
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Evaluating Approaches to Overcome the
Input Size Limitations of Transformer-Based

Language Models on Patent Documents

Jan Robin Geibel

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Evaluating Approaches to Overcome the
Input Size Limitations of Transformer-Based

Language Models on Patent Documents

Evaluierung von Ansätzen zur
Überwindung der Beschränkungen der

Eingabegröße von Transformer-basierten
Sprachmodellen für Patentdokumente

Author: Jan Robin Geibel
Supervisor: Prof. Dr. Florian Matthes
Advisor: Anum Afzal
Submission Date: 10.10.2022

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 10.10.2022 Jan Robin Geibel

Acknowledgments

I would like to thank Professor Matthes for giving me the opportunity to conduct
this project at the Chair for Software Engineering for Business Information Systems. I
would further like to thank Anum Afzal for her continued support and advice during
this project.

Abstract

Large pretrained language models have made substantial progress in their ability to
encode a text sequence’s syntactic and semantic information. Such language models
thereby enable the construction of powerful machine learning models with little addi-
tional training data for downstream tasks ranging from question answering systems to
text classification. The key to their pervasive success is the Transformer architecture
they are based on. The Transformer and its self-attention mechanism are able to capture
long-range dependencies in sequential data. Furthermore, self-attention allows the
tokens of an input sequence to be processed in parallel. This parallelism enables the
degree of pretraining necessary to achieve state of art results on downstream tasks.
However, the Transformer’s memory and compute requirements grow quadratically
with regard to the input sequence’s length. This renders processing long sequences
prohibitively expensive. This paper examines a selection of the models created to
overcome these limitations and evaluates different aspects of their performance on
downstream machine learning tasks. The BigPatent corpus, a collection of of U.S. patent
documents, is used to set up benchmark task in which a variety of model configurations
is tested on classifying patents according to their subject matter. The project’s findings
indicate that the encodings produced by efficient Transformers retain more information,
as they are able to process longer sequences at a time. Moreover, significant differences
in the ability of various attention mechanism’s to absorb information during training
on a downstream task are found.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1

2. Prior Related Work 3

3. Background 6
3.1. The Transformer and Its Limitations . 6

3.1.1. Attention . 6
3.1.2. Architecture . 7
3.1.3. Limitations . 10

3.2. Efficient Transformers . 11
3.2.1. Overview . 11
3.2.2. BigBird . 12
3.2.3. Longformer . 15
3.2.4. Longformer Encoder-Decoder . 16
3.2.5. Reformer . 17
3.2.6. Linformer . 19
3.2.7. Performer . 24

3.3. Classification Heads . 25
3.3.1. Feed-forward Neural Network . 25
3.3.2. Convolutional Neural Network . 27

4. Corpora 29
4.1. BigPatent Corpus . 29
4.2. Sample Corpora . 30

4.2.1. Medium Sample . 30
4.2.2. Large Sample . 35

v

Contents

5. Methodology 40
5.1. Research Question 1: Which methods and models to encode long text

sequences are most suited for downstream machine learning tasks? . . 40
5.2. Question 2: How does adapting a model’s attention mechanism to accom-

modate longer sequences effect performance on downstream machine
learning tasks? . 44

5.3. Question 3: Which classification model is most appropriate for patent
subject matter classification? . 48

6. Experiments 50
6.1. Research Question 1: Which methods and models to encode long text

sequences are most suited for downstream machine learning tasks? . . 50
6.2. Question 2: How does adapting a model’s attention mechanism to accom-

modate longer sequences effect performance on downstream machine
learning tasks? . 56

6.3. Question 3: Which classification model is most appropriate for patent
subject matter classification? . 62

7. Conclusion and Future Work 65

A. Appendix 67
A.1. Medium Sample (extended Reformer tokenizer) 67
A.2. Large Sample (extended Reformer tokenizer) 72

Bibliography 76

List of Figures 81

List of Tables 83

vi

1. Introduction

Large pretrained language models have enabled tremendous progress in the field of
Natural Language Processing (NLP) [38]. In essence, these language models process
text sequences and yield numeric encodings thereof. These numeric vector representa-
tions can be used as input for a multitude of downstream machine learning tasks such
as text classification. Models like BERT (Bidirectional Encoder Representations from
Transformers) are able to capture complex contextual information in their encodings
and thus enable the construction of powerful machine learning models with little
additional training data [11].

A key enabler in the development of pretrained language models was the introduc-
tion of the Transformer architecture and the so-called self-attention mechanism. The
Transformer is able to capture long-range dependencies within sequential data [51]. It
further allows the tokens of an input sequence to be processed in parallel. It can thus
fully utilize modern hardware accelerators such as GPUs or TPUs for the training of
models on vast amounts of data [56]. This parallelism, therefore, enables the degree
of pretraining necessary to achieve state of art results on downstream tasks with little
additional data [56].
The Transformer’s memory and compute requirements grow quadratically with regard
to the input sequence’s length. This, however, renders processing long sequences
prohibitively expensive [2]. The resulting limitations of Transformer based language
models have sparked a keen interest in the development of less resource intensive
Transformer architectures [49]. This project examines a selection of the approaches
followed with these models and evaluates their implications for downstream machine
learning tasks. One question investigated is which models for encoding long text
sequences are most suited for downstream machine learning tasks. The project, thus,
intends to answer whether the encodings produced by these models retain enough of
the information codified in the original sequences, so that another machine learning
model can be successfully trained on downstream tasks with these encodings as inputs.
The second question posed is how adapting a model’s attention mechanism effects
performance on downstream tasks. The corresponding experiments, consequently, aim
to explore the models’ ability to incorporate information while being finetuned on
a downstream task. The last phase is concerned with finding the most performant

1

1. Introduction

machine learning model with regard to the downstream task set up for this project.
The BigPatent corpus, a collection of 1.3 million records of U.S. patent documents, is
used to set up benchmark task in which a variety of model configurations is tested on
classifying patents according to their subject matter.

The first chapter of this paper outlines prior efforts in surveying efficient Transformer
architectures as well as attempts at testing their performance on downstream tasks and
machine learning benchmarks.
The second chapter is concerned with describing the Transformer’s architecture and
limitations. It further gives a comprehensive overview of the approaches followed with
various efficient Transformer models according to the taxonomy developed by Tay et al.
in 2020 [49]. Moreover, detailed descriptions of the models used in this project’s experi-
ments, i.e., the Reformer [21], the Linformer [53], the Performer [9], the Longformer
and Longformer-Encoder-Decoder [2] as well as BigBird [56], are given. Apart from
that, the chapter provides an outline of the theoretical bases of the classification models
used.
The third chapter describes the BigPatent corpus as well as the categorization scheme
according to which patents are classified. Several samples of various sizes are drawn
from the BigPatent corpus for development and experimentation purposes. As the
length of the input sequences is of paramount importance for the experiments con-
ducted in this project, an overview of the average number of tokens per document in
the various samples is given. Furthermore, the distribution of the number of tokens
per document within different classes is illustrated.
Subsequently, the methodology followed throughout the conducted experiments and
the research questions they intent to answer are described. This section also includes
information about the hardware accelerators used in the project.
Lastly, the experiments’ exact configurations and findings are discussed. This section
ends with some concluding remarks and thoughts regarding possible future work
going beyond the scope of this project.

2

2. Prior Related Work

Several attempts at surveying and categorizing the ever-growing number of Trans-
former variants have been made. Tay et al. provide a survey of model architectures
that address the shortcomings of the original Transformer [49]. The authors develop a
taxonomy of the approaches followed with these models and further provide a detailed
description of a variety of efficient Transformer architectures. Fournier et al. similarly
explore widely used methods to reduce the memory and compute requirements of
the Transformer. Apart from that, they discuss several of their strengths, limitations,
and primary assumptions [12]. Moreover, Tianyang et al. compare various efficient
Transformers with regard to their architecture, pretraining, and application [29].

The Long Range Arena was introduced by Tay et al. in 2021 in order to benchmark a
variety of efficient Transformer architectures on different tasks involving the processing
of long sequences [48]. The authors compare the performance of the Sparse Transformer
[7], the Sinkhorn Transformer [47], the Synthesizer [46], the Linear Transformer [19],
the Reformer [21], the Linformer [53], the Performer [9], the Longformer [2] as well as
BigBird [56]. The latter five models are also evaluated during this project. The authors
state the following six desired characteristics of the Long Range Arena [48]:

• Generality: The tasks considered should be suitable for all evaluated models.

• Simplicity: The tasks should be designed in a simple manner in order to ensure
comparability between models.

• Challenging: The tasks should be challenging enough to allow for a certain
margin for future advancement of the models.

• Long inputs: The length of the input should be long enough to sufficiently assess
the models’ ability to process long sequences.

• Probing diverse aspects: The tasks considered should be diverse enough to assess
different aspects of the models’ performance.

• Non-resource intensive and accessible: The tasks should be non-resource inten-
sive so that they can be easily repeated.

3

2. Prior Related Work

Tay et al. introduce the following tasks to evaluate the models’ ability to grasp long-
range dependencies within the input sequence [48]:

• Long listops: This task is an extension of the listops task introduced by Nangia
and Bowman in 2018 [34]. It is intended to test a model’s ability to process data
possessing a hierarchical structure. The dataset is comprised of pairs of sequences
of numbers and operators, such as the maximum, minimum, or median, as well as
the corresponding output numbers.

• Byte-level text classification: Tay et al. use the IMDb reviews dataset [32] to
test the considered model on a text classification task. The authors use byte-level
classification to simulate longer sequences. The maximum length of an input
sequence is set to 4k positions.

• Byte-level document retrieval: The authors use the ACL Anthology Network
dataset [41] to asses a model’s ability to compress long inputs in order to deter-
mine the similarity between two sequences. The maximum length of one input
sequence is set to 4k positions and two sequences are presented to the model at
once.

• Image classification on sequences of pixels: In this task the CIFAR-10 dataset
[24] is used to assess a model’s classification capabilities when being presented
with the image as a sequence of pixels.

• Pathfinder (long-range spatial dependency): The authors evaluate each model
on the path finder challenge [30] in which it needs to evaluate whether two dots
in an image are connected by a dashed line. The image is presented as a sequence
of pixels to a model.

• Pathfinder-X (long-range spatial dependency with extreme lengths): In this
variation of the pathfinder challenge the sequence length is increased from 1,024
to 16k.

The creators of BigBird assess their model’s performance on question answering, classifi-
cation, and summarization in the context of natural language processing [56]. Moreover,
the authors conduct several experiments related to Genomics. For question answering,
the Natural Questions [25], HotpotQA-distractor [55], TriviaQA-wiki [18], and WikiHop
[54] datasets are used. Furthermore, BigBird is being evaluated on classification tasks
using the IMDb [32], Yelp-5 [58], Arxiv [15], BigPatent [26], and Hyperpartisan [20]
datasets. For summarization, the Arxiv [10], PubMed [10], BigPatent [44], BBC XSum
[35], and CNN/DailyMail [17] datasets are used. Lastly, the authors test their model

4

2. Prior Related Work

on the GLUE (General Language Understanding Evaluation) [52] benchmark which
comprises various natural language understanding tasks [56].

Beltagy et al. evaluate the Longformer on question answering, coreference resolution,
and document classification [2]. For question answering, the authors make use of the
WikiHop [54], TriviaQA [18], and HotpotQA [55] corpora. The OntoNotes dataset
[39] is used to test the model’s coreference resolution capabilities. Both the IMDb
[32] as well as the Hyperpartisan [20] datasets are used to evaluate the Longformer’s
performance on a classification task. Furthermore, the authors test the Longformer-
Encoder-Decoder’s performance on text summarization using the ArXiv dataset [10].

Kitaev et al. run several experiments with the Reformer and the imagenet [43] as well
as the enwik81 datasets [21]. The authors further test the Reformer on the WMT 2014
English-to-German translation task [4].

Choromanski et al. conduct various pretraining experiments with the Performer and
apply their model to protein sequences [9].

Apart from examining the Linformer’s pretraining perplexities, Wang et al. finetune the
model on a variety of downstream tasks [53]. The the authors use the IMDb [32] and
SST-2 [45] datasets to evaluate the Linformer’s performance on sentiment classification.
They further use QNLI [42] to test its natural language inference capabilities and QQP
[6] to investigate its ability to judge text similarities.

1https://huggingface.co/datasets/enwik8

5

https://huggingface.co/datasets/enwik8

3. Background

3.1. The Transformer and Its Limitations

Before the Transformer was introduced by Vaswani et al. in 2017 [51], machine
learning models for processing sequences were predominantly relying on a recurrent or
convolutional neural network architecture. Recurrent models, such as gated recurrent
neural networks and long short-term memory models, process their input sequentially,
with the hidden state ht at position t being computed from the respective input as
well as the prior hidden state ht−1 [51]. Notably, these sequential computations cannot
be parallelized [51]. A variety of such models do already incorporate an attention
mechanism in combination with a recurrent network to account for the dependencies
between tokens irrespective of their distance within the sequence [51]. The architecture
proposed by the Transformer, however, entirely foregoes recurrent and convolutional
networks and wholly relies on self-attention. The Transformer, therefore, allows a
substantially higher degree of parallelization [51].

3.1.1. Attention

The attention module allows the model to incorporate contextual information from
every position of the sequence [2]. In a first step, query, key, and value vectors are
derived from each position of the input sequence by multiplying each input vector with
three individual weight matrices Wq, Wk, Wv ∈Rdmodel×dk [51]:

Q = XWq (3.1)

K = XWk (3.2)

V = XWv (3.3)

where X ∈Rn×dmodel [49].

In general, an attention function computes an updated value vector from a set of value,
key, and query vectors. Said updated value vector equals the weighted sum of value
vectors, with the weights being derived from the respective query and key vectors
using a compatibility function [51]. The dot-product attention used by Vaswani et

6

3. Background

Figure 3.1.: Illustration of scaled dot-product attention (taken from [51]).

al. in the original Transformer derives weighting factors assigned to individual value
vectors by calculating the dot product between a key and query vector, multiplying with

1√
dk

and applying a softmax function. For all positions of the sequence the described
computation can be expressed as a matrix multiplication as follows [51]:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (3.4)

where the softmax function is applied row-wise [49].

