

- Motivation
- Research Questions
- BERT
- **Datasets and Tasks**
- **Domain Adaptation**
- Fine-tuning and Evaluation
- Results
- Conclusion and Future Work

- Motivation
- Research Questions
- BERT
- Datasets and Tasks
- **Domain Adaptation**
- Fine-tuning and Evaluation
- Results
- Conclusion and Future Work

Motivation

Trade fairs

Trade publications

Search engines

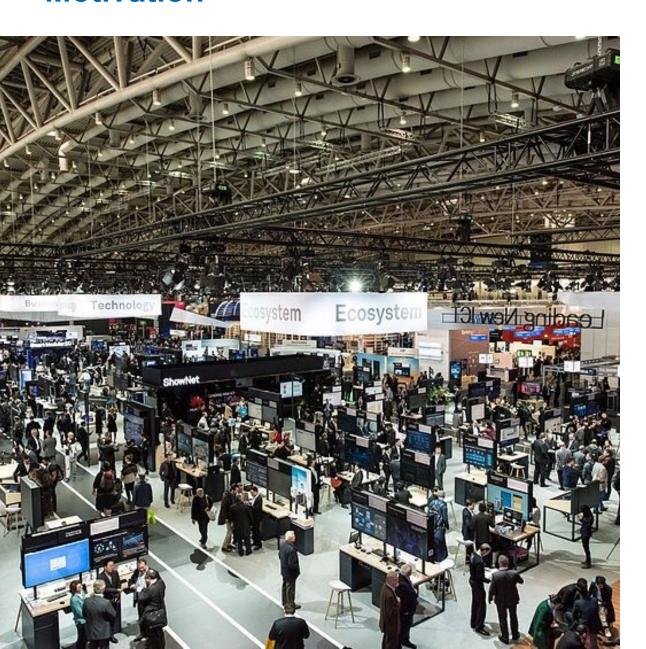
Data Volume

1990

2020

[1]

Motivation



- Motivation
- Research Questions
- **BERT**
- Datasets and Tasks
- **Domain Adaptation**
- Fine-tuning and Evaluation
- Results
- Conclusion and Future Work

Strategies

Further Pre-training	Vocabulary Extension + Further Pre-training	Training from Scratch	Dataset Extension
• FinBERT [2]	German LegalBERT [3]SciBERT [5]	TweetBERT [4]SciBERT [5]BioBERT [6]	Generally a good idea

Research Questions

- How does the BERT model **further pre-trained** on texts from the engineering domain perform on the selected text classification and entity extraction tasks?
- How does the BERT model with extended vocabulary and further pre-trained on texts from the engineering domain perform on the selected text classification and entity extraction tasks?
- How does the BERT model, trained from scratch on texts from the engineering domain, perform on the selected text classification and entity extraction tasks?
- What effect does the extension of labelled data sets have on the performance of the BERT model on the selected text classification and entity extraction tasks?

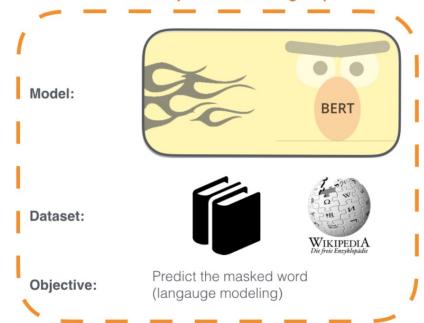
- Motivation
- Research Questions
- BERT
- **Datasets and Tasks**
- **Domain Adaptation**
- Fine-tuning and Evaluation
- Results
- Conclusion and Future Work

BERT

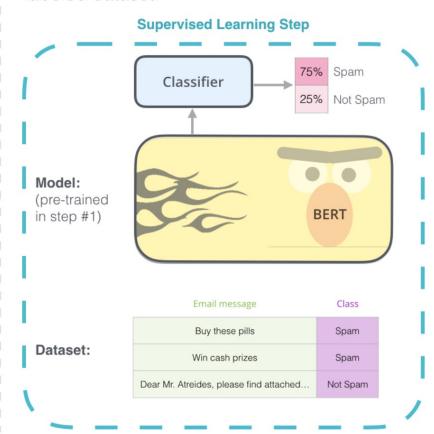
1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step



2 - Supervised training on a specific task with a labeled dataset.



