
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Information Systems

Structured Extraction of Terms and
Conditions from German and English

Online Shops

Tobias Michael Schamel

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Information Systems

Structured Extraction of Terms and
Conditions from German and English

Online Shops

Strukturierte Extraktion von AGB aus
deutschen und englischen Onlineshops

Author: Tobias Michael Schamel
Supervisor: Prof. Dr. Florian Matthes
Advisor: Dr. Daniel Braun
Submission Date: 15.08.2021

I confirm that this bachelor’s thesis in information systems is my own work and I have
documented all sources and material used.

Munich, 15.08.2021 Tobias Michael Schamel

Acknowledgments

First of all, I would like to thank my advisor Dr. Daniel Braun, who has supported and
advised me with full commitment over the last few months.
Thank you very much for your great personal commitment.

I would also like to thank Prof. Dr. Florian Matthes, who gave me the opportunity to
write my bachelor’s thesis at his chair sebis.

Abstract

Terms and Conditions (T&C) of online shops are rarely read, even more rarely under-
stood, and even still accepted by just about everyone - this behavior is also called the
biggest lie on the internet, as only 0.1%-0.2% of users actually read T&Cs.

To encounter this behavior, which can be costly for a legal layman, an AI-supported
evaluation of T&Cs can support the everyday user. The AI-supported evaluation of
T&Cs from online shops requires a structured representation of the information that
can usually be found on the shop’s website.

In this thesis, we build a python library capable of extracting the main content of an
online shop’s T&C website, which includes removing navigation and footer bars. The
main content will be segmented into paragraphs and structured as a tree representing
the relationships of different paragraphs and clauses. We will identify and evaluate
different approaches to fulfill these tasks.

A new content extraction algorithms called Common Ancestor Extractor is introduced in
this thesis.

Keywords: Content Extraction, Hierarchy Extraction, Terms and Conditions, Common
Ancestor Extractor, Online Shop, AGB-Check, Consumer Protection

Research Areas: Information Systems, Computer Science, NLP-Pipe, Content Extrac-
tion, Hierarchy Extraction

iv

List of Abbreviations

T&C Terms and Conditions

SEO Search Engine Optimization

DOM Document Object Model

HTML Hypertext Markup Language

XPath XML Path Language

CSS Cascading Style Sheet

NLP Natural Language Processing

AI Artificial Intelligence

CMS Content Management Systems

MCS Most Common Style

URL Uniform Resource Locator

JSON JavaScript Object Notation Extensible Markup Language

XML Extensible Markup Language

v

Contents

Acknowledgments iii

Abstract iv

List of Abbreviations v

1. Introduction 1
1.1. Context in AGB-Check . 1
1.2. Research Objectives . 2
1.3. Research Approach . 3

2. Related Literature 5
2.1. Content Extraction . 5
2.2. Hierarchy Extraction . 8

3. Requirements 10
3.1. Content Extraction . 10

3.1.1. Manual Review . 10
3.1.2. Evaluation of Existing Solutions 11
3.1.3. Derived Requirements . 14

3.2. Hierarchy Extraction . 15
3.2.1. Manual Review . 15
3.2.2. Derived Requirements . 16

4. Implementation 18
4.1. Architecture . 18
4.2. Additional Technology . 19

4.2.1. Web Page Download . 20
4.2.2. Hypertext Markup Language (HTML) Parser 21
4.2.3. Sentence Segmentation and Tokenising 22
4.2.4. Language Determination . 22

4.3. Document Object Model (DOM)-Tree . 23

vi

Contents

4.4. Content Extraction . 24
4.4.1. Threshold . 26
4.4.2. Common Ancestor Extractor: Naive Style 27
4.4.3. Common Ancestor Extractor: Rendered Style 28
4.4.4. Common Ancestor Extractor: Naive Style and Short Text Exclusion 29

4.5. Hierarchy Extraction . 30
4.5.1. Content Blocks . 32
4.5.2. Visual Styles . 35
4.5.3. Enumerations . 35

4.6. Target Format . 39

5. Evaluation 40
5.1. Content Extraction . 40
5.2. Hierarchy Extraction . 43

6. Conclusion and Future Work 48

A. Sample 50

B. Processing Demo 53
B.1. Content Extraction . 55
B.2. Hierarchy Extraction . 58
B.3. Generating the Target Format . 62

C. Library Documentation 66
C.1. Methods . 66
C.2. Related . 67

List of Figures 68

List of Tables 69

Bibliography 70

vii

1. Introduction

This chapter declares the context of this bachelor thesis in the context of the research
project AGB-Check in Section 1.1. Following, the objectives and the corresponding
research questions of the thesis are outlined in Section 1.2. Section 1.3 covers the
methodology used to answer the various research questions outlined in Section 1.2.

1.1. Context in AGB-Check

Many people use the internet to shop online and almost all of them have accepted
T&Cs that they have not read or understood before. This phenomenon is also called
"The biggest lie on the internet" [17]. Bakos et al. discovered, that only 0.1% to 0.2% of
online shoppers actually read the T&Cs before agreeing to legally binding purchase
contracts [1].

The research project AGB-Check [6] (AI-Supported Legal Review of Terms and Con-
ditions to Strengthen Consumer Protection) conducted by the sebis chair is currently
evaluating the possibility of making legal expertise available more quickly and cheaply.
This would give consumers, who are mostly legal laypersons, the possibility to make
informed decisions and thereby strengthen consumer protection.

The research team of AGB-Check is currently able to determine the Uniform Resource
Locator (URL) of an online shop’s T&Cs and process the structured data extracted
from the T&Cs. They are still lacking a reliable solution for content extraction from
websites in the domain of T&Cs. The broad range of existing content extractors is built
for newspaper articles and other more common content sources. They solely extract
the content without retaining the hierarchical structure of the text.

The German civil code1 (§305 - §310) requires T&Cs to contain certain clauses, as
well as a clear logical structure to ease understanding. This fortifies the importance
of extracting the hierarchical structure in a legal context, as the structure effects the
legal validity of T&C. Furthermore, checking for required clauses during the Artificial
Intelligence (AI)-supported evaluation is much easier when the structure of the contract

1https://www.gesetze-im-internet.de/englisch_bgb/index.html

1

1. Introduction

is kept.

Figure 1.1.: The Context of this thesis in the project AGB-Check.

1.2. Research Objectives

The previously described gap (see Figure 1.1) in the Natural Language Processing (NLP)
pipe must be filled by a reliable solution. Possible errors will otherwise propagate
through the entire pipe making the result useless. Before a solution can be reliably
developed, the prevailing problems of existent solutions need to be understood and the
specific characteristics of T&Cs need to be investigated.

The goal of this thesis is to develop the necessary reliant solution to fill the gap in the
pipe. The developed library takes the URL, extracts content and hierarchy, and converts
it into a structured representation previously defined by the team of AGB-Check.

The research questions and the rationale underlying them are explained below.

RQ1: What are special requirements for the extraction of contracts in comparison with
regular (i.e. news articles, blogposts) content?

Existing solutions for content extraction focus on regular content like newspaper articles
most of the time. The differences between newspaper articles and contracts have to be
identified to understand where existing content extractors fail in the case of T&Cs.