3.1.2. Architecture

A Transformer is composed of multiple layers of Transformer blocks, with each of
these blocks consisting of multiple self-attention heads, a feed-forward network, layer
normalization as well as residual connectors [49]. Transformers take varying shapes
depending on the use case the model is built for. Transformers can be used as encoder-
only modules, e.g, for a classification task, decoder-only modules, e.g., for language
modelling purposes, or in an encoder-decoder way for sequence to sequence tasks [49].
While the original Transformer was designed in an encoder-decoder manner [51], this
project focuses on encoder architectures.

7

3. Background

Figure 3.2.: Architecture of an encoder block (taken from [51]).

Embeddings and Positional Encodings

In a first step, each token of the input sequence is numerically encoded by an em-
bedding layer. In order to incorporate information about the order of the sequence,
so-called positional encodings are added to the resulting embeddings [51]. These pos-
tional encodings can themselves be produced by a trainable embedding layer [49].
Yet, the orginal Transformer uses sine and cosine functions of different frequencies to
generate the encodings. Thus, each dimension conforms to a sinusoid [51].

Multi-Head Attention

The Transformer model uses multiple attention heads. The concatenated outputs of
these heads serve as input to a further dense layer resulting in the final values [49].
Each head thus incorporates information from a different representation subspace at a
different position [51].

8

3. Background

Figure 3.3.: Illustration of multi-head attention (taken from [51]).

Position-wise Feed-forward Network

Each position of the output of the multi-head self-attention mechanism is processed
independently yet identically by a two-layered fully connected feed-forward network
with a ReLU activation function [51]. The feed-forward network thus gives the following
equation:

XF = F2(ReLU(F1(XA))) (3.5)

where F1 and F2 represent the respective layers of the network and XA is the output of
the attention module [49].

Residual Connectors and Layer Normalization

The outputs of both the attention mechanism as well as the feed-forward network are
passed to a layer normalization layer before being additively connected to the respective
module’s input [49]. One Transformer block can consequently be described as:

XA = LayerNorm(MultiheadAttention(Qx, Kx)) + X (3.6)

9

3. Background

Figure 3.4.: Illustration of the computation of the attention matrix (A) by multiplying the
query (Q) and the key matrices (K) with dk denominating the dimensions
of key and query vectors and n representing the sequence length (based on
[51]).

XB = LayerNorm(PositionwiseFNN(XA)) + XA (3.7)

with X being the block’s input, Qx the query values, Kx the key values and XB the
output of the entire block [49].

3.1.3. Limitations

The scaled dot-product attention used in the attention heads of a Transformer block has
quadratic complexity with regard to the sequence length [49]. This quadratic complexity
results from the multiplication of the query and the key matrices (see Figure 3.4.) and
is expressed both in terms of memory as well as compute requirements. Transformers
in their original form are thus unequipped to process longer sequences without the
need of vast amounts of resources [2]. In the majority of cases, memory requirements
have larger implications during training than during inference, as the former requires
gradient updates while the latter does not [2]. The quadratic complexity, however,
limits the calculation speed during training as well as inference [2]. Apart from the
computation of the attention matrix, the feed-forward network contributes substantially
to the compute cost of each Transformer block [2]. The described limitations with
regard to the input sequence’s length sparked the introduction of a large variety of
Transformer variants with the ability to process longer sequences while requiring fewer
resources [49].

10

3. Background

3.2. Efficient Transformers

3.2.1. Overview

Tay et al. provide a taxonomy of common approaches to overcoming the shortcomings
of the vanilla Transformer [49]. See Figure 3.5. for an overview and the corresponding
classification of essential Transformer architectures. The authors distil the following
methods frequently used to improve the Transformer’s efficiency:

• Fixed Patterns: One way to adapt the attention mechanism is to sparsify the
attention matrix, thereby effectively limiting the number of attention operations
that are performed. This is achieved by processing only parts of the sequence at a
time. Blockwise patterns chunk the sequence into blocks of fixed size. Strided
patterns process the input in overlapping intervals using a strided window that is
being slid over the sequence. Compressed patterns employ a pooling operation
to compress the sequence to a shorter length.

• Combination of Patterns: The attention mechanism can also be adapted by using
multiple of the above described patterns.

• Learnable Patterns: In some models the way attention patterns are being applied
is learned from data rather than being defined ex ante. The model’s architecture
incorporates a way to determine the relevance of tokens to each other according
to which the attention pattern is used.

• Neural Memory: Another method, termed neural memory by Tay et al., defines
certain global tokens which attend the entire sequence. According to the authors,
this can be seen as similar to a pooling operation which allows the model to form
a compressed representation of the input sequence.

• Low-Rank Methods: Other model architectures use the assumption that the
attention matrix (A) is low-rank. A is consequently approximated with a smaller
matrix.

• Kernels: The use of kernel functions allows the mathematical reformulation of
calculations performed in the attention module in order to circumvent the explicit
computation of the attention matrix. Kernel methods, therefore, approximate the
attention matrix and can thus also be seen as low-rank methods [8].

• Recurrence: Approaches using recurrence extend the fixed blockwise patterns
described above. The chunks of the original input sequence are connected via
recurrent operations rather than merely being processed independently.

11

3. Background

.

Figure 3.5.: Illustration of the taxonomy of efficient transformers developed by Tay et
al. (taken from [49]).

• Downsampling: Downsampling the original input sequence is another way to
reduce the costs of the attention mechanism.

• Sparse Models and Conditional Computation: Tay et al. consider models in
which a subset of parameters are only sparsely used as examples of this class.
This approach is closely linked to fixed patterns methods described above. In this
case, however, the approach is not limited to the attention mechanism.

Of the models used in this project Tay et al. classify the Reformer as a model using
learnable patterns, the Performer as one using kernel methods, the Linformer as
one using a low-rank approach, and the Longformer and BigBird as models using a
combination of fixed patterns and neural memory [49]. For an overview see Table 3.1.

3.2.2. BigBird

BigBird is a long sequence Transformer that was introduced by Zaheer et al. in 2020
and can process up to 4,096 tokens at a time. The attention mechanism of BigBird

12

3. Background

Model Complexity Class

Longformer [2] O(N(k + m)) fixed patterns and neural memory
BigBird [56] O(N) fixed patterns and neural memory
Performer [9] O(N) kernel method
Reformer [21] O(N log N) learnable patterns
Linformer [53] O(N) low-rank method

Table 3.1.: Overview of efficient transformer approaches examined in this project (the
Longformer Encoder-Decoder is a variation of the Longformer) with N
refering to the sequence length (taken from [49]).

essentially consists of three parts in which all tokens attend to a set of global tokens,
a set of randomly chosen tokens, and all tokens in direct adjacency [56]. The set of
global tokens attending to the entire sequence are artificially introduced ones, such
as the [CLS] token which was already employed in BERT to derive a compressed
representation of a sentence that can be used for classification purposes [11]. The local
attention is implemented in form of a sliding window of width w in which a token
attends to the w/2 preceding and following tokens in the sequence. See Figure 3.6.
for an illustration of BigBird’s attention mechanism. The BigBird model’s memory
complexity is linear with regard to the length of the input sequence, i.e., it is O(N) [49].

Zaheer et al. implement BigBird’s attention mechanism as a computation on blocks of
tokens. Infrequent retrievals of small size cannot be efficiently performed on GPUs or
TPUs. On GPUs computations are performed on a large number of cores in parallel
which makes sparse matrix multiplication inefficient [56]. Computing attention on
blocks of tokens, thus, optimizes BigBird for modern hardware accelerators [56]. In
effect, this means that queries and keys are combined to blocks. In random attention,
for instance, each such query block then attends to a predefined number of randomly
chosen key blocks [56]. See Figure 3.7. for illustration of this block-wise attention
mechanism. By default BigBirds uses a sliding window size of three blocks, three
randomly chosen blocks in each attention operation, and a block size of 64 tokens. See
here1 for more information on BigBirds default configurations.

BigBird is available as a base as well as a large version, both having been pretrained
on masked language modeling starting from roBERTa checkpoints [56]. roBERTa is a
version of BERT that has been pretrained for a longer time using bigger batch sizes and

1https://huggingface.co/transformers/v4.7.0/model_doc/bigbird.html

13

https://huggingface.co/transformers/v4.7.0/model_doc/bigbird.html

3. Background

Figure 3.6.: Illustration of Big Bird’s attention mechanism with white spaces signaling
that no attention is computed (a) showing random attention with 2 tokens,
(b) showing sliding window attention with a width of 3 and (c) showing
the pattern created by 2 global tokens (taken from [56]).

.

Figure 3.7.: Illustration of Big Bird’s block-wise attention mechanism with a block size
of 2, effectively breaking up the attention matrix into 2 x 2 blocks (taken
from [56]).

14

3. Background

more data [31]. Furthermore, roBERTa is not trained on next sentence prediction, but
only on masked token prediction with dynamically changing masking patterns [31].
Zaheer et al. use the BookCorpus [59] as well as the CC-News [14], Stories [50], and
English Wikipedia datasets to further pretrain BigBird.

3.2.3. Longformer

The Longformer was introduced by Beltagy et al. in 2020. The model can process up to
4,096 tokens at once. Similar to the BigBird model, the Longformer relies on a sliding
window attention of width w with each token attending to the w/2 preceding and
following tokens in the sequence. Stacking multiple layers, each using sliding window
attention, ensures that a large amount of contextual information is embedded in each
token’s encoding [2]. This resembles the way convolutional neural networks (CNNs)
function [40]. Apart from sliding window attention, the authors use what they term
dilated sliding window attention. Similar to dilated CNNs [36], the sliding window
in this attention mechanism possess gaps [2]. This in effect reduces the resolution of
the sequence and allows the model to include more contextual information with fixed
computational costs [2]. Moreover, the authors find that varying the degree to which
the window attention is dilated across attention heads further increases performance.
The Longformer model also incorporates global attention. Similar to BigBird’s global at-
tention, a set of predefined positions in the input sequence attend to the entire sequence
and all tokens in the sequence attend to said global tokens [2]. See Figure 3.8. for an
illustration of the Longformer’s attention mechanism. The memory complexity of the
attention mechanism is O(Nw) with w being the window size. The default window
size of the Longformer is 512 tokens. For more information of the model’s default
configuration see here2.

Beltagy et al. use TVM [5] to implement their own custom CUDA kernel in order to re-
alize dilated window attention, as pervasive deep learning frameworks do not support
the banded matrix multiplications required in this case [2]. Due to said custom kernel,
the Longformer model, however, cannot be trained on a TPU accelerator. The authors
provide a pytorch implementation which can be used on a TPU, but does not sup-
port dilation and requires twice the amount of memory. See here3 for more information.

The authors further conduct experiments in autoregressive language modeling. In
autoregressive language modeling the model is used to estimate the probability distri-
bution of the respective token or character occurring at a particular position given the

2https://huggingface.co/transformers/v2.11.0/model_doc/longformer.html
3https://github.com/allenai/longformer

15

https://huggingface.co/transformers/v2.11.0/model_doc/longformer.html
https://github.com/allenai/longformer

3. Background

.

Figure 3.8.: Illustration of the pattern created by the Longformer’s attention mechanism
compared to one of full self-attention (taken from [2]).

preceding tokens or characters of the sequence [2]. Beltagy et al. increase the window
size from lower to higher layers and refrain from using dilation in lower layers. In fact,
dilation is only used in two attention heads and only in higher layers. The authors
perform several experiments in character-level language modeling [2]. Autoregressive
language modeling is, however, of lesser relevance to this project.

Similar to BigBird, the Longformer model is pretrained on masked language modeling
starting from publically available roBERTa checkpoints. The authors merely make
minor adjustments to support the Longformer’s attention mechanism [2]. Said attention
mechanism can, however, be used with any pretrained language model to extend it for
longer sequences without adapting its core architecture [2]. In this case, the roBERTa’s
absolute postion embeddings are adapted to accommodate 4,096 rather than 512 tokens
by copying them multiple times. The Longformer is available as a base as well as a
large version. Beltagy et al. use the fairseq toolkit [37] to pretrain the Longformer on
the BookCorpus [59], English Wikipedia, as well as the Realnews [57], and Stories [50]
corpora.

3.2.4. Longformer Encoder-Decoder

Apart from the Longformer, an encoder-only model, Beltagy et al. further introduce
the Longformer Encoder-Decoder (LED) model for sequence-to-sequence tasks such as
summarization or translation [2]. This project only considers downstream tasks that
focus on the encoder part of the Transformer. The LED model, however, is able to
process up to 16,384 tokens at a time and is thus also examined. Nonetheless, solely
the LED’s encoder is used during the experiments.

The authors initialize the LED’s weights from BART checkpoints and further maintain

16

3. Background

BART’s architecture. BART is a sequence-to-sequence model that was introcuded by
Lewis et al. in 2019 [28]. BART is designed as a denoising autoencoder that incorporates
a biderectional encoder as well as an autoregressive decoder. The model is pretrained
using corrupted documents as inputs and the respective original documents as outputs
[28]. The model is thus trained to reconstruct the original documents. Lewis et al. use
the original Transformer architecture introduced by Vaswani et al. [51] while replacing
its ReLU activation with a GeLU function [16]. The encoder and decoder are comprised
of six and twelve layers in the base and the large versions respectively [28]. BART
allows any document corruption during pretraining. The authors, therefore, use the
following methods [28]:

• Token masking: Randomly chosen tokens are replaced with an artificially intro-
duced token leaving the model to fill the gaps.

• Token deletion: Tokens are deleted from the sequence, leaving the model to
decide where gaps that need to be filled exist.

• Text Infilling: Not merely tokens, but entire text spans are masked, leaving the
model to also decide how many tokens have been removed.

• Sentence Permutation: The document’s sentences are randomly shuffled.

• Document Rotation: The document is rotated along the axis of a randomly
chosen token. The corrupted document consequently starts with that token.

Similar to the Longformer, the position embeddings of the LED are intialized by copying
the ones of BART multiple times [2]. The encoder part of the LED, which is used during
this project, incorporates local attention with a window size of 1,024 tokens. The
artificially introduced <s> token marking the beginning of a document is used as a
global token for computing global attention [2]. Unlike the Longformer model, the
LED is merely initialized from BART’s weights without further pretraining.

