clusters. K
points are randomly given as the clusters’ centers. Then a two-phase algorithm starts:
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2. Background

1. Assignment: Data points are assigned to the cluster based on their Euclidean distance
from the center of the clusters. Each data point is assigned to the closest center.

2. Center shift: The coordinates of the cluster centers are adjusted by calculating the mean
of all the coordinates of the data points assigned to a given cluster. The result of that is
the new cluster center.

The algorithm iterates through these two phases until the coordinates of all the cluster centers
are unchanged [3].

Density-based Clustering: In this clustering technique, clusters are defined as the high-density
areas of data points in a feature space. That means the areas with a high density of data
points. Data points that do not belong to any high-density feature space are called noise and
do not belong to any of the clusters. The benefits of this approach are that it is deterministic,
it does not require any parameters from the outside, and it produces complex shapes of
clusters [3].

Hierarchical Clustering: The objective of hierarchical clustering is to build a hierarchy of
clusters. That could be done through multiple algorithms. One of which is neighbor-joining.
In neighbor joining the user selects a threshold for the joining of clusters. Then a two-phase
algorithm starts:

1. Distance calculation: The Euclidean distance between all points is calculated.

2. Data points Joining: The two closest points are joined together (clusters can also be
joined).

This is repeated iteratively until the threshold set by the user is reached [3].

Dimensionality reduction techniques used to reduce the number of dimensions or features
of a dataset while preserving the variability and the distance between the data points in that
dataset. Datasets may have thousands of features and dimensions which can create a lot of
noise and make the analysis and visualization of the data as well as the testing of the machine
learning models challenging. Dimensionality reduction promises to solve exactly these
two problems. Some of the dimensionality reduction techniques are Principal Component
Analysis (PCA), t-distributed stochastic neighbor embedding (tSNE), and Uniform Manifold
Approximation and Projection (UMAP) [3]. They all operate differently but they are all used
to reduce the dimensionality of the data for it to be more easily interpreted at a later stage.

2.1.3. Supervised Learning

A machine learning process is called "supervised" if the model is optimized to make future
predictions based on labeled data. There are multiple supervised learning techniques (e.g
Linear regression, Naive Bayes, and decision trees). The algorithm and model choice depends
mostly on the labeling of the data. For instance, for numerical data, regression techniques
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2. Background

like linear regression or logistic regression are well suited. For categorical data, classification
techniques like Naive Bayes and decision trees are used [3].

Regression is a technique that is used to study the relationship between variables. The
cause variable (independent variable) is denoted X and the effect variable (dependent variable)
is denoted Y. The relationship is denoted as Y in the function of X or f (X) = Y. A function
could also have multiple independent variables (X1, X2. . . Xn). In this case, the relationship is
denoted as Y in the function of X1, X2, . . . Xn as Y = f (X1, X2. . . Xn). Examples of regression
techniques are linear regression and logistic regression [4].

Linear regression is a type of regression that is used to analyze the relationship between the
independent and dependent variables that have a linear correlation. It can be denoted as:

Y = β0 + β1X1 + β2X2 + β3X3 + ... + ξx

Y, X1, X2, X3 . . . are continuous variables. β0, β1, β2, β3, ξx . . . are constants. Y is the
dependent variable, X1, X2, X3. . . are the independent variables that influence Y. β0, β1, β2, β3
. . . are the coefficients of X1, X2, X3. . . , β0 being the value of Y when all the independent
variables are equal to 0. and ξ x is a set of random errors. The graphical representation of
the linear regression is a straight line. It is used to predict and forecast the value of Y given
X1, X2, X3. . . [5]

Logistic regression: Unlike linear regression, logistic regression predicts the probability of an
event occurring instead of a value. Instead of an independent variable, it has a predictor and
instead of a dependent variable, it has a response variable [5]. The probability of an event
occurring is denoted as follows:

Pr[Y|X] = p(x) =
e(β0+β1X)

1 + e(β0+β1X)

Pr[Y|X] ∈ [0, 1] is the probability of Y occurring given X. β1 and β2 are constants, with β1
being the coefficient of X [5]. The odds of an event occurring are the following [5]:

e(β0+β1X) =
p(x)

1 − p(x)

Figure 3 illustrates the graphical representation of a linear regression model (a) and a
logistic regression model (b).
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2. Background

Figure 3.: Graphical representation of a linear model (a) and a logistic model (b) (source: own
work).

Classification is a technique that is used to determine the membership of a certain instance
in a group based on its features. Some of the classification methods are decision trees, Naive
Bayes, K-nearest neighbors, and support vector machines [6]. Figure 4 illustrates the graphical
representation of the different classification models. Namely, the decision tree, Naive Bayes,
support vector machine, and K-nearest neighbor.

Decision Tree is a classification tool that organizes features and the decisions associated
with them in a tree-like structure. It has a root node that presents the entire dataset and
then it splits it based on the features into sub-nodes. Then, the sub-nodes are further split
into other sub-nodes based on the other features until, in the end, each leaf (terminal node)
results in a decision. The process of dividing the nodes is called splitting and the process of
merging the nodes is called pruning. Figure 4a illustrates a simplified example of a graphical
representation of a decision tree that determines whether someone is healthy or not [8].

Naive Bayes is a Bayesian network. Bayesian networks are probabilistic graphic models
that present knowledge about uncertain events. The events are presented as nodes and the
probability of the occurrence of an event e2 knowing an event e1 are presented as directed
edges from the node of e1 to the node of e2 [8]. Naive Bayes is a Bayesian network. It has
a posterior event h and a precedent event e. The goal is to determine the probability of h
knowing e. This can be done using the following formula:

Pr[h|e] = Pr[e|h] · Pr[h]
Pr[e]

Pr[h|e] is the probability of h knowing e, Pr[e|h] the probability of e knowing h, Pr[h] the

8



2. Background

probability of h, and Pr[e] the probability of e. It could also have multiple precedent events ei
that influence h. In that case, the following formula applies [8]:

Pr[h|e1, e2...en] =
Pr[e1, e2...en|h] · Pr[h]

Pr[e1, e2...en]

Figure 4b illustrates an example of a graphical representation of a Naive Bayes.

SVM classifies the instances of a dataset in an n-dimensional space. Each dimension
represents a feature. The features of the data point are represented as the coordinate of the
data point in the n-dimensions. SVM runs an algorithm to find the best possible plain that
separates the different elements into categories, by maximizing the distance between the
points of each pair of categories (called support vectors). The distance between the support
vectors is called the margin. Figure 4c illustrates an example of a graphical representation of
an SVM in a two-dimensional space [8].

K-nearest neighbor is a classification algorithm that is used to assign a given data point to
one of the given classes of data points in a dataset in an n-dimensional space. Each dimension
represents a feature of the dataset and the values of features of the data point are represented
as their coordinates in the n-dimensions. The data points are scattered around the space. The
classes used to classify the data points are given. The KNN algorithm calculates the euclidian
distance of the given data point to all the other data points in the space. Then, it sorts the
distances between the data points of the dataset and that given data point in increasing order.
A value K is determined beforehand, and the occurrence of the classes of the K first data
points are counted. The data point is then assigned to the class with the most occurrences.
Figure 4d illustrates an example of a graphical representation of a K-nearest neighbor in a
two-dimensional space [8].
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2. Background

Figure 4.: Graphical representation of (a) Decision tree, (b) Naive Bayes, (c) SVM, and (d)
K-nearest neighbor (source: own work).

Artificial neural networks are a subset of machine learning algorithms that are mostly used
for classification. They are used to perform tasks inspired by the human brain like pattern
recognition or making sense of something that requires a large amount of information. That
is achieved by mimicking the neuron structure in the human brain and organizing it in a
directed graph structure where the nodes take the role of neurons and the edges take the role
of the connections between the neurons [9]. The input data is given to the first layer of nodes,
called the input layer, and then forwarded to the next layer of nodes through the edges. Each
node performs a set of calculations and then forwards them to the nodes in the next layer
recursively until reaching the last layer. The last layer, called the output layer gives the final
output of the calculations [9].

Each node has input data (xi), output data (y), a threshold/bias (b), and weights (wi).
The input data is the data that a node receives either from the outside in the case of the
input layer nodes or from the nodes of the previous layer in the case of other nodes. The
output data can be the value that is output at the end in the case of the output layer node
or the value that a node forwards to the next layer nodes in the case of other nodes. The
weight determines by how much the signal that a node receives needs to be amplified. The
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threshold determines the minimum value that a node needs to receive to be activated and
do the required calculations [9]. Analogical to the human brain, the neural network also
improves its accuracy with practice, the more an edge is used in the training of the neural
network, the more its weight w will increase. Its importance in the network will grow as a
consequence which will result in an increase in accuracy over time [9]. Figure 5 illustrates an
example of a neural network.

Figure 5.: Graphical representation of a neural network (source: own work)

The input data that get fed to a node typically has a form of a vector v = (x1,x2, ..., xn).
with x1,x2, ..., xn being the values of the different inputs. Each of the input data variables
has a weight. The weights w1,w2, ..., wn are assigned to the input variables x1,x2, ..., xn.
The weights, change dynamically over time during the training of the model. Finally, the
threshold b is a constant. Each node has its linear regression model to calculate its output
data in the following form:

y = w1x1 + w2x2 + ... + wnxn + b

Each neural network model has a cost function associated with it and the goal of the training
of the neural network is to minimize that cost function by constantly changing the weights
and biases of each node. During the training, the loss function will converge to a local
minimum. Gradient descent is the algorithm that is typically used to minimize the cost
function [9]. There are multiple types of neural networks each with a different variation of
how they function and their own set of characteristics with the main ones being Deep neural
network (DNN), Feedforward neural network (FNN), Convolutional neural network (CNN),
Recurrent neural network (RNN).

Deep neural network (DNN): When a neural network has one or multiple hidden layers
in addition to its input and output layers, it is called a deep neural network. Deep neural
networks are the foundation for deep learning, they are more suited for more complex tasks
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like speech or image recognition. Figure 5 is an illustration of a deep neural network [9].

Feedforward neural network (FNN): When a neural network allows information to propagate
only in a forward direction and contains no cycles or loops, it is called a Feedforward neural
network. It is the most basic form of neural network. A feedforward neural network can be
either a deep neural network or not depending on the number of layers it has. Occasionally,
information is allowed to propagate in the opposite direction in a process known as backprop-
agation. Feedforward neural networks are typically used in speech and image recognition, as
well as pattern recognition. Figure 5 is an illustration of a feedforward neural network [9].

Backpropagation is an algorithm that is used to calculate the derivative (the gradient) of the
loss function between the different layers in the neural network. It is also used to adjust the
weights of the different inputs of the nodes in that layer to minimize the loss function. This
process is done iteratively until no further improvement can be done. Since this information
(The value of the loss function after the input is passed to the next layer) is retrospective, the
feedback needs to be sent in a backward manner, which gives the algorithm its name [9].

Convolutional neural networks (CNN) are feedforward neural networks that use linear algebra
techniques to process imagery, mainly in the fields of computer vision and image recognition.
CNN uses a mathematical operation called convolution to filter and map the data in an image.
In addition to the classical layers in feedforward neural networks, which are called fully
connected layers in the context of CNN. Convolutional neural networks have two additional
layers. Namely, a convolution layer to recognize the image features in pixels, and a pooling
layer to abstract these features in a way that a model could understand. The convolution layer
typically comes first in CNN, then a pooling layer, and at the end, the fully connected layers
[10]. Figure 6 illustrates how Convolutional neural networks work.

Figure 6.: A simple CNN architecture, comprised of just five layers (source: [10]))

Recurrent neural networks (RNN) are mostly used in speech recognition or natural language
processing since they are well suited to processing time-series and sequential data. They
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are different from feedforward neural networks and convolutional neural networks in their
functioning mechanism. The nodes in RNN do not only take input from the nodes of the
previous layers but also store the previous input given to them by these nodes in the previous
iteration. Then, they combine these two inputs to make their prediction. This way, their
prediction doesn’t only depend on current inputs but also their past inputs. RNN has some
key functionalities specific to them like using a variation of the backpropagation algorithm
called “backpropagation through time” to adjust their weights. Also, all nodes across a
particular layer share the same weight parameters [9].

2.2. Federated Learning

The lack of training data is often a persisting bottleneck of a successful machine learning
application. However, in some use cases like medical research (e.g predicting cancer risk), or
finance (e.g predicting the credit rating of someone), it can be challenging to get individuals
to consent to their health or financial data is gathered and used, in a way, they do not
understand. Individuals and companies are not willing to share their intellectual property or
sensitive data if there is a risk of losing sovereignty over their data [11]. Especially with the
introduction of laws such as GDPR. This inhibits a willingness for voluntary data sharing,
which in turn can cause multiple bottlenecks when training the data like the availability of
data itself, or a sampling bias with people who are willing to participate are not representative
of the entire population. Federated Learning emerges as the solution to these systematic
problems of machine learning. It is a practical solution to train machine learning models, all
while preserving the privacy of the subjects participating. That is achieved by following a
compute-to-data approach and training the model on the client side, therefore alleviating the
need to share and centralize the data [11].

2.2.1. Federated Machine Learning Mechanism

In traditional machine learning, the clients produce the data and send it to the server to train
the model. Figure 7 illustrates how traditional machine learning systems train their models.
At first, the server collects the data from the clients, then it uses the data to train the model,
and in the end, it sends the output to the clients [12].
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Figure 7.: Model Training in traditional Machine Learning (source: own work).

In federated machine learning, the server decides on a model and selects the clients. The
clients will then receive the model and train it using their data on the client side without
giving away any of the data to the server. Once the model is trained, the output of the training
is then sent to the server. The server then aggregates the different updates received from
the different clients using a federated averaging algorithm like FedAvg and produces a final
combined gradient update, then the final gradient update gets sent to the different clients.
The clients now have the updates of the global model without accessing each other’s data
[12]. Figure 8 illustrates the process of model training in a federated learning setting.
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Figure 8.: Model Training in Federated Machine Learning (source: own work).

2.2.2. Types of Federated Learning Systems

Federated learning systems could be categorized across different dimensions. For instance,
the distribution of the system, the partitioning of the data, the setting of the system, and
the model deployment strategy. There are also several other particular types of federated
learning systems like systems that use techniques like split learning or federated transfer
learning (FTL).
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Distribution of the system: Federated Learning systems can be categorized based on
their distribution architecture. A federated learning system can be either centralized or
decentralized.

Centralized Federated Learning systems: The central server orchestrates the implementation of
the federated learning algorithm. It chooses the model and selects the clients for the training,
then once the training is complete it aggregates the gradient updates from the clients and
updates them again. The example illustrated in Figure 8 is a centralized federated learning
system [14].

Decentralized Federated Learning systems: In decentralized federated learning systems, there
is no central server to orchestrate the implementation of the federated learning algorithm. In
a decentralized federated learning system, the clients are organized in P2P networks [14].

Partition of data Federated Learning systems can be also categorized based on the partition
of the data in the system. The data can be either partitioned vertically or horizontally.

Horizontal Federated Learning systems: In horizontal federated learning systems, data is
partitioned horizontally. All the stored data share the same scheme, which means all the
partitions store the same attributes of the data instances but not the same set of instances.
Each client trains the model with its instances of data [12].

Vertical Federated Learning systems: In vertical federated learning systems, data is partitioned
vertically. Each client has its unique data scheme. Clients share different attributes of the
same data instances [12].

Federated learning systems setting: Federated Learning systems can be categorized based
on their setting. A federated learning system can be either cross-silo or cross-device.

Cross-silo Federated Learning systems: The clients in a cross-silo federated learning setting
are deployed on the cloud. Each instance represents a different organization. The number of
clients is low (typically 2-100), but they have high computational power as well as storage
capability. Therefore, the complexity of the deployed models as well as the data volume of
each client is typically high. Cross-silo federated learning systems could be either horizontal
or vertical [12].

Cross-device Federated Learning systems: The clients in a cross-device federated learning
setting are typically consumer electronic devices (mobile phones but could also be IoT devices
or wearables). The number of clients is high (up to tens of billions), but their computational
power, as well as their storage ability, is limited. Therefore, the complexity of the deployed
models as well as the data volume of each client is typically low. Cross-device federated
learning systems are always horizontal federated learning systems [12].
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Model deployment: Federated Learning systems can be also categorized based on their
model deployment. A federated learning system can be either model-centric or data-centric.

Model-centric Federated Learning systems: Clients in a Model-centric Federated Learning
system share the same model. The model is typically broadcasted by the central server. Most
Federated learning systems are model-centric systems [15].

Data-centric Federated Learning systems: A new approach for federated learning systems. In
a data-centric Federated Learning system, each client typically chooses the model to train.
The clients train different machine learning models [15].

Split Learning Systems: In split learning systems, the training of the model is done at each
client until a particular point is reached. Then the output of that training (called smashed
data) is transferred to the next client or the central server for further computations. The
raw data of each client is not shared across entities and the training of the models can be
parallelized [12].

Federated Transfer Learning Systems (FTL): The combination of federated learning and
transfer learning is referred to as federated transfer learning. Transfer learning systems
are systems that use the knowledge gained in a certain domain to solve problems in other
domains. It could be the case that in federated learning settings, different clients have different
data. That means, they share neither the data instances nor the data attributes. However,
it could be the case that there is an overlap in some instances, the model to be trained or
features. In these use cases, Federated Transfer Learning systems can be used to transfer
the knowledge gained from training the model on a client to train the models on other
clients. There are three types of federated transfer learning systems. Namely, instance-based,
feature-based, and model-based FTL systems [12].

Instance-based FTL: The clients can use the knowledge gained from the data instances of
other clients to minimize their loss function and optimize their model without accessing the
data of the other clients [13].

Feature-based FTL: In feature-based FTL, the clients can select the features of the data
instances required for training their models based on the knowledge transferred to them from
the other clients. This is done by transferring knowledge about the features without sharing
the features themselves [13].

Model-based FTL: In model-based FTL, the clients benefit from sharing pre-trained machine
learning models without sharing the data [13].
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2.2.3. Federated Learning Systems Properties

Federated Machine learning systems differ from traditional machine learning systems in
multiple properties. Such as the lifecycle of the models, or features specific to federated
learning like privacy mechanisms and Federated learning aggregation algorithms.

Federated Learning Models Lifecycle The lifecycle of federated learning applications
resembles the lifecycle of traditional machine learning applications but there are some key
differences. For instance, there are some extra steps in the Federated Machine learning
model lifecycle that do not exist in the traditional machine learning lifecycle like the client
instrumentation or simulations. Some steps are done differently as well, like the training and
evaluation of the models. They are typically done on the clients rather than the server in a
federated learning setting. The steps of the federated learning lifecycle are [12]:

1. Problem identification: Define the problem to be solved with federated learning.

2. Client instrumentation: Load the clients with the required datasets for the model
training.

3. Simulation prototyping: Simulate different variations of the model on different datasets.

4. Federated model training: The model is trained just like traditional machine learning.
The only key difference is that it is trained on the client and not the server.

5. Model evaluation: After being trained, the models are evaluated based on the same
metrics as traditional machine learning applications. Namely, performance, accuracy,
and other metrics. The best models are then taken to the next step of the process which
is the deployment of the models.

6. Deployment: In the end, the model needs to run live. The owner of the model decides on
the launch process but typically it is not different than the launch process of traditional
machine learning processes with heavy manual and A/B testing before taking the model
live.

Federated Learning Aggregate algorithms: The gradient updates of the model’s training
of the different clients need to be combined. That’s the task of federated learning aggregate
algorithms. They combine the gradient updates of the different clients using different tech-
niques. There are multiple federated learning aggregate algorithms. The most prominent
ones are FedAvg and FedSGD.

FedAVG is the most commonly used federated averaging algorithm. In FedAvg, once a
client finishes training its model. It sends a gradient update to the server. The global model
is then updated at once using the updates from all clients combined [12].

FedSGD is a variation of stochastic gradient descent used to optimize deep learning models
iteratively. A random set of clients are periodically selected by the server to share their
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gradient updates with the server. The updates are then used by the global model iteratively
[20].

Privacy Mechanisms: Since federated learning systems require a lot of communication
between the clients and the server. The communication needs to be secured. In a federated
learning setting, this is done primarily through two distinct methods. Namely, differential
privacy and cryptographic methods.

Differential privacy works by describing a dataset its features and patterns without disclosing
any information about the instances of the dataset. That way the privacy of the individuals in
the dataset is insured while the required information is shared [21].

Cryptographic methods: Federated learning systems use different encryption methods like HE,
RSA, or security multi-party communication. These methods ensure that the communication
between the different clients, as well as the server, is secured [12].

2.2.4. State of Federated Learning Research

Figure 9.: Number of scientific publications with the term “federated learning” in their title
(source: own work, data from [16])

In 2016, the term federated learning was introduced by Google [12]. Since then the interest in
the topic grew considerably. According to the Scopus database 16, the number of scientific
publications about federated learning has steadily grown from 840 publications in 2016

16Scopus: https://www.scopus.com/search/form.uri?display=advanced
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to 6955 in 2021, as illustrated by figure 9 above [16]. Since the research field is still in its
infancy, most of the research done in the field is exploratory. It is mostly focused on finding
applications for federated learning, exploring the benefits and drawbacks of the technology,
as well as prospecting the challenges posed by federated learning and trying to solve them.