RQ2: How to extract the relevant parts from contracts in raw HTML?

The knowledge derived from RQ1 can be used to develop a content extractor that is
tailored to extract T&Cs and achieves significantly more accurate results in its domain
compared to generic content extractors.

2

1. Introduction

RQ3: How to extract the structure and the hierarchy of paragraphs, (sub-)titles, and
related clauses?

Contractual documents are usually required to be divided into paragraphs which
themselves are structured in a hierarchical way resulting in a tree structure. This tree
structure has to be preserved as it allows to draw conclusions based on the relation
of multiple clauses during the AI-supported evaluation. In addition, the individual
paragraphs can be preceded by a headline. These headings must also be detected and
retained for later processing.

As the input to a content extractor is a website, it must be studied, which existing
HTML and Cascading Style Sheet (CSS) properties provide useful information on
hierarchical properties and can thus be used to structure the content.

1.3. Research Approach

This section describes the research approach used to answer the research questions
depicted in Section 1.2.

Figure 1.2 shows the flow of knowledge between the research questions.

Figure 1.2.: The relationship and flow of knowledge between the three research ques-
tions.

RQ1: What are special requirements for the extraction of contracts in comparison
with regular (i.e. news articles, blogposts) content?

The first research questions will be answered by evaluating the results of existing
content extractors. This allows for an analysis of the current problems that will be

3

1. Introduction

addressed by the solution developed in this thesis. Clusters of common mistakes need
to be identified to deduce special requirements for the extraction of contracts.

RQ2: How to extract the relevant parts from contracts in raw HTML?

The knowledge gained from RQ1 will be used to develop a reliable python library that
can be used to extract the relevant parts from contracts in raw HTML.

RQ3: How to extract the structure and the hierarchy of paragraphs, (sub-)titles, and
related clauses?

First, the implementation of hierarchical structures in T&Cs must be analyzed. A
sample of web pages will be reviewed manually to retrieve information on the HTML
structure, the actual numeration (if existing), and the CSS styling.

Based on this knowledge, the hierarchical relationship of different paragraphs can be
extracted.

StructuredLegalExtraction Library

Results from RQ2 and RQ3 will be used to implement a python library for the extraction
of T&Cs from online shops. This library will be evaluated and compared to existing
solutions.

4

2. Related Literature

In this chapter, the related literature in the area of Content Extraction (i.e. the identifica-
tion and extraction of the main content) and Hierarchy Extraction (i.e. the identification
and preservation of the T&Cs hierarchy) is summarized to get an overview of existing
approaches to accomplish these tasks.

2.1. Content Extraction

Extracting content in the domain of Terms and Conditions (T&Cs) from websites has
not been studied so far. Previous research has rarely looked at the problem in a domain-
specific way. There is some research in the domain of news articles and more research
in generic content extraction, as most solutions were evaluated using the dataset of the
Cleaneval competition [3]. Existing solutions were mainly used in the context of natural
language processing [12, 10, 9, 14] (i.e. corpus construction). Additionally, researchers
tried to find ways to re-display relevant information on small screens (i.e. smartphones)
[10, 19, 7]. Rationale of generic content extraction, as well as some components of
customized scripts used to extract content from a particular website can be adopted to
improve the outcome of this thesis.

According to Kilgariff, the task of creating web corpora involves "crawling, download-
ing, ’cleaning’ and de-duplicating the data" [12]. The first three tasks will be crucial
for the extraction of T&Cs of online shops. The most essential operation "consists in
retaining the desired content while discarding the rest" [2] ("cleaning"). Considering
the early point cleaning takes in a pipe, it becomes clear how errors that occur here
propagate through all following steps [19]. There is a number of synonyms to the
process of "cleaning" like boilerplate detection/removal [13], template matching [21] and
content identification/extraction [10, 2].

Gibson et al. [10] described the process of cleaning as a Sequence Labeling problem
on a document broken down into a sequence of blocks. Each block needs to be
classified as either Content or NotContent. Kohlschütter et al. [13] work with a more
detailed four-class separation. Another more risky approach is a Boundary Detection
Method where a heuristic needs to determine a Start- and End-Block framing the

5

2. Related Literature

whole content, i.e. everything between Start- and End-Block is considered Content
whereas everything else is discarded as NotContent. Gibson et al. also stated that
the Boundary Detection Method did not perform any better than the worst Sequence
Labeling approach. This might be explained by their dataset created from news articles.
The focus on news articles means that a high proportion of the text is interspersed with
images, advertisements, or recommendations for further content which can weaken the
performance.

According to Viveros-Jiménez et al., the classification needs to take both HTML struc-
ture and the actual content into account. "Purely text-based or purely HTML-based
approaches do not have perfect results." [11]

Several approaches for classifying blocks as Content or NotContent can be found in the
literature.

Kohlschütter et al. [13] propose a classification inspecting the text on a functional
level using a set of so-called shallow text features. Shallow text features are statistical
calculations on block-level looking at domain and language independent features
like link density (amount of letters in <a> tags

total amount of letters), the average sentence length, the uppercase
ratio, etc. In Addition, densiometric features like the text density are also taken into
account. These features can be used in a trained classification model. This approach is
implemented in the popular Boilerpipe1 algorithm. Kohlschütter et al. interpreted some
of their findings from a linguistic perspective. They state that full sentences supported
by grammatical constructs often belong to the descriptive Content of a website. Short
text sequences made of grammatically incomplete and simple sentences (e.g., "Contact
us", "Read more") are understood by the audience without large effort. Thus it is often
found in headlines or navigational text classified as NotContent.

JusText [20] uses a low amount of features to determine the likelihood of a block
being Content or NotContent. Uncertainties are dealt with within the next step, which
involves an analysis of the relative position of a block in the HTML tree including
the classification of its neighbors. This step is based on the assumption that Content
blocks are to be found near other Content blocks (and vice versa). This approach
is implemented in the JusText2 library. Usage of the JusText library requires the
determination of the language, as different types of words need to be classified to
determine the likelihood of a paragraph being a headline.

Viveros et al. [11] introduce an improvement to the Boilerpipe algorithm by also taking
the HTML tree structure into account. They use the Boilerpipe algorithm to select a set

1https://code.google.com/p/boilerpipe
2https://code.google.com/archive/p/justext/

6

2. Related Literature

of mostly relevant content which can then be filtered for other non-informative content
to be removed using the HTML tree assuming that Content- and NoContent-blocks
create clusters. The filtering procedure works as follows:

1. Identify and select all paragraphs (paragraphs are defined by a number of tags
not containing paragraphs themselves).

2. Generate a list of ancestors for all selected paragraphs.

3. Group all paragraphs sharing the same n-th paragraph (experiments showed that
n = 2 generated the best results).

4. Select the group containing the highest amount of text and discard everything
else.

Pasternack and Roth [19] try to solve the task by finding a maximum subsequence in
tokenized HTML documents. Each token (including HTML tags) is assigned a positive
or negative score determined by token-level classifiers. Pasternack and Roth evaluated
different classifiers, e.g. simply assigning predefined scores to words and tags. They
also investigated more advanced classifiers which combined Naive Bayes classification
with features of the surrounding tags.