[7]

10

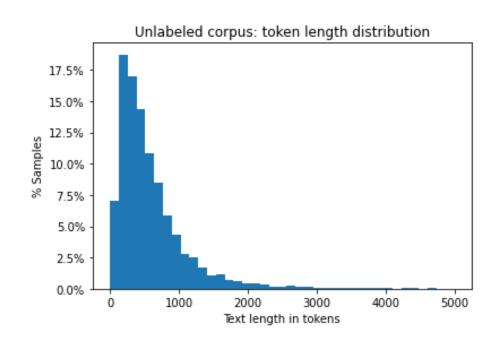
- Motivation
- Research Questions
- BERT
- Datasets and Tasks
- **Domain Adaptation**
- Fine-tuning and Evaluation
- Results
- Conclusion and Future Work

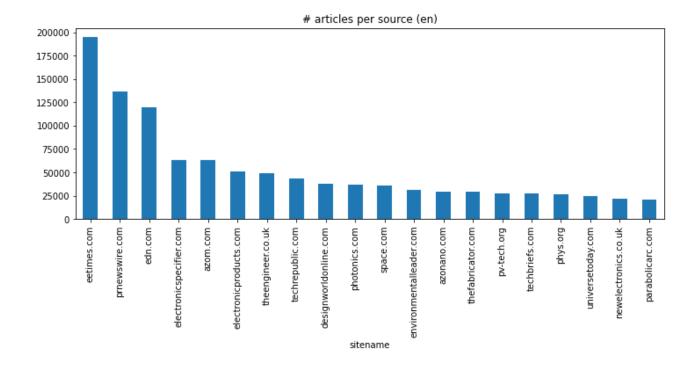
Unlabeled Engineering Articles Corpus

2 million articles

330 sources

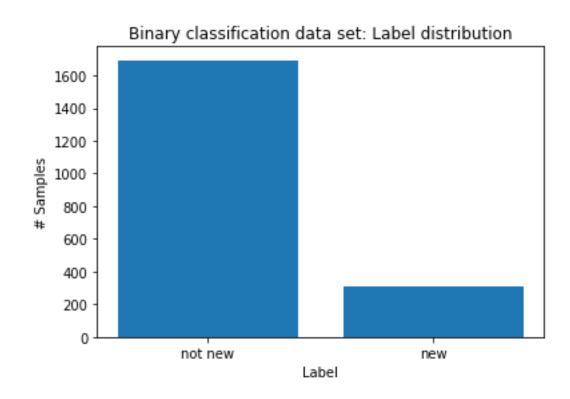
6.7 _{Gb}





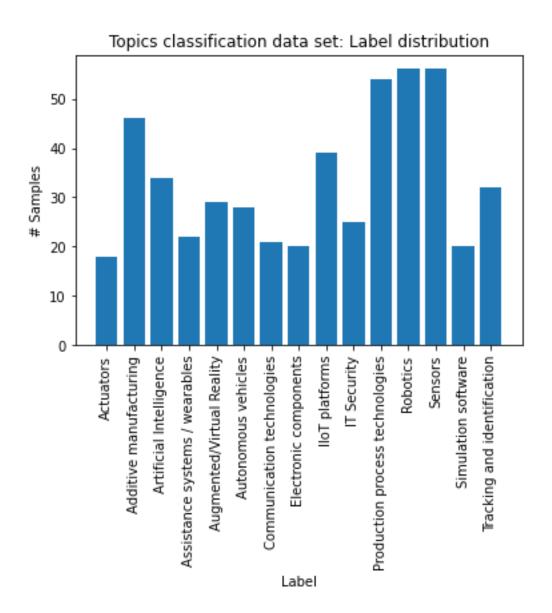
Identify articles describing new technologies

