

Outline

Motivation

Research Approach

Related Work

Result

- **Expert Interview & Survey**
- **Quantification Model** II.
- Case Study III.
- Governance Framework IV.

Conclusion

Motivation

Why is Architectural Debt (AD) important?

Architectural inadequacy is the most encountered instances of TD.

Holvitie et al., 2014

Architectural aspect of TD has leverage within overall development lifecycle.

Kruchten, 2012

AD concerns the cost of longterm maintenance and evolution of a software system instead of the visible short-term business value.

Kruchten, 2012

Risk when AD makes adding new business value so slow -> widespread refactoring or rebuilding needed

Martini et al., 2014

Lack of quantitative measure / tool to continuously manage AD

Brown et al., 2010

Research Approach

Goal & Research Questions

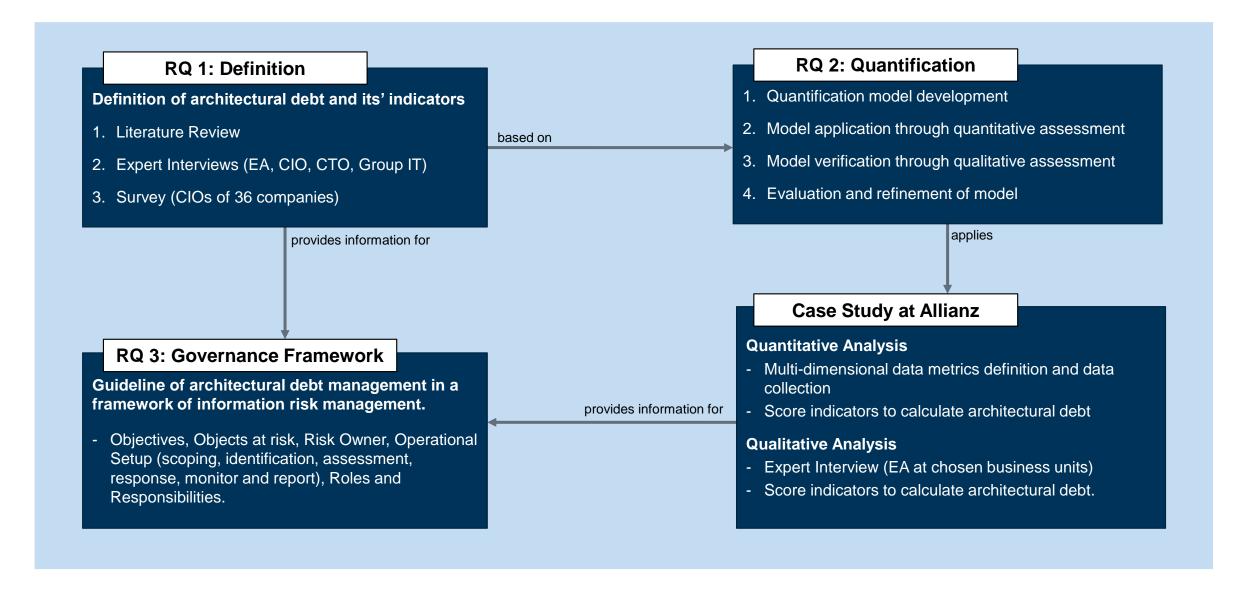
litle

Designing an Enterprise-wide Governance Framework for Management of Architectural Debt

Goal

Provide guidance on measuring, reducing and governing AD, provide <u>transparency</u> of AD management

Research Questions


RQ 1: What is architectural debt?

RQ 2: How should architectural debt be quantified?

RQ 3: How should business build the governance framework on handling architectural debt?

Research Approach

Literature Review

Existing definitions

Technical debt:

A collection of design or implementation constructs that are expedient in the short term, but set up a technical context that can make a future change more costly or impossible.