Debnath et al. [8] propose a content extraction algorithm which is looking at similar web
pages from a class. A class is defined as a group of pages derived from the same script
or the same website. Recurring and similar elements are likely to be non-informative
and thus classified as NoContent.

Cai et al. [7] implemented a content extraction method based on visual representation,
as web pages are usually divided into different regions by visual features to make
them readable. Approaches using the visual representation are robust in environments,
where HTML structure and layout structure differ a lot. Cai et al. propose a top-
down algorithm to separate the website, respectively its vision-based content structure,
into layout blocks (O). Layout blocks on the same depth of the derived layout tree
a collected in a pool. Within these pools, another algorithm detects all the visual
separators (horizontal or vertical lines that do not cross any of the blocks visually, Φ)
and assigns a weight (δ) based on the difference between neighboring blocks. This
results in a triple representation of the web page Ω = {O, Φ, δ}, where O is a set of sub
web pages.

Sano et al. [21] defined eight layout templates including information about the position
of the main content. They identify the best-matching layout template by determining a
layout structure using a method similar to the one proposed by Cai et al. Once a layout
template is selected, the affiliated main content, respectively its block, is extracted.

Evert [9] analyzed the use of simple character-level n-gram models to distinguish

7

2. Related Literature

between Content and NoContent. Therefore, no information about the HTML tree or
tags were used. After the whole plain text is extracted from a web page, two distinct
character-level n-gram language models are used for Content and NoContent. The
approach is implemented in NCleaner3.

2.2. Hierarchy Extraction

The content extracted for AGB-Check needs to be hierarchically structured (RQ3). Re-
search on extraction of hierarchical structures is scarce.

Manabe and Tajima [16] introduced a segmenting method extracting the hierarchical
structure of HTML documents based on the differences of the visual styles in hierarchi-
cal headings. They defined four properties to identify headings, their corresponding
blocks, and their hierarchical relationships based on the way humans read hierarchically
structured content:

1. headings appear at the beginning of the corresponding blocks

2. headings are given prominent visual styles

3. headings of the same level share the same visual style

4. headings of higher levels are given more prominent visual styles

According to them, the nested hierarchy of an HTML document can contribute some
information but does not necessarily coincide with the actual hierarchical structure of
an HTML document. The HTML tags <h1> to <h6> - originally meant to structure a
document and indicate headings - are often misused for Search Engine Optimization
(SEO) or not used at all. The reference implementation of this algorithm is publicly
available4.

Okada and Arakawa [18] used the J48 algorithm to derive extraction rules (decision
tree) based on 26 HTML attributes.

Sano et al. [21] used a similar approach with only nine parameters. The parameters are
chosen with respect to the following characteristics of headings:

1. headings have few child nodes

2. headings have a short text length

3. the width of headings is greater than their height

4. the size of a heading is smaller than the size of the following content block

3https://sourceforge.net/projects/webascorpus/files/NCleaner/NCleaner-1.0/
4https://github.com/tmanabe/HEPS

8

2. Related Literature

underneath it

9

3. Requirements

This chapter aims at identifying special requirements for T&C extraction in comparison
with regular content. In the domain of content extraction, this was done by analyzing the
structure of webpages by manual review. Besides this, the results of existing solutions
were compared with the expected output gathered by hand. This allows the derivation
of common sources of errors in the extraction process and by this requirements for the
extraction of T&Cs. Requirements for hierarchy extraction were solely identified by a
manual review.

For evaluation purposes, a sample of 30 German and 20 English T&C pages from the
data set by Braun and Matthes [5] which is available under CC BY-SA 3.0 license from
GitHub1 is used. The quality of the data from the English sample was partly less good.
15% of the sample did not refer to the correct T&C page of the respective online shop.
These links were corrected manually.

3.1. Content Extraction

3.1.1. Manual Review

In a manual review process similarities among T&C pages were identified. While
news articles are often interrupted by advertisements or references to similar articles,
in all of the cases examined in the sample, T&Cs are uninterrupted text on a rather
simply structured page. This makes the domain-specific content extraction of T&Cs
less challenging than generic content extractions presented in Section 2.1, as there is no
need to reclassify content between the presumed start and the presumed end of the
presumed content.

However, the content is not always grouped within a single large paragraph. In the
German sample, bisection of the content can often be observed. The T&Cs are divided
into 1. Allgemeine Geschäftsbedingungen and 2. Kundeninformation where both contain
relevant information. As described later, some extractors had problems with this,

1https://github.com/sebischair/TC-Detection-Corpus/

10

3. Requirements

as they only extracted one of the paragraphs. The German T&Cs are by far more
structured than the English ones due to tighter regulation. This might explain why
many German online shops used a template by Haendlerbund.

Usually, the relevant content shared a common style and it could be found in the same
depth of an HTML document. In rare cases, this style was also used in the footer or the
header of an HTML document. Some exceptions to these observations can be found on
those pages including a different styled withdrawal form. As shown in Figure 3.1, in
some cases the withdrawal form or the withdrawal information are highlighted by a
border and a different background color.

The form is often composed of underscores, blank spaces, and text. In some cases, it
can be downloaded as a PDF using a link attached to the T&Cs.

3.1.2. Evaluation of Existing Solutions

To evaluate the existing solutions, tests were carried out with each of the individual
web pages from the sample. The texts extracted by the respective Python libraries were
compared with the manually extracted texts using a DIFF checker3.

In order to evaluate the results of the test, the following aspects were examined:

• start: correct, too early, too late

• end: correct, too early, too late

• center: correct, short (links & addresses), long (whole paragraphs or sentences),
short & long

• language: de, en

• additional remarks: used to identify further patterns in the results

Requirements for the correct identification of the content were relaxed, as the importance
of extracting a meaningless headline on top of the page is low.

Tables 3.1, 3.2, and 3.3 summarize the results of the examination. The worst (i.e. the
one losing the most content) property of the indicators used is colored red, the best
property is colored green. 6 of 20 sampled web pages from the English sample were
not extractable due to malformed HTML. As small mistakes in the HTML structure
are not uncommon and are usually fixed by browsers rendering them, this should not
be the case.

2https://www.elektroshopwagner.de/shop_content.php/coID/3/content/Unsere-AGB/ last accessed
on 20210613

3https://www.diffchecker.com/diff/

11

3. Requirements

Figure 3.1.: Withdrawal information and withdrawal form highlighted by border and
different background color. Extracted from Elektroshopwagner2.

Boilerpipe

The three examined Boilerpipe extractors (ArticleExtractor, LargestContentExtractor, CanolaEx-
tractor) showed significantly different results. Problems with links and addresses (short)
occurred frequently with the ArticleExtractor and the CanolaExtractor.

12

3. Requirements

too late too early correct

Boilerpipe ArticleExtractor 16 4 24
Boilerpipe LargestContentExtractor 29 2 13
Boilerpipe CanolaExtractor 7 15 22
JusText 6 11 25
Trafilatura 5 2 37

Table 3.1.: Performance of detecting the start of the T&Cs for each examined extractor.

too early too late correct

Boilerpipe ArticleExtractor 23 13 8
Boilerpipe LargestContentExtractor 32 1 11
Boilerpipe CanolaExtractor 3 27 14
JusText 8 15 19
Trafilatura 5 4 35

Table 3.2.: Performance of detecting the end of the T&Cs for each examined Extractor.