Federated learning is a privacy-enhancing technology. Since the research field is still in a
nascent stage, it found its first real-world applications in use-cases where privacy is critical
like IoT, insurance, the medical field, and fintech [18]. Clients in federated learning systems
never share their data with any other party, this enhances privacy. In a cross-device setting,
the clients are heterogenous which could offer diverse data, and since the client has limited
hardware capacities, federated learning models are designed for efficiency [19]. Federated
learning systems require a lot of overhead investment compared to traditional machine
learning systems (high bandwidth and a lot of storage). Performance is also a bottleneck
since federated learning models tend to be slower than traditional machine learning models.
While the system is designed to be decentralized, there is still a degree of centralization since
a central server coordinates the different clients in the system [19]. For Federated learning
to be widely adopted, it needs to tackle multiple systematic challenges like the handling
of non-IID data, security and privacy concerns, communication cost, fairness, and systems
heterogeneity [12]:

• Security: Federated learning systems are vulnerable to multiple types of attacks that
can affect their performance and usefulness. Since federated learning systems tend
to be larger than traditional machine learning systems, they come with an increased
attack surface. Like machine learning systems, the model itself could be an attack vector
(e.g data poisoning attack) but also since there is constant communication between the
clients and the server, the information could be poisoned during the communication
(e.g model update poisoning attack) [12].

• Privacy: Even though federated learning systems do not transfer the data of the clients
to the server, they do transfer information about the model training. This can result
in the leakage of sensitive data. Techniques like Secure multiparty computation and
Differential privacy are used to enhance the privacy of federated learning systems [17].

• Communication cost: Federated learning systems could scale to incorporate tens of
millions of devices. the global models in the servers need to constantly update and
be updated by all these client devices. Thus, communication can constitute a major
bottleneck for federated learning systems [17].

• Fairness: In federated learning settings, context plays a bigger role than in traditional
machine learning settings. Contextual factors like geographic location, connection
quality, and type of device all play a role in the selection of clients. This could result in
systematic biases [12].

• Systems heterogeneity: Cross-device federated learning systems incorporate multiple
different types of devices (different kinds of IoT devices, wearables, and mobile phones).
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The different clients can for instance produce data with different schemes which can
lead to decreased efficiency and biases in the system. The heterogeneity of the clients
needs to be taken into account when designing the system [17].

2.3. Software Engineering Concepts

Software engineering is an engineering discipline that deals with the design and development
of software applications. It uses a set of methods, tools, and techniques to help with the
production of high-quality software systems [27]. Since the federated learning libraries are
software systems and software benchmarking is a subfield of software engineering, some
software engineering concepts like software libraries and frameworks, software requirements,
and software benchmarking need to be introduced.

2.3.1. Software Libraries and Frameworks

Software libraries and frameworks are both pieces of software that are written to overcome
a recurrent software engineering challenge so that developers do not have to resolve these
problems over and over again, and instead focus on building the features of the application
they are developing [26]. Despite the similarity, there are key differences between libraries
and frameworks. Table 1 summarizes the differences between libraries and frameworks in the
context of software engineering.

Libraries Frameworks

Call mechanism
The code calls the software li-
braries.

Frameworks work by inver-
sion of call, which means that
the framework calls the code.

Degree of Control
The developers have full con-
trol over the functions that
they call from the libraries.

The framework calls the func-
tions and methods for the
developer. It also dictates
the architecture of the project.
Thus, the developer has a
lesser degree of control over
the methods and functions
called in the project.

Integrability
Software libraries are easily
integrated into existing soft-
ware projects.

Frameworks can not be inte-
grated into existing software
projects. The project needs to
be built from scratch with the
framework instead.
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Incorporation

A software library can not in-
corporate a framework. It
only incorporates methods
and functions.

A framework can incorporate
many software libraries.

Examples
JQuery, Material UI, Boot-
strap . . .

Angular, React, VueJS . . .

Table 1.: Key differences between software libraries and frameworks (source: [26])

2.3.2. Software Requirements

According to Wiegers, K., and Beatty, J. (2013) [22], software requirements are “a specification
of what should be implemented. They are descriptions of how the system should behave, or
a system property or attribute. They may be a constraint on the development process of the
system.” [22] That means requirements reflect the expectations of the different stakeholders
of a software system by dictating the static structure as well as the dynamic behavior of that
system. We distinguish two types of software requirements, namely functional requirements,
and non-functional requirements.

Functional requirements describe what a software application offers in terms of features
and what business rules the software adheres to. They describe the tasks that the software
could accomplish under certain constraints (how the software functions) as well as the com-
ponents that make up the software [22].

Non-functional requirements describe the characteristics of the system across different
dimensions. They serve as a constraint on the system and thus need to be measurable [22].
Habibullah et al. (2021)[23] identified 36 non-functional requirements that are important for
machine learning applications. Of these 36 non-functional requirements, 24 are important for
the machine learning system operation. Figure 10 illustrates the NFR identified by Habibullah
et al. (2021)[23].
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Figure 10.: Important and less Important NFRs for ML. (source: [23])

The study consisted of interviewing 10 different machine learning specialists. In Figure 10,
c is the count of the number of interviewees whose interviews included the NFR. f symbolizes
the count of occurrences of the code across all transcripts. the Yellow background refers to the
NFRs being mentioned by some interviewees as important but identified as less important
NFRs by other interviewees [23]. Typically, non-functional requirements act as a guideline for
the overall quality of the product. Many quality models have been developed throughout the
years to reflect the quality attributes of a software product and group them into non-functional
requirements. McCall, FURPS, Dromy, ISO 9126, and ISO 2510 are among the most popular
quality models but there are many others. All of these quality models group non-functional
requirements into a category of NFR. For instance, in the ISO 9126 model, usability consists
of understandability, learnability, operability, attractiveness, and usability compliance. In
the FURPS model, the performance requirement consists of velocity, efficiency, availability,
answer time, recovery time, and resource utilization. While the grouping of the different
NFRs can differ between different models, the premise of all quality models is the same. It is
to offer a taxonomy for the different NFRs [24].
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Furthermore, non-functional requirements can be measured and benchmarked using
multiple metrics. For instance, performance is measurable through the training time of a
given machine learning model, or by measuring the time the server needs to communicate
with different clients. Efficiency on the other hand can be measured by the amount of data
being sent between the clients and the server, as well as, the number of communication rounds
that the clients and server need to communicate [22]. Accordingly, the categories in a quality
model can be divided into different NFRs. These NFRs can be measured using multiple
metrics that reflect how well the software performs in that particular quality dimension.

2.3.3. Software Benchmark

According to Kistowski J.V. et al. (2015) [25] a software benchmark is a “Standard tool for the
competitive evaluation and comparison of competing systems or components according to
specific characteristics, such as performance, dependability, or security” [25]. Accordingly, In
the context of software engineering, a benchmark is a software tool that uses certain quantifi-
able metrics to compare different competing pieces of software across different dimensions
(e.g non-functional requirements). Kistowski J.V. et al. (2015) [25] provided 5 criteria that
need to be met for a benchmark to be a high-quality benchmark and they are the following:

• Relevance: The importance of the metrics used by the benchmark to the end users of
the benchmarked entities.

• Reproducibility: Results need to be reproducible within a similar configuration.

• Fairness: Not creating any artificial limitations for any of the competing entities.

• Verifiability: The results delivered by the tool are accurate.

• Usability: easy to use by any user that within the given benchmark environment.
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In the last years, there has been a growing interest in the comparison of federated machine
learning systems. An increasing number of research papers comparing different federated
learning libraries and different federated learning algorithms have been published. There has
been also a growing number of benchmarks for federated learning systems that compare the
different quality characteristics (e.g accuracy, communication cost, and performance . . . ) of
federated learning systems. The following section aims to provide an overview over the state
of research of Federated learning benchmarks

3.1. Federated learning Libraries Benchmarks

Some studies investigated the different FL libraries and created benchmarks for them. These
benchmarks either use a specific library to compare the different federated learning systems
developed with that library (e.g PyFed), or compare the libraries themselves (e.g UniFed).

3.1.1. PyFed

PyFed is a benchmark built on top of the Pysyft library. It is designed to evaluate the federated
learning systems built using Pysyft when handling non-IID data. The benchmark offers five
different datasets with three different data distributions (IID data, non-IID data with random
distribution, and non-IID data with distribution by label). In addition to that, the benchmark
offers an implementation of three different machine learning models using Pysyft. Namely,
a convolutional neural network, a long short-term memory neural network, and a Gated
recurrent unit neural network. It also offers four evaluation metrics (accuracy, micro average,
macro average, and loss), as well as a notebook for the visualization of the results. Figure 11
illustrates the architecture of Pyfed [28].

Bouraqqadi, H., et al. (2021) [28] demonstrated the framework using three different
scenarios, two Image classifications for the CNN, and text classification for the LSTM. The
system performed better on IID data than on non-IID data. However, on non-IID data, it
performed better on the randomly split dataset than on the split-by-label dataset. These
results were consistent almost across all metrics.
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Figure 11.: Pyfed overview (source: [28])

3.1.2. UniFed

UniFed is a federated learning benchmarking tool that benchmarks the different federated
learning libraries. It consists of 15 datasets, an environment launcher, a scenario loader, a test
environment, and a log analyzer. The environment launcher acts as an interface between the
user and the benchmarking environment. The scenario loader loads the dataset, as well as the
different configurations. The testing environment has the implementations of the different
ML models as well as FL strategies using the different FL libraries and frameworks. The log
analyzer just collects the important logs from the different libraries [29]. Figure 12 illustrates
the architecture of the benchmark.

Figure 12.: Design of the (UniFed) benchmark workflow (source: [29]))

Nothing is mentioned about the ML models and FL strategies supported by the benchmark.
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However, the experiment included logistic regression, neural networks, and binary tree ML
models, as well as, the FedAvg, SecureBoost, and HistSecAgg FL strategies. It also used
AUC, MSE, and accuracy as benchmarking metrics [29]. Liu, X., et al. (2022) [29] used the
benchmark to compare nine different libraries. The compared libraries are FATE, FedML,
PaddleFL, Fedlearner, TFF, Flower, FLUTE, CrypTen, and FedTree. The study first compared
the functionalities of the different libraries in terms of privacy mechanisms, supported ma-
chine learning models, deployment support (e.g cross-silo, cross-device, simulation). . .

The study also compared the overall support that exists for the different libraries in terms
of documentation, tutorials, and code samples. In addition to that, the study compared the
libraries and frameworks quantitatively. It studied the influence of the libraries as well as the
FL strategy on the models’ performance and tried to identify the best performant libraries.
It used accuracy, MSE, and AUC as performance metrics. The choice of the library had a
minimal influence on the models’ performance since all the libraries implement the same
mathematical procedures for the different machine learning models. However, there were
some performance fluctuations. For instance, logistic regression using FATE had relatively
low performance. The choice of FL strategy had little to no influence on the performance of
the different ML models. Overall, in vertical settings, the tree-based model performed very
well, and deep neural networks perform better than shallow ones. The study concluded that
for different scenarios, different frameworks are suitable. For instance, Flower and FLUTE are
the best when training time is an important factor, and Fedlearner has the lowest memory
usage [29].

3.1.3. Federated Learning Libraries Comparison

Kholod, I. et al. (2020) [30] compare five different federated learning libraries in the context
of IoT, namely Tensorflow Federated from Google, FATE from Webank, PFL from Baidu,
Pysyft from Openminded, and FL and DP from Sherpa.AI. They analyze the ease of setup,
capabilities, and maturity of each library, and compare their performance and accuracy. They
conclude that the most mature and ready-to-use federated learning library is PFL since it had
the best accuracy and performance in the comparison experiment. However, they mention
the small community support and the lack of documentation as a shortcoming. Tensorflow
Federated and FATE only offer deep learning models and do not offer any implementation of
traditional machine learning models. Unlike other Federated learning libraries, FL and DP
is easy to install and supports both traditional machine learning and deep learning models.
The paper concludes that all the libraries except Pysyft require a lot of resources and are not
suitable for IoT use. The comparison done by Kholod, I. et al. (2020) [30] does not offer a
step-by-step explanation of their comparison and thus it is hard to reproduce their results.
The validity of the results is also specific to the IoT use cases.
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3.2. Federated Learning Metric-specific Benchmarks

Some benchmarks and evaluations only compare one quality dimension of federated learning
systems. Wei, W., et al. (2020) [31] compare the privacy and security of different FL settings.
While Nilsson, A., et al. (2018) [33] and Zhuang, W., et al (2020) [32]. both compare the
performance of different federated learning aggregation algorithms

3.2.1. Privacy and security

Wei, W., et al. (2020) [31] offer a framework for evaluating and comparing different attacks
on federated learning systems. They also perform a gradient leakage attack against multiple
federated learning systems configurations and analyze the effectiveness of these attacks.
Finally, they offer two mitigation strategies to limit the impact of gradient leakage attacks.

3.2.2. Performace

Both Nilsson, A., et al. (2018) [33] and Zhuang, W. et al. (2020) [32] compare the performance
of federated learning aggregation algorithms. The first compares FedAvg to CO-OP and
FSVRG, and the latter compares FedAvg to FedPav. They both use the model training time as
a metric for performance.

Performance Benchmark of FedAvg, CO-OP, and FSVRG Nilsson, A., et al. (2018) [33]
compare the performance of three widely used federated learning aggregation algorithms.
Namely, FedAvg, FedSVRG, and Co-op. They conduct a performance benchmarking experi-
ment of the three aggregation algorithms compared to a centralized machine learning system
using the perceptron deep learning model on the MNIST dataset (both i.i.d and non-i.i.d data)
for 10000 clients. Table 2 summarizes the findings of the experiment.

i.i.d data

FedAvg CO-OP FSVRG
Centralized
ML

FedAvg - better better equivalent
CO-OP worse - equivalent worse
FSVRG worse equivalent - worse

non-i.i.d data

FedAvg CO-OP FSVRG
Centralized
ML

FedAvg - better better equivalent
CO-OP worse - equivalent worse
FSVRG worse equivalent - worse

Table 2.: Summary of algorithm comparisons (source: [33])
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Performance Benchmark of FedAvg, and FedPAV Zhuang, W., et al. (2020) [32] tackles the
challenge of statistical heterogeneity by benchmarking the FedPav and FedAvg aggregation
algorithms on six distinct datasets using two distinct scenarios for person reidentification (the
federated-by-camera scenario and the federated-by-dataset scenario). It uses ID-discriminative
embedding (IDE) as a reference model. The results of the experiment concluded that FedPav
has a better performance than FedAvg in the person reidentification scenario. However, its
performance can be further improved by adjusting the weights of the model, as well as using
knowledge distillation, which is a technique that consists of transferring knowledge from a
trained large deep learning model to a smaller untrained deep learning model.

3.3. Federated Learning Use-case-specific Benchmarks

Some benchmarks are specific to certain use cases (e.g deep learning, NLP, edge computing).
They only measure the performance metrics of the different algorithms and models for a
certain scenario. For instance, Basu, P., et al. (2021) [34] benchmarked the privacy of ML and
FL models for the NLP use case, and Hao et al. (2018) [35] offers a benchmark for the edge
computing scenario. He, C. et al. (2021) [36], Gao, Y., et al. (2020) [37], and Zhang, Z., et
al. (2021) [38] all dealt with benchmarking models that dealt with scenarios involving Deep
learning models.

3.3.1. NLP and Edge Computing

Basu, P., et al. (2021) [34] benchmarked the privacy of traditional machine learning systems
and federated learning systems in the medical field. It used BERT-based models, for different
levels of privacy and depression and sexual harassment-related Tweets as a dataset. The
study concluded that utility degrades more in non-IID setups than in IID setups.

Edge AIBench [35] claims that it offers a benchmark for federated learning applications
in four different edge computing scenarios (ICU, smart home, Autonomous Vehicles, and
surveillance camera) across the three layers of edge computing systems (Client, Edge, Server).
However, Hao et al. (2018) [35] offer no demonstration and no reference implementation of
the benchmark.

3.3.2. Deep Learning

Some publications tackled the use of deep learning in a federated learning setting. Deep
learning models are usually resource-intensive. Thus, performance and efficiency can both be
bottlenecks for federated learning systems that use deep learning models.

FedGraphNN is a federated learning benchmark for Graph neural networks. Graph neural
networks are neural networks that learn from graph-structured data like social network
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connections, recommendation systems, or traffic flow models. The learning in Graph neural
networks can be done on three distinct levels. Namely, at the graph level, sub-graph level, or
node level. The benchmark contains 36 different private and public datasets from seven dif-
ferent domains. The domains are molecules, proteins, and social networks for the graph-level
learning datasets. For the sub-graph-level learning datasets, the domains are recommender
systems and knowledge graphs. the domains for the node-level learning datasets are social
networks and publication networks. In addition to that, the benchmark includes an imple-
mentation of both the popular graph neural network models as well as federated learning
algorithms. It also incorporates six different performance metrics relevant to graph neural
networks. Namely, the training time, the receiver operating characteristic, the mean absolute
error, the mean squared error, the root mean square error, and the micro-averaged F1 score.
The benchmark is built on top of the FedMl framework. Figure 13 illustrates the architecture
of the benchmark [36]. He, C. et al. (2021) [36] performed a comparison of the federated
learning system using the FedAvg algorithm to a centralized machine learning system. the
federated learning system performed worse in all performance metrics [36].

Figure 13.: Overview of FedGraphNN System Architecture Design (source: [36])

Comparison of Federated learning systems to SplitNN: Gao, Y., et al. (2020) [37] compare
the performance of federated learning systems to the performance of another distributed
machine learning paradigm called SplitNN in the context of IoT. SplitNN is a similar ma-
chine learning paradigm to federated learning, with the key difference being that the server
distributes the data between the different clients, instead of the clients using their data to
train their machine learning models. They use Raspberry Pi devices as a test environment
and use model accuracy and model convergence speed in a non-i.i.d dataset as performance
metrics. The results of experiments conclude that overall SplittNN performs better than
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federated learning on non-i.i.d data. However, when the distribution of the data is extremely
imbalanced, federated learning performs better. Furthermore, they conclude that federated
learning is better suited for IoT use cases since it uses the hardware resources more efficiently.

Gradient diversity Comparison: Zhang, Z., et al. (2021) [38] studied the effect of gradient
diversity on semi-supervised federated learning systems performance. Semi-supervised
federated learning is defined in the study as when the clients have unlabeled data, and the
server has labeled data. The accuracy is used as a metric. They investigate the different
gradient descent techniques used in semi-supervised settings like consistency regularization
loss (CRL) and Batch Normalization (BN) and present their technique named Group Normal-
ization (GN). They also propose the aggregation algorithm that they called a grouping-based
average. Their experiment demonstrates that the new averaging algorithm performs better
in terms of accuracy compared to the FedAvg algorithm and that the combination of group
normalization and consistency regularization loss performs better than the combination of
batch normalization and consistency regularization loss.

3.4. Federated Learning Setting Specific Benchmarks

Multiple benchmarks have been developed to evaluate federated learning systems in a specific
setting (e.g personalized FL, Hetero-task FL, and large-scale FL). While theoretically, general
purpose benchmarks can be also used to evaluate such a system, they are not designed to
do so. For instance, FedScale can scale to incorporate hundreds of thousands of clients,
something that general-purpose benchmarks are generally unable to do.

3.4.1. Personalized Federated Machine Learning Setting

Personalized federated machine learning is when each client in a federated learning setting
has its unique model deployed. That means the central server in this setting does not choose
and distribute a model. Instead, the different clients choose their model to use. Motley
[39] and pFL-Bench [40] are both benchmarks for personalized federated machine learning
systems.

Motley tackles the issue of personalized federated machine learning. It keeps track of
metrics like accuracy, fairness, and robustness. It also offers seven datasets for both cross-silo
and cross-device setups. Motley is designed to study the effectiveness and the extent of
personalization techniques on the performance of federated learning systems. Wu, S., et al.
(2022) [39] uses Motley in three distinct experiments using different settings (two cross-device,
and cross-silo settings) and comes to the following results:

• Different personalization methods perform differently across different performance
metrics.

• Tuning the model’s parameter in a cross-silo setting is highly effective at improving the
performance of the system.
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• Personalized federated machine learning comes with tradeoffs compared to traditional
federated machine learning.

pFL-Bench offers eleven datasets for benchmarking personalized federated machine learn-
ing systems. pFL-Bench also offers multiple performance metrics (e.g memory cost, com-
putational cost, and communication cost of different federated learning settings), as well as
different fairness metrics (e.g the top and bottom deciles of performance across different
clients and the value of a standard deviation). In addition to that, it offers three deep learning
models. Namely, a two-layers CNN, a graph isomorphism neural network, and a matrix
factorization model. pFL-Bench also allows the selection of any proportion of clients for
benchmarking. That way, not only the effect of the data distribution on the performance of
the system can be evaluated but also the effect of the client sampling [40].