Architectural Debt:

Entirety of the technical debt incurred at the architectural level in a software-intensive system. Verdecchia

"

Enterprise Architecture Debt:

Architectural Debt:

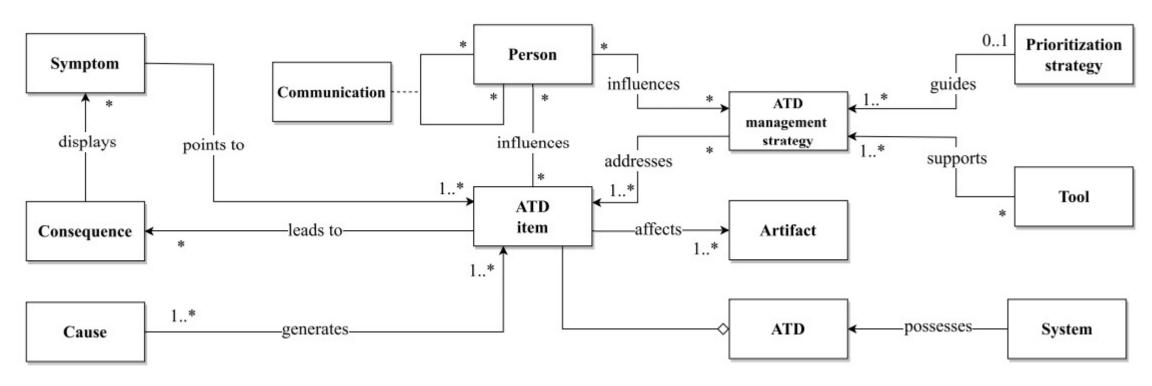
Problems encountered in project

architecture, for example, violation of

modularity, which can affect architectural

requirements. – Alves et al

A metric that depicts the deviation of the currently present state of an enterprise from a hypothetical ideal state – Hacks


"

04/07/2022 Min Jeong Yu

Architectural Debt Model

Verdecchia explains the relationships and artifacts around architectural debt

Verdecchia 2021

Literature Review

Existing quantification methods

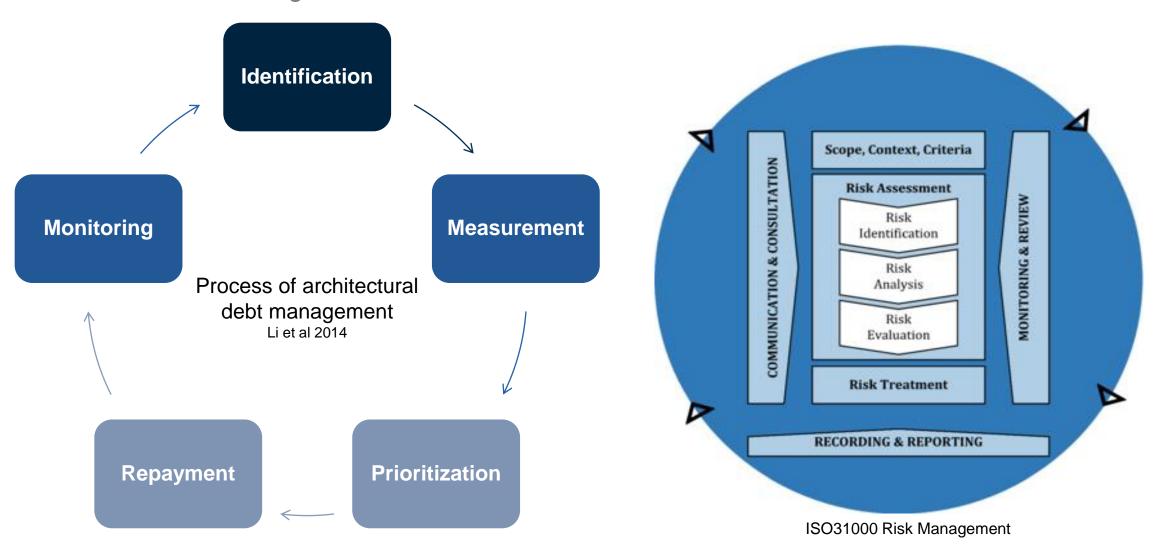
Software Quality Model (ISO 25010)