With ArticleExtractor, it often happened that the end of the content was recognized
way too early (see Table 3.2). This was often due to addresses, enumerations, or
withdrawal forms in the content. Another reason for this is that German T&Cs are
often divided into two parts, where only the first one was detected and extracted by
the ArticleExtractor. Similar behavior was observed for the beginning of the content,
where address information etc. were omitted regularly. Since the ArticleExtractor often
stopped/started the extraction here, the results for the middle are better than with
other extractors (see Table 3.3).

The CanolaExtractor was trained on the KrdWrd Canola corpus4. It recurrently extracted
cookie information or web page footer, i.e. extracted too much content. The main
content was usually detected but the extracted text was interrupted many times, as can
be seen in Table 3.3. This applies to some short paragraphs, headings, and as with the
ArticleExtractor, also addresses and withdrawal forms.

The LargestContentExtractor extracts a continuous piece of content in all cases. This
connected part is not a single HTML node but a consecutive series of HTML nodes.
Within this continuous excerpt, the clauses are not classified any further, which is why
there are no interruptions (see Table 3.3).

4https://krdwrd.org/

13

3. Requirements

short long short & long correct

Boilerpipe ArticleExtractor 3 4 3 33
Boilerpipe LargestContentExtractor 0 0 0 44
Boilerpipe CanolaExtractor 1 8 33 0
JusText 11 7 21 5
Trafilatura 1 5 0 38

Table 3.3.: Performance of detecting the center of the T&Cs for each examined Extractor.

JusText

The results of JusText were similar to the results of the Boilerpipe CanolaExtractor. The
main content was usually detected but the extracted text was interrupted (see Table
3.3), as JusText classified many headlines, addresses, and paragraphs containing links
as boilerplate.

Trafilatura

Trafilatura produced the best results of the examined solutions. However, Trafilatura
seemed to have problems with the headlines of paragraphs, as it ignored some of them.
In addition, there were problems with content that was not directly visible to a user
but had to be unfolded in the browser manually.

3.1.3. Derived Requirements

The following requirements for the task of content extraction can be derived from the
manual review and the evaluation of existing solutions:

1. extract (largest) continuous part of HTML document

2. extract the content sharing a common style and depth in HTML tree

3. extract the withdrawal form/information with different style and different depth
which are part of the relevant content

4. extract address information

5. always extract both of the sections 1. Allgemeine Geschäftsbedingungen and 2.
Kundeninformation

6. extract invisible content which needs to be unfolded in the browser

14

3. Requirements

3.2. Hierarchy Extraction

3.2.1. Manual Review

Data on the visual and HTML-based representations of the hierarchical structure of
web pages containing T&Cs were gathered in a manual review. The results gained from
the English sample and the German sample differed slightly. The following hierarchy
representation classes were defined:

• Graphical: page is structured using graphical separators and different text styles

• Numeric: page is structured using a numeric scheme (Arabic, Latin/Roman,
alphabetic, etc.)

• Numeric & Graphical: a combination of both Graphical and Numeric elements are
used to structure the page

Figure 3.2.: Occurrences of different hierarchy styles in the German sample.

Figure 3.3.: Occurrences of different hierarchy styles in the English sample.

15

3. Requirements

As shown in Figure 3.2, German online shops were much more likely to have structured
their T&Cs with a combination of graphic and numeric elements. About 40% (see
Figure 3.3 of online shops from the English sample only use graphical elements to
represent the hierarchy of their T&Cs. The combination of numerical and graphical
structuring in English online shops is mostly used if a clause is followed by multiple
subclauses. In some cases each of the subclauses was grouped into its own HTML tag,
in other cases, the subclauses were simply separated by linebreaks (
).

Most of the times enumeration patterns occurred, the enumeration was combined with
an additional headline to the paragraph it precedes.

Some T&C pages contain a table of content similar to the one presented in Figure
3.4 with enumerations patterns like in the actual content, where these patterns can
provide useful information on hierarchy and potential headlines. Lines containing
enumerations can often be classified as headlines. However, in the leaves of the
hierarchy tree, enumerations precede the actual content without an additional headline
in some cases.

Enumerations occurring in a table of contents are not relevant for the actual hierarchy
extraction and must thus be ignored in the process of hierarchy extraction to produce
meaningful results.

3.2.2. Derived Requirements

The following requirements for the task of hierarchy extraction can be derived from the
manual review:

1. extract subclauses grouped in their own paragraph forming HTML tag

2. detect numeration patterns (alphabetic, Arabic, Latin/Roman, section sign, etc.)

3. extract styling (CSS) of titles to determine associated content

4. ignore enumerations for the table of contents

5https://www.wexphotovideo.com/help/terms-and-conditions/ last accessed on 20210718

16

3. Requirements

Figure 3.4.: Table of content with enumerations as a preface of T&Cs at Wex Photo
Video5.

17

4. Implementation

This chapter covers the software architecture, python libraries used in the implemen-
tation, and the actual implementation of the library used for content and hierarchy
extraction. Characteristics specific to websites containing T&Cs were described in
Chapter 3 and are used during this chapter to implement a domain-specific content
extraction for T&Cs.

4.1. Architecture

The library consists of 2 main components, which serve to extract the content and
structure it hierarchically. In addition, there is an auxiliary component that serves to
download the web page and one that transforms the HTML content into a DOM-tree
which is by far more useful for further processing. Another auxiliary component is used
to generate the target structure relying on another auxiliary component to segment
sentences.

The components are loosely coupled exposing only one main function each (except for
the Downloader). This results in some kind of pipe architecture, where the processing
components rely on a small number of auxiliary services. The whole pipe is covered
by a façade which itself is exposing the main functionality (extracting content and
hierarchy of T&C).

At first, the content is downloaded using the Downloader component. The downloaded
content is processed by the DOMParser to achieve the desired DOM-tree holding no
more information than those actually needed in this project.

The ContentExtractor component is responsible for detecting and extracting the main
content of the downloaded page based on the parsed DOM-tree.

The HierarchyExtractor component uses the main content node of the DOM-tree to
build its hierarchy tree based on visual information (CSS attached to DOM-node) and
numerical patterns in the text.

In the last step, the hierarchy tree needs to be transformed to the target format by the
TargetFormat component, which uses the SentenceSegmenter component to tokenize and

18

4. Implementation

segment the content.

The architecture is also presented in Figure 4.1.

Figure 4.1.: Architecture of the StructuredLegalExtraction library.

The flow of data through the processing pipe is shown in the sequence diagram in
Figure 4.2.

4.2. Additional Technology

Some publicly available libraries are used to pursue more generic tasks. This includes,
among others, downloading the website with Selenium and tokenizing the sentences
using SoMaJo.

In the following sections, the requirements (including optimal features) to the utilized
libraries are presented. This is followed by a description of the selected library and the
alternatives investigated in the process of this thesis.