3.2.5. Reformer

The Reformer was introduced by Kitaev et al. in 2020. The Reformer model makes
use of reversible residual networks (RevNet) which allow the model to store only one
instance of the activations rather than having to store activations for every layer to be
able to use back-propagation [21]. In RevNets any layer’s activations can be restored
from the ones of the following layer and the model’s parameters [13]. Consequently,
activations do not need to be stored, but can be inferred sequentially during the back-
ward pass which reduces the model’s memory requirements.

17

3. Background

Apart from that, the authors process the activations of feed-forward networks in chunks.
Kitaev et al. argue that these activations substantially contribute to the model’s memory
requirements, as the dimensions of feed-forward networks’ intermediate layers are usu-
ally much larger than the ones of the attention activations. Chunking the feed-forward
networks’ activations thus further reduces the amount of memory needed [21]. These
activations can be split into pieces because the computations of different positions are
independent of each other in the layers of feed-forward networks. See section 3.3.1. for
an explanation of feed-forward networks. While this independence would allow these
activations to be computed in parallel, chunking and processing them sequentially does
reduce memory requirements [21]. For models with a large vocabulary size the authors
go one step further and also compute the loss based on the log-probabilities produced
by the model in chunks [21]. In contrast to the model’s activations, the amount of
memory needed to store its parameters is not independent of the number of layers
used in its architecture. In order to further recude memory requirements, Kitaev et al.
therefore repeatedly swap parameters between the CPU and the particular hardware
accelerator used [21].

To address the fundamental limitations of the Transformer, i.e. its quadratic complexity
with regard to the input sequence’s length, the authors use locality-sensitive hashing
to approximate the attention matrix. The attention mechanism’s outsized memory
requirements result from the computation of the attention matrix, i.e., so f tmax(QKT

√
dk
),

and in that mainly the computation of QKT [21]. The authors point out that applying the
softmax function implies that the attention matrix is dominated by the largest elements
of QKT. These largest elements result from the dot-product of the query and key
vectors that are most similar to each other. Kitaev et al. note that the attention matrix
can, consequently, be efficiently approximated by only computing the dot-product of
those query and key vectors with the closest distance to each other. The Reformer uses
locality sensitive hashing to determine the closest neighbors of each query vector. It
is important to note that the authors use the same linear projection to create Q and K
from the input sequence’s embeddings. Queries and keys are therefore identical [21].
A hashing function that assigns vectors in close proximity to each other the same value,
and different ones to those that are not, with high probability is called locality-sensitive
[21]. Kitaev et al. implement locality-sensitive hashing with the same expected size for
all hash-buckets by using the LSH scheme [1]. In a first step, a random matrix R of
size [dk, b/2] is created with the aim to generate b hash values. The hash value of x is
then defined as h(x) = argmax([xR;−xR]) with [u; v] describing the concatination of
vectors u and v [21]. See Figure 3.9. for an illustration of locality-sensitive hashing. The
authors rewrite the attention computation for a single token at position i as follows:

18

3. Background

oi = ∑
j∈Pi

exp(qi ∗ k j − z(i, Pi))vj (3.8)

with Pi = {j : i ≥ j} denoting the set of positions that query i attends to, z describing
the normalizing term in the softmax, and the scaling factor

√
dk being omitted for

simplicity [21]. The attention computation, however, is usually performed for the larger
set P̃i = {0, 1, ..., l} ⊇ Pi as inputs are batched. The elements not in Pi are masked out
during the computation [21]. This results in:

oi = ∑
j∈P̃i

exp(qi ∗ k j −m(j, Pi)− z(i, Pi))vj (3.9)

where m(j, Pi) is ∝ if j /∈ Pi and 0 otherwise. LSH attention then uses this reformulation
to restrict the attention to be computed to those positions that are in the same hash-
bucket, i.e., defining Pi = {j : h(qi) = h(k j)}. Kitaev et al. further set k j =

qj
∥qj∥ and thus

h(qj) = h(k j). This is necessary because buckets otherwise both tend to have different
sizes and possibly contain an unequal number of query and key vectors [21]. Moreover,
query vectors are sorted within each bucket according to their sequence position and
overall by their bucket number. Query i will consequently be locates at position si. The
sorted vectors are then chunked into blocks of size m. All vectors within one such
chunk attend each other and are attended to by vectors of the same bucket located in
the preceding chunk [21]. In the implementation of the Reformer m is set to 2N

nbuckets
with

N being the input sequence’s length. The average size of one hash-bucket is thus N
nbuckets

[21]. See Figure 3.10. for an illustration of LSH attention. The authors note that the
hashing operation can be performed multiple times to limit the probability of similar
vectors being placed in different hash-buckets.

The memory complexity of the LSH attention mechanism is O(N log N) with N being
the length of the input sequence [49].

3.2.6. Linformer

The Linformer was introduced by Wang et al. in 2020 [53]. The key assumption of
the Linformer’s attention mechanism is that the attention matrix is low-rank [49]. The
authors apply the base and large versions of the pretrained roBERTa model [31] on
masked language modeling and sequence classification using the Wiki103 [33] and
IMDb [32] datasets respectively. Wang et al. then apply singular value decomposition
on the attention matrices of different layers as well as different heads and plot the

19

3. Background

.

Figure 3.9.: Simplified illustration of angular locality sensitive hashing employing ran-
dom rotations of spherically projected points to determine buckets with an
argmax over signed axes projections. There is a low probability of points x
and y being assigned to the same bucket when their respective spherical
projections are not close to each other (taken from [21]).

.

Figure 3.10.: Illustration of the Reformer’s attention mechanism, i.e., the hash-bucketing,
sorting, chunking, the resulting causal attentions as well as the correspond-
ing attention matrices (taken from [21]).

20

3. Background

.

Figure 3.11.: The first two plots show the spectrum analyses of the attention matrices
in pretrained roBERTa models [31] with n = 512, the y-axis showing the
normalized cumulative singular value of the attention matrix, and the
x-axis indicating the largest eigenvalue. The third plot shows a heatmap
of normalized cumulative eigenvalues at the 128th largest eigenvalue of
layers and heads using Wiki103 [33] data (taken from [53]).

resulting normalized cumulative singular values averaged over 10k sentences [53]. See
Figure 3.11. for an illustration.
The authors argue that the long-tail spectrum distribution in each layer clearly indicates
that the attention matrices’ information can be largely maintained by merely consider-
ing the first few largest singular values [53]. For a theoretical analysis of these spectrum
results see [53].

The Linformer model incorporates two further linear projections Ei, Fi ∈ Rnxk when
computing the keys and values [53]. The original keys and values with dimension
n x d are projected into k x d dimensional ones. The Linformer then computes an n x k
attention matrix, termed P by the authors, using scaled-dot product attention. Lastly,
the context embeddings for each attention head are computed by multiplying P with
FiVWV

i . This results in:

headi = Attention(QWQ
i , EiKWK

i , FiVWV
i) (3.10)

which can be rewritten to:

headi = so f tmax(
QWQ

i (EiKWK
i)

T
√

dk
) · FiVWV

i (3.11)

21

3. Background

.

Figure 3.12.: Illustration of the Linformer’s multi-head attention mechanism (taken
from [53]).

See Figures 3.12. and 3.13. for an illustration of the Linformers attention mechanism.
Figure 3.10. illustrates the relationship between the input sequence’s length and the
consequent inference time of multiple Linformer models.
Wang et al. argue that the Linformer significantly recudes time and space complexity
if a projected dimension k ≪ n is chosen. The authors theoretically determine that
choosing a k = O(d

ϵ2) independent of the sequence length yields and approximation of
the original attention mechanism with ϵ error [53].

To further improve performance and efficiency, the Linformer shares parameters be-
tween projections [53]. The authors conduct experiments in which the projection
matrices E and F are shared across all heads, head-wise sharing and sharing the same
projection matrix for keys and values are used, and lastly layerwise sharing in which
one projection matrix is shared among all layers of the model is deployed [53]. More-

22

3. Background

.

Figure 3.13.: Illustration of the Linformer’s attention computation (taken from [53]).

.

Figure 3.14.: Illustration of the inference time in relation to the input sequence’s length
for multiple Linformer architectures (taken from [53]).

23

3. Background

.

Figure 3.15.: Illustration of the Performer’s approximation of the attention matrix before
renormalization with dashed lines indicating the order in which computa-
tions are performed (taken from [9]).

over, Wang et al. argue that one can choose a different projected dimension k across
heads and layers and suggest a smaller dimension for higher layers. Apart from that,
the authors suggest experimenting with various projection methods and name mean or
max pooling as well as convolution as examples [53].

The Linformer model’s complexity with regard to memory consumption is O(N) [49].

3.2.7. Performer

The Performer was introduced by Choromanski et al. in 2020 [9]. The Performer
model relies on a mechanism termed Fast Attention Via positive Orthogonal Random
features (FAVOR+) to approximate the attention matrix. The authors define a Kernel
K: RdxRd −→ R+ such that K(x,y) = E[ϕ(x)Tϕ(y)] with ϕ : Rd −→ R+ and ϕ(u)
termed a random feature map for some r > 0 and u ∈ Rd. FAVOR+ is thus defined for
a matrix A ∈ RLxL as A(i, j) = K(qT

i , kT
j) with qi and k j being the the ith and jth row

vector of the query and key matrices respectively [9]. Choromanski et al. define their
approximation of the attention matrix ̂Att←→ thus as follows:

̂Att←→(Q, K, V) = ˆD−1(Q′((K′)TV)) (3.12)

for the query, key, and vector matrices (Q,K,V) with D̂ = diag((Q′((K′)T1L))) and
Q′, K′ ∈ RLxr and their rows defined as ϕ(qT

i)
T and ϕ(kT

i)
T. See figure Figure 3.15. for

an illustration.

24

3. Background

The authors define the softmax-kernel describing the regular attention matrix as
SM(x, y) = exp(xTy) omitting 1√

d
as x, y ∈ Rd can also be renormalized [9]. Choro-

manski et al. further define the approximation of SM(x, y) as follows:

SM(x, y) = Eω∼N (0,Id)[exp(ωTx− ∥x∥
2

2
)exp(ωTy− ∥y∥

2

2
)] (3.13)

According to the authors, this can be reformulated to:

SM(x, y) = ΛEω∼N (0,Id)cosh(ωTz) (3.14)

with Λ being defined as exp(− ∥x∥
2+∥y∥2

2), z being x + y, and cosh describing the hyper-
bolic cosine function. The variance of this estimator can be further reduced by ensuring
that ω1,...,ωm are exactly orthogonal to each other [9]. See [9] for a theoretical analysis
of the described mechanism.

Choromanski et al. argue that the attention mechanism used in the Performer provides
an unbiased or nearly-unbiased estimator that also does not have any prior assumptions
such as sparsity or low-rankness of the attention matrix. The authors further state that
the Performer is compatible with existing pretrained language models and requires
little further finetuning [9].

The Performer’s complexity is O(N) [49].

3.3. Classification Heads

3.3.1. Feed-forward Neural Network

The feed-forward neural network (FNN) was developed as a machine learning algo-
rithm for data which cannot be separated linearly [22]. The architecture of such a
neural network consists of an input layer, an output layer, as well as so-called hidden
layers located between the two. The individual units, so-called neurons, of each of these
layers are connected to the ones of the directly preceding and the directly succeeding
layer (see Figure 3.16. for an illustration) [22]. The input only passes from one direction
through the network. In the process, a number of computations using the weights
associated with the connections between units as parameters are performed [22].

Firstly, M linear combinations are computed using the input variables xi, weights wij,
and biases wj0, with i ∈ [1, D] and j ∈ [1, M] (equation 3.15) [3].

25

3. Background

inputs outputs

hidden units

x0

xD

z0

x1
z1

y1

yK

zM
w(1)

MD w(2)
KM

w(2)
10

Figure 3.16.: Illustration of a feed-forward neural network (based on [3]).

26

3. Background

aj =
D

∑
i=1

w(1)
ij xi + w(1)

j0 (3.15)

Secondly, the intermediate values aj, termed activations, are passed through a non-linear
and differentiable activation function [3].

zj = h(aj) (3.16)

The values zj resulting from equation 3.16 serve as input for a further linear trans-
formation (equation 3.17) [3]. The described computations are performed for every
hidden layer of the particular model with the output of one layer serving as input for
the following one [3]. The last layer produces the model’s output activation units ak,
with k ∈ [1, K] and K being the number of output values [3].

ak =
M

∑
j=1

w(2)
kj zj + w(2)

k0 (3.17)

For classification problems, these output activation units are passed through an activa-
tion function like the sigmoid resulting in the output values yk [3].

yk = sigmoid(ak) (3.18)

3.3.2. Convolutional Neural Network

Convolutional Neural Networks (CNN) are deep learning algorithms that have orig-
inally been primarily introduced for the processing of image data but found broad
application in text classification as well [23]. The CNN’s design takes advantage of the
fact that an image’s pixels are usually stronger correlated the closer they are to each
other. Local features are derived from small sections of the image independently with
the resulting information being merged at a later stage of the algorithm [3].
In each convolutional layer units form a number of planes, termed feature maps, which
independently process small subsets of the input data. Each feature map possesses its
own set of weights and biases. Consequently, one such feature map, serves as a filter
on the input data [3].

The output values produced by convolutional layers are pooled which reduces the
number of elements passed on to the next layer and thus also reduces the model’s
complexity [23]. For instance, one commonly used pooling technique is max pooling
in which the largest value of the particular window is selected [23]. Moreover, the
dimensionality of multiple stacked feature maps is reduced to one column by a flatten

27

3. Background

Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text
Text Text Text

Input Embedding
Layer

Conv 1D

Pooling 1D

Flatten

Output

Text
Sequence

Figure 3.17.: Example of a CNN for text classification (based on [23]).

layer in order to allow further processing by the following layers [23].

The model’s convolutional architecture is usually followed by fully connected layers
such as those of the feed-forward network. For a multi-class classification problem the
final layer’s output is passed through a softmax nonlinearity. [3].

Figure 3.17. shows an example of a deep learning model architecture using convolu-
tional layers for text classification.

28

4. Corpora

The BigPatent corpus [44] is used as a benchmark dataset during this project. The
corpus1 is obtained from Huggingface2, an open source provider of natural language
processing technologies. The BigPatent corpus is too large to be processed in its entirety
within the bounds of this project. Multiple corpora of various sizes are consequently
sampled from the dataset for development and experimentation purposes.