Product quality model composed of 8 characteristics

Functionality, Reliability, Usability, Efficiency, Maintainability, Portability

Consequences of Architectural Debt

- Maintenance costs, higher evolution Martini
- Lifecycle properties (understandability, testability, extensionability, reusability) Mo
- Business- (risk), functionality- (resistance to change), product development-related (difficulties in parallel work) - Verdecchia


Quantification Methods and Tools

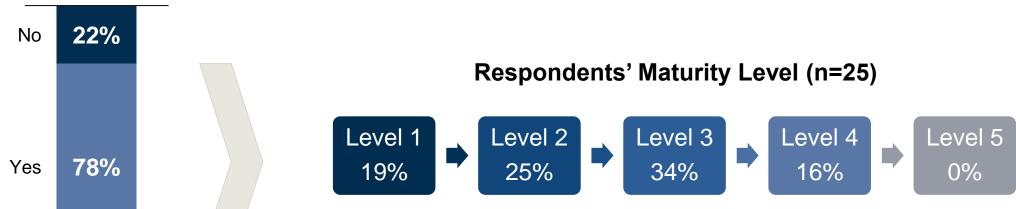
- Technical debt dashboard Rosser
- Characteristics checklist -Rosser
- Spot evaluation Rosser
- History coupling probability matrix Xiao
- Enterprise Architecture Debt: artifact-based framework for business-IT misalignment symptom detection -Hacks

Literature Review

Architectural debt management

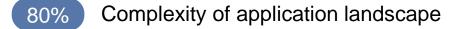
Expert Interview and Survey

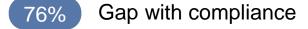
Snapshot of respondents

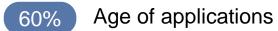


Interview Respondent	N=6		
Title of Respondent	Group CTO at Allianz SE Group CIO at Allianz SE Head of IT Strategy and IT Management at Allianz SE CIO at Allianz Technology SE Enterprise Architect at Allianz SE Consultant at Mckinsey		
Survey Respondent	N=32		
Industry	Healthcare, insurance, automotive, tobacco, food, financial services, pharmaceuticals, retail, chemicals, beverages, government		
Region	Americas, Asia and Europe		
Revenues	< 10 billion dollar - +100 billion dollar		
Title of Respondent	group chief architect director enterprise architecture governance enterprise architect IT director head of enterprise architecture senior systems manager regional chief architect	strategic consultant to CIO lead solutions architect VP business applications VP architecture head of strategy principal enterprise architect head of mergers, acquisitions & diversities	

