
Internal

Chair of Software Engineering for Business Information Systems (sebis) 

Faculty of Informatics

Technische Universität München

wwwmatthes.in.tum.de

Master Thesis Kick-Off in Collaboration with Allianz SE
Min Jeong Yu, 030222



Internal

Outline

Motivation

Research Approach

Current State

Roadmap

© sebis11/02/2022 Min Jeong Yu 2



Internal

Motivation

© sebis11/02/2022 Min Jeong Yu 3

Why is Architectural Debt (AD) important? 

Architectural inadequacy is 

the most encountered 

instances of TD.

Architectural aspect of TD 

has leverage within overall 

development lifecycle.

Lack of quantitative measure / tool to 

continuously manage AD

AD concerns the cost of long-

term maintenance and 

evolution of a software 

system instead of the visible 

short-term business value.

Risk when AD makes adding new 

business value so slow -> 

widespread refactoring or rebuilding 

needed

Holvitie et al., 2014 Kruchten, 2012 Kruchten, 2012

Martini et al., 2014 Brown et al., 2010



Internal

Research Approach

Goal & Research Questions
R

e
s
e

a
rc

h
Q

u
e

s
ti
o

n
s

Designing an Enterprise-wide Governance Framework for Management of Architectural

Debt

Provide guidance on measuring, reducing and governing AD, provide transparency of AD 

management

RQ 1: What is architectural debt?

RQ 3: How should business build the governance framework on handling architectural 

debt?

RQ 2: How should architectural debt be quantified?

T
it
le

G
o
a
l

© sebis11/02/2022 Min Jeong Yu 4



Internal

M
e

th
o

d
s

Research Approach

© sebis11/02/2022 Min Jeong Yu 5

RQ 1: Definition of AD

RQ 2: Quantification of AD

RQ 3: Governance Framework

Literature 

Review

Expert Interview

+ Survey 
Gartner Research Board

Solution

Architecture
Allianz Technology

Application

Landscape
ADOIT

IT Incidents / 

Change Request

compare with

rank the instruments acc to significance 

and indirectly quantify the AD

provides information for

Resource and 

Fund Allocation

Role and

Responsibility

in Organization

Accountability

includes

R
e
s
e
a
rc

h

Q
u
e
s
ti
o

n
s

RQ 1: What is architectural debt?

RQ 3: How should business build the governance framework on handling architectural debt?

RQ 2: How should architectural debt be quantified?

based on



Internal

Research Approach

© sebis11/02/2022 Min Jeong Yu 6

Literature Review

Back & Forward Snowballing 

Method 

String & Search Term

1. “technical debt” AND architec*

2. “definition” OR “define” OR 

“desri*”

3. "quantif*" OR "comput*" OR 

"measur*" OR "valu*" 

4. "governance" OR "manage*" 

OR "handl*"

Quality Check

▪ Abstract reading and 

summarize to rate relevance

▪ Inclusion & Exclusion 

Criteria

Search

▪ IEEE

▪ Scopus

▪ ACM

▪ In abstract & title

Quality Check

▪ Abstract reading and 

summarize to rate relevance

▪ Inclusion & Exclusion 

Criteria

Data Collection & Analysis



Internal

Current State

© sebis11/02/2022 Min Jeong Yu 7

Results of first literature review

RQ 1: Definition of AD

The cumulative impact of 

expedient design and 

implementation on the 

continued evolution of a 

system, which can make future 

changes more costly or 

impossible. 

Technical Debt (TD)

Intentional or unintentional 

software architectural decisions 

that differ from best practices 

or use immature or misapplied 

software architecture methods.

Architectural Debt (AD)

The gap between the existing

state of a software and some

hypothesized ideal state in

which the system is optimally

successful.

Enterprise Architecture Debt Interest Principal

Types of TD

Architectural TD, 

Build Debt, 

Infrastructure TD, 

Requirement TD, 

Test Automation TD, 

Code TD

“ “ 

The deviation of the 

currently present state of 

an enterprise from a 

hypothetical ideal state.