3.4.2. Hetero-task Federated Machine Learning Setting

B-FHTL is a federated learning benchmark for hetero-task learning. Hetero-task learning is a
federated learning technique where each client in the system does a different task (e.g object
detection, image classification, prediction . . . ). The benchmark consists of three different
clusters of non-IID datasets with increasing heterogeneity, the implementation of the tasks
that are carried out on each of the clusters, and a set of evaluation metrics. Figure 14 below
illustrates the architecture of the benchmark [41].

Figure 14.: Overview of B-FHTL (source: [41])

The first cluster of datasets comes with only the task of binary classification and it has a
total of 13 datasets. The second cluster comes with two tasks. Namely, binary classification
and regression, and has a total of 16 datasets. The third cluster has three datasets and
comes with three tasks. Namely, Sentence pair similarity prediction, Sentiment classification,
and Reading compression. In addition to that, the benchmark comes with a set of metrics.
per-client improvement ratio is a metric used for all of the datasets. For the first cluster of
datasets, accuracy is used as a metric. For the second and third clusters of datasets, the overall
performance is used as a metric. Overall performance is defined as the following:

Overall = Ii · 1
n · ∑n

i=0(
mi−bi

bi · 100%)
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With mi the performance of the client i and bi the baseline on the client. n is the number
of clients. Ii is the comparison indicator of client i. Yao, L., et al. (2022) [41] conducted an
experiment to demonstrate the capabilities of the benchmark. They compared seven different
federated learning strategies and used accuracy as a metric for the first cluster of datasets and
the per-client improvement ratio as a metric for the benchmarking of the two other clusters.
The used federated learning strategies are FedAvg, FedAvg+FT, FedProx, FedBN, FedBN+FT,
Ditto, and FedMAML. For the first cluster of datasets, FedBN+FT had the best accuracy. For
the second and third clusters, FedBN+FT and FedMAML had the best per-client improvement
ratio respectively.

3.4.3. Large-scale Federated Machine Learning

There are evaluation frameworks and benchmarks specific to large-scale federated learning
systems. In cross-device federated learning settings, the systems can scale to incorporate tens
of millions of devices. Communication cost, accuracy, and performance can all be influenced
by a large number of devices in a federated learning system. Lui, L., et al. (2020) [42] and Lai,
F. et al. (2021) [43] both offer benchmarks for such scenarios. These benchmarks are designed
to evaluate the performance of the federated learning systems across different metrics that
are relevant when the scale of the system is large.

Evaluation framework for large-scale federated learning systems: Lui L. et al. (2020) [42]
offers a benchmark for evaluating large-scale federated learning systems. It uses covariate
shift, prior probability shift, and concept shift to transform datasets into non-i.i.d datasets.
After that, it uses benchmarks like the number of communication rounds, data nodes number,
the weight of data nodes, as well as the quality of data nodes to benchmark the federated
learning system. It also offers a profile module to customize the different parameters of the
datasets. Figure 15 illustrates the architecture of the evaluation framework.

Figure 15.: Evaluation Framework Overview (source: [42])

FedScale offers a benchmark for big-scale cross-device federated learning systems consti-

33



3. Related Work

tuted of twenty different datasets with different tasks ranging from object classification to
speech recognition. They also offer emulation of real mobile client behavior like the speed
heterogeneity of the different clients, as well as the different availability of the different
clients. The system can scale up to 136k clients. The benchmark keeps track of metrics like
the number of communication rounds and accuracy to benchmark the statistical and systems
efficiency. It also offers configurable security and privacy settings to compare the performance
of the system with different settings [43].

3.5. Federated Learning General Purpose Benchmarks

Some benchmarks are neither specific to a machine learning model, to a specific dataset, nor
specific metrics. These benchmarks typically offer high customizability. In this thesis, these
benchmarks were divided into datasets and complete benchmarks. The dataset benchmarks
offered a collection of datasets that the users can use to benchmark their models and algo-
rithms. While, the complete benchmarks offered parameter tuning, different ML models
implementations, different federated learning data aggregation algorithms, and different
metrics, in addition to the datasets.

3.5.1. Datasets

FLBench [44] and LEAF [45] are both general-purpose benchmarks. However, they both do
not come with any reference implementations of any machine learning model. They both
however offer datasets from various domains, suited for different federated learning scenarios.

FLBench is a benchmarking suite that offers real-life datasets from various domains (med-
ical, finance, IoT) for real-life configurable scenarios keeping track of different metrics for
communication, privacy, data heterogeneity, and cooperation strategy. Liang et al. (2020)
however do not provide any insight into the benchmarked metrics, or any demonstration of
the benchmark [44].

LEAF is a modular open-source federated learning benchmark. It offers six open-source
machine learning training datasets, as well as efficiency, accuracy, and performance metrics.
It also offers reference implementations of minibatch SGD, FedAvg, and Mocha federated
learning algorithms to make the results of Caldas, S., et al. (2018) easily producible. Caldas,
S., et al. (2018) [45] do not present any benchmarking experiment, they just present the
functionality of their tool.

3.5.2. Complete Benchmarks

FedML [46], OARF [47], and FedEval [48] are all general-purpose benchmarks. Like FLBench
[44] and LEAF [45], they are agnostic to the federated learning scenarios. However, in addi-
tion to, the datasets, they come with different metrics, reference implementations of a set of
supported federated learning strategies as well a machine learning model. FedML can even
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be used as a federated learning framework.

FedML is a multi-functional federated learning framework and benchmark. It offers
multiple functionalities like the support of different computing paradigms (e.g standalone
simulation, distributed computing, on-device training), flexible API design for message flows,
message customization, and topology customization. It also supports Split learning (splitNN)
as well as different federated learning paradigms (e.g FedAvg, decentralized FL, FedNAV,
vertical FL). For benchmarking, it offers eleven different datasets for different federated
machine learning use cases and scenarios (e.g linear, shallow neural networks, deep neural
networks). He, C., et al. (2020) provide a demonstration of the benchmark. However, it is
only for demonstration purposes and offers no actual results [46].

Open Application Repository for Federated Learning (OARF) is a general purpose highly
customizable federated learning benchmark. It supports the customization of federated
learning systems across multiple dimensions like the reference machine learning model,
dataset, or aggregation algorithm. Figure 16 illustrates the architecture of OARF and the
supported federated learning paradigms. The user can theoretically create any supported
combination to benchmark any supported metric [47].
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Figure 16.: The architecture of the OARF framework (source:[47])

Furthermore, Hu, S., et al. (2022) [47] offer a demonstration of the tool by benchmarking the
accuracy of the FedSGD algorithm to a reference implementation using a sentiment analysis
dataset as well as an object classification dataset. In both setups, the reference implementation
outperformed the FedSGD algorithm.

FedEval is a benchmark for federated learning systems. Unlike other benchmarks, FedEval
does not offer any dataset, machine learning model implementations, or federated strategy
implementation. Instead, it takes them as input from the user and emulates a client-server
setting. Then, it measures five different metrics. Namely, accuracy, communication cost,
time consumption, privacy, and robustness. In the end, it displays the final results of
the benchmarking on a dashboard. Figure 17 illustrates the architecture of FedEval [48].
Chai, D., et al. (2020) [48] demonstrated the benchmark by comparing the FedAvg and
FedSGD federated strategies. It used five different datasets as well as two different machine-
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learning models. The results were that FedAvg outperformed FedSGD concerning accuracy,
communication cost, time consumption, and privacy. While FedSGD outperformed FedAvg
concerning robustness.

Figure 17.: The architecture of FedEval (source: [48]))

3.6. Summary

There are multiple publications that offer different benchmarks for federated learning systems.
Each presented its datasets, metrics, machine learning models, and FL strategy, and tackle a
different use case. There are a few that are general purpose and customizable but these can
not be used for benchmarking the libraries since they already come with their implementation
of the different scenarios. Table 3 illustrates the findings of the literature review of the
different FL benchmarks.

Number of
datasets

Metrics ML models
FL strate-
gies

Use-case

FedEval 0

accuracy,
communi-
cation, time,
privacy, ro-
bustness

none none General

FedMl 11 accuracy none FedAvg General

OARF 10
multiple
metrics

multiple
models

FedSGD,
FedAvg,
FedNOVA,
and Fed-
Prox

General
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pFL-Bench 11

memory
cost, com-
putational
cost, com-
munication
cost, top
and bottom
deciles
of perfor-
mance ,
and the
value of a
standard
deviation

CNN, a
graph iso-
morphism
NN, and a
matrix fac-
torization
model

multiple
personalized
FL

PyFed 5

accuracy,
loss, macro,
and micro
averages

CNN,
LSTM,
GRU

FedAvg
Libraries
Benchmark

Edge
AIBench

none none none none
Edge com-
puting

FedGraph
NN

5

ROC,
MAE, MSE,
RMSE, mi-
cro F1, and
Training
time

Graph NN FedAvg Graph NN

B-FHTL 32

per-client
improve-
ment ratio,
accuracy,
and overall
perfor-
mance

Binary clas-
sification,
regression,
and NLP

FedAvg, Fe-
dAvg+FT,
FedProx,
FedBN,
FedBN+FT,
Ditto, and
FedMAML

Hetero-
tasks

FedScale 13

number of
commu-
nication
rounds and
accuracy

None None
Large scale
FL

UniFed 15
Accuracy,
AUC, and
MSE

Binary tree,
NN, Regres-
sion

FedAvg
Libraries
Benchmark
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LEAF 6

efficiency,
accuracy,
and perfor-
mance

None

minibatch
SGD, Fe-
dAvg and
Mocha

General

FLBench multiple

communication,
privacy,
and data
heterogene-
ity

None None General

Lui L. et al. 2

number of
commu-
nication
rounds,
data nodes
number,
the weight
of data
nodes, and
the quality
of data
nodes

DNN FedAvg
Large scale
FL

Motley 4

accuracy,
fairness,
and robust-
ness

DNN FedAvg
personalized
FL

Table 3.: The different FL benchmarks (source: own work)

There are two benchmarks for libraries. Namely, PyFed [28] and UniFed [29]. However,
Pyfed is specific to Pysyft, and can not be used to compare the different libraries. UniFed is
highly customizable and can benchmark the different libraries. However, it doesn’t offer a lot
of non-statistical metrics and it doesn’t support many ML models. In addition to that, the
users of UniFed are expected to be able to program their scenarios and use the CLI of UniFed.
These two limitations hurt the usability and the relevance of the benchmark.
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This thesis leveraged a manifold research approach compromised of four methodologies.
Namely, a semi-structured expert interview to answer the first research question, a literature
review as well as a document analysis to answer the second research question, and the design
science research methodology and an experiment to answer the third research question.

4.1. Expert Interview

To collect the FR and NFR for federated learning systems a semi-structured expert interview
was selected as a research method. Unlike a structured interview where the interviewees
should not divert from the interview questions, in a semi-structured interview, the intervie-
wees are allowed to divert from the questions, to share their personal experiences with the
interviewers [76]. The semi-structured interview was chosen because of its qualitative nature
and the scarcity of literature on federated learning systems requirements. Before starting the
interviews, more than 20 people were contacted through LinkedIn and other mediums. Five
of them accepted the interview requests but only four showed up for the interviews. The
sample size of the interviewees was four. All of them are industry experts with experience
building or researching federated learning systems. The interviewer took notes during the
interviews and recorded the answers of the interviewees to the different questions as well as
the additional information they provided. A set of 20 interview questions was prepared to ask
the interviewees about themselves, their experience with federated learning, the functional
and non-functional requirements they deem important for federated learning libraries, and
the metrics to measure the performance of their federated learning systems across these
dimensions. The data collected during the interviews were qualitative. The method used for
the data analysis was the thematic analysis method. The thematic analysis method is a data
analysis method that emphasizes searching for and analyzing patterns in qualitative data
[77].

4.2. Literature Review and Document Analysis

To extract the data about the different federated learning libraries and their capabilities and
limitations a qualitative methodology is needed. Thus, a mixture of literature review and
document analysis was chosen as a research method to answer the second research question.
These methodologies were chosen because of their qualitative nature.
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4.2.1. Literature Review

A literature review [74] is a research methodology that is used to give an overview of a
specific research topic and the current state of research around that topic. It can be either
systematic or non-systematic. Systematic literature reviews focus more on the collection of
data from the scientific literature. While a non-systematic literature review focuses more
on the current state of the scientific literature. For this thesis, a non-systematic literature
review was chosen as the research methodology. The goals were mainly to get an overview of
the scientific literature around federated learning, identify gaps in the research around the
subject with regards to federated learning libraries comparisons, and identify the different
FL libraries developed or used by the researchers. A systematic literature review will not be
as suited as a non-systematic one because there are a large amount of key words that can
be useful in the context of this thesis but hard to identify. For instance, key words that are
specific to NFRs or to specific libraries. The following process was followed for the literature
review:

Order Step Description

1
Defining the topic of re-
search

1. Get an overview of the federated learning
research.
2. Identify gaps in the research concerning li-
brary comparisons.
3. Identify the FL libraries in the literature.
4. Identify the FL libraries features used in the
literature.

2
Search and select arti-
cles

1. A search was conducted on the google
scholar search engine with FL-related key-
words.
2. The articles with relevant titles were identi-
fied.
3. The abstracts of the candidate papers were
read.
4. The papers with the relevant abstracts were
read.

3 Analyse the literature
Extract the information relevant to the research
topic.

4 Summarize the findings Write a summary of the findings.

Table 4.: Literature review process (source: own work based on [74])

4.2.2. Document Analysis

Document analysis is a qualitative research method in which documents are analyzed and
relevant information is extracted from them [75]. In this thesis, after identifying the different
federated learning libraries, a document analysis of their official documentation, GitHub
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repositories, and official websites was carried out. The goal was to identify the functionalities
and features of each of the libraries as well as their capabilities and limitations. Some
additional meta-data (e.g library version, library developer . . . ) was also extracted.

4.3. Design and Development of the Tool

To compare the difference between the FL libraries across different quality dimensions, an
artifact needs to be built. The design science research methodology was used as the method
to design and develop the artifact. The design science research methodology (DSRM) is an
approach to designing and building artifacts for research purposes. A researcher using the
DSRM needs to follow these five steps [78]:

1. Problem identification and motivation: This step deals with the motivation behind
the artifact as well as the identification of the problem that the artifact needs to solve.
The following question needs to be answered. What is the problem that the artifact is
solving?

2. Definition of solution objectives: This step deals with the definition of the capabilities of
the artifact. The following question needs to be answered. How is the artifact going to
solve that problem?

3. Design and development: This step deals with the building of the artifact. The following
question needs to be answered. How are the solutions going to be implemented?

4. Demonstration: This step deals with the demonstration of the capabilities of the artifact.
The following question needs to be answered. What is the efficacy of the solution?

5. Contribution: This step deals with the contribution of the tool to the advancement of the
current research. The following question needs to be answered. What is the contribution
of the solution to the current research?

Table 5 illustrates how each of these steps is defined in the context of this thesis. First, the
problem needs to be identified. Then, an artifact solution for it needs to be defined. Afterward,
the solution needs to be designed and developed. The solution needs to be demonstrated after
that. Finally, the contribution of that solution to the current research needs to be highlighted.

Step Question Description

Problem iden-
tification and
motivation

What is the problem
that the artifact is solv-
ing?

Qualitatively compare different quality dimen-
sions of the FL libraries using different metrics.
The quality dimensions are scalability, perfor-
mance, efficiency, and accuracy.
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Definition of
solution objec-
tives

How is the artifact go-
ing to solve that prob-
lem?

A benchmarking suite that allows multiple ex-
periments to be conducted using different ML
models implemented with the different feder-
ated learning libraries. It will collect the logs
for the different metrics from the libraries and
display them on an admin dashboard.

Design and de-
velopment

How are the solutions
going to be imple-
mented?

The benchmarking suite is constituted of mul-
tiple modules. Namely, a module for each FL
library that has the implementation of the differ-
ent ML models and FL strategies in it, a module
for a web application that communicates with
the different libraries modules and acts as an
admin panel to configure and conduct the dif-
ferent experiments using the tool, and a module
for the different datasets.

Demonstration
What is the efficacy of
the solution?

The benchmarking suite needs to present fair,
verifiable, and reproducible results.

Contribution
What is the contribu-
tion of the solution to
the current research?

An easy-to-use benchmarking suite that is mod-
ular and extensible.

Table 5.: DRSM for the benchmarking suite (source: own work based on [78])

4.4. Experiment

To test the quality of the library across the following quality dimensions: scalability, per-
formance, efficiency, and accuracy, 13 different experiments on the MNIST dataset were
conducted. The first one was a traditional ML experiment to train a CNN using PyTorch.
It was used for reference. The other 12 experiments were conducted with four different
FL libraries (FedML, Flower, Pysyft, and FATE). Each of the libraries was used for three
experiments. The first experiment had 2 FL clients, the second experiment had 16 FL clients,
and the third experiment had 100 FL clients. The used federated aggregation algorithm is
FedAvg. Twelve different metrics relevant to the quality dimensions were monitored and
logged during the different experiments. The hardware specs used in the experiments are
illustrated in Table 6.
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Characteristics Specifications
Model Dell DE-L081906
OS Windows 10 Enterprise

CPU
Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz
2.59 GHz

GPU Nvidia Quadro P1000 (was not used)
RAM 32,0 GB (31.8 GB usable)
Hard Drive SSD 470GB

Table 6.: Hardware specifications for the experimentation computer (source: own work)
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Since 2016, and the introduction of federated learning. Multiple libraries and frameworks
have implemented the different functionalities of federated learning to make the development
of FL systems easier. In this thesis, a series of semi-structured interviews will be conducted
to identify the different features and criteria deemed important by the FL community. Then,
the libraries as well as their functionalities will be researched, and the important metrics to
compare them will be identified through a combination of document analysis as well as a
literature review. Then the libraries will be benchmarked following these metrics using the
FMLB benchmark suite that was developed as part of the thesis to conduct the benchmarking
experiments.

5.1. Important Functional, Non-functional Requirements and their
Metrics for Federated Machine Learning Libraries

To gather the functional and non-functional requirements relevant to federated machine
learning libraries as well as the metrics to measure them, a series of semi-structured interviews
[76] were conducted and thematic analysis [77] as the data extraction method. This section
presents the results of the interviews.

5.1.1. Pre-Interviews

Before the interviews, people that had experience with federated learning were contacted.
Around 20% of the contacted people accepted the interview request, an invite to a one-hour-
long interview was sent to them. All of the interviews took between 50 minutes, and 1 hour
and 5 minutes.

Data collection: The first two interviews were transcribed using the Microsoft Teams
transcript functionality. The rest was documented in the form of notes taken by the inter-
viewer whenever the interviewee’s answer was relevant to the question being asked. Since the
interview was semi-structured, the interviewee gave long sentences as answers and discussed
every question in detail. The interviewer took notes, shortening the long answers only to
the part relevant to the questions being asked. Table 7 illustrates the profiles of the different
interviewees. All the interviewees are researchers or come from a research background.
They come from different backgrounds (IT security and cloud computing, machine learning,
robotics, aerospace . . . ). They all hold a masters degree, and all of them have one year of
experience researching, designing and implementing federated learning systems. The overall

45



5. Libraries Comparison

experience of the interviewees differs. Three have 3-4 years of industry experience and one
has 18 years.

Parti-
cipant

Field Role Experience
Experience
with FL

Responsibility
FL
Projects

P1
Industry
research

Researcher 3 years 1 year

Research, de-
sign, and im-
plement feder-
ated learning
sector projects

One
public
sector
project

P2
Industry
research

Senior re-
searcher

18 years 1 year

Research,
design, and
implement
privacy en-
hancing
technologies

One
Edge
com-
puting
project

P3 FL
AI software
developer

3 years 1 year
Develop an FL
library

Building
an FL
library

P4
Industry
research

Research
assistant
(Ph.D.)

4 years 1 year

Research
about security
and privacy in
the aerospace
industry

two
projects
(in
robotics
and
automo-
tive)

Table 7.: Interviewees profile and experience (source: own work)

Interview questions: There was a total of twenty interview questions, divided into four
categories. The first category was the background questions. These questions dealt with the
experience of the interviewee in general (questions 1 - 4) and with federated machine learning
in particular (questions 5 - 7). After that, there were the functional requirement questions
(questions 8 - 13). These questions dealt with what the interviewee deemed important for a
federated learning library to have in terms of features and functionality. The third part was the
non-functional requirements questions (questions 14 - 17). These questions dealt with which
non-functional requirements the interviewees deemed important for a federated learning
system to have, and thus to be built-in in the library. The last part was the non-functional
requirements metrics part (questions 18 - 19). Which dealt with the relevant metrics used to
measure the different non-functional requirements in federated learning systems. In the end,
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the interviewees were asked an open-ended question (If there is anything they would like to
add). Table 8 represents the list of questions asked by the interviewers to guide the interview.

Interview Question RQ
Background of the Interviewee

1. Please introduce yourself and your role in this company/organization. N/A
2. Do you consider yourself more of an academic person or an industry-
related person?