4.1. BigPatent Corpus

The BigPatent corpus was introduced by Sharma et al. in 2019 as a benchmark for
abstractive summarization models [44]. The corpus consists of 1.3 million records of U.S.
patent documents along with summaries written by a human. The patents are classified
according to their subject matter following the Cooperative Patent Classification (CPC)3

code. The documents are consequently classified according to the following nine
categories:

• A: Human Necessities

• B: Performing Operations; Transporting

• C: Chemistry; Metallurgy

• D: Textiles; Paper

• E: Fixed Constructions

• F: Mechanical Engineering; Lightning; Heating; Weapons; Blasting

• G: Physics

• H: Electricity

• Y: General tagging of new or cross-sectional technology
1https://huggingface.co/datasets/big_patent
2https://huggingface.co/
3https://www.cooperativepatentclassification.org/home

29

https://huggingface.co/datasets/big_patent
https://huggingface.co/
https://www.cooperativepatentclassification.org/home

4. Corpora

Corpus Training Size Validation Size Test Size

Small 1,250 54 81
Medium 12,150 540 810
Large 36,000 1,800 2,700

Table 4.1.: BigPatent sample corpora sizes.

4.2. Sample Corpora

For this project corpora of three sizes, each consisting of training, validation, and test
splits, were sampled from the BigPatent corpus for development and experimentation
purposes. While the medium and large corpora are used for several experiments, the
small one merely serves prototyping and debugging purposes. The resulting sample
corpora are balanced datasets in which every class is represented with an equal number
of examples.

4.2.1. Medium Sample

Table 4.2. and Figure 4.1. show the distribution of the number of tokens among the
patent documents of the medium sized corpus’ train split yielded by the Longformer
tokenizer. The average document consists of 3,768.8 tokens. The number of tokens,
however, ranges from as little as 304 to as many as 157,819. The distribution within
individual classes can differ significantly. The average document in class c, for instance,
possesses 6,413.45 tokens while the average of class e is 2,953.06. See Figure 4.3. for an
illustration of the distribution of the number of tokens per document within different
classes in the train split.

Table 4.3. and Figure 4.2. show the distribution of the number of tokens among
the patent documents within the test split. The average number of tokens per input
sequence in the test split is 3,698.7. See Figure 4.4. for an illustration of the distribution
of the number of tokens per document within different classes in the test split.

See appendix A.1. for an overview of the distribution resulting from the tokenizer that
is used with the Reformer model during this project.

30

4. Corpora

Category Mean Median Mininum Maximum

a 3,851.93 2,757 336 43,548
b 3,127.33 2,467 484 27,239
c 6,413.45 4,198.5 399 157,819
d 3,135 2,575.5 460 27,126
e 2,953.06 2,463 499 30,272
f 3,004.58 2,413 304 20,405
g 4,223.33 3,302.5 553 29,966
h 3,613.54 2,886.5 577 31,242
y 3,597.06 2,816.5 459 34,964

overall 3,768.8 2,786 304 157,819

Table 4.2.: Distribution of the number of tokens (Longformer tokenizer) of the medium
sized sample corpus (train split).

Category Mean Median Mininum Maximum

a 4,271.36 2,731.5 667 35,959
b 2,910 2,492 593 8,329
c 5,304.61 3,658.5 697 26,092
d 3,046.88 2,684.5 470 12,512
e 2,650.69 2,222 936 7,080
f 2,815.33 2,394.5 938 15,513
g 4,441.28 3,723 933 17,607
h 3,899.14 2,940 831 16,185
y 3,949.02 3,229 681 13,087

overall 3,698.7 2,735 470 35,959

Table 4.3.: Distribution of the number of tokens (Longformer tokenizer) of the medium
sized sample corpus (test split).

31

4. Corpora

Figure 4.1.: Distribution of the number of tokens (Longformer tokenizer) of the medium
sized sample corpus (train split).

Figure 4.2.: Distribution of the number of tokens (Longformer tokenizer) of the medium
sized sample corpus (test split).

32

4. Corpora

Figure 4.3.: Distribution of the number of tokens (Longformer tokenizer) of the medium
sized sample corpus (train split) grouped by category.

33

4. Corpora

Figure 4.4.: Distribution of the number of tokens (Longformer tokenizer) of the medium
sized sample corpus (test split) grouped by category.

34

4. Corpora

Category Mean Median Mininum Maximum

a 4,084.23 2888 370 71,186
b 3,144.22 2556 375 63,053
c 6,261.42 4,059.5 399 74,282
d 3,209.56 2,582 287 35,937
e 2,980.91 2,458 303 25,551
f 2,913.53 2,395 483 27,779
g 4,250.13 3,264 553 52,287
h 3,829.83 3,059.5 346 49,546
y 3,662.96 2,801.5 449 43,181

overall 3,815.2 2,814 287 74,282

Table 4.4.: Distribution of the number of tokens (Longformer tokenizer) of the large
sample corpus (train split).

4.2.2. Large Sample

The average length of the patents in the large sample’s training set resulting from the
use of the Longformer tokenizer is 3,815.2 tokens. Similar to the medium sized sample,
the number of tokens can vary significantly between classes. The average length of a
document in class c is 6,261.42 tokens, while the one of class f is 2,913.53. See Table
4.4. and Figure 4.5. for an overview. Figure 4.7. illustrates the distribution of the input
sequence’s length across different classes.

The average number of tokens per input sequence in the test split is 3,845.27. Table
4.5. and Figure 4.6. display the distribution of the number of tokens among the patent
documents within the test split. See Figure 4.8. for an illustration of the distribution of
the number of tokens per document within different classes in the test split.

See appendix A.2. for an overview of the distribution resulting from the tokenizer that
is used with the Reformer model during this project.

35

4. Corpora

Category Mean Median Mininum Maximum

a 4,022.34 2,857.5 623 31,353
b 3,080.83 2,479.5 674 13,506
c 6,955.37 4,338 660 53,640
d 3,045.03 2,485.5 440 14,558
e 3,186.90 2,463 653 21,276
f 2,889.45 2,377 611 14,818
g 4,353.25 3,268.5 377 56,928
h 3,617.12 2,976.5 773 13,201
y 3,457.11 2,851.5 534 15,898

overall 3,845.27 2,810.5 377 56,928

Table 4.5.: Distribution of the number of tokens (Longformer tokenizer) of the large
sample corpus (test split).

Figure 4.5.: Distribution of the number of tokens (Longformer tokenizer) of the large
sample corpus (train split).

36

4. Corpora

Figure 4.6.: Distribution of the number of tokens (Longformer tokenizer) of the large
sample corpus (test split).

37

4. Corpora

Figure 4.7.: Distribution of the number of tokens (Longformer tokenizer) of the large
sample corpus (train split) grouped by category.

38

4. Corpora

Figure 4.8.: Distribution of the number of tokens (Longformer tokenizer) of the large
sample corpus (test split) grouped by category.

39

5. Methodology

5.1. Research Question 1: Which methods and models to encode
long text sequences are most suited for downstream
machine learning tasks?

The goal of this project’s first phase is to evaluate the quality of the encodings produced
by efficient Transformer models with regard to downstream tasks. The question,
consequently, is whether the encodings produced by these models retain enough of
the information codified in the original sequences, so that another machine learning
model can be successfully trained on downstream tasks with these encodings as
inputs. This project examines whether the models’ encodings of patent documents
retain sufficient information for a separate machine learning model to learn to infer
the patent’s subject matter. The question, however, is not how well the individual
language models can incorporate information about a patent’s subject matter during
training. The weights of the particular language model are, thus, frozen during training.
Hence, only language models for which pretrained checkpoints are available, i.e.,
BigBird, Longformer, Longformer Encoder-Decoder, and Reformer, are considered.
Each efficient Transformer model is, therefore, paired with a classification head and
trained on classifying patents using the medium sized sample of the BigPatent corpus.
The models’ performance is evaluated using the accuracy metric which is defined as the
share of correctly classified examples in the dataset [27]:

accuracy =
(TP + TN)

(TP + FP + FN + TN)
(5.1)

with TP, TN, FN, FP describing the number of true positives, true negatives, false
negatives, and false positives respectively. Accuracy is an appropriate criterion in this
case, as the dataset is balanced and all classes are represented with an equal number of
examples. Yet, the models’ performance on the test set in absolute terms is of lesser
importance, as their results are evaluated relative to each other. All models are thus
trained using the same classification head and hyperparameters to ensure comparability.

A convolutional neural network (CNN) head is used for a variety of reasons. As the

40

5. Methodology

goal is to examine the amount of information retained in the produced encodings in
general, the models’ last hidden states, i.e., the embeddings for each individual token
and not the condensed output representing the entire sequence, are used as input.
Apart from that, not all models considered produce such a pooled output representing
the entire sequence. The embeddings of individual tokens would need to be reduced
to one column, in order for a feed-forward network head to be able to process them.
This would, however, increase the number of parameters of the head’s fully connected
layers disproportionately. Alternatively, a recurrent neural network such as a Long
Short-Term Memory (LSTM) could be used (see [23] for more information). However,
due to the recurrent nature of its computations, the models’ training time increases
significantly. This renders LSTM heads impractical for the purposes of this project.
A CNN head creates the possibility to train a model using the embeddings of each
individual token as inputs in an admissible time frame.

For all experiments in this first phase the base versions of the language models’
checkpoints are used. The models are obtained from Huggingface1. The Longformer
and LED models are trained using the Tensorflow2 framework, while Pytorch3 is used
to train the BigBird and Reformer models. See Figure 5.1. for an overview of the
methodology followed in the project’s first phase.

Experiment Q1-1: Investigating the amount of information retained in the models’
embeddings

In a first step, roBERTa and BART are evaluated on the given classification task to serve
as baselines for BigBird, Longformer, and Longformer Encoder-Decoder respectively.
To accommodate roBERTa’s limitations with regard to the input sequence’s length, the
model is trained both with truncated as well as with chunked and averaged encodings.
In the same manner, the input sequences are truncated before being encoded by BART.

In a second step, the efficient Transformer language models are trained and evaluated
with a classification head and a maximum sequence length of 4,096 tokens. The
sequences are either truncated or padded to that maximum sequence. Although the
LED and Reformer models can encode documents with a sequence length of up to
16,384 and 524,288 tokens respectively, limiting the sequence length allows a comparison
to the results obtained from BigBird and Longformer without obfuscating the results
by allowing more context to enter the training of the classification task.

1https://huggingface.co/
2https://www.tensorflow.org
3https://pytorch.org

41

https://huggingface.co/
https://www.tensorflow.org
https://pytorch.org

5. Methodology

[0.3312, 0.1234, …]

[0.9899, 0.5464, …]

[0.4432, 0.3939, …]

[0.1139, 0.7343, …]

...
...

token token token ----------------------

token token token ----------------------

token token token ----------------------

token token token ----------------------

Language
model

Medium Corpus

Step 1: Domain adaption

Step 2: Repeat classification task and examine difference to the results of the first 2 experiments

Experiment Q1-1: Investigating the amount of
information retained in the models’ embeddings

Experiment Q1-2: Investigating the effects of
increasing the input sequence length

Encodings of

patent documents

Subject matter
classification

Optimized during training

Input Length: 4,096

CNN

a

e

y

[0.3312, 0.1234, …]

[0.9899, 0.5464, …]

[0.4432, 0.3939, …]

[0.1139, 0.7343, …]

...
...

token token token token token --------

token token token token token --------

token token token token token --------

token token token token token --------

Domain
adapted

language
model

Medium Corpus Encodings of

patent documents

Subject matter
classification

Optimized during training

Input Length: 4,096 / 8,192 / 16,384

CNN

a

e

y

[0.3312, 0.1234, …]

[0.9899, 0.5464, …]

[0.4432, 0.3939, …]

[0.1139, 0.7343, …]

Masked token

Masked token

Masked token

Masked token

...
...

token token token token token --------

token token token token token --------

token token token token token --------

token token token token token --------

Language
model

Longformer

BigBird

Reformer

Medium Corpus

token token token token token

 token token token token token

token token token token token

token token token token token

[MASK]
[MASK]

[MASK]
[MASK]

Sampled from BigPatent

Encodings of

patent documents

Subject matter
classification

Optimized during training

Optimized during training

Patent abstract

Patent abstract

Patent abstract

Patent abstract

LED
Patent description

Patent description

Patent description

Patent description

Sampled from BigPatent

Optimized during training

Input Length: 8,192 / 16,384

CNN

a

e

y

Experiment Q1-3: Examining whether domain
adaption improves the models’ embeddings

Masked token
prediction

Text summarization

Figure 5.1.: Methodology of the experiments conducted to investigate question 1.

42

5. Methodology

Experiment Q1-2: Investigating the effects of increasing the input sequence length

To examine the effects of increasing the length of the input sequence, models using the
LED’s and Reformer’s encodings up to 8,192 and 16,384 tokens are trained.

Experiment Q1-3: Examining whether domain adaption improves the models’
embeddings

The domain of the patent data used during this project can differ vastly from the data
used to pretrain the considered models. This can lead a model to produce rather
poor representations of domain specific words not present in the copora used during
pretraining. All models are, therefore, domain adapted by further pretraining them
on samples of the BigPatent corpus in order to evaluate to what degree the quality of
their embeddings can be improved indepentently from a specific downstream task. The
Longformer, BigBird, and Reformer models are further pretrained on masked token
prediction with a masking probability of 15% on a training set of 60k documents. Due
to resource limitations, mostly time constraints, the Longformer and BigBird cannot be
trained using all 60k documents at once. Thus, 20k patent documents are repeatedly
sampled for three training runs. Consequently, there is, however, a limited probability
of a patent being sampled multiple times. These documents are then separated into
chunks of 512 tokens in order to reduce memory requirements. The LED is domain
adapted by sampling 30k documents from BigPatent’s train split and training the model
on text summarization using a document’s description and abstract. To reduce memory
requirements, the encoder’s input and the decoder’s output are limited to 8,192 and
512 tokens respectively. The further pretrained models’ encodings are then used to
train classification models in the manner as described above.