2000 articles



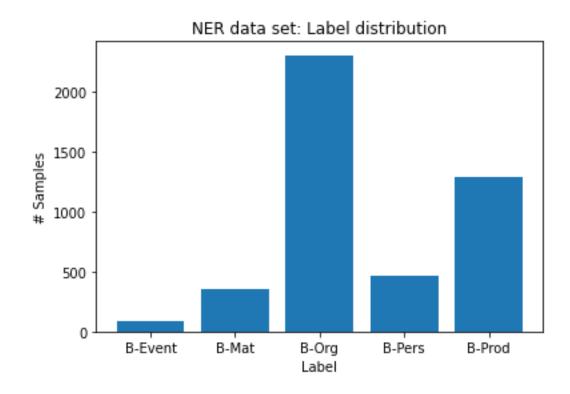
Assign articles to topics

500 articles



Extract named entities

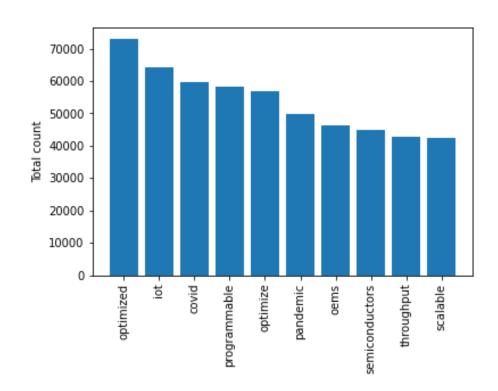
300 articles

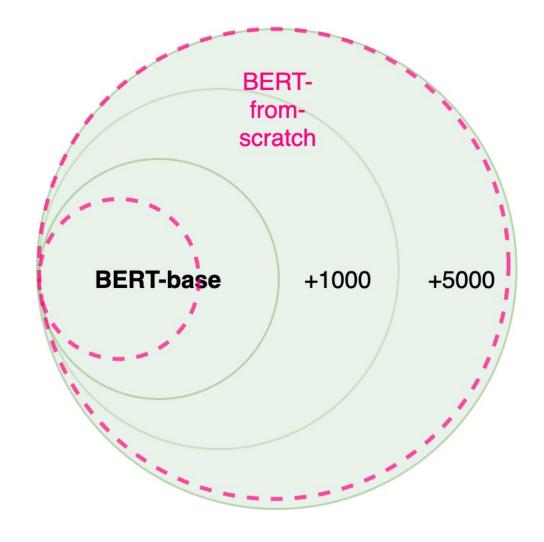


- Motivation
- Research Questions
- BERT
- **Datasets and Tasks**
- **Domain Adaptation**
- Fine-tuning and Evaluation
- Results
- Conclusion and Future Work

Domain Adaptation

- BERT-base
- BERT-base-nove
- BERT-base-ext1000
- BERT-base-ext5000
- BERT-base-from-scratch





- Motivation
- Research Questions
- BERT
- **Datasets and Tasks**
- **Domain Adaptation**
- Fine-tuning and Evaluation
- Results
- Conclusion and Future Work