N/A

3. Total years of experience in the industry and how long have you been in
your current position?

N/A

4. Please describe your responsibilities in your organization (e.g., Product
owner, developer, Software Architect).

N/A

5. Please describe your experience working with FL. N/A
6. For what use cases do you use FL? N/A
7. Which FL libraries do you know? RQ 1

FR-related questions
8. What features are the most important for FL libraries? RQ 1
9. Which aggregation algorithms do you usually use? RQ 1
10. Which ML models do you usually use? RQ 1
11. Do you use security mechanisms? if yes, do you prefer encryption-based
security or Anonymisation-based security?

RQ 1

12. How often do you work with vertically partitioned data? RQ 1
13. How often do you work with non-IID data (heterogeneous data )? RQ 1

NFR-related questions
14. Do you think NFRs play an important role in the success of FL systems?
If yes, how?

RQ 1

15. What non-functional requirements do you think are important for FL
systems?

RQ 1

16. Do you measure NFRs over FL-enabled software? RQ 1
NFR Measurement questions

17. What are the most important metrics for NFRs in an FL context? RQ 1
18. How do you capture NFRs and their measurement for FL? RQ 1
19. What are the challenges you face measuring NFRs for FL? RQ 1
20. Do you have anything else you would like to add? N/A

Table 8.: The list of the asked interview questions (source: own work)
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5.1.2. Interviews

The answers for the four interviews were summarized and reported to make the analysis
of the results easier and more reproducible. The summary contains what was said by the
interviewees that were relevant to the interview questions. Everything that is not relevant
has been discarded from the summary. Also, each interviewee structured their answers dif-
ferently, the summary abstracts away all of this and reports the answers in a uniform structure.

First Interview: The first interviewee is a researcher at a bavarian software research in-
stitute. During his studies, he focused mostly on AI and worked for three years in total in
AI research one of which he worked full-time. His main tasks are the research, design, and
implementation of a PoC for the solutions for the industry clients of his institute. He consid-
ers himself both an industry and an academic person. He has been working on federated
learning for one year. Namely, on a project for the public sector to enhance civic participation
using NLP models to classify the citizen’s ideas. In his work, he used the IBM federated
learning library but he also knows of TensorFlow federated. In addition to that, he has been
researching the topic of accountability in federated learning systems and trying to come up
with more FL use cases for the public sector. Mainly in agriculture and finance. He has both
practical and research experience with federated machine learning.

He worked with FL only using deep learning algorithms (mainly in NLP) and only used
fedAvg as a federated data aggregation algorithm. He thinks that a federated learning
library should implement both encryption and differential privacy as security mechanisms
because there are multiple stakeholders in an FL project: Encryption is more important for
the technical stakeholders while differential privacy is more important for the non-technical
ones. He has never worked with vertically partitioned data in an FL setting and has often
worked with non-I.I.D data. He thinks that in terms of functionality a federated learning
library should offer features to easily implement and deploy FL systems in a cross-silo setting
as he deems it the most realistic use case for FL. The support of decentralized paradigms
like the support of P2P network topologies is an important feature for him too. Since FL in a
cross-silo environment requires some level of consensus.

He thinks that the non-functional requirements are important for FL projects especially
fairness, scalability, and accountability since these systems are decentralized by nature. He
thinks that a library should implement metrics to measure the bias in a system (fairness),
it should be able to scale both in terms of the number of clients and volume of data by the
clients (scalability), and it should provide a logging system to track the actions of the different
participants (accountability). He thinks that accuracy, efficiency, and performance are not
important in federated learning settings since these are issues that need to be dealt with
on the level of the used ML framework. He also mentions that robustness is an extremely
important non-functional requirement in the context of federated learning since these systems
need to be working 99.99% of the time.
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The only non-functional requirements he tried to measure were scalability (maximum
number of supported clients and number of communication rounds), accuracy (F1, Hit rate,
Precision, Specificity, False alarm rate), and accountability (by setting different accountability
levels). Accountability was the most challenging NFR to measure for him since there isn’t a
unified system to measure accountability in software engineering. Overall he thinks that fed-
erated learning is a technology with a lot of potential and that it will open the door for many
applications that we don’t know of yet. He also thinks that legal ambiguity is a challenge
that needs to be solved to be able to design better privacy-enhancing technology for the future.

Second Interview: The second interviewee is an applied researcher at a german cloud
computing company. He comes from an IT security background and has 18 years of industry
experience overall. Mainly in research. He has been in his current position for two years
and has one year of experience with federated learning. He mainly researches, designs, and
implements IT security systems for companies but lately, he has been focusing on privacy-
enhancing technologies, and that’s how he got introduced to federated machine learning. He
worked for a year on the implementation of federated learning in edge computing scenarios
for companies that are willing to share their ML models. He knows flower, pysyft, and the
IBM federated learning library. He has both practical and research experience with federated
machine learning.

He thinks that a federated learning library should abstract away the communication layer of
the system and automate the orchestration of the different clients in the system. He also thinks
that it is not important for a federated learning library to support the different distributed
computing paradigms and sees cross-silo as the most realistic scenario for the implementation
of federated learning systems. In addition to that, he thinks that federated machine learning
should be easily integrable with as many machine learning frameworks as possible. He
worked with both deep learning and traditional machine learning models in a federated
setting and he doesn’t think that the federated learning library should have the function of
implementing the different machine learning models but it is the function of the machine
learning frameworks. He only used both of fedAvg and SecBoost for federated data aggrega-
tion and differential privacy as a security mechanism in his project. He deems both differential
privacy and encryption as important security mechanisms that an FL library should support.
He has worked with neither vertically partitioned data nor non-i.i.d data in a federated setting.

The interviewee thinks that non-functional requirements are very important for federated
learning projects. Especially accuracy and scalability. He sees resource efficiency as important,
and fairness as somewhat important but sees performance (in terms of speed) as not impor-
tant at all. For a library, he thinks that a library should be easily useable and should offer
consistent APIs. The interviewee doesn’t measure the non-functional quality of his FL project
other than accuracy and efficiency, and he uses metrics like the per-client improvement rate
and loss function to measure the first, and communication cost (in terms of network usage)
for the latter. He thinks that a normal benchmarking experiment suffices to compare the
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efficiency, scalability, and accuracy of the different libraries and that there should be no issue
benchmarking these NFRs. As a closing note, he thinks that federated learning has taught us
about many new use cases that we didn’t know about.

Third Interview: The third interviewee was a researcher in the field of robotic and artificial
intelligence and also holds a master’s degree in that field. He had two years of experience
working as a researcher, and for a year he has been working on developing his federated
learning library and launching a company in that field. He considers himself both an academic
and an industry person. He is mainly working on the research and development of the FL
library. He aims to launch the first release in two months. He did a market research about the
federated learning libraries currently available, and he knows Tensorflow federated, Pysyft,
and Flower. He deployed some mini-projects using the different libraries to understand
how federated learning works but most of his experience comes from the research he has
done, and the federated learning library he is currently developing. He thinks that the most
important features an FL library should have are the following:

• Easy integration with the existing ML framework

• C++ support

• An encryption mechanism

• State management

• Support of vertically partitioned data

• Federated data aggregation (especially fedAvg)

• Easy benchmarks

• Easy way to handle biases and non-i.i.d data

• Offers a simulation mode

• GPU support

In addition to that, he thinks that the support of different computing and machine learn-
ing paradigms (like P2P network topologies, personalized learning, hetero-task federated
learning . . . ) should not be the concern of the federated learning library. According to the
research he has done the use of the following features ( fedAvg, horizontally partitioned
data, cross-silo, encryption) covers the majority of the federated learning use cases that we
currently have. He thinks that the machine learning models implementation should not be the
task of the federated learning library but the machine learning framework that the library uses.

The interviewee thinks that non-functional requirements are important for federated learn-
ing systems especially accuracy, fairness, hardware efficiency, and scalability. He thinks
that performance is not that important. He usually measures the accuracy using logs of the
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different native metrics of the ML frameworks but other than that he doesn’t measure the NF
quality of the systems he builds. He thinks even though that accuracy is important for any
machine learning model, it is almost certain that the federated learning model will mostly
outperform the non-federated learning model given enough data.

For measuring the accuracy, he thinks that the native metrics of the different machine learn-
ing frameworks are enough, the native OS functionalities are enough to measure the efficiency,
and he doesn’t see a suitable metric for measuring the fairness of the system. For scalability,
he thinks the best way to measure it is to put some scalability thresholds (e.g 10 clients, 100
clients, 1000 clients) and try to reach them through the simulation of a real federated learning
system. He also thinks that measuring performance is not important and should not be
challenging since it is just about the implementation of a timer. Overall, he thinks that the
measurement of the most important federated learning quality metrics other than fairness
and scalability should not be challenging, and the use of basic tools for that should be enough.

As a closing note, he thinks that federated learning has a lot of potential as a technology.
Especially in the field of autonomous driving, but he thinks that the main issue in the field is
that most of the research and experimentations are done on a small scale in simulation or
cross-silo environments. Thus, more research needs to be done on large-scale cross-device
settings to unveil the real bottlenecks of federated learning. He also sees federated learning
being intensively used on the cloud to share data between corporations.

Fourth Interview: The fourth interviewee was a research assistant and a Ph.D. candidate
in the field of automotive and aerospace. His main focus is safety, security, data sovereignty,
and privacy in AI. He has four years of research experience in the field of ML and one year of
experience in the field of federated learning. He works on a project that will enable german
corporations to have more data sovereignty and safely share their data. He describes his tasks
as a combination of scientific research, management, organization, and software development.
He considers himself both an academic and an industry person. He worked on the research
of federated learning. The main topics were the different use cases of FL and the mechanisms
that enable the technology. In addition to that, he implemented two FL projects with pysyft.
The first one was an automotive ML model that analyses time-series data and predicts when a
car component would fail. The second project was the implementation of a federated learning
system that trains the data locally across multiple robots that generate data. He only used
pysyft but also knows flowers.

He thinks that a federated learning library should be easily compatible with as many
machine learning frameworks as possible. The support of vertically partitioned data and
mechanisms to handle non-i.i.d data are crucial features for him. He also thinks that a feder-
ated learning library should offer GPU support, and should be able to run in a simulation
mode, cross-silo, and cross-device environments. He thinks that having native benchmarks
is a good feature to have but not important and that the support of the different computing

51



5. Libraries Comparison

paradigms and the customization of the networks are not important features to have. He
thinks that the support of neural networks is more important than the support of traditional
machine learning models for federated learning systems. He thinks that encryption is more
important than differential privacy as a security mechanism since he is not convinced of
the effectiveness of the latter, and he thinks that fedAvg would be enough to have as a data
aggregation algorithm since it covers most of the use cases for federated learning. He also
thinks that non-functional requirements are important for the success of federated learning
projects and that a good federated learning library should accommodate them. He thinks that
efficiency and accuracy are the most important NFR to optimize for in a federated setting.
While performance and fairness are important, scalability is somewhat important. However,
he thinks that accuracy should not be a concern despite its importance since federated ma-
chine learning models tend to have better accuracy than centralized machine learning models
but bias should be a concern despite its lower importance because federated learning systems
tend to have a lot of device biases in terms of availability and data homogeneity.

The federated learning projects he worked on, measured mainly the efficiency and accuracy
of the federated learning models that they developed and deployed. For accuracy, they
used the native ML framework metrics (like hit rate, false alarm rate, and precision . . . ),
and for efficiency, they measured the RAM, GPU, and network usage using an internal
Linux monitoring package that they developed called LAR. He thinks that these are the most
important metrics to measure in a federated learning system, and he thinks that there could
be some obstacles trying to measure them but overall they should not be challenging to
measure. As a final note, he thinks that federated learning is a powerful technology and that
many new use cases will get unveiled as the technology matures. He thinks that the industry
is still not aware of the potential of the technology, and that is partly due to the complexity of
the technology. He thinks that as the technology will become easier to use, there will be a
spike in its adoption.

5.1.3. Post-Interviews

After the interview, the data was extracted, encoded, and analyzed. Finally, the results of the
analysis were summarized.

Thematic code: The data was encoded thematically [77] as follows:

1. A profile of the average interviewee persona was created. The profile reflects the role,
responsibility, as well as experience of the average interviewee.

2. The use cases of federated learning as well as the libraries known by the interviewees
were encoded with an attribute (c = the count of occurrences).

3. The most important features were also enumerated with the attribute (c = the count of
occurrences). The features are categorized functionally ( e.g differential privacy and
encryption are categorized as security mechanisms).
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4. Non-functional requirements are also enumerated and have two distinct attributes (c
= the count of occurrences, and a = the average importance according to the intervie-
wees. a=1 is the least important, and a=5 is the most important). The non-functional
requirements are also further divided into the metrics that measure them. The metrics
only have one attribute (c = the count of occurrences). Some of the NFRs didn’t have an
average because they were not mentioned by all of the interviewees.

5. Another theme was added to encode the relevant additional information that doesn’t
fall into any of the above-mentioned themes.

Figure 18 illustrates the average profile of the interviewee, as well as the mentioned use
cases of federated machine learning, and the libraries known by the interviewees. It was
color-coded as follows: grey for the categories, lighter grey for the subcategories, red for the
use cases and libraries that are mentioned once during the interviews, orange for the ones
mentioned twice, and yellow for the ones mentioned three times.

Figure 18.: Thematic encoding of the average interviewee, and the occurrences of the federated
learning libraries as well as the use cases of FL in the interviews (source: own
work)

Figure 19 illustrates the important features of a federated learning library (categorized
by functionality) as well as the mentioned non-functional requirements (sorted by average
importance), and the metrics relevant to their measurement. It was color-coded as follows:
grey for the categories, lighter grey for the subcategories, red for the FR and NFR that are
deemed not important according to their count (for metrics and FR) or relevance factor (for
NFR), orange for the ones deemed somewhat important, and yellow for the ones deemed
important, and green for the ones deemed so important.
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Figure 19.: Thematic encoding of the FR and NFR for FL systems (source: own work)

Figure 20 illustrates the bottlenecks for the adoption of federated learning as a technology.
It was color-coded as follows: grey for the category, orange for the bottlenecks with a count
of two, and yellow for the bottlenecks with a count of one.
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Figure 20.: Thematic encoding of the bottlenecks for FL adoption (source: own work)

Data analysis: The average interviewee is a researcher with 7 years of industry experience,
and one year of experience researching, designing, and developing federated learning systems.

Table 9 summarizes the importance of functional requirements according to the interviews.
It was encoded as follows:

• If c = 4 → The FR is very important (Green)

• If c = 3 → The FR is important (Yellow)

• If c = 2 → The FR is somewhat important (Orange)

• If c = 1 → The FR is not so important (Red)
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Functionality Feature Importance

Network topology
Decentralized federated learning Not so important

Automatic clients orchestration Somewhat important

Data partition support
Vertical data Somewhat important

Non-i.i.d data important

Deployment support
Simulation important
Cross-silo important

Cross-device Not so important

ML models
Traditional models Somewhat important

Deep learning models Very important

Security mechanism
Encryption Very important

Differential privacy Somewhat important

Data aggregation algorithm
FedAvg Very important

SecBoost Not so important

Other features

C++ support Not so important
GPU support Somewhat important

State management Not so important
Native tests and benchmarks Not so important

Table 9.: Importance of the different features for federated learning libraries according to the
interviews (source: own work)

To encode the relevance of a non-functional requirement. a relevance-factor (R-factor) was
introduced. The formula for the relevance factor is the following:

The R-factors are categorized as following:

R − f actor = CountsO f Mention · AverageImportance

• 14 < r-factor<20 → The NFR is very important

• 9 < r-factor<15 → The NFR is important

• 4 < r-factor<10 → The NFR is somewhat important

• 0 < r-factor< 5 → The NFR is somewhat important

If two NFRs had the same relevance factor, they are sorted by the number of interviews in
which they were mentioned as very important. The sorted list of the most important NFRs
for FL systems and the metrics to measure them is the following:

1. Fairness (R-factor=17): The most important of all the NFRs, and also the most challeng-
ing to measure according to the interviews. Especially for classification tasks. Variance is
the only mentioned metric that could somehow capture fairness in a federated learning
system.
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2. Accuracy (R-factor=15): A very important NFR, extremely easy to measure using the
native metrics of ML frameworks (e.g loss, precision, hit-rate, false alarm rate, F1-score
. . . ).

3. Scalability (R-factor=15): A very important NFR, It can be also tricky to measure,
however, it could be benchmarked quite easily by setting a threshold for the number
of supported clients in a federated learning system (e.g 1000 clients). It is classified as
less important than accuracy despite the equal R-factor for the two NFRs because it was
only mentioned 2 times as important, while accuracy was cited 3 times as important.

4. Efficiency (R-factor=14): An Important NFR, relatively easy to measure using the native
OS monitoring functionality. RAM, network, CPU, and GPU usage could be all used as
metrics for efficiency.

5. Performance (R-factor=7): A somehow important NFR, it could be measured easily by
measuring the training time of an FL model.

6. Interoperability/Usability (R-factor=6): A somehow important NFR, It could be mea-
sured by the number of the ML frameworks the FL library could easily interoperate and
integrate with. However, defining “easily interoperable” could be challenging.

7. Accountability (R-factor=5): A somehow important NFR, it reflects the level to which a
system monitors and logs who is doing what, when, and where. However, there isn’t
any clear metric to measure accountability in software engineering. The solution put
forward by one of the interviewees is to set different accountability levels and categorize
FL systems in them.

8. Robustness (R-factor=4): Not so important. It could be measured by measuring the
percentage of time the FL system works.

According to the interviewees, the main bottlenecks for federated learning adoption are the
complexity of the technology, the compliance with data privacy laws, the lack of research
and experimentations done in production, and the lack of use cases in the industry where
federated learning could be effective to use. However, the sample size for the interviews was
small due to the scarce number of people that work in the field of federated machine learning.
This means that the results presented by this section is only primary and conclusions cannot
be drawn from it about the preferences of the entire FL community.

5.2. Federated Learning Libraries and their Characteristics

The field of federated learning is a nascent research field. Most of the available libraries
are still under active development and are still not production-ready. Some of the libraries
have already died out. For instance, FLDL by Shepra.ai was mentioned in the scientific
literature, but it was hard to find traces of it online. This part of the thesis deals with the
presentation of the current state of libraries. The libraries are divided into prominent libraries
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and non-prominent libraries. The prominent libraries need to meet two of the following three
criteria:

• It has more than 1000 Github stars and 350 forks.

• It was mentioned by the experts in the interview series

• It supports all OSs.

The Github stars and forks are proxies for the use and development of the libraries. While,
the interview mention is a proxy for the community awareness about the library. The OS
support is a proxy for the potential adoption of the library. Table 10 illustrates the Github
popularity of the different federated learning libraries. The prominent libraries were color
coded in green, while the non-prominent onces were color coded in red.

The number
of stars

Number of
watchers

Number of
forks

License

Pysyft 8300 210 1800 Apache-2.0
FATE 4400 139 1300 Apache-2.0
Tensorflow Fed-
erated

1900 67 482 Apache-2.0

FedML 1400 36 406 Apache-2.0
Flower 1200 20 316 Apache-2.0
FedLearner 799 27 170 Apache-2.0
PaddleFL 404 25 103 Apache-2.0
OpenFL 364 17 108 Apache-2.0
IBM Federated
learning

339 24 106 IBM license

EasyFL 222 13 37 No license
Flute 109 6 10 Apache-2.0
FedTree 59 5 8 Apache-2.0

Table 10.: GitHub popularity of different FL libraries and frameworks (source: own work)

Five libraries meet the first criterion of prominence. Which are Pysyft, FATE, FedML, TFF,
and Flower. Pysyft, IBM federated learning, TFF, and Flower meet the second prominence
criterion. FedML, Pysyft, IBM federated learning, TFF, and Flower meet the third criterion of
prominence. The comparison was carried out only with the prominent libraries since they
are the most adaptable and the most actively developed and used ones. However, the other
libraries were also researched on a high level.
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5.2.1. Prominent Federated Libraries

In this thesis, the prominent libraries are defined as the libraries meeting two of the three
prominent library criteria or more. Five libraries meet these criteria. These libraries are Pysyft,
FedML, Flower, IBM FL, and TFF.

Pysyft50 is an open-source federated learning library developed by OpenMinded. It is
distributed under the Apache-2.0 license and uses python 3.7. It promises secure and private
distributed machine learning and can use both TensorFlow and PyTorch machine learning
frameworks. The library can be run on a Mac, Linux, or Windows machine. It can also run
in a dockerized environment. However, it is still in version 0.6.0 and is not yet production
ready [50]. Pysyft has a large developer community (over 250 developers), comprehensive
documentation, and an extended ecosystem. For instance, the functionalities of the library
could be further extended by using the different tools developed as part of its ecosystem [51].
These libraries include:

• PyGrid is a peer-to-peer platform for federated learning and data science. It can be
used by data scientists to train their machine-learning models without ever accessing
the data used for training. The platform can enable Pysyft to run in federated mode.

• PyVertical is an extension to the Pysyft library to enable it to handle vertically partitioned
data.

• Syft.js is the library that extends Pysyft to support web clients.

• KotlinSyft is the library that extends Pysyft to support android clients.

• SwiftSyft is the library that extends IOS to support android clients.