The checkpoint4 available for the Reformer language model was pretrained using
an English translation of Fyodor Dostoevsky’s novel Crime and Punishment. While
the resulting language model demonstrates the Reformer’s ability to process up to
524,288 tokens at once, it has limited ability to encode patent documents. Since the
model’s vocabulary size is limited to 320, a large number of tokens are unknown and
the corresponding tokens are uniformly marked as such. The model’s tokenizer is,
therefore, extended using the entire BigPatent’s train split to increase the model’s
vocabulary size to 52k. Moreover, the model’s architecture consisting of six hidden
layers, two attention heads, and a dimensionality of 512 for the feed-forward networks
of the Reformer blocks is rather elementary. The architecture is, therefore, adapted to
twelve hidden layers, twelve attention heads, and a feed-forward size of 1,024. This,

4https://huggingface.co/google/reformer-crime-and-punishment

43

https://huggingface.co/google/reformer-crime-and-punishment

5. Methodology

however, results in a large number of newly initialized parameters. In addition to the
domain adaption process described above, the resulting Reformer model is, therefore,
further pretrained on masked token prediction with a masking probability of 15% and
120k further examples of the BigPatent corpus sampled in two tranches, 50k examples
of Wikipedia English5 and 100k examples of the Arxiv6 scientific papers corpus [10].

Hardware

The majority of models are trained on a 16GB GPU for the described experiments. The
LED-base model receiving sequences of 16,384 tokens, however, is trained on a 40GB
GPU.

5.2. Question 2: How does adapting a model’s attention
mechanism to accommodate longer sequences effect
performance on downstream machine learning tasks?

In the second phase the models are evaluated according to their ability to incorporate
information while being finetuned on a downstream task. Unlike the first research
question, this section is rather concerned with the models’ ability to absorb information
about a patent document’s subject matter during training and adapt the respective
encodings accordingly. The models’ weights are, therefore, not frozen during training.
In order to facilitate comparability, all models are newly initialized without having
received any pretraining for the first two experiments. The BigBird, Longformer, Per-
former, Linformer, and Reformer attention mechanisms are evaluated in the described
manner. A CNN classification head is used for all experiments in phase two. See Figure
5.2. and Figure 5.3 for an overview of the methodology followed in the project’s second
phase.

Experiment Q2-1: Investigating the various attention mechanisms’ ability to absorb
information during training on a downstream task

The pytorch-performer7 and linformer8 python packages are used to create Performer
and Linformer based language models respectively. Note, however, that these packages
were not implemented by the authors of the original models themselves. See here9

5https://huggingface.co/datasets/wikipedia
6https://huggingface.co/datasets/arxiv_dataset
7https://pypi.org/project/performer-pytorch/
8https://pypi.org/project/linformer/
9https://github.com/lucidrains/performer-pytorch

44

https://huggingface.co/datasets/wikipedia
https://huggingface.co/datasets/arxiv_dataset
https://pypi.org/project/performer-pytorch/
https://pypi.org/project/linformer/
https://github.com/lucidrains/performer-pytorch

5. Methodology

[0.3312, 0.1234, …]

[0.9899, 0.5464, …]

[0.4432, 0.3939, …]

[0.1139, 0.7343, …]

...
...

token token ----------------------------

token token ----------------------------

token token ----------------------------

token token ----------------------------

Language
model

without
pretraining

Medium Corpus

Experiment Q2-1: Investigating the various attention mechanisms’
ability to absorb information during training on a downstream task

Encodings of

patent documents

Subject matter
classification

Optimized during training

Input Length: 512

CNN

a

e

y

[0.3312, 0.1234, …]

[0.9899, 0.5464, …]

[0.4432, 0.3939, …]

[0.1139, 0.7343, …]

...
...

token token token ----------------------

token token token ----------------------

token token token ----------------------

token token token ----------------------

Language
model

without
pretraining

Medium Corpus Encodings of

patent documents

Subject matter
classification

Optimized during training

Input Length: 4,096

CNN

a

e

y

[0.3312, 0.1234, …]

[0.9899, 0.5464, …]

[0.4432, 0.3939, …]
[0.1139, 0.7343, …]

[0.9899, 0.5464, …]

[0.4432, 0.3939, …]

...
...

token token ----------------------------

token token ----------------------------

token token ----------------------------

token token ----------------------------

token token ----------------------------

token token ----------------------------

Language
model

without
pretraining

Large Corpus
Encodings of

patent documents

Subject matter
classification

Optimized during training

Input Length: 512

CNN

a

e

y

Experiment Q2-2: Examining how the ability to absorb information
changes when the input sequence length is increased

Step 1: Finetune untrained language model and classification head on medium corpus with sequence length 512

Step 2: Repeat the experiment with the large corpus

Figure 5.2.: Methodology of the experiments conducted to investigate question 2 (Q2-1
& Q2-2).

45

5. Methodology

Experiment Q2-3: Examining the impact of the configuration of BigBird’s and
Longformer’s attention mechanism on downstream performance

[0.3312, 0.1234, …]

[0.9899, 0.5464, …]

[0.4432, 0.3939, …]

[0.1139, 0.7343, …]

...
...

token token token ----------------------

token token token ----------------------

token token token ----------------------

token token token ----------------------

Medium Corpus Encodings of

patent documents

Subject matter
classification

Optimized during training

token token token token token token token

Input Length: 4,096

attention window size

CNN

a

e

y

Longformer

Step 1: Repeat training of Longformer classification model with multiple attention window sizes

attention block size

[0.3312, 0.1234, …]

[0.9899, 0.5464, …]

[0.4432, 0.3939, …]

[0.1139, 0.7343, …]

...
...

token token token ----------------------

token token token ----------------------

token token token ----------------------

token token token ----------------------

Medium Corpus Encodings of

patent documents

Subject matter
classification

Optimized during training

token token token token token token token token token token token token token

Input Length: 4,096

CNN

a

e

y

BigBird

number of random attention blocks

[0.3312, 0.1234, …]

[0.9899, 0.5464, …]

[0.4432, 0.3939, …]

[0.1139, 0.7343, …]

...
...

token token token ----------------------

token token token ----------------------

token token token ----------------------

token token token ----------------------

Medium Corpus Encodings of

patent documents

Subject matter
classification

Optimized during training

token token token token token token token token token token token token token token token token token token token token

Input Length: 4,096

CNN

a

e

y

BigBird

Step 2: Repeat training of BigBird classification model with multiple attention block sizes

Step 3: Repeat training of BigBird classification model with different numbers of random attention blocks

Figure 5.3.: Methodology of the experiments conducted to investigate question 2 (Q2-3).

46

5. Methodology

for the code base of the pytorch-performer package and here10 for the one of the
linformer. To exclude the possibility of different model architectures influencing the
results, all language models are initialized using the roBERTa-base architecture, i.e.,
twelve hidden layers, twelve attention heads, and a dimension of the attention heads of
64. The roBERTa-base model itself is used to create a baseline, in order to be able to
compare the various efficient attention mechanisms to the original full self-attention.
The maximum sequence length is set to 512 tokens. Consequently, the Longformer’s
attention window size and BigBird’s attention block size are also reduced by a factor
of eight to 64 and eight respectively to ensure comparability. The performer-pytorch
and linformer packages used in this project do not allow to individually adjust the
dimensions of the feed-forward layers used in the attention heads. Said dimensions are
automatically set to the dimensions of the attention layer. The roBERTa, Longformer,
and BigBird models are thus also trained with a feed-forward dimension of 768 instead
of the default size of 3,072. The experiment is conducted both with the medium as
well as the large sample corpus to examine how increasing the amount of training data
influences the results.

Experiment Q2-2: Examining how the ability to absorb information changes when
the input sequence length is increased

In the next step, the maximum sequence length is increased to 4,096 to compare the
ability of the investigated efficient attention mechanisms to incorporate information
when being finetuned with longer sequences.

Experiment Q2-3: Examining the impact of the configuration of BigBird’s and
Longformer’s attention mechanism on downstream performance

In this experiment the degree to which various decisions made in the architecture of
the Longformer’s and BigBird’s attention mechanism influence their ability to absorb
information about a patent’s subject matter during training is investigated. Firstly, a
pretrained Longformer-base model is finetuned on the given classification task using
varying window sizes in order to examine the relationship between the length of
the full self-attention window and downstream performance. Moreover, a pretrained
BigBird-base model is trained with varying attention block sizes and multiple numbers
of random attention blocks.

10https://github.com/lucidrains/linformer

47

https://github.com/lucidrains/linformer

5. Methodology

Hardware

All models are trained using 16GB GPUs.

5.3. Question 3: Which classification model is most appropriate
for patent subject matter classification?

The project’s last phase examines which combination of language model and classifi-
cation head is most suited for classifying patent documents according to their subject
matter. The goal is to obtain the best possible test accuracy on the large sample corpus.
See Figure 5.4. for an overview of the methodology followed in the project’s last phase.

Experiment Q3-1: Testing various classification heads

The base versions of the Longformer and BigBird are finetuned on the given classifi-
cation task using both the CNN as well as an FNN head. The medium sized corpus
is used for the described experiment. The results obtained are used to inform the
decisions about which hyperparameters and classification head are used with the large
model versions in the subsequent experiment.

Experiment Q3-2: Optimizing performance on the test set of the large corpus

In a first step, the large versions of BigBird, Longformer, and Longformer Encoder-
Decoder are domain adapted on the BigPatent corpus following the same procedure
described in phase one. For the former two models 24k patents are sampled in three
tranches and the LED-large models is domain adapted on 30k patents. Lastly, the
large domain-adapted models as well as a Reformer model are finetuned using the
previously chosen classification heads and hyperparameters, as well as the large corpus
to determine the most performant way to classify patent documents according to their
subject matter.

Hardware

The large model versions are trained using 80GB GPUs, while the base versions are
finetuned on 16GB GPUs.

48

5. Methodology

Experiment Q3-1: Testing various
classification heads

[0.3312, 0.1234, …]

[0.9899, 0.5464, …]

[0.4432, 0.3939, …]

[0.1139, 0.7343, …]

...
...

token token token token ---------------

token token token token ---------------

token token token token ---------------

token token token token ---------------

Domain
adapted

language
model (base)

Medium Corpus Encodings of

patent documents

Subject matter
classification

Optimized during training

Input Length: 4,096 / 8,192
FNN

CNN
a

e

y

Step 1: Domain adaption of large model versions

Step 2: Finetune large model versions with in Q3-1 determined configurations on large corpus

Masked token

Masked token

Masked token

Masked token

Longformer

BigBird
(large)

token token token token token

 token token token token token

token token token token token

token token token token token

[MASK]
[MASK]

[MASK]
[MASK]

Sampled from BigPatent

Optimized during training

Patent abstract

Patent abstract

Patent abstract

Patent abstract

LED (large)
Patent description

Patent description

Patent description

Patent description

Sampled from BigPatent

Optimized during training

Experiment Q3-2: Optimizing performance on the
test set of the large corpus

Masked token
prediction

Text summarization

[0.3312, 0.1234, …]

[0.9899, 0.5464, …]

[0.4432, 0.3939, …]
[0.1139, 0.7343, …]

[0.9899, 0.5464, …]

[0.4432, 0.3939, …]

...
...

token token token token ---------------

token token token token ---------------

token token token token ---------------

token token token token ---------------

token token token token ---------------

token token token token ---------------

Language
model
(large)

Large Corpus
Encodings of

patent documents

Subject matter
classification

Optimized during training

Input Length: 4,096 / 8,192

Classification
Head

a

e

y

Figure 5.4.: Methodology of the experiments conducted to investigate question 3.

49

6. Experiments

6.1. Research Question 1: Which methods and models to encode
long text sequences are most suited for downstream
machine learning tasks?

The goal of this project’s first phase is to evaluate the quality of the encodings produced
by efficient Transformer models with regard to downstream tasks. The following
experiments examine how much information about the original patent are retained
by the encodings produced by various language models. A variety of Reformer-based
language models were used throughout the project. Table 6.1. shows the various
Reformer architectures as well as the data they were pretrained with.

Experiment Q1-1: Investigating the amount of information retained in the models’
embeddings

The first experiment evaluates the degree to which a classification model can learn to
infer a patent’s subject matter from the encodings produced by the examined efficient
Transformer language models. All models are trained for ten epochs with with batch
size one, a learning rate of 2e-5 and a CNN classification head. See Figure 6.1. for an
illustration of the used classification head. The batch size of one is used to conserve
memory resources and allow for the experiments to be conducted with a 16GB GPU.
The exact hyperparameters, such as the learning rate, are of lesser importance during
the first experiments as long as the same configurations are used for all models, to
ensure that the obtained results are comparable. Since the weights of the respective
language model are frozen during training, the models are trained for ten epochs to
allow them to fit the training data to a sufficient degree. See Table 6.2. for a summary
of the experiment’s results.

The roBERTa and BART classification models fit the training data less well than their
efficient transformer counterparts (BigBird and Longformer for the former and LED
for the latter). They do, however, yield competitive results or even outperform their
counterparts. Of note is that chunking and averaging the roBERTa encodings produces

50

6. Experiments

significantly worse results than merely truncating the input sequence does. The reason
for this may lie in the length of the input sequences. Longer sequences result in a greater
number of chunks. Averaging the respective encodings could potentially obscure a
large amount of information.
The best results of the efficient Transformer models can be obtained with the BigBird
and LED models with a performance of 53.58% and 53.7% respectively. Using the
Longformer encodings yields a comparably low accuracy of 48.02%. Of note is, however,
that the classification model which receives the Longformer encodings fits the training
data nearly perfectly. The models receiving BigBird and LED encodings on the other
hand merely yield a training accuracy of 81.41% and 75.47% respectively. There appears
to be a clear trade-off relationship between the degree to which the models are able to
fit to the training data and the results obtained on the test data. This is also evident
in the performance of the baseline models. See Figure 6.2. for an illustration of the
described trade-off.
While the Reformer-1 classification model is able to fit the training data to a high degree
(95.8%), it performs worse on the test set (26.3%). The Reformer-1 model, however,
incorporates a rather simple architecture and has received little pretraining compared
to the residual models.

It appears that the encodings produced by efficient Transformer models do retain more
information of the original patent documents than the ones of their full self-attention
counterparts, as they are able to process a larger portion of the original input sequence
at once. This allows the classification models to fit the training data better. That,
however, seems to have diametrical effects on their performance on the test data in this
particular case.

Experiment Q1-2: Investigating the effects of increasing the input sequence length

The second experiment is concerned with investigating the quality improvements of the
embeddings produced by efficient Transformers when the context length is increased.
Table 6.3. shows the corresponding results. Just as in the first experiment, all models
are trained for ten epochs, with a batch size of one, a learning rate of 2e-5 and a CNN
classification head.