Survey Result

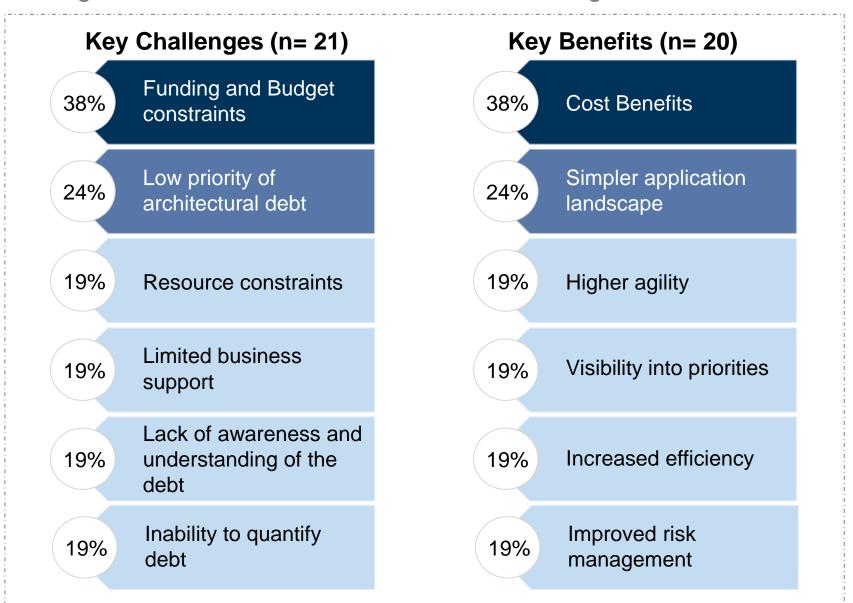





Q: What is your organization's maturity in identifying, quantifying, tracking, and governing architectural debt of the application landscape?

Indicator for Definition (n=25)

Q: Which of the following components are included in how your organization defines architectural debt? Please select all that apply.


Metrics for Quantification (n=25)

Q: What metrics do you use to measure or quantify your architectural debt? Please select all that apply.

Survey Result

Key challenges and benefits to architectural debt management

Q: What do you believe are the top barriers or challenges to architectural debt management?

Q: What do you believe are the top benefits of a systematic approach to architectural debt management?

Definition of Architectural Debt

Indicators of Architectural Debt

Architectural debt is a term used to explain the gap between the desired target application landscape and the current as-is state of the application landscape due to intentional or unintentional software architectural decisions. On this research, the focus is particularly on the scope of architectural debt of the whole application landscape, instead of a single system/application.

Gap with Compliance

Resistance To Change

Indicators of **Architectural Debt**

Strategic Importance

Maintenance Effort

Complexity

Quantification

Quantification Model Development

1. Define indicators

2. Multi-dimensional data metrics

Indicator 1	Indicator 2
Data 1.1	Data 2.1
Data 1.2	Data 2.2

3. Data collection

	Data 1.1	Data 1.2	Data 2.1	Data 2.2
BU 1	X	Xx	Xx	Xx
BU 2	X	XX	XX	XX

4. Rank data (1: good - 3: bad)

	Data 1.1	Data 1.2	Data 2.1	Data 2.2
BU 1	1	2	2	1
BU 2	2	3	1	3

5. Combine data score to rank per indicator

	Indicator 1	Indicator 2
BU 1	1.5	1.5
BU 2	2.5	2

6. Calculate architectural debt risk score (1: very low – 5: very high)

	Average	Arch Debt
BU 1	1.5	X
BU 2	2.25	X

Case Study – Quantification Model Application

Multi-dimensional Quantification

Resistance to change	Maintenance Effort	Strategic Importance	Complexity	Gap with Compliance
Change Request	IT Incidents	Major Outage	# of Applications in Landscape	Availability: Stability, Breaches
Budget, Run Cost	Reassignments of incidents	Business Value of Business Application	# of Interfaces / Dependencies	Compliance with Group Solutions
Project Duration	Expected Lifetime			
Problem Management				

Case Study – Quantification Model Application

Data used for quantification

Number of Applications	Total number of business applications in an application landscape
Number of Interfaces	Total number of interfaces in an application landscape
Number of Relationship per application	(# flows to + # flows from) / total number of applications Flows to: nr of business applications to which the flow of an application is going Flows from: nr of business applications from which the flow of an application is coming
Incident Resolution Time	Number of incidents resolved in target time / total number of incidents resolved
Incident Response Time	Number of assignments owned in target time / total number of incidents assigned
Major Outage within SLA	Number of major outages with time to repair within KPI target of 4 hours / total number of major outages Major outage: Priority 1 incidents that classifies as having a critical impact
Overall SLA Stability	Number of services/measures with availability KPI met / total number of availability measures
Breaches	Count of instances not fulfilling the stability SLA
Compliance	Number of non-compliant applications / total number of business applications

