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Strategies
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Further Pre-training Vocabulary Extension 
+ Further Pre-training

Training from Scratch Dataset Extension

• TweetBERT [4]
• SciBERT [5]
• BioBERT [6]

• German LegalBERT [3]
• SciBERT [5]

Generally a good idea• FinBERT [2]
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How does the BERT model further pre-trained on texts from the engineering domain perform on the 
selected text classification and entity extraction tasks? 

2 How does the BERT model with extended vocabulary and further pre-trained on texts from the 
engineering domain perform on the selected text classification and entity extraction tasks? 

3 How does the BERT model, trained from scratch on texts from the engineering domain, perform on 
the selected text classification and entity extraction tasks? 

4 What effect does the extension of labelled data sets have on the performance of the BERT model 
on the selected text classification and entity extraction tasks? 
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Unlabeled Engineering Articles Corpus 

2 million articles 

330 sources 

6.7 Gb
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Identify articles describing new technologies 

2000 articles 
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Assign articles to topics 

500 articles 
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Extract named entities 

300 articles 
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Domain Adaptation

• BERT-base
• BERT-base-nove
• BERT-base-ext1000
• BERT-base-ext5000
• BERT-base-from-scratch 
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Fine-tuning and Evaluation
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Binary 
Classification

Topic Classification Named Entity 
Recognition

• HeadTail
• Oversampling
• Precision, Recall, F1
• 5-fold-cross-validation

• HeadTail
• Accuracy
• 5-fold-cross-validation

• Per class precision, 
recall and F1 scores + 
weighted average.

• 5-fold-cross-validation
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Identify articles describing new technologies 
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Assign articles to topics 
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Extract named entities 
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Overview
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Conclusion and Future Work

1. BERT-base-nove performed best on two out of three tasks.

2. BERT-base-ext5000 performed best on one task. → Alternative vocabulary extension strategy.

3. Neither BERT-base-ext1000 nor BERT-base-ext5000 performed worse than the baseline.

4. BERT-base-from-scratch is undertrained → More data and evaluation on downstream tasks during 
training.

5. Extending labelled datasets improves the performance of the base model on two out of three 
tasks.
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