

Outline

Background

- Federated Machine Learning Process
- Problem Statement

Research Approach

- Research Questions
- Current State of Research
- Research Design

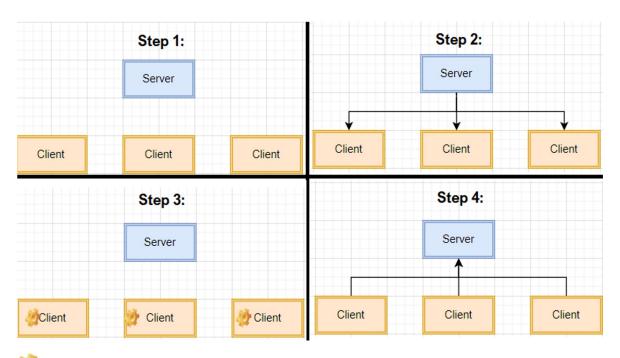
Qualitative Research Methodologies

- Literature Review & Document Analysis
- Expert Interview

Libraries Comparison

- Architecture
- Functionalities

Quantitative Research Methodologies


- Benchmarking Tool Development
- Benchmarking Tool Architecture
- Evaluation Method

Time Schedule

Background

Federated Machine Learning Process

Step 1: Server chooses the machine learning model

Step 2: Server communicates model to clients

Step 3: Clients train model with their data locally

Step 4: Clients transmit the gradient update but not data to server to generate a global updated gradient

ML Model Training

Client-Server Communication

Background Problem Statement

FATE

PaddleFL

PySyft

FedML

- Different federated learning libraries
- Different capabilities & limitations
- Lack of literature evaluating and benchmarking the libraries
- Libraries differ in terms of functionality and overall quality (performance, scalability, security ...)
- The choice of the library could be challenging for practitioners who do not have enough experience with different libraries

Research Approach

Research Questions

RQ1

What are the different federated libraries available, and how do they differ in terms of functionality?

RQ2

What are the metrics relevant for the benchmarking of the different federated learning libraries?

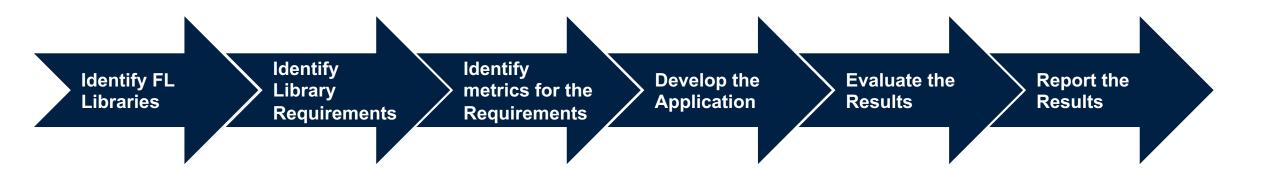
How could a modular software application that benchmarks the different federated learning libraries using the metrics be developed?

Thesis Title

A Structured Comparison of Federated Learning Libraries

Research Approach

Current state of Research



- Research is centered around bottlenecks in Federated machine learning [1]
- 14 different libraries in total
- Most of Libraries are not production ready or have too limited utilities
- 6 Libraries have enough community support and are actively developed
- 12 benchmarking publications in the field of Federated Machine Learning
- 11 benchmark the different FL algorithm
- Only one compare and benchmark the libraries [4]
 - Only compares 5 libraries
 - Offers a high level qualitative comparison
 - Specific to IoT
 - Only compares accuracy and overall performance of the libraries
- No overview over the functionality and the quality of the different libraries

Research Approach

Research Design

- Literature Review & Document Analysis:
 - Research the different FL Library (e.g FATE, FedML ...)
 - Research the different FL mechanisms (e.g Aggregation algorithms, Privacy mechanisms...)
 - Compare FL Library Functional and qualitative Non-Functional Requirements (e.g Functionality, Scalability, Performance...)
- Expert interviews:
 - Identify the different FL Library Functional and Non-Functional Requirements (e.g Functionality, Scalability, Performance...)
 - o Identify the different metrics for the Requirements (e.g Number of Supported Clients, the Runtime of the Client...)
- Design Research Methodology:
 - Design & Develop Application
 - Conduct Experiment (quantitative comparison of NFR)
 - Evaluate Results

Qualitative Research Methodologies

Literature Review & Document analysis

Process:

- Review of the academic literature
- Review of the libraries' documentation

Goals:

- Identify the different federated learning mechanisms (aggregation algorithms, data partitioning, privacy mechanisms ...)
- Identify the Federated Learning libraries
- Identify the functionalities, features, and maturity of the libraries

Artifact

- An overview of the different federated learning mechanisms
- A list of all the FL libraries', their functionalities, features, and maturity

Libraries Comparison Architecture

	PySyft	Flower	FATE	TensorFlow Federated	FedML
Data Partitioning	vert/hori	vert/hori	vert/hori	hori	vert/hori
Privacy & Security	HE,MPC,DP	SecAgg	HE,RSA,Diffe- Hellman	DP	secret sharing, key agreement, digital signature, and public key infrastructure
Communication scheme	gRPC	gRPC	-	Custom Protocol	MPI,MQTT,gRPC
Strategy	FedAVG (maybe others)	FedAVG	FedAVG	FedAVG, FedSGD	FedAVG, FedNOV,. FedNAS
Model	NN/RNN/CNN LR/PR/LogR K-mean	NN/RNN/CNN LR/PR/LogR K-mean	NN/RNN/CNN LR/PR/LogR K-mean	NN/RNN/CNN	NN/RNN/CNN LR/PR/LogR K-mean

Libraries Comparison

Functionalities

	PySyft	Flower	FATE	TensorFlow Federated	FedML
standalone simulation	yes	yes	yes	yes	yes
distributed computing	yes	yes	yes	yes	yes
on-device training	no	yes	no	no	yes
topology customization	yes	no	no	no	yes
exchange message customization	yes	yes	no	no	yes
SplitNN (split learning)	yes	no	no	no	yes

Qualitative Research Methodologies

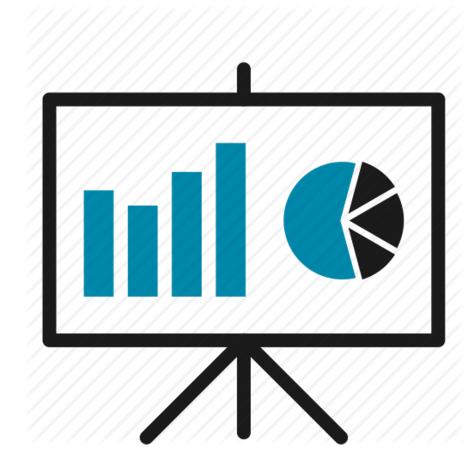
Expert Interview

Process:

 Conduct a series of semi-structured interviews with Federated Learning experts

Goals:

- Identify the Functional (Qualitative) and Non-Functional (Qualitative & Quantitative)
 Requirements Federated Learning libraries
- Identify the Metrics to Benchmark the Non-Functional Requirements


Artifact

 A list of the most important FR and NFR for FL libraries, and the metrics to benchmark them

Quantitative Research Methodologies

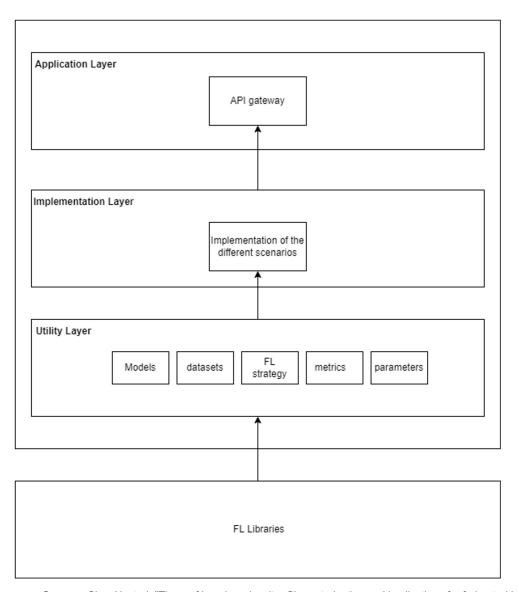
Benchmarking Tool Development

• Process:

 Use the Design Research Methodology to develop the tool

Goals:

 Develop a modular benchmarking suite to benchmark the different libraries


Artifact

A tool to benchmark the different libraries

Quantitative Research Methodologies

Benchmarking Tool Architecture

Application Layer:

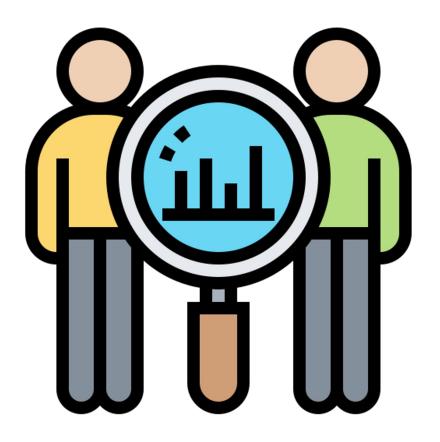
API Gateway

Utilities Layer:

- Abstract Implementation of the ML models (with different hyperparameters) and FL algorithms
- Implementation of the metrics
- Reference datasets

Implementation Layer:

Implementation of different models with different libraries


• FL Libraries:

Actual FL Libraries

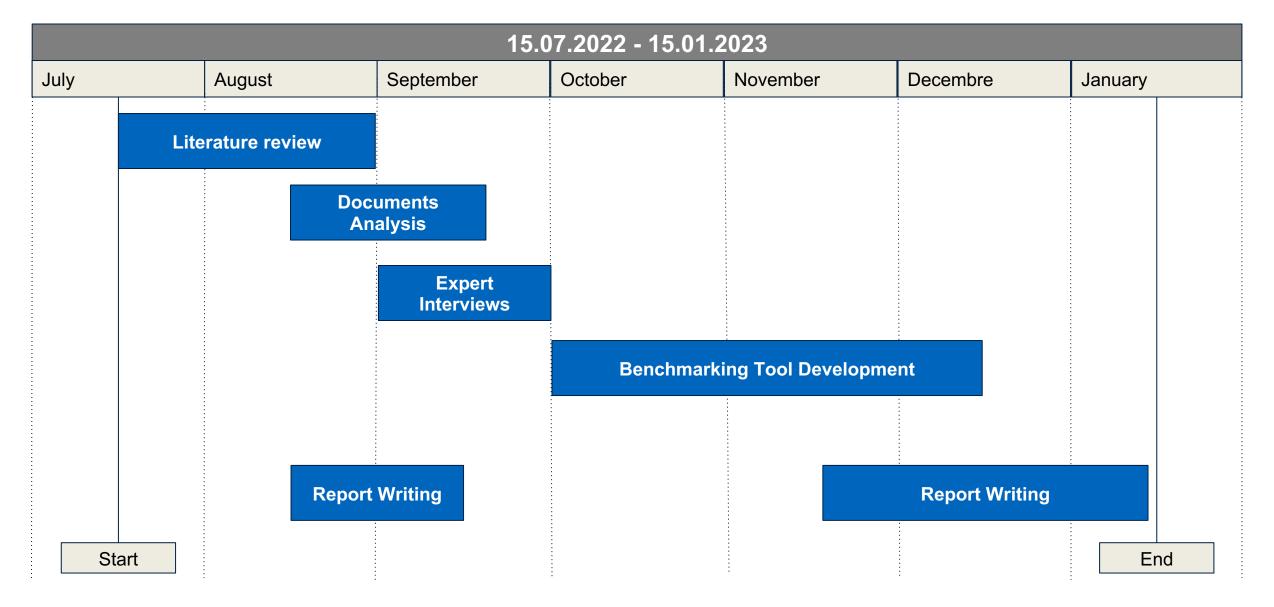
Quantitative Research Methodologies

Evaluation Method

• Process:

 Benchmark the NFR for FL libraries using the Benchmarking tool

Goals:


 Conduct the benchmarking of the different libraries

Artifact

Results of the libraries' benchmarks

Time Schedule

References

- 1. Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & Zhao, S: Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2), 1-210.(2021).
- 2. Hu, S., Li, Y., Liu, X., Li, Q., Wu, Z., He, B.: The OARF Benchmark Suite: Characterization and Implications for Federated Learning Systems, ACM Transactions on Intelligent Systems and Technology, Vol. 13, No. 4, Article 63 (2020).
- 3. Caldas, S., Duddu, S. M. K., Wu, P., Li, T., Konečný, J., McMahan, H. B., ... & Talwalkar, A. . Leaf: A benchmark for federated settings. arXiv preprint arXiv:1812.01097. (2018).
- 4. Kholod, I., Yanaki, E., Fomichev, D., Shalugin, E., Novikova, E., Filippov, E., & Nordlund, M. . Open-source federated learning frameworks for IoT: A comparative review and analysis. Sensors, 21(1), 167.(2020)