^{*} SLA: Service Level Agreement

Case Study – Quantification Model Application

Quantitative Analysis Result

1. Calculation of data and level (1: good, 3: bad)

	BU 1	BU 2	BU 3
Size of application	big	big	big
# of interfaces	3	3	3
# Relation per app	3	3	1
Incident Resolution Time	3	2	2
Incident Response Time	1	2	1
Major Outage within SLA	1	3	2
Overall SLA Stability	2	2	1
Breaches	3	3	2
Compliance	3	3	3

2. Combination of levels for each indicator (1: good, 3: bad)

	BU 1	BU 2	BU 3	3
Complexity		3	3	2
Maintenance		2	2	1,5
Strategic importance		1	3	2
Gap with Compliance	2	2,667	2,667	2
Average	2,	1667	2,667	1,875

3. Calculation of architectural debt risk score(1: very low, 5: very high)

	BU 1	BU 2	BU 3	
Overall Architectural Debt		3	5	3

04/07/2022 Min Jeong Yu

^{*}Size of application is not ranked.

Case Study – Quantification Model Verification

Qualitative Analysis Result

	Quantitative Assessment Result	[BU 3] Interview 1	[BU 3] Interview 2
Title of Interviewee		Executive Enterprise Architect	Application Governance Architect
Assessment (1:excellent 5: poor)	Maintenance Effort 2 Strategic Importance 3	Complexity 4	Maintenance Effort 4 Strategic Importance 1
Remarks		Clustering of global / local operation	Major outage cannot represent strategic importance alone. (gap with target landscape)

- Assessments correspond to the results from the quantitative assessment result.
- Justifications and judgment on scores were given. Ex) due to global operation and history of combining different business units to the current application landscape, complexity is high.

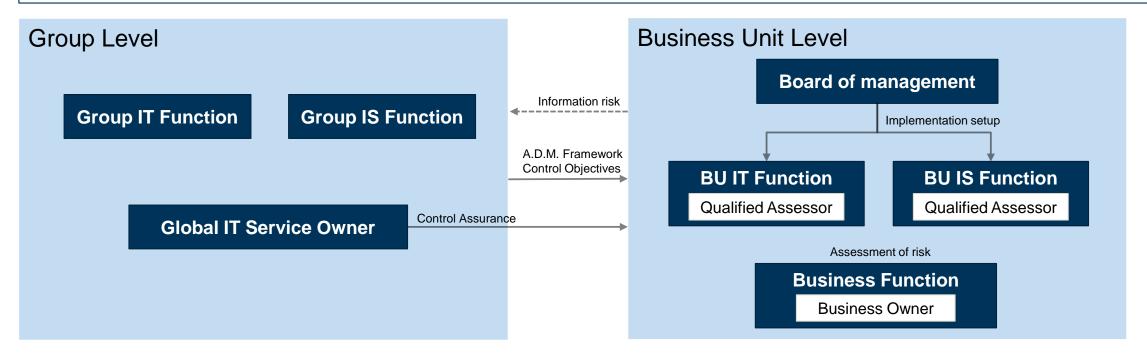
04/07/2022 Min Jeong Yu

Governance Framework includes:

Objectives, definition of objects at risk and risk ownership, roles and responsibilities, and operational setup of architectural debt management

1. Objectives

Provide an integrated method, process and supporting tool throughout an enterprise. This ensures that architectural debt is consistently documented and managed across business units.


2. Define objects at risk and risk ownership

Information Risk Owner	Object at Risk
Business Owner	Application Landscape [Primary]
Business Owner	Business Applications [Secondary]

Governance Framework

- 3. Roles and Responsibilities
- Group IT&IS: overall responsibility
- Global IT service owner: assessing inherent risk associated to their mandatory shared IT service
- Board of management at business unit: implementation of organizational and operational setup to comply to governance framework
- Qualified assessors: assessment of information risks within their area of responsibility
- **Business owners**: risk owners that assess risk for their business applications and ensure mitigations to achieve acceptable level of residual risk.