Increasing the input sequence length from 4,096 to 8,192 tokens increases the LED clas-
sification model’s performance by 1.61 percentage points to 55.31%. The corresponding
accuracy on the training data, however, is 3.26 percentage points lower. The described
performance gain might, therefore, not necessarily stem from the increase in the context
length, but could also result from the model not overfitting to the training set as much.

51

6. Experiments

Language Model

1D Convolutional Layer

1D Convolutional Layer

ReLU Activation

ReLU Activation

Max Pooling

Flatten

Dense Layer

Softmax Activation

Figure 6.1.: Illustration of the CNN classification head used throughout the project.

Figure 6.2.: Results of Experiment Q1-1: Illustration of the relationship between training
and test accuracy in experiment Q1-1.

52

6. Experiments

Reformer
Model

Number
of
Hidden
Layers

Number
of
Attention
Heads

Feed-
forward
size

Vocab
Size

Pretraining

Reformer-1 6 2 512 320 Crime and Punishment

Reformer-2 6 2 512 320
Crime and Punishment,
60k patent documents

Reformer-3 6 2 512 320

Crime and Punishment,
180k patent documents,
100k scientific papers,
50k Wikipedia
English articles

Reformer-4 12 12 1,024 52,000
Crime and Punishment,
60k patent documents

Reformer-5 12 12 1,024 52,000

Crime and Punishment,
180k patent documents,
100k scientific papers,
50k Wikipedia
English articles

Table 6.1.: Architecture and pretraining of the evaluated Reformer language models.

53

6. Experiments

Language Model Input Length Training Accuracy Test Accuracy

roBERTa-base 512 (truncated) 0.7969 0.5086
roBERTa-base 512 (chunked & averaged) 0.3447 0.3556
BART-base 1,024 0.6026 0.584
BigBird-base 4,096 0.8141 0.5358
Longformer-base 4,096 0.9998 0.4802
LED-base 4,096 0.7547 0.537
Reformer-1 4,096 0.958 0.263

Table 6.2.: Results of Experiment Q1-1: Comparing the degree to which a machine
learning model can learn to infer a patent’s subject matter from the encodings
produced by efficient transformer language models (all models are trained
for 10 epochs with batch size 1, learning rate 2e-5 and a CNN classification
head).

Language Model Input Length Training Accuracy Test Accuracy

LED-base 8,192 0.7215 0.5531
LED-base 16,384 0.7517 0.5432
Reformer-1 8,192 0.975 0.2765
Reformer-1 16,384 0.9616 0.2802

Table 6.3.: Results of Experiment Q1-2: Investigating the quality improvement of the
embeddings produced by efficient transformers when the context length is
increased (all models are trained for 10 epochs with batch size 1, learning
rate 2e-5 and a CNN classification head).

Further increasing the length of the input sequences to 16,384 tokens yields a lower test
accuracy of 54.32% with a higher training accuracy of 75.17%.
Increasing the sequence length from 4,096 to 8,192 and 16,384 tokens improves the
Reformer-1 model’s performance from 26.3% to 27.65% and 28.02% respectively.

The average sequence length of the medium sample’s test split is 3,698.7. There
are notable exceptions. For instance, the average length in class c is 5,304.61 and
the dataset’s longest document consists of 35,959 tokens. Increasing the number of
tokens to be considered in the classification is, however, expected to have marginally
diminishing returns in terms of performance improvements.

54

6. Experiments

Experiment Q1-3: Examining whether domain adaption improves the models’
embeddings

The considered language models are domain adapted by further pretraining them on
samples of the BigPatent corpus, in order to evaluate to what degree the quality of their
embeddings can be improved. Table 6.4. shows the corresponding results yielded by
these models on the given classification task.
Domain adapting BigBird increases the accuracy obtained on the training set, but has
no substantial impact on the test accuracy.
While the model receiving the encodings produced by the Longformer still learns to
classify the training data nearly perfectly, domain adaption appears to improve the
model’s ability to generalize these learnings to previously unseen data. The correspond-
ing test accuracy improves from 48.02% to 54.57%.
The domain adapted LED classification model receiving sequences with a length of
up to 8,192 tokens achieves a higher accuracy on both the training as well as the test
data. The former increases from 72.15% to 76.07% and the latter from 55.31% to 56.42%.
Domain adaption causes the model trained on input sequences up to 16,384 tokens
long to learn the training data far better. The training accuracy improves from 75.17%
to 93.18%. This, however, fails to have any significant effect on the model’s performance
on the test set.
Domain adapting the Reformer-2 model increases the test accuracy for sequences with
a length of up to 4,096 tokens by 1.48 percentage points. Further pretraining the model
using other data sources only has marginal effects and actually leads the test accuracy to
decrease slightly. The Reformer-4 and Reformer-5 fail to learn the training data (11.64%
and 11.47% accuracy respectively) and thus also produce poor results on the test set.
Since the vocabulary size and the architecture of these models have been significantly
increased, the models would require a substantial amount of further pretraining to
produce results competitive to those of the other models examined.

In general, domain adaption appears to allow the models to better generalize the
relationship between a patent’s encodings and its subject matter learned during training.
It can, thus, be used to mitigate the adverse effects of the models overfitting to the
training data.

55

6. Experiments

Language Model Input Length Training Accuracy Test Accuracy

BigBird-base (da) 4,096 0.8488 0.532
Longformer-base (da) 4,096 0.9997 0.5457
LED-base (da) 8,192 0.7607 0.5642
LED-base (da) 16,384 0.9318 0.5418
Reformer-2 4,096 0.9728 0.2778
Reformer-3 4,096 0.9781 0.2741
Reformer-4 4,096 0.1163 0.1160
Reformer-5 4,096 0.1147 0.1049

Table 6.4.: Results of Experiment Q1-3: Investigating the effects of domain adaption on
the embeddings produced by efficient transformers (all models are trained
for 10 epochs with batch size 1, learning rate 2e-5 and a CNN classification
head), da = domain adapted.

6.2. Question 2: How does adapting a model’s attention
mechanism to accommodate longer sequences effect
performance on downstream machine learning tasks?

The project’s second phase evaluates how well the different attention mechanisms adapt
the embeddings they produce while being finetuned on a downstream task. Moreover,
the implications of changing the configuration of BigBird’s and Longformer’s attention
mechanism are examined.

Experiment Q2-1: Investigating the various attention mechanisms’ ability to absorb
information during training on a downstream task

The first experiment is designed to compare the ability of different attention mecha-
nisms to incorporate information about a patent’s subject matter during training. In
order to isolate their ability to adapt their encodings during training, all models are
initialized without pretraining. The models are finetuned on the given classification task
for ten epochs, a batch size of one, a learning rate of 6.25e-07 and a CNN classification
head. The batch size of one is again chosen to preserve memory resources. The lower
learning rate of 6.25e-07 is used, since the gradient is passed back to the respective
language model during training. The maximum sequence length is limited to 512
tokens to be able to compare the results to the ones of the full self-attention mechanism
of the roBERTa model. Table 6.5. shows the experiment’s results. The dimensions of

56

6. Experiments

the feed-forward networks is changed from 3,072 to 768 in the roBERTa, BigBird, and
Longformer models. Table 6.6. thus shows the results of the same experiment with the
original feed-forward size for reference purposes.

The untrained roBERTa model (feed-forward size of 768) which serves as a baseline
here yields a training accuracy of 33.84% and a test accuracy of 26.42% on the medium
sized corpus. The Longformer model with a feed-forward size of 768 merely achieves
an accuracy of 15.1% and 16.17% on the training and test set respectively. The ones
obtained with a feed-forward size of 3,072 are 39.42% and 27.41%. At least for such
a small window size (64 tokens), the feed-forward size appears to be of significant
consequence for the Longformer’s dilated window attention mechanism.
Despite its rather small window size, the BigBird classification model outperforms
roBERTa’s full self-attention mechanism both in terms of training (40.28%) as well as
test accuracy (37.53%).
In addition to that, the Performer’s training results (35.07%) are comparable to the ones
of roBERTa. However, it yields a significantly higher accuracy on the test set (32.84%).
The Linformer and Reformer models incorporate information about a patent’s subject
matter far quicker during training than the roBERTa model does. Both models also
yield far better results on the test data. Their training and test accuracy is 78.69% and
57.33% as well as 36.05% and 47.41% respectively.

The performance gap between the untrained roBERTa and the residual models is
less severe when the large corpus is used. The margin between the performance of
the Reformer and the roBERTa model shrinks from 20.99 to 7.71 percentage points.
The Longformer with a feed-forward size of 768 also yields the worst performance in
this case. See Table 6.7. for an overview of the results obtained by using the large corpus.

Apart from the one of the Longformer model, all alternative attention mechanisms
examined are able to adapt their encodings during training far quicker than the original
full self-attention mechanism of the roBERTa model. The difference in performance,
however, is less severe when a larger training corpus is used. Moreover, the Performer,
Linformer, and Reformer models which perform an approximated attention mechanism
for all tokens, rather than limiting the number of full attention operations that need
to be computed, also outperform the Longformer and BigBird models in both cases.
These models may, thus, be better suited for downstream tasks with comparably small
amounts of data. They might, however, be more prone to overfitting than a model
using full self-attention.

57

6. Experiments

Language Model Training Accuracy Test Accuracy

roBERTa-base 0.3384 0.2642
Longformer-base 0.151 0.1617
BigBird-base 0.4038 0.3753
Performer 0.3507 0.3284
Linformer 0.7869 0.3605
Reformer 0.5733 0.4741

Table 6.5.: Results of Experiment Q2-1 with medium sized corpus: To investigate their
ability to adapt their encodings during a classification task, the models are
initialized without pretraining and finetuned with a maximum sequence
length of 512 tokens (all models are trained for 10 epochs with batch size 1,
learning rate 6.25e-07 and a CNN classification head).

Language Model Training Accuracy Test Accuracy

roBERTa-base 0.3814 0.2765
Longformer-base 0.3942 0.2741
BigBird-base 0.4072 0.3889

Table 6.6.: Results of Experiment Q2-1 with medium sized corpus: The models are
initialized without pretraining (with a feed-forward size of 3,072 for refer-
ence) and finetuned during the classification task with a maximum sequence
length of 512 tokens (all models are trained for 10 epochs with batch size 1,
learning rate 6.25e-07 and a CNN classification head).

58

6. Experiments

Language Model Training Accuracy Test Accuracy

roBERTa-base 0.468 0.4296
Longformer-base 0.3355 0.3111
BigBird-base 0.4593 0.4459
Performer 0.5441 0.4785
Linformer 0.6693 0.5052
Reformer 0.5848 0.5067

Table 6.7.: Results of Experiment Q2-1 with large corpus: To investigate their ability to
adapt their encodings during a classification task, the models are initialized
without pretraining (with a feed-forward size of 768) and finetuned with
a maximum sequence length of 512 tokens (all models are trained for 10
epochs with batch size 1, learning rate 6.25e-07 and a CNN classification
head).

Language Model Training Accuracy Test Accuracy

roBERTa-base 0.5006 0.4596
Longformer-base 0.3871 0.3596
BigBird-base 0.4051 0.4033

Table 6.8.: Results of Experiment Q2-1 with large corpus: The models are initialized
without pretraining (with a feed-forward size of 3,072 for reference) and
finetuned during the classification task with a maximum sequence length of
512 tokens (all models are trained for 10 epochs with batch size 1, learning
rate 6.25e-07 and a CNN classification head).

59

6. Experiments

Language Model Training Accuracy Test Accuracy

Longformer-base 0.3935 0.3037
BigBird-base 0.4072 0.3889
Performer 0.6398 0.4272
Linformer 0.7928 0.3704
Reformer 0.6013 0.479

Table 6.9.: Results of Experiment Q2-2: To investigate their ability to adapt their encod-
ings during a classification task, the models are initialized without pretrain-
ing (with a feed-forward size of 768) and fine-tuned during the classification
task with a maximum sequence length of 4,096 tokens (all models are trained
for 10 epochs with batch size 1, learning rate 6.25e-07 and a CNN classifica-
tion head).

Experiment Q2-2: Examining how the ability to absorb information changes when
the input sequence length is increased

In order to examine the ability of different attention mechanisms to adapt their en-
codings during a classification task with longer sequences, the length of the inputs is
increased to 4,096 tokens. Table 6.9. shows the corresponding results obtained with the
medium sized corpus.

The Longformer model underperforms the residual models and achieves a test accu-
racy that is 8.52 and 17.53 points lower than the ones of the BigBird and Reformer
respectively. The former incorporates an attention mechanism that follows a similar
approach to the Longformer’s and the latter model is the best performing one. While
the Linformer model achieves the highest training accuracy (79.28%), its performance
on the test set is 1.85 points lower than the one of the BigBird model which achieves an
accuracy of mereley 40.72% on the training data.

The Performer, Linformer, and Reformer models appear to also incorporate information
about a patent’s subject matter much faster during training than the Longformer and
BigBird when the sequence length is increased to 4,096. The models’ ability to learn the
relationship between a patent document and its subject does not necessary translate into
a higher performance on previously unseen data. However, the Reformer classification
model produces the best results both for a sequence length of 512 as well as 4,096
tokens.

60

6. Experiments

attention window size

te
st

 a
cc

ur
ac

y

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500

 Window Size Accuracy

512 (default) 0.6617
384 0.6444
256 0.6605
192 0.6444
128 0.6160
64 0.6185
32 0.5889

Figure 6.3.: Results of Experiment Q2-3 (Longformer): The Longformer-base (no pre-
training) classification model is finetuned on the medium sized corpus with
varying sizes of the attention window (all models are trained for 3 epochs
with batch size 1, learning rate 1.25e-06 and a CNN classification head).

Experiment Q2-3: Examining the impact of the configuration of BigBird’s and
Longformer’s attention mechanism on downstream performance

Figure 6.3. shows the test accuracy obtained by finetuning a pretrained Longformer
classification model on the medium corpus with varying sizes of the sliding window
used in its attention mechanism. The models are trained for three epochs using a
learning rate of 1.25e-06. As the goal is not to optimize performance on the test set, but
rather compare the models’ performance, training for three epochs is sufficient. The
default window size of 512 tokens yields a test accuracy of 66.17%. Of note is that the
model’s performance does not monotonically decrease as the window size is lowered.
The accuracy obtained by a model using a window size of 256 tokens is 1.61 percentage
points higher than the accuracy of one using 384 tokens and only slightly lower than
the one of the default model.