19

4. Implementation

Figure 4.2.: Sequence diagram modelling the flow of information through the Struc-
turedLegalExtraction library.

4.2.1. Web Page Download

In an effort to determine the main content of a web page, the entire content must first
be downloaded. The following requirements have been identified:

• download full HTML file representing the web page

• extract CSS style information on the content

• full XML Path Language (XPath) support to navigate the dom-tree

• Java-Script support (opt)

Selenium

Selenium1 is a well-known library usually utilized for website testing. The library
controls a regular browser (multiple drivers are available) and is, therefore, able to
interact with the website and download content. Selenium supports XPath to navigate
the DOM-tree. However, the Selenium method .find_by_xpath (path) does not

1https://github.com/SeleniumHQ/selenium/

20

4. Implementation

support text elements. Text can be extracted by accessing an element’s .text attribute.
Unfortunately, text segments (complete text - direct and indirect children - under the
current node) cannot be mapped to the individual nodes so that one could track down
which text has which style. This will require another library.

One of the outstanding features of Selenium compared to other libraries capable of
downloading websites is the possibility to render CSS style information for nodes in
the DOM-tree. This is a major requirement to process different styles, which helps
to determine the hierarchy of paragraphs and to identify headlines. Selenium also
supports Java-Script by rendering it in the browser controlled by the library.

Alternatives

Another investigated library, requests-html2, supports Java-Script and XPath but could
not extract styles. The use of the standard python requests3 library by the Python Software
Foundation does not support Java-Script, nor CSS style rendering. The extracted HTML
needs to be processed using an additional HTML-parser.

4.2.2. HTML Parser

As Selenium is used as a web page downloader while offering no XPath support for
text nodes, there is a need for a dedicated parser with the following requirements:

• full XPath support to navigate the DOM-tree

• XPath generation from elements

lxml

lxml4 is an Extensible Markup Language (XML)-parser offering a special HTML-parser.
Due to its full XPath support, it also allows extracting all child nodes including the
text nodes of a DOM-node using the XPath child::node(). The library also allows
generating XPath for elements relative to a given parent element which makes it a
perfect fit to link with other libraries capable of XPath for style extraction.

2https://github.com/psf/requests-html/
3https://github.com/psf/requests/
4https://github.com/lxml/lxml/

21

4. Implementation

Alternatives

Another well-known library used for XML (i.e. HTML) parsing is BeautifulSoup5. Beau-
tifulSoup does not support tree-navigation using XPath which makes it more difficult
to combine with other libraries (e.g. Selenium for style information). Navigation in
BeautifulSoup is mainly accomplished using tag names or a DOM-node’s relatives’
attributes (.parent, .next_sibling, .descendants, etc.).

4.2.3. Sentence Segmentation and Tokenising

The content of the document needs to be segmented into sentences which themselves
need to be tokenized into words for the target format. This requires reliable segment-
ing and tokenizing with respect to text elements like references to laws or address
information common in the domain of T&Cs.

SoMaJo

SoMaJo6 is used to segment sentences and tokenize them according to the desired
target structure using a rule-based approach. SoMaJo needs information about the
language of the content so that language-specific features can be taken into account
when segmenting and tokenizing. According to Braun, SoMaJo performed best in the
domain of T&Cs [4].

Alternatives

The Natural Language Tool Kit (NLTK)7 and spaCy8 performed worse in sentence seg-
mentation, according to Braun [4]. They had problems with the domain-specific
enumeration of paragraphs, address information, and laws, which often resulted in a
sentence being divided into multiple sentences.

4.2.4. Language Determination

As the chosen library for sentence segmentation and tokenizing requires knowledge of
the language of the text to account for language-specific abbreviations, etc., there is a

5https://github.com/waylan/beautifulsoup/
6https://github.com/tsproisl/SoMaJo/
7https://github.com/nltk/nltk/
8https://github.com/explosion/spaCy/

22

4. Implementation

need to reliably determine the language of a web page’s content.

LangID

LangID9 is capable of determining the language of a given text sequence. The LangID
multinomial naive Bayes model is trained to determine a text’s language among 97 (as
of 20210703) languages including English and German [15]. In the context of this thesis
LangID classifies text as either English or German but no other language.

Alternatives

Alternatives were not considered as LangID proofed to deliver reliable results. Training
a naive Bayes model for the specific domain of T&Cs from scratch was not necessary
either.

4.3. DOM-Tree

As Selenium, which is used for the HTML download, does not offer full XPath support,
as one cannot address text element, i.e. all children of a DOM-node including text
elements, there is a need to parse the downloaded HTML into a customized DOM
structure. As described above, the XML parser lxml comes with full XPath support. In
order to reduce overhead, the data structure resulting from the lxml HTML parser is
transformed into a data structure much more fitting for this project (see Figure 4.3).
This data structure also supports the integration of rendered CSS styles, i.e. only those
properties of the style actually needed during hierarchy extraction.

All HTML tags not rendered out are not considered in the DOM-tree. To identify these
HTML tags, all tags listed in the HTML-standard10 were investigated.

The desired format becomes necessary for hierarchy extraction as it allows for a more
precise analysis of the style of text sequences. As described in Section 4.5 the approach
used for hierarchy extraction partly relies on information on the visual style of text
sequences.

Limiting the style extraction to those elements which were previously identified as
main content offers some room for optimization as the number of nodes for which the
style needs to be extracted is far lower. This behavior is visualized in the sequence

9https://github.com/saffsd/langid.py
10https://html.spec.whatwg.org/

23

4. Implementation

Figure 4.3.: UML diagram of data structure used for DOM-tree including CSS rendered
style information.

diagram in Figure 4.2, where the style for the main content subtree is extracted if this
had not happened before.

4.4. Content Extraction

As described in Chapter 3, the main content of a web page usually shares a common
style. As the main content is, in the case of T&C pages, almost always the largest visible
content block, the extraction approach is centered around the idea of identifying the
style used for the main content. This can usually be done by counting the number of
characters per style.

Styling is added to HTML using CSS which allows defining styles for certain nodes.
This can also be extended by defining style classes and IDs which can be assigned
to DOM-nodes as attributes. CSS style information can also be directly assigned as
attributes to the DOM-nodes. To identify the Most Common Style (MCS), the library
uses a depth-first search to traverse the DOM-tree. The style of a node and the number
of characters subject to this styling are saved to a python dictionary.

Several approaches of approximating the style including their advantages and disad-

24

4. Implementation

vantages are presented below.

Since some tags are not rendered by browsers, the dictionary is filtered for these tags
to exclude them when determining the MCS.

After the MCS is identified, the tree is traversed to identify a node covering at least 85%
(This threshold is variable. The reason for its selection can be found in Section 4.4.1.) of
the characters of the MCS. Once this node is identified, all descendants are classified
as content. This decision is justified by the findings in Chapter 3: T&Cs are usually
continuous texts not interrupted by any form of advertisement or related content as it
often is the case in newspaper articles. As most Content Management Systems (CMS)
structure their main content using a container (e.g. <div>), it is sufficient to identify
this container to also identify all of the main content. Headings or withdrawal forms,
which usually follow a different style than the MCS, are also included in the main
content node as its children.