“ “ 

The additional effort needed 

to spend on maintaining the 

software, because of its 

decayed design-time quality 

“ 

“ 

The effort that is required to 

address the difference 

between the current and 

optimal level of design-time 

quality, in an immature 

software artifact or the 

complete software system

Cunningham, 1992 Alves et al., 2014

Hacks et al., 2019 Ampatzoglou et al., 2015

Ampatzoglou et al., 2015

Besker et al., 2018 Brown et al., 2010



Internal

© sebis11/02/2022 Min Jeong Yu 8

Current State

Results of first literature review

▪ Architectural dependency violations

▪ Inadequacies in the use of patterns or naming conventions

▪ Code complexity issue

▪ Integration issue with resources and subsystems

▪ Lack of mechanism to deal with implementation and test of non-functional requirements

Categories of AD

▪ Adding functionality into an overly large module

▪ Incomplete standards compliance

▪ Incurred over time as the system is updated and software ages

▪ Throughout the development cycle, global architecture undermined -> decreased intellectual 

control and fragmented changes

Cause of AD

Negative Effect

▪ QA’s maintainability and evolvability

▪ Decay instances that impact the lifecycle properties like understandability, testability, 

extensibility, reusability and reliability. 

Positive Effect

▪ Strategic benefits (shorter time to market)

Effects of AD

Besker et al., 2018

Besker et al., 2018, Rosser et al., 2021

Li et al., 2014, Besker et al., 2018



Internal

Current State

© sebis11/02/2022 Min Jeong Yu 9

Results of first literature review

▪ Identification – Measurement – Prioritization – Repayment – Monitoring

▪ Main goal of continuous and iterative system monitoring is to capture and track the presence 

of AD within a system, to provide early warnings to detect costs and risks and to map 

architectural dependencies or pattern drift to decay.

▪ Key factor: If & When to refactor architecture.

Management of AD (ADM)

▪ Translating architectural debt into economic consequences and estimating principal cost & 

interest.

▪ Inconsistency between different levels of abstraction in the architectural design is difficult to 

detect, but an important source of AD.

▪ Through communication across functions & networks, loss of essential information.

▪ Interest hidden from stakeholders, difficult to decide if refactoring should be done. 

▪ Benefits of refactoring is hard to quantify or justify.

Challenges of AD Mangement

Li et al. 2014, Besker et al., 2018

Besker et al., 2018



Internal

Current State

Alves, N.S.R., Ribeiro, L.F., Caires, V., Mendes, T.S., Spinola, R.O., 2014. Towards an ontology of terms on technical debt. 

In: Managing Technical Debt (MTD), 2014 Sixth International Workshop on, pp. 1–7. 

Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., 2015. The financial aspect of managing technical debt: a 

systematic literature review. Inf. Software Technol. 64, 52.

Besker, T., Martini, A. and Bosch, J., 2018. Managing architectural technical debt: A unified model and systematic literature 

review. Journal of Systems and Software, 135, pp. 1-16.

Cunningham, W., 1992. The WyCash portfolio management system. In: 7th Inter- national Conference on Object-Oriented 

Programming, Systems, Languages, and Applications (OOPSLA ’92), pp. 29–30. 

Hacks, S., Hofert, H., Salentin, J., Yeong, Y.C. and Lichter, H., 2019. Towards the definition of enterprise architecture 

debts, Proceedings - IEEE International Enterprise Distributed Object Computing Workshop, EDOCW 2019, pp. 9-16.

Holvitie, J., Leppanen, V., Hyrynsalmi, S., 2014. Technical debt and the effect of agile software development practices on it -

An industry practitioner survey, Proceedings - 2014 6th IEEE International Workshop on Managing Technical Debt, MTD 

2014 2014, pp. 35-42.

Kruchten, P., 2012. Strategic management of technical debt: tutorial synopsis, Proceedings - International Conference on 

Quality Software, pp. 282–284.

Li, Z., Liang, P., Avgeriou, P. , 2014a. Chapter 9 - architectural debt management in value-oriented architecting. In: 

Economics-Driven Software Architecture. Morgan Kaufmann, Boston, pp. 183–204.

Martini, A. , Bosch, J. , Chaudron, M. , 2014. Architecture technical debt: understanding causes and a qualitative model. In: 

Software Engineering and Advanced Appli- cations (SEAA), 2014 40th EUROMICRO Conference on, pp. 85–92.

© sebis11/02/2022 Min Jeong Yu 10

Literature Review Sources



Internal

Roadmap

Finish Literature Review

Expert Interviews

Model Draft

Survey Preparation

© sebis11/02/2022 Min Jeong Yu 11

Next Steps



Internal

Submission

date

Thesis Roadmap

© sebis11/02/2022 Min Jeong Yu 12

2022

January March April May June July

Research plan / 

setup

Finish thesis5

Analyze & conclusion4

Data collection 1 

(lit review, interviews)2

Data collection 2

(survey, application data)3

1

15

February

Abschluss 

presentation

Kick-off

presentation

14.Feb

Bogdan

Data request

22.Feb