Standalone Pysyft can not yet run in a real federated learning environment and only
supports a simulation environment. However, when used with PyGrid, Pysyft can be run
in a federated environment. As illustrated in figure 21, the architecture of the Pysyft library
is constituted of three layers. The first one implements the low level-code for the clients, as
well as the virtual worker and the different machine-learning frameworks that Pysyft is built
on top of. The second layer implements the different security mechanisms used by Pysyft
(HE, DP, MPC . . . ). The last layer implements the machine learning models and the federated
learning strategies supported by Pysyft [51].

50Pysyft: https://github.com/OpenMined/PySyft
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Figure 21.: The architecture of PySyft (source: [50])

Functionalities of Pysyft: Pysyft supports both vertical and horizontal data partitioning as
well as different datatypes for the datasets (numbers, text, images, and time series). It uses
gRPC as a communication mechanism and both encryption and differential privacy as security
mechanisms. It uses FedAVG and FedSGD as Federated learning strategies and supports
both traditional machine learning (regression, clustering, and Bayes networks . . . ) and deep
learning models (DNN, CNN, and RNN . . . ). Pysyft also enables the customization of the
network topology as well as the exchange of messages. it has native tests and benchmarks to
analyze the applications built with it and supports the use of the GPU to train its deep learn-
ing models. Pysyft also supports multiple computing and federated learning paradigms like
split learning, on-device training, distributed computing, edge computing, and simulations.
Pysyft can also be used in both cross-device and cross-silo federated learning settings. In
addition to that, pysyft applications can be deployed as a single simulation, multi-host (less
than 16 clients), or cross-device (more than 100 clients) applications. In addition to its official
documentation, code snippets as well as tutorials that demonstrate the functionalities and the
capabilities of Pysyft can be found online [49].

Tensorflow Federated52 is an open-source federated learning framework developed by
Google initially to develop their mobile keyboard prediction, and ML models. It is distributed
under the Apache-2.0 license and uses python 3. It promises an experimentation and
simulation environment for FL algorithms and is built on top of the TensorFlow deep learning
framework. The framework can be run on a Mac, Linux, or Windows machine. It can also run
in a dockerized environment. However, it is still in version 0.34.0 and is not yet production
ready [52]. Tensorflow Federated has a community of over 90 developers and comprehensive
documentation. However, there is no ecosystem built around it [52]. Since it is not only built

52Tensorflow Federated: https://github.com/tensorflow/federated
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to support ML engineers to build federated learning systems but also for data scientists, it also
offers an additional functionality called federated analytics [53]. Federated analytics is used by
ML engineers and data scientists to test their federated learning models on real-world data in
a real data center. It tracks different metrics. Google uses this functionality for many different
use cases like songs recognitions, and keyboard prediction. However, this functionality is not
still not yet implemented in the open-source version of TFF [54]. Tensorflow federated offers
two layers of APIs. These layers are:

• Federated Learning API is the API that enables developers to use the existing models
and benchmarks as well as develop their own models. It is also called the tff.learning
layer.

• Federated Core API is the foundation of the Federated Learning API. It implements the
security and communication mechanisms used by TFF. The developers interact with
this API to use the implemented federated learning strategies and develop their custom
FL strategies.

Figure 22.: The architecture of TFF (source: [52])

TFF has a multi-layered architecture. The first layer is the run-time layer. It implements the
client, the communication protocols as well as the executor. The second layer implements
the different supported deep learning models (DNN, RNN, CNN) using the Tensorflow
framework. The third layer implements the differential privacy security mechanism. The
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last layer implements the federated learning strategies (FedAvg and FedSGD) as well as
the different differential privacy functionalities (Sum, Mean, DPQueries). TFF is the only
FL library that offers DP functionalities. Figure 22 illustrates the architecture of Tensorflow
Federated [52].

Functionalities of Tensorflow Federated: supports horizontal data partitioning as well as differ-
ent datatypes for the datasets (numbers, text, images, and time-series). It uses both gRPC as
well as its custom communication protocol as a communication mechanism and differential
privacy as a security mechanism. It uses FedAVG and FedSGD as federated learning strate-
gies, and only supports deep learning models (DNN, CNN, and RNN . . . ). It also offers some
relevant differential privacy functions like sum, mean, and DPQuerries.TFF doesn’t offer
any network or message customization. TFF has native tests and benchmarks to analyze the
applications built with it and supports the use of the GPU to train its deep learning models.
It also supports simulation as a federated learning paradigm and distributed computing as
a computing paradigm. The framework is still in the development phase and many other
paradigms are expected to be supported in the future. TFF can be only used in a cross-silo
federated learning setting and does not offer any deployment model other than a single
standalone simulation. In addition to its official documentation, code snippets as well as tu-
torials that demonstrate the functionalities and the capabilities of TFF can be found online [53].

FedML59 is an open-source federated learning library developed by FedML Inc. It is
distributed under the Apache-2.0 license and uses python 3.7. It promises a platform for
building distributed and federated machine learning systems with high customizability. The
library can be run on a Mac, Linux, or Windows machine. It can also run in a dockerized
environment. However, it is still in version 0.7.98 and is not yet production ready [59]. FedML
has a community of around 50 developers, and comprehensive documentation for both the
framework and the applications built around it. it also has a large ecosystem to extend its
functionalities. FedML has a two-layers architecture. The first layer consists of the low-level
APIs (implementations of the workers, communication protocols, and security mechanisms
. . . ). The second layer contains the high-level APIs (implementations of FL strategies, ML
models, tests and benchmarks, and mobile support . . . ). The developer uses high-level APIs
to build the system. Which in turn uses low-level APIs. Figure 23 illustrates the architecture
of FedML [59]. Multiple tools are built around FedML as part of its ecosystems. These tools
not only enhance the performance of FedML but also extends its functionalities. These tools
are:

• Edge AI SDK is an SDK for developing ML models that train on edge devices. It can be
used on the web, android devices, IoT devices (Raspberry Pi NVIDIA Jetson), as well
as the cloud.

• MLOps Cloud is a user-friendly tool that deploys FL applications without the need for
any code.

59FedML: https://github.com/FedML-AI/FedML
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• FedML Parrot is a simulation tool that can be used to mimic the behavior of FL
applications before deploying it in a real-world scenario.

• FedML Octopus is a cross-silo federated learning tool that enables collaboration between
enterprises.

• FedML BeeHive is a tool that enables edge devices to collaboratively learn from each
other.

• FedML cheetah is a tool that enhances the performance of FL systems built with FedML.

• FedML Enterprise is a full-package platform that offers a federated learning solution
for enterprises. It is not part of the open-source project. The enterprise version of
FedML includes all of the Edge AI SDK, MLOps, FedML Parrot, FedML Octopus,
FedML BeeHive, and FedML cheetah. It also offers federated analytics functionalities
for multiple use cases like statistics (e.g for clinical research), matrix operations (e.g for
ads data science), and set operations (e.g for finance and retail). In addition to that,
it offers a dashboard to visualize the workflow of MLOps and the federated analytics
results.

In addition to the tools and applications developed by FedML Inc, multiple third-party
benchmarks and frameworks have been developed as part of the FedML ecosystem [60].
These tools are:

• FedCV is a framework for computer vision tasks.

• FedIoT is a framework that extends the FedML IoT capabilities.

• FedGraphNN is a benchmark for graph neural networks.

• FedNLP is a benchmark for NLP tasks.
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Figure 23.: The architecture of FedML (source: [59])

Functionalities of FedML: FedML supports both vertical and horizontal data partitioning as
well as different datatypes for the datasets (numbers, text, images, and time series). It uses
MPI, MQTT, and gRPC as communication mechanisms and encryption-based techniques as
security mechanisms. It uses FedNOV, FedNAS, and FedAvg as well as other strategies as
federated learning strategies, and supports both traditional machine learning (regression) and
deep learning models (DNN, CNN, and RNN . . . ). FedML offers network topology, exchange
messages, and message flow customization. It has native tests and benchmarks to analyze
the applications built with it and supports the use of the GPU to train its deep learning

64



5. Libraries Comparison

models. FedML also supports multiple computing and federated learning paradigms like
vertical FL, hetero-task learning, decentralized FL, on-device training, distributed computing,
single-host simulation, edge computing, and split learning. FedML can be used in both
cross-silo and cross-device settings. In addition to that, FedML applications can be deployed
as a single simulation, cross-device (more than 100 clients), or multi-host (less than 16
clients) applications. In addition to its official documentation code snippets as well as tutori-
als that demonstrate the functionalities and the capabilities of FedML can be found online [59].

Flower62 is an open-source federated learning library developed by Adap Gmbh. It is
distributed under the Apache-2.0 license and uses python 3.7. It promises a customizable,
understandable, extendable, and framework-agnostic source code. The library can be run on
a Mac, Linux, or Windows machine. It can also run in a dockerized environment. Flower is
in the version 1.1.0. So, the library has one stable release and is production ready. Flower
has a community of around 51 developers, and comprehensive documentation. It doesn’t
have an ecosystem built around it. However, as it is one of the few production-ready libraries,
it offers a Kubernetes cluster deployment in addition to the dockerized deployment. As a
framework-agnostic library, It also supports the use of a wide range of ML frameworks like
Tensorflow, Pytorch, Hugging face, JAX, Pytorch Lightning, MXNext, TFLITE (for android),
and sci-kit-learn [62].

Figure 24.: The architecture of Flower (source: [62])

Flower has a client-server architecture. When building the FL applications some of the
functionalities will be fully created by the developer and the rest of the functionalities will be
implemented through the framework. For instance, the developer needs to use its dataset

62Flower: https://github.com/adap/flower
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and build the entire ML training pipeline and the ML models on the client side but the
library will implement the gRPC communication protocol to communicate with the server
as well as the client interface to the server. On the server side, the library implements the
gRPC communication protocol as well as the FL loops and some of the FL strategies. If the
developer wants to use an FL strategy that is not supported by Flower, they have to develop
it themselves. Figure 24 illustrates the architecture of Flower [63].

Functionalities of Flower: Flower supports both vertical and horizontal data partitioning as
well as different datatypes for the datasets (numbers, text, images, and time series). It uses
gRPC as a communication mechanism and SecAgg as a security mechanism. It uses FedAVG,
FedFS, and qffedavg as well as other strategies as FL strategies, and supports both traditional
machine learning (regression and clustering) and deep learning models (DNN, CNN, and
RNN . . . ). Flower offers exchange message customization. It has native tests and benchmarks
to analyze the applications built with it and supports the use of the GPU to train its deep
learning models. Flower also supports multiple computing and federated learning paradigms
like vertical FL, personalized FL, on-device training, FL simulation, and edge computing.
Flower can be used in both cross-silo and cross-device settings. In addition to that, Flower
applications can be deployed as a single simulation, cross-device (more than 100 clients), or
multi-host (less than 16 clients) applications. In addition to its official documentation code
snippets as well as tutorials that demonstrate the functionalities and the capabilities of Flower
can be found online [61].

IBM Federated learning100 is an open-source federated learning library developed by IBM.
It is distributed under a custom IBM open-source license and uses scikit-learn 0.23, Keras
2.2.4, and TensorFlow 1.15 as machine learning frameworks. It is designed for enterprises
and can only be used in cross-silo FL settings. IBM Federated learning can work on any OS
(Windows, Linux, and Mac), and can also use docker and Kubernetes as a setup environment.
The library is in version 1.0.7 and it is production ready. IBM Federated learning supports
many ML models like linear classifiers and regressions, logistic regression, linear SVM, ridge
regression, Kmeans, Naïve Bayes, Decision Trees, Neural networks, and Deep reinforcement
learning. It has only 10 contributors and comprehensive documentation. However, tutorials
about libraries are scarce. The only official reference implementation is a demonstration of
the library’s capabilities on the MNIST dataset [65]. Despite being not as popular as the other
prominent federated learning libraries. It was mentioned more than once in the interviews,
and it is production ready, and can run in multiple environments. Thus, it was added to the
list of the prominent libraries.

Functionalities of IBM Federated learning: IBM federated learning supports only horizontal
data partitioning as well as different datatypes for the datasets (numbers, text, images, and
time-series). It uses gRPC as a communication mechanism and encryption-based techniques
as security mechanisms. It uses FedAVG and multiple other federated aggregation algorithms

100IBM: https://github.com/IBM/federated-learning-lib
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as federated learning strategies and supports both traditional machine learning (regression,
clustering, SVM, and trees . . . ) and deep learning models (DNN, CNN, and RNN . . . ). IBM
federated learning does not offer any network or message customization. It does not have
any native tests and benchmarks to analyze the applications built with it but it supports
the use of the GPU to train its deep learning models. IBM federated learning also supports
multiple computing and federated learning paradigms like, simulation, FL, personalized and
hetero-task learning. IBM federated learning is a corporate federated learning framework
and is designed to be only used in a cross-silo FL setting. In addition to that, IBM federated
learning applications can be deployed as a single simulation or multi-host (less than 16
clients) applications. In addition to its official documentation, there isn’t any material that
demonstrates the functionalities and the capabilities of IBM federated learning [65].

5.2.2. Prominent Federated Libraries Feature Comparison

In addition to the non-functional quantitative quality characteristics, the federated learn-
ing frameworks and libraries also differ qualitatively in terms of functionalities. Table 11
summarizes the qualitative differences between them. It highlights the differences as well
as the similarities in terms of features and functionalities between the different prominent
federated learning frameworks and libraries. It also provides some general information like
the main contributor of the library and the used ML frameworks to build it, as well as the
environments that the library could run in.

Features/ Framework Pysyft Flower IBM FL TFF FedML

General
Contributor

Open-
Minded

Adap
Gmbh

IBM Google
FedML
Inc.

Environment

Windows,
Mac,
Linux,
Docker

Windows,
Mac,
Linux,
Docker

Windows,
Mac,
Linux,
Docker

Windows,
Mac,
Linux,
Docker

Windows,
Mac,
Linux,
Docker

General
ML frame-
work

Pytorch

Pytorch,
TF,
Libtorch,
JAX . . .

SciLearn,
Pytorch,
TF,
Keras

TF
Pytorch,
TF

Architecture
Data Partition-
ing

Vertical
Horizon-
tal

Vertical
Horizon-
tal

Horizontal Horizontal
Vertical
Horizon-
tal

Datatypes

Numbers,
Text, Im-
age,
Time-
series

Numbers,
Text, Im-
age,
Time-
series

Numbers,
Text, Im-
age,
Time-
series

Numbers,
Text, Im-
age,
Time-
series

Numbers,
Text, Im-
age,
Time-
series
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Architecture

Communication
scheme

gRPC gRPC gRPC
gRPC,
Custom
Protocol

MPI,
MQTT,
gRPC. . .

Privacy and
Security

HE,
MPC,
DP

SecAgg

Multiple
crypto-
graphic
methods

DP

Secret
sharing
key
agree-
ment

FL Strategy
FedAVG,
FedSGD

FedAVG,
FedSGD
, qffe-
davg
. . .

FedAVG,
FedProx,
Fe-
dAVG+. . .

FedAVG,
FedSGD

FedAVG,
Fed-
NOV,
Fed-
NAS. . .

Paradigms

Vertical FL yes yes no no yes
FTL no yes no no yes
Cross device yes yes no no yes
Cross silo yes yes yes yes yes
Personalized no yes yes no yes
Hetero-task
learning

no yes yes no yes

Decentralized no no no no yes
Distributed
computing

yes no no no yes

Simulation yes yes yes yes yes
Edge comput-
ing

yes yes no yes yes

Split learning yes no no no yes
On-device
training

yes yes no no yes

Engineering
Customization

topology,
ex-
change
message

exchange
message

none none

topology,
ex-
change
message,
message
flow

GPU support yes yes yes yes yes
Native Bench-
markS

yes yes no yes yes
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Engineering
Deployment

single
simu-
lation,
Multi-
host
(<16
clients),
Cross-
device
(>100
clients)

single
simu-
lation,
Multi-
host
(<16
clients),
Cross-
device
(>100
clients)

single
simu-
lation,
Multi-
host
(<16
clients)

single
simula-
tion

single
simu-
lation,
Multi-
host
(<16
clients),
Cross-
device
(>100
clients)

Documentation

Detailed
tutorial,
Code
Snip-
pets,
and API
docu-
menta-
tion

Detailed
tutorial,
Code
Snip-
pets,
and API
docu-
menta-
tion

API doc-
umenta-
tion

Detailed
tutorial,
Code
Snip-
pets,
and API
docu-
menta-
tion

Detailed
tutorial,
Code
Snippets

ML Models

Regression yes yes yes no yes
Clustering no yes yes no no
Trees no no yes no no
SVM no no yes no no
Bayes net-
works

no no yes no no

NN yes yes yes yes yes
DNN yes yes yes yes yes
CNN yes yes yes yes yes
RNN yes yes yes yes yes

Table 11.: Differences between FL libraries (source: own work))

The functional requirements of the FL project heavily influences the choice of the library
from a qualitative perspective. For instance, different libraries support different ML models.
For NN all algorithms are suited. For traditional ML models, IBM federated learning offers
the widest range of models. Pysyft and FedML support most computing paradigms and only
FedML supports all of the FL paradigms researched in this thesis. TFF is not suitable for
vertically partitioned data. FATE and TFF are not suited for a cross-device FL setting. FedML
offers the highest level of network and exchange message customization. IBM federated
learning and Flower are the only production-ready libraries.

69



5. Libraries Comparison

5.2.3. Other Federated Libraries

In this thesis, the non-prominent libraries are defined as the libraries meeting less than two of
the three prominent library criteria. Seven libraries meet these criteria. These libraries are
FedLearner, FATE, EasyFL, PaddleFL, Flute, OpenFL, and FedTree.

FedLearner 64 is an open-source federated learning library developed by byteDance. It is
distributed under the Apache-2.0 license and uses python 3. It uses TensorFlow as an ML
framework. It has some implementations of some popular ML models and FL strategies, as
well as some metrics and benchmarks. The library can work on Linux and Mac machines and
needs docker and Kubernetes as a setup requirement. The library is currently in version 1.5
and it is production ready. It has a community of over 40 developers. However, It doesn’t
offer any documentation and no tutorials. There are some reference implementations in the
project but they do not demonstrate the full capabilities of the library [64].

FATE56 is an open-source federated learning framework developed by Webank. its full
name is federated AI technology enabler. It is distributed under the Apache-2.0 license and
uses python 3.6. It promises an industrial-grade federated learning open-source framework
and can use both TensorFlow and PyTorch machine learning frameworks. The framework
can run only on a CentOS 7+ Linux machine. It can also run in a dockerized environment.
FATE is in version 1.8.0. So, the framework has nine stable releases and is production ready
[56]. FATE has a community of around 70 developers, comprehensive documentation for
both the framework and the applications built around it, and a large ecosystem to extend its
functionalities [56]. It is one of the few production-ready federated learning frameworks and
offers a Kubernetes cluster deployment in addition to the dockerized deployment. Multiple
tools constitute the FATE ecosystem [55]. These tools are:

• KubeFATE is a tool that supports the deployment of FATE applications via docker-
compose for the development environment and Kubernetes for the production environ-
ment.

• FATE-Flow is a task scheduling tool for building federated learning pipelines using
FATE.

• FATE-Board is a tool for visualization that helps with the understanding of the different
federated learning models by visualizing different metrics and logs.

• FATE-Serving is a system that helps federated learning servers to serve their models to
different clients. It helps with the creation of robust, highly performant, and scalable
systems.

• FATE-Cloud is a tool that enables the management of FATE applications on the cloud.
It offers functionalities like the registration of federated sites, access control, cluster de-

64FedLearner: https://github.com/bytedance/fedlearner
56FATE: https://github.com/FederatedAI/FATE

70



5. Libraries Comparison

ployment and monitoring, and multiple other functionalities. FATE-Cloud is constituted
of two main components. Namely, Federated Cloud (Cloud Manager) and Federated
Site (FATE Manager).

– Cloud Manager manages the infrastructure of FATE applications on the cloud.

– FATE Manager manages the FATE applications on the cloud.

• EggRoll is a framework to conduct high-performance machine learning computations
using FATE.

• AnsibleFATE is a tool that enables FATE to interact with the Ansible software to automate
its operations and configuration. Ansible is software that enables the automation of
operations, configuration, and deployment of other software applications.

• FATE-Builder is a tool that helps with the packaging and building of the docker images
of the software applications built with FATE.

Figure 25.: The architecture of FATE (source: [56])

FATE is maintained by the TSC (Technical Steering Community). The TSC Board makes
the decisions about the direction of the project, while the TSC Maintainers contribute to the
further development of the project. FATE has a multi-layered architecture. It is constituted
of four layers. The run-time layer is the runtime layer and it implements the low-level
functionalities of the system. Namely, the gRPC communication protocol, the scheduler,
and the executor. The second layer is the model layer, which implements all the machine
learning models like regression, clustering, and neural network models. The third layer
implements the encryption-based security mechanisms (RSA, HE, SPDZ . . . ). The last layer
implements federated learning strategies like SecureBoost and FedAvg. Figure 25 illustrates
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the architecture of FATE [58].