In some rare cases CMSs do not use a container to hold the whole main content.
Instead individual containers onto which the content is divided are placed as direct
descendants to the <body> node. By identifying the longest subsequence containing the
MCS, one can most likely extract the main content while excluding boilerplate content
like navigation bar and footer. This fallback solution provides much worse results than
the actual content extraction algorithm.

Algorithm 1: Extract main content by common ancestor(s).
Input: DOM-node holding the HTML body, threshold
Result: DOM-node holding the main content
mostCommonStyle← getMostCommonStyle(bodyList);
sinlgeCommonAncestor← findLowestCommonAncestor(bodyList,
mostCommonStyle, threshold);

if singleCommonAncestor 6= None then
/* singleCommonAncestor exists and is returned */
return singleCommonAncestor;

else
/* no surrounding container, all content nodes direct descendants of

the body node */
ancestorSequence← getMaximalSubsequenceOfStyle(bodyList,
mostCommonStyle);

body.children← ancestorSequence;
return body;

end

25

4. Implementation

4.4.1. Threshold

The selection of the correct standard threshold is a crucial step in the implementation
of the extraction algorithm. A threshold too high can result in an extraction failure
and trigger the fallback solution described above. A threshold too low can result in
extracting only parts of the content. In addition, a threshold must be above 50% as a
lower threshold would result in multiple possibilities for selecting the main content
node.

In order to identify the correct threshold, the sample used in Chapter 3 is used again.
As described in Appendix A, the T&C pages from the German sample hold less
boilerplate content in most of the cases. Therefore it is reasonable to analyze the
effects of threshold selection for the German and English samples independent of each
other. As the differences are unlikely to be due to the language area and more likely
due to the size of the online shops, language-specific thresholds are not used in the
implementation. The goal should be the identification of a threshold that produces
good results on both samples.

The styles were determined using the Common Ancestor Extractor: Naive Style and Short
Text Exclusion presented below. Applying the presented optimal threshold is thus
limited to this extractor and the domain of T&Cs.

The meaning of the brackets used in Tables 4.1 and 4.2 is the following:

x ∈ [a; b) | x ≥ a ∧ x < b

The threshold must be as low as possible to allow the algorithm some tolerance for
nodes that contain text in the MCS but are not part of the main content. However, it
must not be so low, that the algorithm might classify one of its children with lower
coverage as the main content.

The lower bound of the interval of possible threshold values is limited to approximately
83.65% by the English sample, i.e. the lowest coverage of the next largest coverage in
child node. The upper bound of this interval is defined by the lowest coverage of the
main content node above 83.65%. It can be found in the English sample with a value of
approximately 91.01%.

Selecting a threshold in this interval would trigger the fallback algorithm in two cases
(the case in the German sample is ignored, as it cannot be avoided due to its general
lack of a node with coverage greater than 50%) in the sample, as the actual main
content node would cover less than 83.65% of the relevant characters. Selecting a
lower threshold would not improve the extraction results, as the amount of additional
correctly identified main content nodes is lower than those which would be misclassified

26

4. Implementation

Coverage of main content node of next largest coverage in child node

1.0 23 0
[0.95; 1.0) 6 0
[0.90; 0.95) 0 0
[0.85; 0.90) 0 0
[0.80; 0.85) 0 0
[0.75; 0.80) 0 0
[0.70; 0.75) 0 1
[0.65; 0.70) 0 1
[0.60; 0.65) 0 2
[0.55; 0.60) 0 0
[0.55; 0.50) 0 0
NONE - [0.0; 0.5) 1 25

Table 4.1.: Coverage of the main content node by the total number of characters of the
MCS and its child with the next largest coverage in the German sample.

additionally.

Thus the threshold is set to 85%.

4.4.2. Common Ancestor Extractor: Naive Style

The first more naive approach of approximating the styles of DOM-nodes is to combine
the tag and its assigned attributes (<tag >${attributes }). This approach ignores the
inherited CSS properties from parent nodes. Theoretically, style properties could be
inherited from a node’s ancestors. Even the style of two supposedly identical <p>${}
elements (because they have the same attributes) can be rendered into a different visual
style by the browser depending on their ancestors.

As this approach avoids rendering out the CSS styles it is rather efficient. The correct
content was identified in the majority of the investigated cases from the sample (sample
is presented in Appendix A). Some problems occurred on those sites which were using
the same tag for their main content and other elements. If the amount of characters
is low this does not lead to a problem as the threshold of 85% allows for a maximum
of 15% of the same styled characters to be out of the suspected main content node.
Whenever the amount of characters becomes too high, e.g. in navigation bars, the
extractor needs to select a higher common ancestor - and thus more content than
the actual main content. The actual styling of the nodes using the same tag and the

27

4. Implementation

Coverage of main content node of next largest coverage in child node

1.0 11 0
[0.95; 1.0) 5 0
[0.90; 0.95) 2 0
[0.85; 0.90) 0 0
[0.80; 0.85) 0 1
[0.75; 0.80) 0 0
[0.70; 0.75) 1 0
[0.65; 0.70) 0 0
[0.60; 0.65) 0 0
[0.55; 0.60) 0 0
[0.55; 0.50) 1 0
NONE - [0.0; 0.50) 0 18

Table 4.2.: Coverage of the main content node by the total number of characters of the
MCS and its child with the next largest coverage in the English sample.

same attributes could still be very different as a result of the nodes’ ancestors and the
attributes assigned to them - thus including the descendants’ attributes or rendering
out the actual style could fix this problem. Another possible approach to fix this issue
is the exclusion of text elements that occur to be a headline or part of a navigation bar.

4.4.3. Common Ancestor Extractor: Rendered Style

Selenium allows for rendering out the actual style of a node (and its associated text
sequence) allowing the library to determine the actual MCS. The style is defined by
font-size, font-weight, underlining, font-family and font-color.

This approach needs to render the style of each node in the web pages HTML-body
which results in significant overhead. The number of nodes in the German sample is
shown in Figure 4.4, the number of nodes for the English sample is shown in Figure
4.5. Even though CSS style information will be needed for the hierarchy extraction, the
amount of nodes requiring this can be reduced by determining the main content using
the Naive Style approach before extracting the style of nodes. This would limit the
style extraction to the relevant nodes. In addition, the style extraction for TreeElements
without any direct TextElement child nodes would not be necessary.

During a quick evaluation, the Rendered Style approach did perform no better than the
Naive Style approach.

28

4. Implementation

Figure 4.4.: Amount of DOM-nodes used in the body of T&C-pages in the German
sample.

4.4.4. Common Ancestor Extractor: Naive Style and Short Text Exclusion

As short text elements like headlines and those that occur in navigation bars are usually
not considered to be the main content of a T&C web page, DOM-nodes containing such
short nodes can be ignored when determining the MCS. The Naive/Rendered Style and
Short Text Exclusion implementation requires a minimum of four words in a DOM-node
to account for it when determining the number of characters for each style. A word is
considered to be a sequence of characters surrounded by whitespaces.