Governance Framework

4. Operational Setup

- i. Scoping: prioritization of objects at risk for regular testing of controls
- ii. Identification: continuous process to identify architectural debt
- iii. Assessment: architectural debt is calculated and qualified assessor verifies the score
- iv. Response: highly migrate | mitigate risk | accept risk
- v. Monitoring & Reporting: track implementation and report to relevant stakeholder. Re-validation of architectural debt based on severity level.

Field	Туре	Description
Object at risk	Reference	Primary objects at risk
Qualified assessor	Person	Person, who assesses the risk
Quantitative Assessment Score	Enum	Rating of architectural debt risk score acc. to quantitative assessment (1: very low – 5: very high)
Qualitative Assessment Score	Enum	Rating of architectural debt risk score acc. to judgment of qualified assessor (1: very low – 5: very high)
Data privacy impact	Bool	Indicator showing whether a data privacy impact is associated with risk or not (TRUE – FALSE)

Information Risk Do	cumentation
---------------------	-------------

Risk Migration Plan	Туре	Description
Information risk	reference	Assessed Information Risk that is to be highly migrated
Confirmation	person	Stakeholders that confirms the migration/replace plan
Start date	date	Date at which the forward planning is started
End date	date	Date at which the forward planning is planned to be finished
Progress	enum	Monthly confirmations for the progress of the plan (on track – delayed)

Risk Migration/Replace Plan

Conclusion

Limitation and Outlook

Limitation

Quantification Model

- Manual quantification system
- Impact-based identification, rather than causebased. May contain other factors than architectural debt

Case Study

- Different data quality and operating system among business units leading biased ranking result
- Limited control and access on data
- Qualitative Assessment may be biased due to different knowledge/expertise level of interviewees.

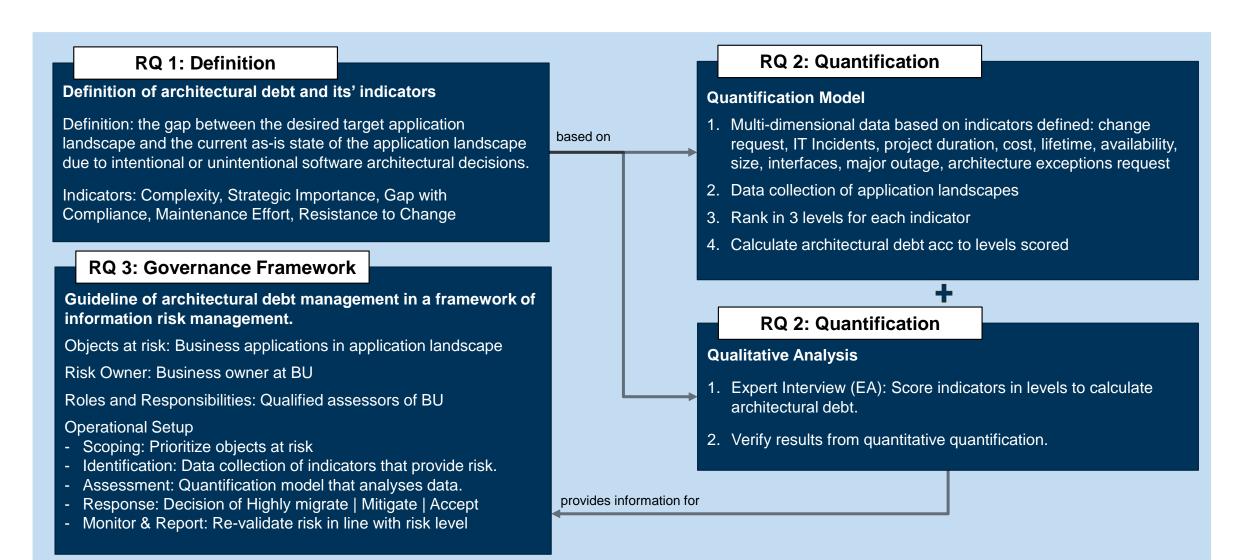
Outlook

Quantification Model

- Automated quantification system
- Monetary value quantification (principal, interest) for communication to business