Functionalities of FATE: FATE supports both vertical and horizontal data partitioning as well
as different datatypes for the datasets (numbers, text, images, and time-series). It uses gRPC
as a communication mechanism and encryption-based techniques as security mechanisms. It
uses FedAVG as a Federated learning strategy and supports both traditional machine learning
(regression, clustering, SVM, and trees . . . ) and deep learning models (DNN, CNN, and
RNN . . . ). FATE does not offer any network or message customization. It has native tests
and benchmarks to analyze the applications built with it and supports the use of the GPU
to train its deep learning models. FATE also supports multiple computing and federated
learning paradigms like distributed computing, simulation, edge computing, vertical FL,
federated transfer learning, and hetero-task learning. FATE is an industrial-grade federated
learning framework and is designed to be only used in a cross-silo FL setting. In addition to
that, FATE applications can be deployed as a single simulation or multi-host (less than 16
clients) applications. In addition to its official documentation, code snippets as well as tuto-
rials that demonstrate the functionalities and the capabilities of FATE can be found online [57].

EasyFL66 is an open-source federated learning library developed by Śmietanka, M. et al.
[66]. It is distributed under the Apache-2.0 license and uses python 3 and PyTorch as an ML
framework. The library promises lightweight, easy-to-develop FL systems implementations.
It is mainly used to experiment with federated learning rather than to develop actual FL
systems. It can run on Linux, Mac, and Windows machines. It has only 3 contributors and
offers official documentation that presents the architecture and the capabilities of the library.
The library does not have any release yet even though the project can be found on GitHub [66].

Flute67 is an open-source federated learning library developed by byteDance. It is dis-
tributed under the MIT license and uses python 3.8. Its full name is Federated Learning
Utilities for Testing and Experimentation. The library is not made to develop actual FL
systems but rather to experiment with federated learning. Flute supports the use of both the
CPU and GPU for models’ training and offers an implementation of the most popular NNs.
It also can be extended with more models and functionalities and can scale to accommodate
millions of clients. It has 6 contributors and a small documentation document on its GitHub
repository. There are some reference implementations in the project that demonstrate how to
use the library for the experimentation of FL. Flute does not have any release [67].

OpenFL68 is an open-source federated learning library developed by Intel. It is distributed
under the Apache-2.0 license and uses python 3.6. It uses TensorFlow and PyTorch as ML
frameworks. It supports the use of multiple FL strategies like FedAvg, FedPro, FedOpt, and
FedCurv. . . OpenFL is developed for the IoT use case and can only run on Ubuntu machines.

66EasyFL: https://github.com/WwZzz/easyFL
67Flute: https://github.com/microsoft/msrflute
68OpenFL: https://github.com/openfl/openfl
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It has a community of over 35 developers and some documentation on its Github repository.
However, It doesn’t offer any tutorials [68].

FedTree69 is an open-source federated learning library developed by Li, Q. et al. (2022) [69]
. It is distributed under the Apache-2.0 license and uses python 3. The library is designed to
develop tree-based federated learning applications both for vertical and horizontal datasets
and does not offer any support for any ML model beyond that.The library can run on both
Linux and Mac machines. It is currently in version 1.0.4. It has only 5 contributors and
does not offer any documentation beyond the scientific publication that describes it and the
description on its GitHub repository. There are no tutorials for it online as well [69].

PaddleFL71 is an open-source federated learning library developed by Webank. It is
distributed under the Apache-2.0 license and uses python 3.6. It also uses PaddlePaddle as
an ML framework. It promises a solution for the development and deployment of large-scale
enterprise FL systems. The library can be run on Mac and Linux machines. It can also run
in a dockerized environment as well as in Kubernetes clusters. PaddleFL is in version 1.2.
It has three stable releases and is ready to be used in a production environment [71]. It has
a community of 17 contributors and comprehensive documentation. The tutorials available
as well as part of the documentation are mainly written in Chinese. In addition to the FL
strategy and the ML model. PaddleFL offers the customization of a third paradigm called
training strategy. The training strategy customization allows the user to choose the model
training paradigm easily (e.g Transfer learning, active learning, or Hetero-Task learning). It
also allows the user to train the FL model in a distributed FL environment (without the need
for a central server to coordinate) with the use of the Distributed-Config functionality. The
FL-JOB-GENERATOR coordinates the worker, scheduler, and server to execute the program.
PaddleFL does not use a traditional client-server architecture to build its FL applications
but instead something similar. It has a server that is similar to the server in the client-server
architecture and a worker and a scheduler that do the job of the client. The worker trains
the ML models while the scheduler coordinates the different workers to communicate with
the server [70]. PaddleFL has multi-layers architecture. It has four layers. The first layer is
the run-time layer, it implements the communication mechanism as well as the worker and
scheduler and the code that interacts with PaddlePaddle. The second layer is the models’
layer. It implements the different machine learning models that PaddleFL uses like NN
and regression. The third layer implements the security mechanisms (DP and encryption
algorithms). The last layer implements the different FL strategies that PaddleFL uses (FedAvg,
SecAgg, PSI, DPSGD . . . ). In addition to the library being vertically segregated, it uses
different security mechanisms, FL strategies, and ML models for vertical and horizontal
datasets. Figure 26 illustrates the architecture of PaddleFL [70].

69FedTree: https://github.com/Xtra-Computing/FedTree
71PaddleFL: https://github.com/PaddlePaddle/PaddleFL
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Figure 26.: The architecture of PaddleFL (source: [71])

Functionalities of PaddleFL: PaddleFL supports both vertical and horizontal data partitioning
as well as different datatypes for the datasets (numbers, text, images, and time-series). It
uses ZeroMQ as a communication mechanism and both encryption and DP as security
mechanisms. It uses FedAVG, SecAgg, and MPC as well as other strategies such as Federated
learning strategies, and supports both traditional machine learning (regression) and deep
learning models (DNN, CNN, and RNN . . . ). PaddleFL does not offer any customization
over the network topology or the exchange of messages. It does not have native tests and
benchmarks to analyze the applications built with it but it supports the use of the GPU to
train its deep learning models [70]. PaddleFL also supports multiple computing and federated
learning paradigms like vertical FL, Distributed FL, FTL, Split learning, FL simulation, and
edge computing. PaddleFL can be used only in a cross-silo setting. In addition to that,
PaddleFL applications can be deployed as a single simulation or multi-host (less than 16
clients) applications. It is resource intensive. It requires a minimum of 6 GB RAM and
100GB HDD. Even though it supports on-device training and cross-device deployment the
resource requirements make it not suited for cross-device FL settings (more than 100 clients).
Compared to other FL libraries, PaddleFL is mature and offers a wide range of capabilities.
Even though PaddleFL is production ready and supports more functionalities than most of
the prominent FL frameworks and libraries, it has one of the poorest community support and
a small number of contributors. This could be attributed to three main reasons. Namely, it
doesn’t run on windows machines (the most used OS worldwide), the fact that documentation
is mostly written in Chinese, and the fact that it uses PaddlePaddle as an ML framework not
that popular outside of China [70].
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5.3. The Federated Learning Benchmarking Suite

FMLB (the federated machine learning benchmark) [84] is an easy-to-use benchmark suite
that can benchmark different federated learning settings using a web application. The suite
contains a web application, different implementations of federated machine learning models
using different federated learning libraries, as well as two datasets to train the federated
learning models. FMLB is designed to be modular, easily extendable, and easy to use. It
doesn’t require any technical knowledge to benchmark a federated learning setting using the
tool. Everything is handled through a web user interface.

5.3.1. Problem Identification and Solution Objectives

According to the DSR methodology, before designing and developing a tool. The tool needs
to provide a clear solution for an identified problem and contribute to scientific research on
that problem. FMLB does that by providing an easy-to-use FL benchmark to compare the FL
libraries for the scientific community and practitioners. The need for FMLB was identified
after a literature review of the scientific literature around federated learning that concluded
the lack of such a benchmark.

Problem identification: The scientific literature around federated learning is focusing more
on the bottlenecks of federated learning as well as the different use cases of federated learning.
While some publications have dealt with the benchmarking of federated learning systems,
they usually tend to benchmark the different ML algorithms or federated learning strategies.
However, the literature on the benchmarking of the different federated learning libraries is
scarce. Only one benchmark dealt with the comparison of the different libraries. Namely,
Unifed [29]. While Unifed is rich in functionality and has a high configurability, it does not
fulfill the usability criteria of what makes an adequate benchmarking suite [25]. It requires
some technical knowledge to be used and can be only used through the CLI. FMLB is de-
veloped as a solution for this issue. It is designed for ease of use, modularity, and extensibility.

Solution objectives: Since the benchmark is designed for ease of use, it should fulfill the
following functional and non-functional requirements that were aggregated based on the
results of the expert interviews and literature review:

• Functionality

– The user can create a federated learning setting in the benchmark.

– The user can update a federated learning setting in the benchmark.

– The user can delete a federated learning setting from the benchmark.

– The user can see what are the available federated learning settings in the bench-
mark.

– The user can create an ML model in the benchmark.

– The user can see what are the available ML models to use in the benchmark.
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– The user can delete an ML model from the benchmark.

– The user can create a dataset in the benchmark.

– The user can see what are the available datasets to use in the benchmark.

– The user can delete a dataset from the benchmark.

– The user can train an existing federated learning setting using the benchmark.

– The user can train ML models in both a federated and a non-federated setting.

– The benchmark needs to have pre-configured federated learning settings as well as
different datasets included in it.

– The benchmark needs to provide persistent data storage for the settings so they
don’t have to be recreated every time a user wants to benchmark any of the existing
settings.

– In case of the execution of a successful operation or an exception, the user should
be notified via a pop-up.

– The user can easily configure the FL setting, they are willing to train and bench-
mark.

• Usability

– The benchmark needs to have an easy-to-use UI.

– The benchmark can also be used through the CLI.

• Modularity

– The components of the benchmark need to follow the single responsibility principle
where each component is only responsible for its function and doesn’t interfere
with other components.

• Extensibility

– New datasets can easily be added to the benchmark.

– New machine learning models, FL strategies, and FL libraries can be easily added
to extend the settings that the benchmarks already support.

– The benchmark can be easily extended with more features.

– In case the benchmark doesn’t have a dataset it should be easily downloadable.

• Reproducibility

– The results delivered by the benchmark for the same setting on the same machine
should be the same.

• Verifiability

– The metrics delivered by the benchmark need to be reliable.
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• Fairness

– The benchmark should have the exact same implementation for the same setting
for the different libraries.

FMLB is designed to fulfill all of the above-mentioned requirements. Through its easy-to-use
web interface.

5.3.2. Design and Development of the Benchmarking Suite

After identifying the research gap and defining the objective solution. The solution needs to
be designed and developed. FMLB is a software tool that fulfills all of the requirements of
the solution objective. FMLB is a web application that comes with different implementations
of different federated learning models using different libraries, and two datasets, as well as
ten different metrics to benchmark these implementations. The suite can be easily extended
with more federated machine learning models, implementations, and datasets.

Tech stack and High-level architecture: FMLB is a client-side rendered web application.
The frontend was built with React [79], zustand [80] for state management, and Axios [81] for
sending API requests and communicating with the backend. While the backend was built
with nodejs[82]. The database is a MongoDB [83] document-based database. The backend also
includes multiple federated and traditional machine learning models that are implemented
in python. It also includes datasets to train the federated learning models. The backend
communicates with the ML models through the terminal. Figure 27 illustrates a high-level
architecture of the FMLB benchmarking suite.
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Figure 27.: The architecture of FMLB (source: own work)

The FMLB project structure: The FMLB benchmarking suite is all included in one project.
The project is open source (distributed under the Apache-2.0 license) and can be found
on GitHub [84]. The project has two directories, the first directory for the client, and the
second directory for the server. The client directory contains four different directories. A
directory for the pages, a directory for the components, a directory for the assets, and a
directory for the services. While the server directory contains four different directories. A
directory for the routers, a directory for the controllers, a directory for the data models, and a
directory for the federated machine learning models implementations. The federated learning
directory is further divided into three different directories. A directory for the datasets (It
is also divided into other directories each for a dataset), a directory for the utilities like the
declaration of the models, the configuration of the training, and the data loaders. The last
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directory in the machine learning module is for the implementation of the training using the
different libraries. The implementation directory is further divided into other directories each
containing the implementation of the different training settings using different algorithms.
FMLB was used to compare the non-functional quality metrics of the different libraries (e.g
Accuracy, Precision, Recall, F1, RAM usage, Network usage, CPU usage, GPU usage, and
Time of execution). A series of thirteen experiments were done, the first one was done with
PyTorch without the involvement of any client, and twelve experiments were done with the
four libraries in three scalability levels (2, 16, and 100 clients).

Client: The frontend is a react application. It uses zustand for state management, MUI as a
UI library [85], and Axios for communication with the backend. The application has three
assets, three pages, eleven components, and one service. They are the following:

• Assets: The assets are the static images that are included in the app. There are currently
three images available under the directory. An open-source SVG image of a benchmark
logo (used as the application’s logo) [88], and two PNG images of MUI icons (used as
images for the react components) [99].

• Pages: The pages are what the user sees and interacts with. The application has three
different pages. The home page, the utility page, and the training page

– The home page: The home page is the landing page that the user is first directed
to. Úpon rendering, the home page sends an API request to the backend to get
all of the existing FL settings and displays them one under the other in a table. It
displays the different attributes of the settings under their respective title.

– The utility page: Like the home page, the utility page sends an API request to
the backend to get all of the available ML models and datasets. It then renders
them into cards containing all of the required information about the datasets (e.g
name of the dataset, the location of a dataset, the number of data points in a
dataset, or the size of a dataset) or the model (e.g the model used, the library it
is implemented with, and the name of the python script to train that model). In
addition to that, the utility page has two “add cards”. The first card can be used
to add a new ML model, and the second card can be used to add a dataset to the
application. The script for the model and the dataset, however, need to be added
manually to the backend. The cards only act as an interface for the user.

– The training page: Each federated learning setting has its own training page. Upon
rendering the training page sends two API requests to the server. The first one
is to get the different attributes of the setting (e.g library, version, environment
name, script name, model, FL strategy, number of communication rounds, GPU,
mode, epochs, batch size, learning rate, loss, and optimizer). The second one is
to tell the server to train a specific federated machine learning model and get the
metrics of the training as a response (e.g loss, precision, recall, F1, accuracy, time
of execution, GPU usage, CPU usage, RAM usage, and Network usage).
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• Components: The components are the building blocks for the pages. Each page is made
of one or more components. In total, the application has eleven different components.
Namely:

– The header: The header has a clickable logo on the left that routes the user to
the home page. In addition to that, it has a small blue plus button that opens
the setting creation dialog, and also a small blue squared button to redirect to
the utility page. The header is a sticky header that appears on all pages of the
application.

– The create dialogs: The application has three different creation dialogs. The first
dialog is used to create a federated learning setting, the second dialog is used to
create a dataset, and the third dialog is used to create an ML model. All creation
dialogs contain required input fields that need to be filled in order to create their
respective components. Some of the input fields do contain placeholders. The data
entered in these input fields will be later used as attributes for the component. All
create dialogs have two buttons at the bottom. The first button is used to create
the component. The second button is used to cancel the operation.

– The delete dialogs: The application has three different deletion dialogs. The first
dialog is used to delete a federated learning setting, the second dialog is used
to delete a dataset, and the third dialog is used to delete an ML model. The
deletion dialogs take the ID of the to-be-deleted component through props. The
dialogs display a warning and two buttons. The first button is the cancel button. It
reverts the operation. The second button is the deletion button. When the deletion
button is clicked, the frontend sends a delete request to the backend to delete the
component.

– The cards: There are three different cards. The “add card”, the model card, and
the dataset card. The dataset card displays information about the datasets (dataset
name, dataset size in MB, number of data points in a dataset, the URL to the
dataset, and data format). The model card displays information about the models
(model name, library name, library version, environment name, and the python
script used to train that model). The “add card” can be used to add a dataset or a
model. The cards are all displayed on the utility page. the datasets and models are
each grouped together with an “add card” at the end to add another dataset or a
model.

– The setting table row: The setting table row is the component that displays
the information about the settings (identifier, library, library version, ml model,
federated learning strategy, clients number, communication rounds, dataset, GPU,
mode, epochs, batch size, learning rate, loss function, optimizer . . . ). The rows are
displayed on the home page one under the other in the settings table.

• Services: The services implement application-wide functionalities that are not bound
to a single component or page (e.g state management). The application only has one
service:
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– useState: The state management service. It is built with zustand. It saves the states
of the different components, as well as their setters, and operations to add and
remove objects from these states

Each of the components and the pages has both a javascript file for the logic and the template
structure ( rendered with JSX) and a CSS file for the styles. In addition to that, the application
has the App.js file which defines the routing logic within the application and acts as the root
of the client side of the application.

Server: The server is a node server that runs on the node virtual machine. It communicates
with the different FML implementations through the CLI using child processes, and with the
MongoDB database through queries. The server has a multilayered architecture. The first
layer is for the router, the second layer is for the controller, the third layer is for the model,
and the last layer is for the machine learning implementation. The last layer is the only layer
that is implemented in python with the help of multiple other packages, thus it is not counted
as part of the server. The first three layers are the ones implemented in node.js and they serve
the following functions:

• Routers: The routers route the API requests coming from the frontend to the controller
function that handles them in the backend. In total, the backend has twelve functions
to handle the API requests from the frontend, and thus it has twelve routers. five GET
routers for getting a specific setting, getting all the settings, training a setting, getting all
the datasets, and all the models. Three delete routers which are for deleting a setting, a
dataset, or a model. Additionally, a PUT router that can be used to update a setting,
and POST routers which can be used to create a setting, model, or dataset.

• Controllers: The controllers implement all the logic that handles the API requests from
the backend. The controllers of the FMLB have twelve different main functions and one
helper function divided between the different controllers as follows:

– The settings controller: The controller is responsible for manipulating the settings in
the backend. It has six different main functions and one helper function. Namely:

* getSettings: This function queries the database for all of the available settings
and sends them back in the form of an array of JSON objects.

* getSetting: This function gets the id of the needed setting as a request parame-
ter. It then queries the database to find it. Once found, it sends it back as a
JSON object to the frontend.

* trainSetting: This function takes the id of the to-be-trained setting as a request
parameter and then queries the database to find it. Once it finds it, It checks
for the library used, the name of the environment it is implemented in, its
directory name, and the name of the script that is used to train the ML model
of that setting. It uses this information to send a command as a child process
through the CLI to start training the ML model in the respective setting. It also
forwards other information like the batch size, the number of communication
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rounds, and the number of clients to the python script as arguments. The logic
for launching the commands differs from library to library. For instance, for
the centralized model, and for pysyft only one command is required to launch
the training. While for flower, each client has its own command plus one for
the server. FedML, the commands include YAML files. After that, the backend
waits for the response of the script, which will be a long log. It takes the log
and sanitizes it with the help of the sanitize helper function. A JSON object
containing all of the relevant metrics will then be created. This object will be
then sent to the frontend. The IBM library could not be trained through the
web application, despite it being part of the benchmark. It can be only used
through the CLI because the user needs to interact with the library in a way
that could not be automated.

* deleteSetting: This function gets the id of the to-be-deleted setting as a request
parameter. It then queries the database to delete it. Once deleted, it sends back
a response to the frontend to notify it about the operation’s success.

* updateSetting: This function takes three attributes from the request body.
Namely: the id of the setting, the attribute that needs to be changed (called
a key), and its new value (called a value). It searches for the setting using
its id. Once found, It checks which attribute to change, and gives it its new
value. In the end, it sends back a response to the frontend to notify it about
the operation’s success.

* createSetting: This function takes all of the 13 attributes of a setting and creates
a new setting using them in the database (It also checks if the identifier is
unique, and if each value is consistent with its schema). After that, it sends a
response to the frontend to notify it about the operation’s success.

* sanitize (helper function): The sanitize function takes all the logs provided
by the FL library during the training. It then deletes all of the irrelevant
information from them, extracts the different metrics and tokenizes them into
an array, casts their values, and shortens them up. Finally, it returns them as a
JSON object.

– The model controller: The controller is responsible for manipulating the models in
the backend. It has three different main functions. Namely:

* getModels: This function queries the database for all of the available models
and sends them back in the form of an array of JSON objects.

* deleteModel: This function gets the id of the to-be-deleted model as a request
parameter. It then queries the database to delete it. Once deleted, it sends back
a response to the frontend to notify it about the operation’s success.

* createModel: This function takes all of the 5 attributes of a model and creates a
new model using them in the database (It also checks if the identifier is unique,
and if each value is consistent with its schema). After that, it sends a response
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to the frontend to notify it about the operation’s success.

• The dataset controller: The controller is responsible for manipulating the datasets in the
backend. It has three different main functions. Namely:

– getDatasets: This function queries the database for all of the available datasets and
sends them back in the form of an array of JSON objects.

– deleteDataset: This function gets the id of the to-be-deleted dataset as a request
parameter. It then queries the database to delete it. Once deleted, it sends back a
response to the frontend to notify it about the operation’s success.

– createDataset: This function takes all of the 5 attributes of a dataset and creates a
new dataset using them in the database (It also checks if the identifier is unique,
and if each value is consistent with its schema). After that, it sends a response to
the frontend to notify it about the operation’s success.