As Naive Style and Rendered Style approaches showed no significant differences in terms
of the results, the approach including Short Text Exclusion is combined with the more
efficient Naive Style implementation.

As style is only extracted for the nodes which are actually part of the main content, the
number of nodes for which a style extraction is needed can be reduced by approximately
69% in the German sample (Figure 4.6 and by approximately 71% in the English
sample in average after using the Common Ancestor Extractor: Naive Style and Short Text

29

4. Implementation

Figure 4.5.: Amount of DOM-nodes used in the body of T&C-pages in the English
sample.

Exclusion. Due to the use of different CMSs by web pages investigated in the sample,
there is some variation in the node reduction ranging from 7.5% to 99%.

4.5. Hierarchy Extraction

The hierarchy extraction is based on the idea presented by Manabe and Tajima [16].
The visual style of the text is used to identify headings and their associated text blocks.
In some cases, T&Cs are also structured using enumerations or a combination of visual
style and enumerations (see Figures 3.2 and 3.3). Thus, this information needs to
be considered, too. For the actual hierarchy extraction information from both, the
enumerations and the visual styles, need to be taken into account in a rule-based
approach to produce accurate results.

Structural information from the DOM-tree is not used for hierarchy extraction as many
web pages do not represent the hierarchical structure of the T&Cs in the DOM-tree. As

30

4. Implementation

Figure 4.6.: Relationship of the total amount of DOM-nodes and the amount of DOM-
nodes identified as part of the main content in the German sample.

discovered by Manabe and Tajima [16], the information from the DOM-tree is often
misleading as e.g. h-tags are abused for SEO and many web pages are not even using
special HTML-tags but CSS to create visual differences in the page content. Therefore
it is justified to represent the main content as a continuous text (blocklist, see Section
4.5.1) with style information attached.

The algorithm used to structure the extracted content hierarchically uses the information
on visual styles with a higher priority and relies on the parsed enumerations to verify
and adjust the results. This decision was made based on the data presented in Figures
3.2 and 3.3 which provides evidence, that visual features are almost always part of the
hierarchical structure of the investigated German and English T&C web pages.

Since most of the investigated pages also use enumeration patterns for hierarchical
structuring, this information is also taken into account during hierarchy extraction.

An example structure of the desired results of the hierarchy extraction can be seen in

31

4. Implementation

Figure 4.7.: UML diagram of the data structure used to represent the hierarchy tree.

Figure 4.8.

4.5.1. Content Blocks

As structural information arising from the DOM-tree is not regarded during hierarchy
extraction, a different input format than the previously presented DOM-node (Figure
4.3) is used. The previously identified main content is now regarded as a list of content
blocks where each block has its own style. A block is a sequence of characters ending
with a forced newline. This forced newline could be a
 tag, the start or end of a
paragraph (<p>), etc. All HTML tags from the HTML-standard12 were investigated in
order to identify those forming new paragraphs.

This is similar to the approach presented by Viveros et al. [11].

The style of a block corresponds to the style that the majority of the characters in it are

11https://www.aldi.co.uk/customer-services/terms-and-conditions/ last accessed on 20210325
12https://html.spec.whatwg.org/

32

4. Implementation

Figure 4.8.: Extracted Hierarchy of ALDI UK11 T&C web page (segments in green
boxes, irrelevant content in red boxes, headlines with blue underlining).

part of. This solves potential issues during hierarchy extraction which might arise from
highlighted words in bold or underlined styling occurring in the middle of a regular
content block. The style of content in anchor tags (<a>) is only considered as a fallback
solution if no other style is visible in the block.

An example of block formation can be seen in Figure 4.9. Its second block’s code is
represented by the HTML code in Listing 4.1.

33

4. Implementation

Listing 4.1: HTML representation of the second block in Figure 4.9.

<p>We do not disclose buyers’ information to third parties other than
when order details are processed as part of the order fulfilment
process, e.g. courier companies. In this case, the third party will
not disclose any of the details to any other third party. To read
our full GDPR policy, please click

here

.</p>

Figure 4.9.: Content blocks from Telescopehouse13 visualized (blocks in green boxes).
One non-paragraph forming DOM-node is aggregated to the paragraph
forming the second DOM-node.

The extraction of potential enumeration patterns described in Section 4.5.3 is triggered
automatically for each block.

List elements () receive their own special list enumeration pattern.

13https://www.telescopehouse.com/terms-and-conditions/ last accessed on 20210715

34

4. Implementation

4.5.2. Visual Styles

Visual styles of the text are extracted as differences in weight, text-decoration, and size of
the text. They are one of the common ways to structure a document and distinguish be-
tween headline and content. Selenium provides a method (.value_of_css_property(<prop >))
to retrieve selected CSS properties of DOM-nodes. These visual styles extracted by
selenium are attached to the custom DOM-tree data structure presented in Figure 4.3.

The font size can be extracted using the attribute font-size which returns the height
of the font in pixels. The font weight is extracted using the attribute font-weight
returning the weight as an integer. Whether a text is underlined can be retrieved by the
attribute text-decoration which has to contain the word underline in order to render
a line underneath the text in the browser.

The following assumptions introduced by Manabe and Tajima [16] are used as a basis
for the visual hierarchy extraction:

1. headings appear at the beginning of the corresponding blocks

2. headings are given prominent visual styles

3. headings of the same level share the same visual style

A section’s start is identified by determining its headline, i.e. a line with a different
style than the MCS identified during content extraction. A headline is only allowed a
maximum of 10 words (character sequences separated by whitespace). The section ends
whenever the next line styled like the current section’s headline occurs. The content in
between these two lines forms the provisionally content of the upper headline. Each
of the identified sections is then grouped into subsections using the same algorithm
(Algorithm 2) until no more prominent style is visible in between two headlines.

Content in between two headlines, respectively the last headline and the end of the
main content is assumed to be the content of the upper headline.

4.5.3. Enumerations

Enumerations are extracted using a regular expression and the standard Python re14

library. The regular expression supports the extraction of single-styled enumerations
or combinations of different enumerations styles. The different numbering styles
are brought into a uniform format so that they can be compared with each other.
Each enumeration is brought to a uniform format (int) by the methods specified
below. Enumerations are then represented as a list where each level of enumeration

14https://github.com/python/cpython/blob/3.9/Lib/re.py

35

4. Implementation

Algorithm 2: Extract hierarchy based on headlines (recursive).
Input: List of blocks (blockList)
Result: Children of a Node
/* Determine headline style of current level and gather all headlines

on this current level. */
headlineStyle← getNextHeadlineStyle(blockList);
headlineList← [];
for block in blockList do

if block.style = headlineStyle then
headlineList.append(block);

end
end
/* Create children list for current node by adding the blocks

associated to the current node and by extracting the lower level
nodes. */

children← [];
children.append(blockList[0 : headlineList[0].index];
for headline in headlineList do

cChildren← extractHierarchy(blockList[(headline.index + 1) :
headline.next.index];

children.append(Node(headline, cChildren));
end
return children;

is saved to the list as another entry (tuple of int and enumeration type (numeric,
Roman, alphabetic)). These representations of enumeration patterns are linked to
blocks/paragraphs allowing another algorithm to sort the paragraphs into a tree
structure.