Fine-tuning and Evaluation

Binary Classification

- HeadTail
- Oversampling
- Precision, Recall, F1
- 5-fold-cross-validation

Topic Classification

- HeadTail
- Accuracy
- 5-fold-cross-validation

Named Entity Recognition

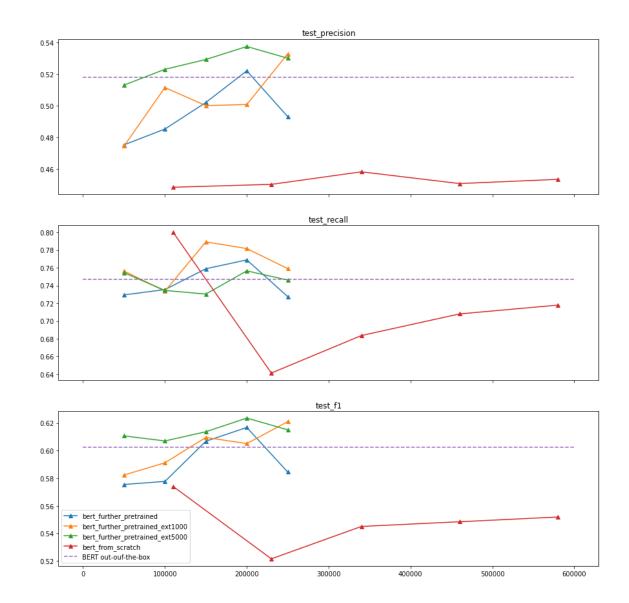
- Per class precision, recall and F1 scores + weighted average.
- 5-fold-cross-validation

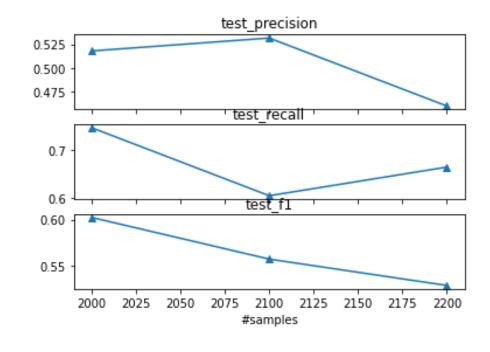
Strategy	Head	HeadTail	Tail
Accuracy	0.8	0.81	0.79

Data set	Binary classification	Topic classification	NER
Sizes	$2000 \rightarrow 2100 \rightarrow 2200$	$500 \rightarrow 550 \rightarrow 600$	$300 \rightarrow 340 \rightarrow 380$

- Motivation
- Research Questions
- BERT
- Datasets and Tasks
- **Domain Adaptation**
- Fine-tuning and Evaluation
- Results
- Conclusion and Future Work

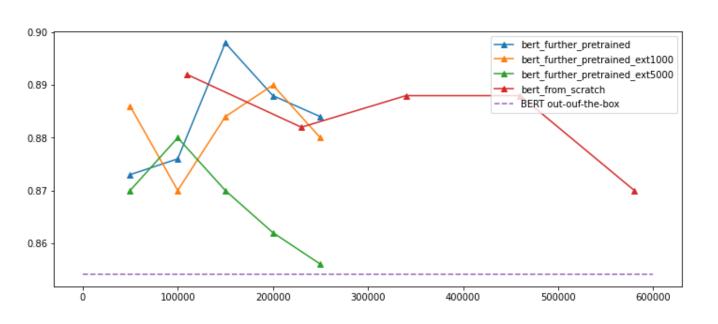
Identify articles describing new technologies

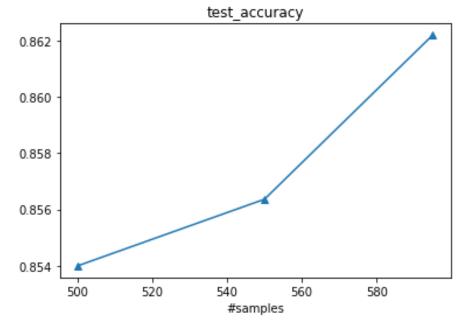




Model	Precision	Recall	F1
BERT-base	51.79	74.69	60.22
BERT-base-nove	52.20	76.89	61.68
BERT-base-ext1000	53.27	75.91	62.11
BERT-base-ext5000	53.74	75.65	62.36
BERT-base-from-scratch	44.83	80.00	57.40