• Models: The models implement the mongoose schema of the different settings, models,
and datasets. Each has its own model. The settings model has 13 different attributes and
a unique _id. The ML model has 5 different attributes and a unique _id. The dataset
model has 5 different attributes and a unique _id. The models tell the database how the
data needs to be structured in the objects representing the FL settings, ML models, or
datasets.

In addition to that, the server has an index.js file that starts it and defines the port to commu-
nicate with it as well as its routers. It serves as the main endpoint to the entire backend. It
also includes the db.js file that is used to connect to the MongoDB database.

Machine learning: The machine learning layer gets activated either through the CLI or
through the training function in the backend. The following command is used to tell the
application which machine learning model to run in which conda environment: conda run -n
environment name python path/to/the/model/training/script–args arguments. The first
part of the command tells the application which environment to use, and the second part
tells it which python script to run. The last part configures the training setting. Figure
28 illustrates the architecture of the machine learning layer of the application. The layer
implements federated machine learning models as well as traditional machine learning
models.
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Figure 28.: The architecture of the machine learning layer (source: own work)

As illustrated in figure 28 above, the machine learning logic of the application is further
divided into three distinct layers. Each of the layers has its distinct responsibility The layers
and their responsibilities are the following:

• The implementation layer: The implementation layer has all the logic for training, testing,
and benchmarking the different machine learning settings. The logic is implemented
using the different libraries with the help of helper packages to track and retrieve
the different metrics. The application currently has multiple implementations in four
different federated learning libraries (IBM federated learning, pysyft, flower, and fedml),
and one traditional machine learning implementation with PyTorch.

• The utility layer: The utility layer has all the utilities that the different libraries use to
effectively train the models and retrieve the metrics. Namely, the implementation of the
ML models, the data loaders for the different datasets, as well as a config file that takes
the config arguments.

• The datasets layer: The datasets layer has all the datasets used during the training.
Currently, only two datasets are available. Namely, the MNIST [86] and CIFAR-10 [87]
datasets.

The Implementation layer: has all the logic to train, test, and benchmark the libraries. The layer
has four different federated learning implementations (All of them use PyTorch as a machine
learning framework), and one for a centralized machine learning setting for reference which
is also implemented in PyTorch. The implementations work as follows:
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• Pytorch (centralized model): The PyTorch centralized implementation first checks the
config class to get the configuration and gets what model and dataset to use as well as
get the configuration of the setting. Then the timer starts. During that time the data is
loaded into the model and the model is trained and tested using it. During the training,
the CPU, GPU, RAM, and network usage are monitored. After the training, the timer
stops. During the testing, the precision, recall, accuracy, loss, and F1 are calculated and
retrieved. All of the metrics are then logged. The centralized model can train a CNN
with both the MNIST and the CIFAR-10 datasets. It can also train a logistic regression
model using the MNIST dataset. This implementation serves more as a reference for
the benchmarking of the other implementations.

• Flower: The flower implementation is divided into a server and a client implementation.
The server starts a timer when it starts. Each of the clients gets the configuration of the
setting, loads the dataset, and trains and tests its model. It also tracks the precision,
recall, F1, accuracy, and loss of the model. After that, It sends the metrics to the
server. The server averages them and saves them. It also tracks other metrics like
CPU, GPU, RAM, and network usage. It stops the timer at the end. It logs them. The
flower implementation can only train a CNN on the MNIST dataset. However, the
implementation of the server can work with clients training any model on any dataset.

• Pysyft: The pysyft implementation first creates the different clients involved in the
training of the dataset.Then, it checks the config class to get the configuration and gets
what model and dataset to use as well as get the configuration of the setting. Then
the timer starts. The model is distributed to different clients. During that time the
models are trained and tested using the dataset. The data is loaded to the model using
a federated data loader that loads the data to the different clients. During the training,
the CPU, GPU, RAM, and network usage are monitored. After the training, the timer
stops. During the testing, the precision, recall, accuracy, loss, and F1 are calculated
and retrieved. All of the metrics are then logged. Pysyft can train a CNN both on the
MNIST and the CIFAR-10 datasets.

• IBM federated learning: The IBM implementation is only made of YAML files. A file
for the server, and a file for each of the clients. All the logic for implementing the
training and testing as well as the model is included in the source code of the library.
The library is also added to the source code of the benchmark. The library is extended
to support the logs of the metrics that are needed to benchmark the training. IBM
federated learning can train a CNN on the MNIST dataset. However, adding new
models and datasets is easy, and doesn’t require any coding. Unless the user wants
to develop their own custom model or use their custom dataset. The IBM federated
learning implementation can not be accessed through the UI of FMLB. Instead the user
needs to use it through the CLI.

• FedML: The FedML implementation only implements the logic of running a new training
setting as well as some of the metrics. The implementation takes as an argument a
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YAML file that has the different attributes of the setting. The source code of the library
logs the precision, recall, accuracy, loss, and F1 values. While the CPU, RAM, GPU,
Network usage, and time are monitored through the script. FedML can train both
logistic regression and a CNN on the MNIST datasets. In order to use another model or
dataset, a YAML file should be created for it. Custom models and datasets, need to be
added in their own python script and then called by the training script.

Each of the libraries implements the training differently. That’s why logs were chosen as the
method to get the metrics as it is universal. The pysyft and the PyTorch training settings could
be launched as a normal python script. The IBM training could be done only through the
YAML files of the server and the different clients. The fedml training could also be launched
like any python script but it needs to take a YAML file as an argument. The file needs to
have the config of the training setting. In flower, the server and each of the clients need to
be called on their own in order to enable the training. Furthermore, the implementation
layer makes use of slightly different versions of the fedml and the IBM federated learning
libraries. They were modified to log metrics that are not logged by the original version of
the libraries (e.g precision, recall, and F1) to make benchmarking the two libraries easier. No
further modification of the behavior of the two libraries was conducted.

The utility layer implements the utilities needed by the libraries to train and benchmark a
model. It has three python files. The first one is for the ML models, the second one is for the
configuration of the models, and the third one is for the data loaders. They are implemented
as follows:

• Models: The application has three models implemented. Two CNN models, the first for
the MNIST and the second for the CIFAR-10 datasets, and a logistic regression model
for the MNIST dataset. The models and their layers are already defined and can be
called directly.

• Configuration: The configuration file implements the config class. The config class
takes the different arguments ( The model to be trained, the used federated learning
strategy, and dataset to be used, batch size, number of epochs, number of clients and
communication rounds, the mode, if the training should make use of the GPU or not,
and the learning rate), and passes them to the training script. The python script then
configures the training setting accordingly and starts the training of the model using
that particular configuration.

• Data loaders: There are currently two data loaders implemented in the application, the
first one for the CIFAR-10, and the second one for the MNIST datasets. They each load
the training dataset and the testing dataset separately. In case the data loader doesn’t
find the dataset in its respective directory, It automatically downloads it.

The datasets layer is the layer responsible for keeping the raw datasets that will be used by the
machine learning models for their training. Each of the datasets has its own directory. In that
directory, there are two further directories, one for the training dataset and another one for

86



5. Libraries Comparison

the testing dataset.

Currently, FMLB has two distinct datasets:

• The MNIST dataset: This dataset is made of uncolored images. The images are pictures
of random numbers from 0 to 9 (each of the numbers corresponds to a class). It is
mainly used to benchmark CNN. The CNN models need to predict the number of
images. The dataset has 70000 data points in total (60000 for training and 10000 for
testing) and weighs 30 MB in total.

• The CIFAR-10 dataset: This dataset is made of colored images. The images are divided
into 10 classes ( airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks).
Each class has 6000 images which make up to 60000 images in total (50000 for training
and 10000 for testing) and weigh 175 MB. The dataset is also mainly used to benchmark
CNN. The NN needs to predict the class of the given image.

Models and datasets support: Not all of the implemented models and datasets can be used
with all of the libraries. Table 12 illustrates which library supports the use of which models
and which datasets.

CNN with CIFAR-
10

CNN with MNIST
Logistic Regression
with MNIST

Centralized (Pytorch) X X X
Pysyft X X
IBM federated learn-
ing

X

Flower X
FedML X X X

Table 12.: Models and datasets supported by FMLB (source: own work)

As Illustrated in table 12 above, the CNN model with the MNIST dataset is implemented
in all the libraries. Thus, it will be used in the benchmarking experiment.

The application could be also extended in the future to support more models, databases,
and libraries. Thus, more benchmarking experiments can be carried on with it in the future.
The datasets could be directly added to the datasets directory, and a data loader in the data
loaders file should be created for them. For the models, they need to be declared as classes in
the model’s file. Then, a file for the training, testing, and benchmarking logic of the library
need to be created under the directory of the library that will be used to train the model. In
order to add a new library, a conda environment [90] needs to be created, and the library
should be installed in that environment, then a directory should be created for it under the
libraries directory (the directory needs to have the same name as the library). The files for the
training, testing, and benchmarking logic can be then added under that directory. The ML
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layer is designed to be modular so deleting or creating a new model, dataset, or setting, as
well as updating an already existing setting will not interfere with the functionality of the
other existing settings.

5.3.3. Demonstration of the Benchmarking Suite

FMLB [84] enables CRUD operations over the federated machine learning settings created
with the application. The read operation is performed on the home page where the user can
see all the federated learning settings created, and on the utility page to see all the models
and datasets available to create new settings. The creation operation is performed through
the creation dialogs that enable the creation of a new federated machine-learning setting,
model, or dataset. the delete operation is performed through the deletion dialogs specific to
each setting, ML model, or dataset. The update operation is a backend-only function that can
be performed only with the use of an API platform like postman [91]. In addition to that, the
user can train the different federated machine learning settings available on the application to
get their performance across different non-functional metrics. However, to be able to use the
tool, some software programs need to be installed.

Prerequisites to use the benchmarking suite: The benchmark suite is a PoC and is not
yet deployed. In order to be able to use it effectively, the user needs to have the following
software programs installed on their machine:

• python v3.7 92

• conda v22.0 90

• pip v22.3 93

• npm v6.14 94

• node v19.0 82

• react v18.0 79

• MongoDB v6.0 83

After that, the user can clone the project from GitHub[84], enter into both the client and server
directories through the CLI, and run the command npm i to install all of the frontend and
backend dependencies. Once the dependencies are installed, the user needs to create a local
database with MongoDB, and create a .env file in both the server and the client directories
with the following environment variables:
92python: https://www.python.org/
90conda: https://docs.conda.io/en/latest/
93pip: https://pypi.org/project/pip/
94npm: https://www.npmjs.com/
82node: https://nodejs.org/en/
79react: https://reactjs.org/
83MongoDB: https://www.mongodb.com/
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• On the frontend:

– REACT-APP-API-URL: the endpoint to the backend (e.g http://localhost:5000/api/settings/)

• On the backend:

– PATH-TO-LIBRARIES: absolute path to the libraries’ directory

– PORT: on which port the backend should run (e.g 5000)

– DB: the URL to the database (e.g mongodb://localhost:27017)

In addition to that, the benchmarking suite has already some pre-configured implementations
of already existing federated learning settings that can be used immediately. For that, the user
needs to create a conda environment for each of the already pre-existing libraries and install
each of them in that environment. The libraries that need to be installed are the following:

• fedml v0.7.3 [59]

• pysyft v0.2.9 [52]

• PyTorch v4.4.0 (for a centralized on federated setting) [95]

• IBM federated learning v1.0.7 [65]

• flower v1.1.0 [62]

Once the user has successfully installed all the software and added the environment variables
required for the tool to run, the benchmark can be used. In order to run the client, the user
needs to get to the client directory through the CLI and run the command npm start. In order
to run the server, the user needs to get to the server directory and run the command node
index.js. The pre-configured settings can be easily added to the database. The important
attributes are the identifier, the model, the dataset, and the name of the python script
that encapsulates the logic. These attributes need to match exactly the names used in the
implementation of the benchmark. The other attributes don’t matter as they will be passed
as arguments to the machine learning models, and the user has the freedom to give them
whatever value they want. Table 13 illustrates the different possible configurations that could
be immediately added and trained on the tool.

Attribute Possible Values Comment

Identifier Any unique value
Needs to be unique in order to identify the
setting
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Dataset MNIST or CIFAR

CIFAR can be used with all of Fedml, pysyft,
and the centralized model. MNIST can be used
with all of the libraries. A dataset needs to
be created first on the utility page. If the cre-
ated dataset is MNIST, the data points number
should be 70000, the size should be 30 MB, and
the URL should be /mnist.If the created dataset
is MNIST, the data points number should be
60000, the size should be 163 MB, and the URL
should be /cifar-10. Both datasets are image
datasets

Model CNN or LogReg

Only logistic regression and CNN are currently
implemented in the benchmark (CNN with the
MNIST dataset is implemented in all of the li-
braries). While the logistic regression is only
implemented with IBM, the centralized model,
and FedML. To add a model, the model needs
to first be created on the utility page. The model
needs to have a name, a library, a library ver-
sion, and a name for the conda environment
it runs in. In addition to that, a name for the
python script that implements its training in
that specific library. For instance, for PyTorch,
the name for the script is image-classifier, for
flower, the name of the script is mnist-image-
classifier-cnn-client, for FedML, it needs to be
mnist-cnn-config or cifar-cnn-config, or mnist-
logreg-config, and for pysyft, it needs to be
image-classifier-cnn. All the names need to be
consistent with the implementation, otherwise,
the application won’t be able to run the experi-
ments

Table 13.: Possible configurations for already implemented models (source: own work)

Home page: As illustrated by figure 29 below the home page retrieves all the settings
from the database and displays them on a dashboard. It displays information such as the
identifier of the setting, the library used, the version of the library, the number of clients and
communication rounds involved, the dataset used, as well as its format, size, and the number
of data points. It also displays other important attributes such as the ML model, FL strategy,
number of epochs, batch size, loss function, and optimizer used for the experimental setting.
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The information specific to the models and datasets like the library used, version, dataset
name, and dataset size are retrieved from the ML model and dataset associated with the
setting. Each setting has a train and delete button to train or delete that setting. In addition
to that, there is a blue plus button on the right side of the header that enables the user to
create a new setting, and a blue squared button to navigate to the utility page. The home
page acts as the main page of the application. It summarizes the information about all of the
existing settings. From the page, a setting can be created, trained, or deleted. The user can
also navigate to all of the other pages of the application.

Figure 29.: A screenshot of the home page (source: own work)

Utility page: As illustrated by figure 30 below the utility page retrieves all the ML models
and datasets from the database and displays them on the page in a card. In addition to that,
there are two “add cards”. The first card can be used to add a model, and the second card
can be used to add a dataset. The model card displays information such as the model type,
the library it is implemented in and its version, the name of the conda environment it runs in,
and the name of the python script that implements the training of the model. The dataset
card displays information such as the dataset name, the format of the dataset, the size of the
dataset in MB, and the number of data points in the dataset. In addition to that, each of the
model cards and dataset cards has a delete button at the bottom that can be used to delete
the component.
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Figure 30.: A screenshot of the utility page (source: own work)

Train an existing federated learning setting: In order to train a setting, the user needs to
click on the train button specific to the setting. The user will be redirected to a page that
needs some time to load. figure 31 illustrates the training page.

Figure 31.: A screenshot of the training page (source: own work)

Once loaded, the page will display the following information:
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• General information: Information that the user has entered when creating a new setting
like: the library and its version, the ML model and FL strategy used, if a GPU is used,
the number of epochs, the batch size, the environment name, folder name, and file
name . . .

• Scalability metrics: Metrics for how many clients are involved in a setting, and how
much each client is handling.

– Number of clients: The number of clients involved in the setting.

– The number of data points per client: The number of data points each client is
handling.

– The data size per client: How much data each client is handling in MB.

• Performance and efficiency metrics: Metrics for the time of execution and the resource
utilization of the setting.

– Time of execution: How much time did the model take to be trained?

– RAM: How much RAM was used during the training?

– CPU: How much CPU was used during the training?

– GPU: How much GPU was used during the training?

– Network: How much network was used during the training?

• Accuracy metrics: Metrics for how well the model has performed.

– Accuracy: The percentage of the correct prediction.

– Loss: How much the model fits the dataset.

– Precision: Reflects the quality of the correct prediction.

– Recall: Reflects the percentage of true positives recalled.

– F1: A score that averages out the precision and recall to give an idea about the
overall quality of the model.

Create a new federated learning setting, model, or dataset: In order to create a setting, the
user needs to click on the blue “plus” button on the right of the header. If the user wants to
create a dataset or a model, the user needs to click on the “add model” card or add “dataset
card” on the utility page. A dialog as displayed in figure 32 will appear. Most of the setting
attributes are preconfigured to make it easier to configure the setting quickly. The attributes
that the user needs to enter are the following:

• Identifier: A text input unique to the setting.

• Model: A dropdown menu with the available ML models and the library they are
implemented in.

• Federated strategy: A dropdown menu with the available FL strategies.
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• Client number: A numerical input with the number of clients involved.

• Communication rounds: A numerical input with the number of communication rounds
involved.

• Dataset: A dropdown menu with the available dataset.

• GPU: A drop-down menu to indicate if the setting makes use of the GPU or not.

• Mode: A drop-down menu with the training mode (e.g simulation, cross-silo, cross-
device).

• Epochs: A numerical input with the number of epochs.

• Batch size: A numerical input with the batch size.

• Learning rate: A numerical input with the learning rate.

• Loss function: A drop-down menu with the loss functions (e.g cross entropy).

• Optimizer: A drop-down menu with the optimizer (e.g SDG).

For the model creation, the required attributes are the following:

• Model: A dropdown menu with the available ML models.

• Library: A dropdown menu with the available libraries.

• Version: A text input reflecting the version of the library being used. It needs to have
the following format X.X.X.

• Environment: A drop-down menu with the conda environment’s names.

• Script: A text input for the name of the python script that implements the training of
the ML model.

For the dataset creation, the required attributes are the following:

• Dataset: A dropdown menu with the available datasets.

• Dataset URL: A text input with the path to the dataset. It needs to have the following
format path/to/dataset.

• Data format: A drop-down menu with the formats of the dataset (e.g image, text,
time-series, tabular, sound . . . ).

• Data size: A numerical input with the size of the dataset in MB.

• Datapoints number: A numerical input with the number of data points in the dataset.
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After configuring the attributes the user can click cancel, to cancel the operation or click create
to create a new setting, model, or dataset. A pop-up will appear to inform the user of the
successful operation.

Figure 32.: A screenshot of the create dialog (source: own work)

Delete an existing federated learning setting, model, or dataset: In order to delete a
component the user needs to click on the delete button specific to the component. A dialog
as displayed in figure 33 will appear. If the user clicks cancel, the operation is canceled. If
the user clicks delete, the component is deleted from the database. A pop-up will appear to
inform the user of the successful delete operation.

Figure 33.: A screenshot of the delete dialog (source: own work)

Update existing federated learning setting The update operation is a backend-only opera-
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tion that can be only used on settings. It is not implemented for the models and datasets. In
order to perform it, the user needs to use an API platform as displayed in figure 34 below.
The request needs to be a put request. The user needs to enter the correct URL for the request
as well as the following key-value pairs as a request body:

• id: the Id of the library that needs to be updated

• key: Which attribute the user wants to change (e.g dataset, model, FL strategy . . . )

• value: The new value of the changed attribute (e.g FedAvg, LSTM . . . )

If the operation is successful the following message will be displayed as a response “ id is
updated successfully”.

Figure 34.: A screenshot of the update operation (source: own work)

Exception handling when the user performs a wrong operation a pop-up will appear to
inform them. The popup has a red border color. Which is distinct from the other green
popups. Figure 35 illustrates an example of such a pop-up.
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Figure 35.: A screenshot of the error pop-up (source: own work)

5.3.4. Evaluation of the Benchmarking Suite

FMLB is primarily a web application that promises an easy-to-use benchmarking suite for
federated learning setups. It measures different non-functional metrics of different federated
learning settings, and reports back the findings. The tool is designed to be easy to use, extend,
and modify. The only other comparable benchmark currently available in the scientific
literature is UniFed [29]. However, FMLB differs from UniFed on multiple dimensions. Table
14 illustrates the key differences between FMLB and UniFed.

FMLB has a graphical user interface delivered through a react web application. It can be
used through the UI or the CLI. While Unifed can only be used through the CLI. FMLB has
persistent data storage while Unifed does not. FMLB has a client-server architecture and can
be easily maintained and extended compared to Unifed. It also implements different metrics
that Unifed does not have (it monitors the CPU, GPU, Precision, F1, Recall), and benchmark
libraries that Unifed does not benchmark (IBM federated learning and pysyft). It can also
benchmark non-federated ML learning models. While Unifed can not. In order to add a
new FL setting, the user only needs to fill out a form on the web application of FMLB. While
in Unifed this could only be done through the use of docker. Users can also directly make
use of the GPU in FMLB without any additional configuration. Which is only possible in
Unifed with additional configuration. On the other hand, Unifed is richer in functionalities.
It implements more ML models and federated learning strategies, supports more federated
learning libraries, and has more datasets included in it. It also implements metrics that do
not exist in FMLB (AUC and MSE).