Table 6.10. shows the test accuracy obtained by finetuning a pretrained BigBird classifi-
cation model on the medium corpus with varying attention block sizes and different
numbers of random attention blocks. All models are trained for three epochs using
a learning rate of 1.25e-06. Increasing the size of the attention blocks to 128 tokens
or decreasing it to 32 tokens appears to have only marginal effects on the model’s
performance on the given task. The former yields an increase in accuracy of 1.01
percentage points and the latter merely decreases the obtained performance by 0.12
points. Increasing the number of random attention blocks to five leads to an increase in
performance of 2.72 percentage points, while lowering it to one has no effect at all.

61

6. Experiments

Attention Block Size Accuracy

128 0.6691
64 (default) 0.6580
32 0.6568

Number of Random
Attention Blocks

Accuracy

5 0.6852
3 (default) 0.6580
1 0.6580

Table 6.10.: Results of Experiment Q2-2 (BigBird): The BigBird-base (no pretraining)
classification model is finetuned on the medium sized corpus with varying
block sizes and number of random blocks used in its attention mechanism
(all models are trained for 3 epochs with batch size 1, learning rate 1.25e-06
and a CNN classification head).

The experiment’s results imply that one can potentially significantly lower the Long-
former’s and BigBird’s memory and compute requirements by adjusting the particular
attention window size, attention block size, and number of random attention blocks
without substantially impairing their performance on the given classification task.

6.3. Question 3: Which classification model is most appropriate
for patent subject matter classification?

The project’s last phase examines which combination of language model, classification
head, and hyperparameters achieves the highest performance on the given classification
task.

Experiment Q3-1: Testing various classification heads

Table 6.11. shows the results obtained by finetuning the domain adapted base versions
of the Longformer and BigBird models with the medium sized corpus and various
classification heads. Figure 6.4. illustrates the feed-forward network head considered
during this project.

The combination of the Longformer and the CNN classification head produces results
that are 2.96 percentage points higher than the ones obtained by using the FNN head.
For the BigBird model the CNN head also achieves marginally better results.

62

6. Experiments

Language Model

Dense Layer

ReLU Activation

Dense Layer

Softmax Activation

Figure 6.4.: Illustration of the FNN classification head used throughout the project.

Language Model Classification Head Test Accuracy

Longformer-base (da) FNN 0.6519
Longformer-base (da) CNN 0.6815
BigBird-base (da) FNN 0.6901
BigBird-base (da) CNN 0.7

Table 6.11.: Finetinuning various combinations of classification heads and language
models on the medium sample corpus to optimize performance on the test
set (all models are trained for 10 epochs with batch size 1, learning rate
1.25e-06).

63

6. Experiments

Language Model
Input
Length

Batch
Size

Learning
Rate

Number
of Epochs

Test
Accuracy

Longformer-large (da) 4,096 8 1e-05 5 0.7041
LED-base (da) 8,192 4 5e-06 5 0.7007
BigBird-large (da) 4,096 8 1e-05 5 0.7102
Reformer-5 16,384 4 5e-06 10 0.4

Table 6.12.: Finetuning the best performing combinations of pretrained language models
and classification heads on the large sample corpus to optimize results on
the test set.

Experiment Q3-2: Optimizing performance on the test set of the large corpus

Table 6.11. shows the results obtained by finetuning pretrained and domain adapted
efficient transformer language models in combination with a CNN head on the large
sample corpus.
Even the 80GB GPUs used in this experiment do not supply enough memory to train
a classification model that incorporates the large LED model version. Attempting
to train such a model leads to an exception both when limiting the input sequence
length to 8,192 as well as 4,096 tokens. Consequently, the LED-base model is used
in the remainder of the experiment. The sequence length is nonetheless limited to
8,192 tokens, as the corresponding models in previous experiments outperformed those
using a sequence length of up to 16,384 tokens.
The Longformer-large, LED-base, and BigBird-large models yield comparable perfor-
mances on the test data. The BigBird-large model obtains the highest accuracy of
71.02%. Using the large model checkpoints, therefore, only marginally improves the
observed results. Classifying patents according to their subject matter appears to be
a rather difficult task. One reason for this could be that the CPC scheme classifies
patents in fairly broad categories. The category F: Mechanical Engineering; Lightning;
Heating; Weapons; Blasting , for instance, includes a multitude of different topics and Y:
General tagging of new or cross-sectional technology contains aspects of multiple categories
by design.
Of interest is that the Reformer-5 model achieves a mere 40% test accuracy. The un-
trained Reformer model used in experiment Q2-1, thus, outperforms the Reformer-5
model by 10 percentage points. One reason for this might be that the former model
consists of fewer parameters than the latter and thus requires less training to complete
the classification task.

64

7. Conclusion and Future Work

Making a general assessment of the investigated models’ ability to encode sequences
is particularly difficult. Which models are most suited for downstream tasks cannot
be conclusively answered. However, this project’s results indicate that embeddings
produced by long sequence Transformer models do retain more information of the
original patent documents than the ones of their full self-attention counterparts. The
corresponding classification models do fit the training data better. Yet, this appears to
have a negative effect on their performance on previously unseen data. Consequently,
they seem to be more prone to overfitting.
Moreover, increasing the input sequences’ length does not automatically result in a
higher accuracy on the test data.
Domain adapting the considered language models can possibly mitigate some of the
adverse effects of overfitting to the training data. Further pretraining the individual
language models on domain specific data can, therefore, improve the performance on
downstream machine learning tasks.

The majority of the considered efficient Transformer models seem to be able to in-
corporate information about a data point’s classification far quicker than the original
full self-attention mechanism of the roBERTa model. The performance gap, however,
is less severe as the size of the training corpus increases. Moreover, the Performer,
Linformer, and Reformer models which perform an approximated attention mechanism
for all tokens, rather than limiting the number of full attention operations, also incorpo-
rate such information faster than the Longformer and BigBird models. These models
are, therefore, potentially better suited for downstream tasks with comparably small
amounts of data. However, they might also be more prone to overfitting than a model
using full self-attention. The project’s results also imply that the Longformer’s attention
window size as well as BigBird’s attention block size and number of random attention
blocks are of lesser importance for their performance on downstream tasks. One can,
therefore, potentially significantly lower the Longformer’s and BigBird’s memory and
compute requirements by adjusting their configuration.

Using a CNN classification head rather than an FNN one yields a superior performance
for all models considered. Classification models that incorporate the Longformer-large,

65

7. Conclusion and Future Work

LED-base, and BigBird-large language models deliver comparable performances on the
test split of the large sample corpus. No model achieves an accuracy that significantly
exceeds 70%. Finetuning the respective Reformer model, however, yields rather poor
results.

The project’s findings only allow conclusions about the classification of patent docu-
ments according to their subject matter. The data within individual classes of other
tasks maybe more homogeneous, resulting in a less severe trade-off between overfitting
to the training data and accurately classifying unseen documents. The information
distribution of documents of other corpora may also differ from the one of patents.
Increasing the sequence length in these cases could potentially lead to a higher increase
in performance than was observed here. Future work will, therefore, likely include
testing the examined models on tasks involving data of other domains.
Moreover, the classification task set up for this project is focused on encoder archi-
tectures. Benchmark tasks evaluating decoder or encoder-decoder architectures for
language modeling or sequence-to-sequence tasks will thus also be part of future
experiments.
The project does show that newly introduced Transformer architectures can deliver
competitive results to the original full-self attention mechanism. A comparison of their
performance on downstream tasks will likely be easier, as more pretrained language
models incorporating their approaches become available. Of particular interest, for
instance, is the backwards compatibility of the Performer. This could allow pretraining
with the benefits of full self-attention, while using the less resource intensive attention
of the Performer on downstream tasks.
Yet, it is apparent that most of the examined models, nonetheless, require vast amounts
of resources when processing longer sequences. All approaches followed with these
models either limit the number of attention operations that need to be performed or ap-
proximate the results of full self-attention. None of them, therefore, question the merits
of full self-attention itself. Of interest is consequently also whether model architectures
for sequential data will emerge that follow a completely different approach.

66

A. Appendix

A.1. Medium Sample (extended Reformer tokenizer)

Category Mean Median Mininum Maximum

a 3,493.06 2,757 305 35,282
b 2,908.16 2,467 412 25,724
c 5,475.75 4,198.5 370 130,193
d 2,872.62 2,575.5 421 23,098
e 2,767.67 2,463 470 28,093
f 2,817.77 2,413 299 18,572
g 3,970.62 3,302.5 528 28,182
h 3,368.35 2,886.5 544 29,193
y 3,302.34 2,816.5 438 29,650

overall 3,441.82 2,589 299 130,193

Table A.1.: Distribution of the number of tokens (extended Reformer tokenizer) of the
medium sized sample corpus (train split).

67

A. Appendix

Category Mean Median Mininum Maximum

a 3,839.23 2,600 642 35,959
b 2,691.26 2,334.5 554 8,329
c 4,479.83 2,842 645 26,092
d 2,825.61 2,502.5 428 12,512
e 2,482.91 2,096.5 876 7,080
f 2,647.07 2,229 899 15,513
g 4,156.71 3,390.5 884 17,607
h 3,633.90 2,733 800 16,185
y 3,647.35 2,959 642 13,087

overall 3378.21 2552 428 29422

Table A.2.: Distribution of the number of tokens (extended Reformer tokenizer) of the
medium sized sample corpus (test split).

Figure A.1.: Distribution of the number of tokens (extended Reformer tokenizer) of the
medium sized sample corpus (train split).

68

A. Appendix

Figure A.2.: Distribution of the number of tokens (extended Reformer tokenizer) of the
medium sized sample corpus (test split).

69

A. Appendix

Figure A.3.: Distribution of the number of tokens (extended Reformer tokenizer) of the
medium sized sample corpus (train split) grouped by category.

70

A. Appendix

Figure A.4.: Distribution of the number of tokens (extended Reformer tokenizer) of the
medium sized sample corpus (test split) grouped by category.

71

A. Appendix

A.2. Large Sample (extended Reformer tokenizer)

Category Mean Median Mininum Maximum

a 3,698.88 2,660.5 339 52,986
b 2,927.02 2,390.5 348 59,307
c 5,347.46 3,508.5 372 59,111
d 2,948.7 2,384.5 267 32,375
e 2,792.62 2,309.5 286 23,000
f 2,726.6 2,231 433 25,140
g 3,995.81 3,076.5 583 47,569
h 3,562.51 2,844 320 43,187
y 3,361.16 2,598.5 380 40,685

overall 3,484.53 2,615 267 59,307

Table A.3.: Distribution of the number of tokens (extended Reformer tokenizer) of the
large sample corpus (train split).

Category Mean Median Mininum Maximum

a 3650.49 2,664 591 28,341
b 2857.63 2,340.5 618 11,317
c 5953.13 3,704.5 575 45,947
d 2796.14 2,331.5 404 13,846
e 2979.69 2,316.5 605 19,466
f 2704.9 2,240 576 14,023
g 4095.54 3,052 357 54,645
h 3372.49 2,777 749 12,504
y 3179.4 2,627.5 508 14,119

overall 3,509.94 2,608.5 357 54,645

Table A.4.: Distribution of the number of tokens (extended Reformer tokenizer) of the
large sample corpus (test split).

72

A. Appendix

Figure A.5.: Distribution of the number of tokens (extended Reformer tokenizer) of the
large sample corpus (train split).

Figure A.6.: Distribution of the number of tokens (extended Reformer tokenizer) of the
large sample corpus (test split).

73

A. Appendix

Figure A.7.: Distribution of the number of tokens (extended Reformer tokenizer) of the
large sample corpus (train split) grouped by category.

74

A. Appendix

Figure A.8.: Distribution of the number of tokens (extended Reformer tokenizer) of the
large sample corpus (test split) grouped by category.

75

Bibliography

[1] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt. “Practical and
optimal LSH for angular distance.” In: Advances in neural information processing
systems 28 (2015).

[2] I. Beltagy, M. E. Peters, and A. Cohan. “Longformer: The long-document trans-
former.” In: arXiv preprint arXiv:2004.05150 (2020).

[3] C. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York,
2006.

[4] O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling, C. Monz,
P. Pecina, M. Post, H. Saint-Amand, et al. “Findings of the 2014 workshop on
statistical machine translation.” In: Proceedings of the ninth workshop on statistical
machine translation. 2014, pp. 12–58.

[5] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang,
Y. Hu, L. Ceze, et al. “{TVM}: An automated {End-to-End} optimizing compiler
for deep learning.” In: 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). 2018, pp. 578–594.

[6] Z. Chen, H. Zhang, X. Zhang, and L. Zhao. Quora question pairs. 2018.

[7] R. Child, S. Gray, A. Radford, and I. Sutskever. “Generating long sequences with
sparse transformers.” In: arXiv preprint arXiv:1904.10509 (2019).

[8] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P.
Hawkins, J. Davis, D. Belanger, L. Colwell, et al. “Masked language modeling
for proteins via linearly scalable long-context transformers.” In: arXiv preprint
arXiv:2006.03555 (2020).

[9] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P.
Hawkins, J. Davis, A. Mohiuddin, L. Kaiser, et al. “Rethinking attention with
performers.” In: arXiv preprint arXiv:2009.14794 (2020).

[10] A. Cohan, F. Dernoncourt, D. S. Kim, T. Bui, S. Kim, W. Chang, and N. Gohar-
ian. “A discourse-aware attention model for abstractive summarization of long
documents.” In: arXiv preprint arXiv:1804.05685 (2018).

76

Bibliography

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of deep bidi-
rectional transformers for language understanding.” In: arXiv preprint arXiv:1810.04805
(2018).

[12] Q. Fournier, G. M. Caron, and D. Aloise. “A practical survey on faster and lighter
transformers.” In: arXiv preprint arXiv:2103.14636 (2021).

[13] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse. “The reversible residual
network: Backpropagation without storing activations.” In: Advances in neural
information processing systems 30 (2017).

[14] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang. “Retrieval augmented
language model pre-training.” In: International Conference on Machine Learning.
PMLR. 2020, pp. 3929–3938.

[15] J. He, L. Wang, L. Liu, J. Feng, and H. Wu. “Long document classification from
local word glimpses via recurrent attention learning.” In: IEEE Access 7 (2019),
pp. 40707–40718.