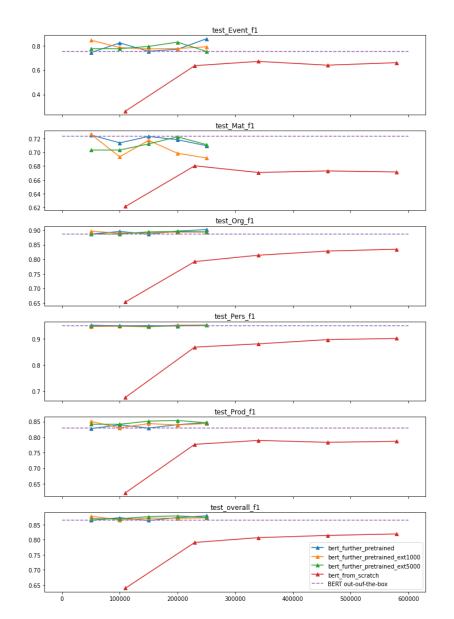
Assign articles to topics

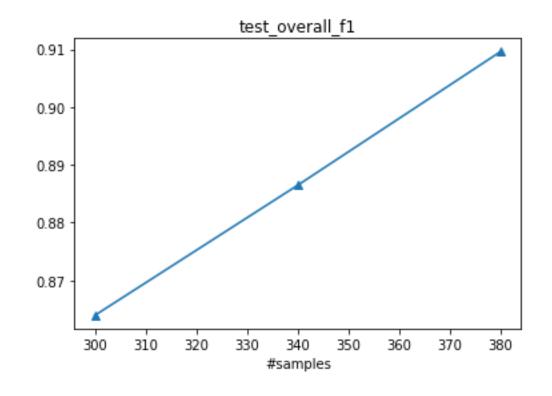




Model	Accuracy
BERT-base	85.40
BERT-base-nove	89.80
BERT-base-ext1000	89.00
BERT-base-ext5000	86.20
BERT-base-from-scratch	89.20

Extract named entities





Model	Event F1	Mat F1	Org F1	Pers F1	Prod F1	Overall F1
BERT-base	75.39	72.29	88.61	95.04	82.91	86.39
BERT-base-nove	85.57	70.95	90.17	95.18	84.69	87.91
BERT-base-ext1000	79.05	69.17	89.31	95.28	84.36	87.25
BERT-base-ext5000	82.84	72.23	89.52	95.00	85.36	87.89
BERT-base-from-scratch	66.03	67.14	83.42	90.16	78.65	81.92

Overview

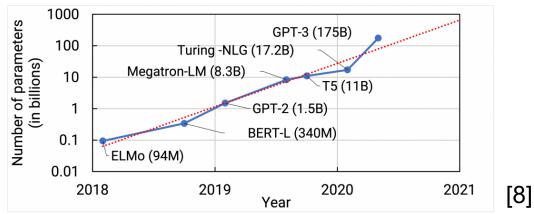
Model	Binary classification	Topic classification	NER
Model	(F1)	(Accuracy)	(Overall F1)
BERT-base	60.22	85.40	86.39
BERT-base-nove	61.68	89.80	87.91
BERT-base-ext1000	62.11	89.00	87.25
BERT-base-ext5000	62.36	86.20	87.89
BERT-base-from-scratch	57.40	89.20	81.92

- Motivation
- Research Questions
- BERT
- Datasets and Tasks
- **Domain Adaptation**
- Fine-tuning and Evaluation
- Results
- Conclusion and Future Work

Conclusion and Future Work

- BERT-base-nove performed best on **two** out of three tasks.
- BERT-base-ext5000 performed best on **one task.** \rightarrow Alternative vocabulary extension strategy.
- Neither BERT-base-ext1000 nor BERT-base-ext5000 performed worse than the baseline.
- BERT-base-from-scratch is undertrained

 More data and evaluation on downstream tasks during training.
- Extending labelled datasets improves the performance of the base model on **two** out of three tasks.