The two benchmark suites differ on other dimensions like the underlying technologies
used. FMLB is built using a mix of web technologies (react, node, and MongoDB) and the
python programming language. While Unifed is built with only python.

Dimension UniFed FMLB
UI Command line interface Web application

Components
Environment launcher, scenario
loader, logs analyzer, code patch

A client and a server application

Configurability Through docker Locally
GPU use Through configuration Can be used directly

ML Models
CNN, RNN, decision tree, Lo-
gReg

CNN, LogReg
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Persistent data
storage

No Yes

FL Strategies
FedAvg, HistSecAgg, Secure-
Boost

FedAvg

Datasets

celeba, fedmnist, reddit, breast-
horizontal, default-credit-card,
give-credit-horizontal, vehicule-
scale-horizontal, student-
horizontal, breast-vertical,
default-credit-vertical, dvisits-
vertical, give-credit-vertical,
motor-vertical, student-vertical,
vehicle-scale-vertical

CIFAR-10, MNIST

Pre-existing
libraries

FATE, FedML, PaddleFL,
Fedlearner, FederatedScope,
TFF, Flower, FLUTE, FedScale,
CrypTen, and FedTree

FedML, IBM federated learning,
Pysyft, Flower, and Pytorch (non-
federated)

Metrics
MSE, Accuracy, AUC, Clients
number, training time, commu-
nication cost,memory usage.

Precision, Accuracy, Recall, F1,
Loss, Client number, data size
per client, data points per client,
training time, communication
cost, memory usage, CPU usage,
and GPU usage.

Table 14.: The difference between UniFed [29] and FMLB (source: own work)

Overall it can be concluded that Unifed focuses more on functionality while FMLB focuses
more on usability.There are also some key similarities between the two benchmarking suites.
Both make use of logs to scrape the metrics. They both use multiple environments for training
and benchmarking the different models, and configure the different FL settings with the use
of arguments. In order to qualify as an adequate benchmark, FMLB needs to fulfill other
criteria. According to Kistowski J.V. et al. [25] to be considered a high-quality benchmark, a
benchmark needs to fulfill the following 5 criteria. Namely relevance, reproducibility, fairness,
verifiability, and usability. FMLB fulfills all of the mentioned criteria:

• Relevance: The tool measures the most important measurable non-functional metrics
for federated learning settings highlighted by the federated learning experts during the
interviews.

• Reproducibility: Given the same configuration the tool gives back reproducible results
with an extremely small margin of error:

• Fairness: The benchmark implements exactly the same models and training and test-
ing algorithms as well as metrics and settings for all of the libraries involved. No
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artificial limitations are added to the benchmark of any of the pre-existing libraries
implementations

• Verifiability: The benchmark uses the Scikit-learn metrics [96], as well as the Time
[97], PSUtil [98], and GPUtil [89] python packages to measure the performance of
the libraries across different federated learning settings. All of the packages used are
well-established packages with high ratings, and tens of thousands of users, as well as
regular maintenance. The results are accurate and verifiable.

• Usability: The benchmarking environment might require some technical knowledge to
set up. But once set up, the benchmarking suite is extremely easy to use. Only one the
button click is enough to launch an experiment.

5.4. Federated Learning Libraries’ Benchmarking Experiments:

FMLB was used to compare the non-functional quality metrics of the different libraries (e.g
Accuracy, Precision, Recall, F1, RAM usage, Network usage, CPU usage, GPU usage, and
Time of execution). A series of thirteen experiments were done, the first one was done with
PyTorch without the involvement of any client, and twelve experiments were done with the
four libraries in three scalability levels (2, 16, and 100 clients).

The experiments included implementations of a CNN with PyTorch and four of the five
prominent libraries. TFF was excluded because of the difficulty of the setup. the experiments
were conducted on the hardware specifications described in table 6, and they were configured
as follows:

• Mode: Simulation

• Model: CNN

• Dataset: MNIST

• Batch size: 100

• Epochs: 10

• Learning rate: 0.01

• Number of communication rounds: 3

• Optimizer: SDG

• Loss function: Cross entropy

Furthermore the GPU was not used in any of the experiments.
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5.4.1. PyTorch non-federated results

The Pytorch non-federated implementation was benchmarked for reference. It gave the
following results:

• Accuracy: 98.69 %

• Precision: 98.69%

• Recall: 98.67%

• F1: 98.68%

• Loss: 0.0004

• Time of execution: 3 minutes and 46 seconds

• CPU: 52.0%

• GPU: 1.0%

• RAM: 267.91 MB

• Network: 148.35 KB

5.4.2. FL Libraries Benchmark with Two Clients

Table 15 illustrates the results of the experiments conducted with a hundred clients of the
four different libraries. The cells of the table were color coded as follows: green for the
best-performing library on the row’s metric, yellow for the second, orange for the third, red
for the worst-performing library, and grey for the metrics where there was no difference
between the performances of the libraries.
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Pysyft Fedml Flower IBM FL
Accuracy 97.48% 10.51% 99.03% 99.26%
Precision 97.45% 4.26%* 99.02% 99.25%
Recall 97.48% 1.78%* 99.02% 99.25%
F1 97.46% 2.56%* 99.02% 99.25%
Loss 0.0008 4.8105 0.0003 0.0003

Time of execution
22m 19s
890ms

1m 13s
670ms

20m 23s
600ms

37m 21s
50ms

CPU consumption 91.8% 34.5% 33.9% 99.9%

RAM consumption 604.01MB 620.96MB
1GB
232.97MB

856.94MB

Network consumption 136.21MB 25.64MB 465.14MB 1025,68MB
GPU consumption 1.0% 1.0% 1.0% 1.0%

Table 15.: The results for the training experiments of federated learning settings with two
clients with different libraries (source: own work)

Data analysis: Table 15 illustrates the results of the experiments conducted with two clients
of the four different libraries. The GPU consumption is 1% for all of the experiments because
the models don’t make use of the GPU when they are training. FedML took the least time
and resources to train (1m 13s to run, 34.5% of the CPU, 25.64MB of the network, 620MB of
the RAM) the CNN but it also had the lowest accuracy of all of the libraries (around 10%).
The results of the precision, recall, and F1 are not consistent with accuracy for FedML. They
are quite low which suggests that the figures may not be true, and they can be ignored. All
of Flower, IBM federated learning, and Pysyft had high accuracy, precision, recall, and F1
metrics (all above 97%). Flower and IBM both scored above 99% across these metrics. IBM
federated learning and Pysyft were CPU intensive in comparison to Flower (Both consumed
three times more CPU computational resources than Flower). While for network consumption,
IBM FL consumed the most, followed by flower (60% lower than IBM FL), and Pysyft (87%
lower than IBM). For the RAM, Pysyft consumed the least (around 600MB), followed by
Flower (around 850MB). IBM FL consumed the most RAM (1.2GB). In terms of the time of
execution, both Pysyft and Flower took around 20 minutes to train the model. IBM federated
learning took almost double the time to execute (around 37 minutes). For two clients, FedML
consumes the least resources, and takes the least time to execute, but has low accuracy in
comparison to the other libraries. The other libraries have comparable accuracy metrics to
each other. However, they differ in terms of resource consumption and time of execution.
IBM FL consumes the most resources and takes the most time to train the model. Pysyft
and Flower have a comparable execution time. However, Flower is more RAM and Network
intensive than PySyft while Pysyft is more CPU-intensive than Flower.

101



5. Libraries Comparison

5.4.3. FL Libraries Benchmark with Sixteen Clients

Table 16 illustrates the results of the experiments conducted with a hundred clients of the
four different libraries. The cells of the table were color coded as follows: green for the
best-performing library on the row’s metric, yellow for the second, orange for the third, red
for the worst-performing library, and grey for the metrics where there was no difference
between the performances of the libraries.

Pysyft Fedml Flower IBM FL
Accuracy 97.23% 27.43% 99.31% 99.0%
Precision 97.22% 4.26%* 99.33% 99.98%
Recall 97.20% 2.42%* 99.24% 99.99%
F1 97.20% 3.09%* 99.29% 99.99%
Loss 0.0009 1.95 0.0006 0.0003

Time of execution 22mins 23s 1mins 43s
1 hours
27mins 10s

4 hours 18
mins 32s

CPU consumption 99.0% 40.0% 99.3% 99.9%

RAM consumption 858.48MB 670.17MB
4GB
321.37MB

4GB
410.64MB

Network consumption 592.3MB 105.23MB 974,94MB 2332.45MB
GPU consumption 1.0% 1.0% 1.0% 1.0%

Table 16.: The results for the training experiments of federated learning settings with sixteen
clients with the different libraries (source: own work)

Data analysis: Like the previous experiment the GPU consumption is 1% for all of the
experiments. FedML had an increased accuracy but it is still a lot less than other libraries
(27.43%). It also took more time to train the model, and consumed more resources than
in the previous experiment but still less than the other libraries (took 1m 43s to run, 40%
of the CPU, 105MB of the network, 670MB of the RAM). The precision, recall, and F1 are
still not consistent with accuracy for FedML. All of Flower, IBM federated learning, and
Pysyft had high accuracy, precision, recall, and F1 metrics. Pysyft scored again 2% lower than
Flower and IBM FL across these metrics. It also took fewer resources and time to execute
the training of the models. It consumed 15% of the RAM of the two other libraries. It also
consumed half of the network bandwidth consumed by Flower, and one-fourth of the network
consumed by IBM FL. Additionally, It took around 80% less time than flower and around
92.5% less time than IBM FL to train the model. All of Pysyft, IBM FL, and Flower consumed
almost the entirety of the CPU computational power. For two sixteen, FedML consumes
the least resources, and takes the least time to execute again, but still has low accuracy in
comparison to the other libraries. The other libraries have comparable accuracy metrics and
CPU consumption. However, PySyft consumes way less RAM, Network, and takes less time
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to execute than IBM and Flower. Flower consumes fewer resources and takes 75% less time to
train the model than IBM federated learning.

5.4.4. FL Libraries Benchmark with a Hundred Clients

Table 17 illustrates the results of the experiments conducted with a hundred clients of the
four different libraries. The cells of the table were color coded as follows: green for the
best-performing library on the row’s metric, yellow for the second, orange for the third, red
for the worst-performing library, and grey for the metrics where there was no difference
between the performances of the libraries.

Pysyft Fedml Flower IBM FL
Accuracy 96.82% 80.35% 99.03% 99.22%
Precision 96.8% 4.11%* 99.98% 99.11%
Recall 96.82% 4.08%* 99.98% 99.11%
F1 96.81% 4.09%* 99.98% 99.11%
Loss 0.0009 0.6249 0.0002 0.0003

Time of execution 23m 46s 23s 4mins 40s
3hours
47mins 3s

25hours
3mins 45s

CPU consumption 97.8% 60.7% 99.4% 99.9%
RAM consumption 861.1MB 749.43MB 25.68GB 24.37GB
Network consumption 748.86MB 543.04MB 3345.85MB 3543.04 MB
GPU consumption 1.0% 1.0% 1.0% 1.0%

Table 17.: The results for the training experiments of federated learning settings with a
hundred clients with different libraries (source: own work)

Data analysis: The GPU consumption is always around 1% for all the libraries. FedML had an
80% accuracy but still considerably less than the other libraries. It also still consumes fewer
resources and takes less time to execute than the other libraries. All of Flower, IBM federated
learning, and Pysyft had high accuracy, precision, recall, and F1 metrics. Pysyft scored again
3% lower than Flower and IBM FL across these metrics. It also took fewer resources and
time to execute the training of the models. Both IBM FL and Flower consumed around 25GB
of RAM, while Pysyft only consumed 861MB. They both also consumed around 3.5GB of
Network bandwidth, while PySyft only consumed 750MB. They all consumed comparable
CPU computational power. For a hundred clients, FedML consumes the least resources, and
takes the least time to execute (took 4m 40s to run, 60.7% of the CPU, 105MB of the network,
749.43MB of the RAM), but it also has low accuracy in comparison to the others (around
80%). The other libraries have comparable accuracy metrics. However, PySyft consumes
fewer resources and takes less time to execute than IBM FL and Flower. Flower consumes
less Network and CPU than IBM FL, while IBM FL consumes less RAM than Flower. IBM FL
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takes the most time to train the model (around 25 hours), followed by Flower (around 3.75
hours), followed by PySyft (around 23 minutes), and FedML (around 4 minutes).

5.4.5. Insights from the Data Analysis

The prominent libraries included in this thesis are Fedml, Pysyft, IBM FL, TFF, and Flower.
The experiments included all of the prominent libraries except for TFF. There was an ad-
ditional experiment run with PyTorch to be used as a reference for the other experiments.
TFF was not included in the benchmark because its installation was not successful, as the
installation process in the documentation was meticulously followed but was full of errors.
There was no further support for the installation other than in its official documentation.

The GPU consumption is a constant 1% across all experiments for all the libraries. The
different libraries behave differently across different scalability levels. For instance, FedML
improves its accuracy drastically as it scales, while PySyft loses accuracy as it scales. The
accuracy of IBM FL and Flower stays constant. In terms of resources, FedML consumes the
least resources and takes the least time to train the model but the resource consumption
and the execution time increases with scale. The precision, recall, and F1 of FedML are not
consistent with its accuracy. Thus, they were not taken into account.

IBM FL, PySyft, and Flower consume around 97% to 99.9% of CPU computational power
and have 97% to 99% accuracy across the different scalability levels. IBM FL consumes the
most resources and takes the most time, followed by Flower. PySyft takes the least time to
execute and consumes the least resources. Scalability does not have a big impact on the
training time and resource consumption of PySyft but it plays a bigger role for Flower and
IBM FL. IBM FL’s training time increases drastically with scale compared to Flower but in
terms of resources, both libraries consume the same resources as they scale. Compared to the
PyTorch experiment, all of the libraries except for FedML take more time to train their ML
models and consume more resources. IBMFL, Flower, and PySyft also have a higher accuracy
than the PyTorch implementation.

Overall, it can be concluded that each of the libraries is suitable for different use cases.
FedML and Pysyft are more useful to have quick results in a simulation with a high number
of clients. Pysyft gives more realistic results than FedML. However, both libraries are not
production ready yet as their simulation mode does not mimic the actual behavior of client-
server systems. IBM FL and Flower have high accuracy and more realistic results but they
come with more training time and resource consumption. They mimic more the behavior of
an actual FL setting. They are more production ready.
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The results of this thesis have both theoretical and practical implications for both academia
and the industry but they also have certain limitations. Thus, a reflection on the thesis and its
results is needed.

6.1. Reflection

The thesis aimed to answer three research questions. Namely:

1. What are the functional and non-functional requirements relevant for a federated
learning library, and what are the most important metrics to benchmark them?

2. What are the different federated libraries available, and how do they differ in terms of
functionality?

3. How could a modular software application that benchmarks the different federated
learning libraries using the metrics be developed?

A series of semi-structured interviews with federated learning experts to identify what is
important for the federated learning community regarding features and quality requirements
for the different libraries was conducted. After that, the scientific literature around federated
learning systems as well as the official documentation of the libraries used for its development
was explored. A list of the currently available FL libraries and their status and description
was compiled. Their functionalities and features were also compared. Additionally, a
benchmarking suite that includes two datasets, five different reference implementations
of federated learning and machine learning models, a web application to configure and
test federated learning setups, as well as, different quality metrics were developed. The
benchmarking suite was named FMLB. In the end, FMLB was used to compare the quality of
the different FL libraries across multiple dimensions.

6.2. Theoretical Implications

The results for the first research question included a series of interviews that reflected the
preferences of the FL community. It showed that the FL community prefer the libraries to
support basic FL functionalities like handling server-client communication, security, data
aggregation, and supporting multiple ML framework. The community also values scalability
and accuracy over performance and efficiency. The results could be used as secondary
data for further research about the preferences of the FL community. The list of questions
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could also be used as a basis for future studies. The answer to the second and the third
research questions explored the different federated learning libraries and the functional and
non-functional differences between them. The conclusion was that some libraries support
more functionalities than others. For instance, IBM supports all prominent ML models, while
TFF only supports DL models. Also, the libraries differ in terms of non-functional quality.
FedML is the fastest and least resources intensive among the libraries but that comes with
an accuracy tradeoff. IBM FL is the slowest and most resources intensive but overall it is
production ready and have a high accuracy. These results could be used by researchers to
choose the appropriate FL library for their specific use case. Lastly, the researcher could
use the benchmarking suite to further conduct experiments on different federated learning
libraries.

6.3. Practical Implications

The results of the interviews could be used by the library designers and maintainers to
know what is important for the FL practitioners and community and design their libraries
accordingly. The answer to the second and the third research questions could be used by FL
practitioners to compare the different libraries and choose one that is appropriate for their
use case. Even though the libraries are still in active development and the results may be
irrelevant in the future, the methodology for the comparison can be used as a guideline for
future comparisons. The tool can be used to compare newer versions of the libraries to get
more up-to-date information about the libraries in the future.

6.4. Limitations and Future Works

The sample size for the interviews in the study was small. It can be used to get an overview
of the preferences of the FL community but it is not an accurate reflection of the preferences.
The sample was also not checked for potential biases as all of the interviewees worked for
Munich-based companies and came from a research background. Another study that has
a bigger sample size and more specific questions could give a clearer idea to FL library
designers about the direction they want to steer their products. The answers to the second
and third research questions could be irrelevant in the future since the libraries are still under
active development. Most of the libraries are not even production ready, and the field is still in
its infancy. Another comparison could be carried out once each of the libraries is production
ready and have at least a stable release. The benchmark suite is limited to the most popular
ML models and only FedAvg. It has a limited number of datasets and implementations
and does not include all of the FL libraries, only the prominent ones. New libraries will
emerge, and more use cases for FL will also emerge that will require other data aggregation
algorithms and machine learning models. The benchmark is also not stable yet. It was not
tested enough and was not used outside the scope of this thesis. It could be extended to
include more options and to be more customizable, and it should be rigorously tested before
being used in production.
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The expert interviews revealed that the FL community expects the FL library to cover nothing
beyond the basic FL features like communication and the orchestration between the server
and the client, security, and data aggregation. They also expect the FL libraries to be highly
interoperable with the different ML frameworks. All of the interviewees expected the dif-
ferent libraries to have comparable accuracy metrics, which was disproved by the experiments.

In terms of features, all of the prominent libraries cover basic features like data aggregation
with FedAvg. They mostly all have an encryption-based security mechanism (except for TFF
which only uses DP). FedML has the most features suited for experimental settings (like
network and topology customization, as well as ready already implemented ML models).
While IBM FL covers the most of ML models and simulates better the client-server interaction.
Pysyft and TFF only support deep learning models and have the least features in all of
the reviewed libraries. Flower supports deep learning models and some of the traditional
machine learning models. It also has high interoperability with different ML frameworks like
sci-kit learn, Pytorch, and TF. In terms of features, flower and IBM FL are the most suited for
a production setting. While FedML is more suited for an experimental setting. PySyft and
TFF are the least production-ready because of the lack of features and support despite having
the biggest communities of practitioners.

The experiments to benchmark the different non-functional quality metrics of the libraries
were conducted with FMLB, a web application developed as part of the thesis. They gave
an insight about the non-functional differences between the different libraries. In terms of
non-functional quality, PySyft and FedML have the best resource consumption and time
of execution, especially for settings with a high number of clients. FedML, however, has a
relatively low accuracy compared to PySyft. Flower and IBM FL consume the most resources
and take the most time to train but also have higher accuracy. TFF was not part of the
benchmarking experiment as It was not possible to install it. However, according to the
literature [30], TFF has lower accuracy and a shorter training time than PySyft.

Each of the prominent libraries has its advantages and disadvantages. Flower and IBM
FL are the most production-ready as they support many ML frameworks and models, and
they have client-server architecture embedded in their implementation. However, they both
come with a higher time of execution and resource consumption. Flower is more suited for
cross-client setups as it consumes fewer resources overall and scales more easily. While IBM
FL is more suited for cross-silo setups since it has more features than Flower.
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7. Conclusion

TFF, FedML, and Pysyft are all more suited for experimental setups. FedML is more useful
for quick prototyping. While PySyft and TFF are more suitable for higher-fidelity simulations.
The choice between TFF and PySyft depends on the preferred ML framework of the FL
practitioner. TFF is suited for practitioners who use TF and PySyft is suited for practitioners
who use PyTorch. More experiments need to be conducted in real-life production setups with
the different libraries as they evolve to further define the use cases suitable for the different
libraries.
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A. Addenda

A federated learning libraries benchmark called FMLB was developed as part of the thesis. It
can be found under: https://github.com/sdn98/BFML .

The different machine learning algorithms were implemented with the help of the subse-
quent tutorials:

• for PyTorch: https://medium.com/@nutanbhogendrasharma/pytorch-convolutional-
neural-network-with-mnist-dataset-4e8a4265e118

• for PySyft: https://colab.research.google.com/drive/1dRG3yNAlDar3tll4VOkmoU-
aLslhUS8d

• for FedML: https://github.com/FedML-AI/FedML

• for IBM FL: https://github.com/IBM/federated-learning-lib/tree/main/examples/fedavg

• for Flower: https://flower.dev/docs/quickstart-pytorch.html
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