Case Study

- Expansion and enhancement of metrics and indicators
- Further analysis on data like clustering size and characteristics of application landscape



Appendix

04/07/2022 Min Jeong Yu

Appendix – Result

Appendix – Survey Plan

Action	Actors
Initial agreement on content and plan	conductor, research board
First draft of questionnaire	conductor
Review and final draft	conductor, editor from research board
Broadcast survey	research board
Respond to survey – 3 weeks	respondents
Collection of responses	conductor, research board
Analysis and conclusion	conductor

Appendix – Quantification of Architectural Debt

Qualitative Assessment through Expert Interviews

Resistance to change	Maintenance Effort	Strategic Importance	Complexity	Gap with Compliance
Change request, Project duration, Budget	IT Incidents, Lifetime	Major Outage	Size of landscape, Dependencies / Interfaces	Availability, Architecture Exceptions Requests

Assess your OE's architectural debt in the application landscape for each indicator above.

Level 1 – Optimized

Level 2 - Good

Level 3 – Fair

Level 4 – Poor

Level 5 – Non-existent

04/07/2022 Min Jeong Yu

Appendix – Risk Assessment Steps

Assessment Steps	Rating	Example			
Collection of data and level per metrics	(1: good, 3: bad)	Size of application # of interfaces # Relation per app Incident Resolution Time Incident Response Time Major Outage within SLA Overall SLA Stability Breaches Compliance	big 3 3 3 1	big 3 3 2 2 3 3 3 3	big 3 1 2 1 2 1 2 3
2. Combination of levels for each indicator	(1: good, 3: bad)	Complexity Maintenance Strategic importance Gap with Compliance Average	BU 1 BI 3 2 1 2,667 2,1667	3 2 3 2,667 2,667	2 1,5 2 2 1,875
3. Architectural debt risk score	(1: very low, 5: very high)	Overall Architectural De		U 2 BU 3	3
4. Verify score by judging indicators and calculating the score in qualitative assessment	(1: very low, 5: very high)	Resistance to Maintenance Strategic Important Complexity - Gap with Contractural	e Effort portance mpliance		x x x

Appendix – Information Risk Information

Field	Туре	Description
Object at risk	Reference	Primary objects at risk
Qualified assessor	Person	Person, who assesses the risk
Quantitative Assessment Score	Enum	Rating of architectural debt risk score acc. to quantitative assessment (1: very low – 5: very high)
Qualitative Assessment Score	Enum	Rating of architectural debt risk score acc. to judgment of qualified assessor (1: very low – 5: very high)
Data privacy impact	Bool	Indicator showing whether a data privacy impact is associated with risk or not (TRUE – FALSE)

Appendix – Risk Migration Plan

Risk Migration Plan	Туре	Description
Information risk	reference	Assessed Information Risk that is to be highly migrated
Confirmation	person	Stakeholders that confirms the migration/replace plan
Start date	date	Date at which the forward planning is started
End date	date	Date at which the forward planning is planned to be finished
Progress	enum	Monthly confirmations for the progress of the plan (on track – delayed)

Appendix – Risk Mitigation Plan & Acceptance Information

Risk Mitigation Plan	Туре	Description
Information risk	reference	Assessed Information Risk that is to be mitigated
Confirmation	person	Stakeholders that confirms the mitigation plan
Start date	date	Date at which the mitigation actions are started
End date	date	Date at which the mitigation actions are planned to be finished
Progress	enum	Monthly confirmations for the progress of the plan (on track – delayed)

Risk Acceptance	Туре	Description
Information risk	reference	Assessed Information Risk that is accepted
Confirmation	person	Stakeholders that confirms the risk acceptance
Expiration date	date	Date at which the risk acceptance is due to revalidation