[16] D. Hendrycks and K. Gimpel. “Gaussian error linear units (gelus).” In: arXiv
preprint arXiv:1606.08415 (2016).

[17] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman,
and P. Blunsom. “Teaching machines to read and comprehend.” In: Advances in
neural information processing systems 28 (2015).

[18] M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer. “Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension.” In: arXiv preprint
arXiv:1705.03551 (2017).

[19] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. “Transformers are rnns:
Fast autoregressive transformers with linear attention.” In: International Conference
on Machine Learning. PMLR. 2020, pp. 5156–5165.

[20] J. Kiesel, M. Mestre, R. Shukla, E. Vincent, P. Adineh, D. Corney, B. Stein, and
M. Potthast. “Semeval-2019 task 4: Hyperpartisan news detection.” In: Proceedings
of the 13th International Workshop on Semantic Evaluation. 2019, pp. 829–839.

[21] N. Kitaev, Ł. Kaiser, and A. Levskaya. “Reformer: The efficient transformer.” In:
arXiv preprint arXiv:2001.04451 (2020).

[22] S. B. Kotsiantis. “Supervised Machine Learning: A Review of Classification
Techniques.” In: Informatica 31.4 (2007), pp. 249–268.

[23] K. Kowsari, K. J. Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and D. Brown.
“Text Classification Algorithms: A Survey.” In: Information 10 (2019), p. 150.

77

Bibliography

[24] A. Krizhevsky, G. Hinton, et al. “Learning multiple layers of features from tiny
images.” In: (2009).

[25] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D.
Epstein, I. Polosukhin, J. Devlin, K. Lee, et al. “Natural questions: a benchmark for
question answering research.” In: Transactions of the Association for Computational
Linguistics 7 (2019), pp. 453–466.

[26] J.-S. Lee and J. Hsiang. “Patent classification by fine-tuning BERT language
model.” In: World Patent Information 61 (2020), p. 101965.

[27] J. Lever, M. Krzywinski, and N. Altman. “Classification evaluation.” In: Nature
Methods 13 (2016), pp. 603–604.

[28] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoy-
anov, and L. Zettlemoyer. “Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension.” In: arXiv preprint
arXiv:1910.13461 (2019).

[29] T. Lin, Y. Wang, X. Liu, and X. Qiu. “A survey of transformers.” In: arXiv preprint
arXiv:2106.04554 (2021).

[30] D. Linsley, J. Kim, V. Veerabadran, C. Windolf, and T. Serre. “Learning long-range
spatial dependencies with horizontal gated recurrent units.” In: Advances in neural
information processing systems 31 (2018).

[31] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov. “Roberta: A robustly optimized bert pretraining ap-
proach.” In: arXiv preprint arXiv:1907.11692 (2019).

[32] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. “Learning
word vectors for sentiment analysis.” In: Proceedings of the 49th annual meeting
of the association for computational linguistics: Human language technologies. 2011,
pp. 142–150.

[33] S. Merity, C. Xiong, J. Bradbury, and R. Socher. “Pointer sentinel mixture models.”
In: arXiv preprint arXiv:1609.07843 (2016).

[34] N. Nangia and S. R. Bowman. “Listops: A diagnostic dataset for latent tree
learning.” In: arXiv preprint arXiv:1804.06028 (2018).

[35] S. Narayan, S. B. Cohen, and M. Lapata. “Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization.”
In: arXiv preprint arXiv:1808.08745 (2018).

[36] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N.
Kalchbrenner, A. Senior, and K. Kavukcuoglu. “Wavenet: A generative model for
raw audio.” In: arXiv preprint arXiv:1609.03499 (2016).

78

Bibliography

[37] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and M.
Auli. “fairseq: A fast, extensible toolkit for sequence modeling.” In: arXiv preprint
arXiv:1904.01038 (2019).

[38] F. Petroni, T. Rocktäschel, P. Lewis, A. Bakhtin, Y. Wu, A. H. Miller, and S. Riedel.
“Language models as knowledge bases?” In: arXiv preprint arXiv:1909.01066 (2019).

[39] S. Pradhan, A. Moschitti, N. Xue, O. Uryupina, and Y. Zhang. “CoNLL-2012
shared task: Modeling multilingual unrestricted coreference in OntoNotes.” In:
Joint Conference on EMNLP and CoNLL-Shared Task. 2012, pp. 1–40.

[40] J. Qiu, H. Ma, O. Levy, S. W.-t. Yih, S. Wang, and J. Tang. “Blockwise self-attention
for long document understanding.” In: arXiv preprint arXiv:1911.02972 (2019).

[41] D. R. Radev, P. Muthukrishnan, V. Qazvinian, and A. Abu-Jbara. “The ACL
anthology network corpus.” In: Language Resources and Evaluation 47.4 (2013),
pp. 919–944.

[42] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. “Squad: 100,000+ questions for
machine comprehension of text.” In: arXiv preprint arXiv:1606.05250 (2016).

[43] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. “ImageNet Large
Scale Visual Recognition Challenge.” In: International Journal of Computer Vision
(IJCV) 115.3 (2015), pp. 211–252. doi: 10.1007/s11263-015-0816-y.

[44] E. Sharma, C. Li, and L. Wang. “Bigpatent: A large-scale dataset for abstractive
and coherent summarization.” In: arXiv preprint arXiv:1906.03741 (2019).

[45] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C.
Potts. “Recursive deep models for semantic compositionality over a sentiment
treebank.” In: Proceedings of the 2013 conference on empirical methods in natural
language processing. 2013, pp. 1631–1642.

[46] Y. Tay, D. Bahri, D. Metzler, D.-C. Juan, Z. Zhao, and C. Zheng. “Synthesizer:
Rethinking self-attention for transformer models.” In: International conference on
machine learning. PMLR. 2021, pp. 10183–10192.

[47] Y. Tay, D. Bahri, L. Yang, D. Metzler, and D.-C. Juan. “Sparse sinkhorn attention.”
In: International Conference on Machine Learning. PMLR. 2020, pp. 9438–9447.

[48] Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao, L. Yang, S. Ruder,
and D. Metzler. “Long range arena: A benchmark for efficient transformers.” In:
arXiv preprint arXiv:2011.04006 (2020).

[49] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. “Efficient transformers: A survey.”
In: ACM Computing Surveys (CSUR) (2020).

79

https://doi.org/10.1007/s11263-015-0816-y

Bibliography

[50] T. H. Trinh and Q. V. Le. “A simple method for commonsense reasoning.” In:
arXiv preprint arXiv:1806.02847 (2018).

[51] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin. “Attention is all you need.” In: Advances in neural information
processing systems 30 (2017).

[52] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. “GLUE: A multi-
task benchmark and analysis platform for natural language understanding.” In:
arXiv preprint arXiv:1804.07461 (2018).

[53] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. “Linformer: Self-attention
with linear complexity.” In: arXiv preprint arXiv:2006.04768 (2020).

[54] J. Welbl, P. Stenetorp, and S. Riedel. “Constructing datasets for multi-hop reading
comprehension across documents.” In: Transactions of the Association for Computa-
tional Linguistics 6 (2018), pp. 287–302.

[55] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D.
Manning. “HotpotQA: A dataset for diverse, explainable multi-hop question
answering.” In: arXiv preprint arXiv:1809.09600 (2018).

[56] M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti, S. Ontanon, P. Pham,
A. Ravula, Q. Wang, L. Yang, et al. “Big bird: Transformers for longer sequences.”
In: Advances in Neural Information Processing Systems 33 (2020), pp. 17283–17297.

[57] R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner, and Y. Choi.
“Defending against neural fake news.” In: Advances in neural information processing
systems 32 (2019).

[58] X. Zhang, J. Zhao, and Y. LeCun. “Character-level convolutional networks for text
classification.” In: Advances in neural information processing systems 28 (2015).

[59] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S.
Fidler. “Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books.” In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 19–27.

80

List of Figures

3.1. Illustration of scaled dot-product attention 7
3.2. Architecture of an encoder block . 8
3.3. Illustration of multi-head attention . 9
3.4. Illustration of the computation of the attention matrix 10
3.5. Illustration of the taxonomy of efficient transformers developed by Tay

et al. 12
3.6. Illustration of BigBird’s attention mechanism 14
3.7. Illustration of BigBird’s block-wise attention mechanism 14
3.8. Illustration of Longformer’s attention mechanism 16
3.9. Illustration of angular locality sensitive hashing 20
3.10. Illustration of LSH Attention attention . 20
3.11. Illustration of transformer spectrum analysis 21
3.12. Illustration of the Linformer’s multi-head attention mechanism 22
3.13. Illustration of the Linformer’s attention computation 23
3.14. Illustration of the Linformer’s inference time in relation to the input

sequence’s length . 23
3.15. Illustration of the Performer’s approximation of the attention matrix . . 24
3.16. Illustration of a feed-forward neural network 26
3.17. Example of a CNN for text classification 28

4.1. Distribution of the number of tokens (Longformer tokenizer) of the
medium sized sample corpus (train split) 32

4.2. Distribution of the number of tokens (Longformer tokenizer) of the
medium sized sample corpus (test split) 32

4.3. Distribution of the number of tokens (Longformer tokenizer) of the
medium sized sample corpus (train split) grouped by category 33

4.4. Distribution of the number of tokens (Longformer tokenizer) of the
medium sized sample corpus (test split) grouped by category 34

4.5. Distribution of the number of tokens (Longformer tokenizer) of the large
sample corpus (train split) . 36

4.6. Distribution of the number of tokens (Longformer tokenizer) of the large
sample corpus (test split) . 37

81

List of Figures

4.7. Distribution of the number of tokens (Longformer tokenizer) of the large
sample corpus (train split) grouped by category 38

4.8. Distribution of the number of tokens (Longformer tokenizer) of the large
sample corpus (test split) grouped by category 39

5.1. Methodology of the experiments conducted to investigate question 1 . . 42
5.2. Methodology of the experiments conducted to investigate question 2

(Q2-1 & Q2-2) . 45
5.3. Methodology of the experiments conducted to investigate question 2 (Q2-3) 46
5.4. Methodology of the experiments conducted to investigate question 3 . . 49

6.1. CNN classification head . 52
6.2. Results of Experiment Q1-1: Training vs. Test Accuracy 52
6.3. Results of Experiment Q2-3 (Longformer) 61
6.4. FNN classification head . 63

A.1. Distribution of the number of tokens (extended Reformer tokenizer) of
the medium sized sample corpus (train split) 68

A.2. Distribution of the number of tokens (extended Reformer tokenizer) of
the medium sized sample corpus (test split) 69

A.3. Distribution of the number of tokens (extended Reformer tokenizer) of
the medium sized sample corpus (train split) grouped by category . . . 70

A.4. Distribution of the number of tokens (extended Reformer tokenizer) of
the medium sized sample corpus (test split) grouped by category 71

A.5. Distribution of the number of tokens (extended Reformer tokenizer) of
the large sample corpus (train split) . 73

A.6. Distribution of the number of tokens (extended Reformer tokenizer) of
the large sample corpus (test split) . 73

A.7. Distribution of the number of tokens (extended Reformer tokenizer) of
the large sample corpus (train split) grouped by category 74

A.8. Distribution of the number of tokens (extended Reformer tokenizer) of
the large sample corpus (test split) grouped by category 75

82

List of Tables

3.1. Overview of efficient transformer approaches examined in this project . 13

4.1. BigPatent sample corpora sizes . 30
4.2. Distribution of the number of tokens (Longformer tokenizer) of the

medium sized sample corpus (train split) 31
4.3. Distribution of the number of tokens (Longformer tokenizer) of the

medium sized sample corpus (test split) 31
4.4. Distribution of the number of tokens (Longformer tokenizer) of the large

sample corpus (train split) . 35
4.5. Distribution of the number of tokens (Longformer tokenizer) of the large

sample corpus (test split) . 36

6.1. Reformer language models . 53
6.2. Results of Experiment Q1-1 . 54
6.3. Results of Experiment Q1-2 . 54
6.4. Results of Experiment Q1-3 . 56
6.5. Results of Experiment Q2-1 with the medium sized corpus 58
6.6. Results of Experiment Q2-1 with the medium sized corpus (with a feed-

forward size of 3,072 for reference) . 58
6.7. Results of Experiment Q2-1 with the large corpus 59
6.8. Results of Experiment Q2-1 with the large corpus (with a feed-forward

size of 3,072 for reference) . 59
6.9. Results of Experiment Q2-2 . 60
6.10. Results of Experiment Q2-3 (BigBird) . 62
6.11. Results of Experiment Q3-1 . 63
6.12. Results of Experiment Q3-2 . 64

A.1. Distribution of the number of tokens (extended Reformer tokenizer) of
the medium sized sample corpus (train split) 67

A.2. Distribution of the number of tokens (extended Reformer tokenizer) of
the medium sized sample corpus (test split) 68

A.3. Distribution of the number of tokens (extended Reformer tokenizer) of
the large sample corpus (train split) . 72

83

List of Tables

A.4. Distribution of the number of tokens (extended Reformer tokenizer) of
the large sample corpus (test split) . 72

84

	Acknowledgments
	Abstract
	Contents
	Introduction
	Prior Related Work
	Background
	The Transformer and Its Limitations
	Attention
	Architecture
	Limitations

	Efficient Transformers
	Overview
	BigBird
	Longformer
	Longformer Encoder-Decoder
	Reformer
	Linformer
	Performer

	Classification Heads
	Feed-forward Neural Network
	Convolutional Neural Network

	Corpora
	BigPatent Corpus
	Sample Corpora
	Medium Sample
	Large Sample

	Methodology
	Research Question 1: Which methods and models to encode long text sequences are most suited for downstream machine learning tasks?
	Question 2: How does adapting a model’s attention mechanism to accommodate longer sequences effect performance on downstream machine learning tasks?
	Question 3: Which classification model is most appropriate for patent subject matter classification?

	Experiments
	Research Question 1: Which methods and models to encode long text sequences are most suited for downstream machine learning tasks?
	Question 2: How does adapting a model’s attention mechanism to accommodate longer sequences effect performance on downstream machine learning tasks?
	Question 3: Which classification model is most appropriate for patent subject matter classification?

	Conclusion and Future Work
	Appendix
	Medium Sample (extended Reformer tokenizer)
	Large Sample (extended Reformer tokenizer)

	Bibliography
	List of Figures
	List of Tables