Sources

- [1] Rokin https://en.rokin.tech
- [2] Z. Liu, D. Huang, K. Huang, Z. Li, and J. Zhao. "FinBERT: A Pre-trained Financial Language Representation Model for Financial Text Mining." In: *IJCAI*. 2020, pp. 4513–4519.
- [3] C. M. Yeung. "Effects of inserting domain vocabulary and fine-tuning BERT for German legal language". MA thesis. University of Twente, 2019.
- [4] D. Q. Nguyen, T. Vu, and A. T. Nguyen. "BERTweet: A pre-trained language model for English Tweets". In: arXiv preprint arXiv:2005.10200 (2020).
- [5] I. Beltagy, K. Lo, and A. Cohan. "SciBERT: A Pretrained Language Model for Scientific Text". In: arXiv:1903.10676 [cs] (Sept. 2019). arXiv: 1903.10676. url: http://arxiv.org/ abs/1903.10676 (visited on 04/30/2021).
- [6] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. "BioBERT: a pre-trained biomedical language representation model for biomedical text mining". In: Bioinformatics (Sept. 2019). arXiv: 1901.08746, btz682. issn: 1367-4803, 1460-2059. doi: 10.1093/bioinformatics/btz682. url: http://arxiv.org/abs/1901.08746 (visited on 04/30/2021).
- [7] J. Alammar. The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning). url: http://jalammar.github.io/illustrated-bert/ (visited on 03/11/2021).
- [8] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. A. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro, et al. "Efficient large-scale language model training on gpu clusters". In: arXiv preprint arXiv:2104.04473 (2021).

Sources

[9] Gururangan, A. Marasovic, S. Swayamdipta, K. Lo, I. Beltagy, D. Downey, and N. A. Smith. "Don't Stop Pretraining: Adapt Language Models to Domains and Tasks". In: *arXiv:2004.10964 [cs]* (May 2020). arXiv: 2004.10964. url: http://arxiv.org/abs/2004. 10964 (visited on 04/30/2021).

Performance of domain-specific models

Further Pre-training

Dom.	Task	RoBA.	DAPT	¬DAPT
ВМ	CHEMPROT †RCT	81.9 _{1.0} 87.2 _{0.1}	84.2 _{0.2} 87.6 _{0.1}	79.4 _{1.3} 86.9 _{0.1}
CS	ACL-ARC SCIERC	63.0 _{5.8} 77.3 _{1.9}	75.4 _{2.5} 80.8 _{1.5}	66.4 _{4.1} 79.2 _{0.9}
News	HyP. †AGNEWS	86.6 _{0.9} 93.9 _{0.2}	88.2 _{5.9} 93.9 _{0.2}	76.4 _{4.9} 93.5 _{0.2}
REV.	†HELPFUL. †IMDB	65.1 _{3.4} 95.0 _{0.2}	66.5 _{1.4} 95.4 _{0.2}	65.1 _{2.8} 94.1 _{0.4}

[9]

Training from Scratch

Field	Task	Dataset	SOTA	BERT-Base		SCIBERT	
				Frozen	Finetune	Frozen	Finetune
		BC5CDR (Li et al., 2016)	88.85 ⁷	85.08	86.72	88.73	90.01
	NER	JNLPBA (Collier and Kim, 2004)	78.58	74.05	76.09	75.77	77.28
Bio		NCBI-disease (Dogan et al., 2014)	89.36	84.06	86.88	86.39	88.57
	PICO	EBM-NLP (Nye et al., 2018)	66.30	61.44	71.53	68.30	72.28
	DEP	GENIA (Kim et al., 2003) - LAS	91.92	90.22	90.33	90.36	90.43
	DEP	GENIA (Kim et al., 2003) - UAS	92.84	91.84	91.89	92.00	91.99
	REL	ChemProt (Kringelum et al., 2016)	76.68	68.21	79.14	75.03	83.64
	NER	SciERC (Luan et al., 2018)	64.20	63.58	65.24	65.77	67.57
CS	REL	SciERC (Luan et al., 2018)	n/a	72.74	78.71	75.25	79.97
	CLS	ACL-ARC (Jurgens et al., 2018)	67.9	62.04	63.91	60.74	70.98
Multi	CLS	Paper Field	n/a	63.64	65.37	64.38	65.71
		SciCite (Cohan et al., 2019)	84.0	84.31	84.85	85.42	85.49
Average				73.58	77.16	76.01	79.27

[5]