The regular expression shown below is used to detect enumeration patterns in the first
10 characters of each block.

\s[\(§]?(([IVXLivxl]{1,7})|([0-9]{1,2})|[a-zA-Z])
([\.\-,:](([IVXLivxl]{1,7})|([0-9]{1,2})|[a-zA-Z]))*[\-:\.)]?\s

Extracted enumerations are used to correct and validate the existing hierarchy which
was previously extracted using an approach based on visual features (see Section 4.5.2).

In the first step, the blocks assigned to the individual sections are examined for possible
numerical hierarchies. After the first enumeration pattern from the previously extracted

36

4. Implementation

enumeration is selected as the headline style, all headlines of the same style in the
subsection are gathered in order to create further subsections similar to the algorithm
used during the visual separation.

An enumeration pattern is only considered if there are at least two consecutive num-
berings of that pattern whose numerical values reflect a valid step. A 1.1 followed by a
1.2 is thus classified as a valid step whereas a 1.1 followed by a 1.7 is invalid. Invalid
steps or enumeration patterns occurring only once are probably found due to an error
in the enumeration detection.

There is some potential danger in working with enumerations, as some T&C pages
preface their main content with a table of contents which itself is enumerated in most
cases. An example is presented in Figure 3.4. This potential source of errors is dealt
with by requiring each headline to have at least one following text block, a lower level
headline, or a minimum length of 10 whitespace-separated words.

After the initial enumeration-based segmentation within the nodes’ content blocks, all
headlines on the same level of the tree are checked for enumeration patterns. If there
are different enumeration patterns on one level, the tree is modified in order to have
consistent enumeration.

Arabic enumeration

Arabic numbers are the most common enumeration used in the domain of T&C
structuring. They can easily be extracted from a string and transformed into a numerical
representation using the build-in int() function of Python.

Roman enumeration

Since in a few cases Roman numerals were also used for numbering, these must be
converted into Arabic numerals. In all investigated cases Roman numerals were not
bigger than 20. The implementation covers the number range from 1 to 88, so all
other eventualities do not raise any problems. The number range can be extended
as desired by expanding a dictionary used to resolve the Roman numeral characters
to their Arabic decimal counterpart and by extending the regular expression used
for detecting enumeration patterns. The algorithm developed to transform Roman
numerals to Arabic numerals is shown below (Algorithm 3). It works by adding up the
respective values of the Roman numeral characters and subtracts their value if a larger

37

4. Implementation

Roman numeral character has already been processed before.

Algorithm 3: Convert Roman numerals to decimal.
Input: Roman numeral (as string)
Result: number (as integer)
reversed← reverse(number);
indexList← [’I’, ’V’, ’X’, ’L’];
resolve← { ’I’ : 1, ’V’ : 5, ’X’ : 10, ’L’ : 50 };
lastIndex← 0;
sum← 0;
for character in reversed do

if indexList.indexOf(character) < lastIndex then
sum← sum − resolve[character];

else
lastIndex← indexList.indexOf(character);
sum← sum + resolve[character];

end
end
return sum;

Alphabetic enumeration

As alphabetic enumeration is only applicable for single characters, there is no need for
extensive conversion. Letters are simply converted to their lowercase counterpart to
allow the processing of either lower- or uppercase enumerations. Their numeric value
is determined by reducing their ASCII value by 96. This maps a to 1, b to 2, and so on.

Lists

As described in Section 4.5.1, list elements () are automatically separated into
blocks with their own enumeration pattern. This is necessary, as enumerations are
often not represented in the text of DOM-nodes but rendered by the browser.

The list elements allow for one last adjustment to the hierarchy tree: All blocks with
list enumeration patterns underneath the same headline are separated into subsections.

The assumption, that no section is interrupted by a subsection and continued afterward
is relaxed for the list enumeration pattern. Content before and after the list blocks is
packed into subsections on the same level as the list blocks. This decision is justified as

38

4. Implementation

most of the lists are actually interrupting subsections which are continued afterward.

4.6. Target Format

The target format was predefined by the team of AGB-Check [6] (see Figure 4.10).

The Documents attributes are retrieved in the following ways: The id is generated by
hashing the URL and a timestamp, the source URL is given as an input to the library,
the extraction date is determined from the computer time using the Python Date library,
and the title is taken from the header of the HTML-document (<title>).

The Sections are generated from the extracted content (see Section 4.4) and its hierarchy
(see Section 4.5) based on the hierarchy tree presented in Figure 4.7.

The objects are dumped to JavaScript Object Notation (JSON) using the standard python
JSON library15.

Figure 4.10.: Target format for the library’s output.

15https://github.com/python/cpython/tree/3.9/Lib/json

39

5. Evaluation

The performance of the developed algorithms is evaluated in this chapter.

Besides the sample used to derive the requirements, there is also another sample to
evaluate the library to prelude overfitting.

5.1. Content Extraction

The content extraction algorithm was tested with the sample used to derive require-
ments (see Appendix A) and another test sample solely created for the purpose of
evaluation. Focus is on the correct identification of the start and end of the content,
as the center is always identified correctly given the functionality of the previously
introduced LowestCommonAncestorExtractor with NaiveStyle, ShortTextExclusion, and a
threshold of 85%.

During the evaluation three main sources of errors were identified:

1. Threshold too high: Whenever the threshold is too high for the page (reasons for
threshold selection are given in Section 4.4.1), the fallback algorithm is triggered.

2. No container for main content: Whenever the T&C page lacks a container wrap-
ping the whole main content, the fallback algorithm is triggered.

3. Use of different tags: The NaiveStyle approach cannot handle the usage of different
tags rendering to the same actual style used for the main content. If one of the
tags is held in its own container, as it often ist the case with lists (or ;
text in), only this container is extracted.

Requirements Sample

The results of the evaluation based on the sample used to derive requirements are
presented in Tables 5.1 and 5.2.

The LowestCommonAncestorExtractor produced results in slightly better than those of
Trafilatura which turned out to be the best library during the evaluation of existing

40

5. Evaluation

solutions. All errors except one are due to the use of the fall-back algorithm which is
used whenever there is no node holding at least 85% of the characters of the MCS.

The other error, which cannot be blamed on this problem, resulted from the use of
different tags for the main content. The web page with incorrect results used some
paragraphs (<p>) and a list with its own sub-container (). Through this page layout,
the list elements () were recognized as MCS and only the list was extracted.

The T&C page of ID 141 in the German sample (Table A.1) is built in a way, that made
all of the existing solutions fail. The LowestCommonAncestorExtractor was able to extract
the main content correctly.

too late too early correct

LowestCommonAncestorExtractor (see Chapter 4) 1 3 45
Boilerpipe ArticleExtractor 16 4 24
Boilerpipe LargestContentExtractor 29 2 13
Boilerpipe CanolaExtractor 7 15 22
JusText 6 11 25
Trafilatura 5 2 37

Table 5.1.: Performance of detecting the start of the T&Cs for the implementation
presented in Chapter 4 and for each of the previously examined extractors
(taken from Chapter 5). LowestCommonAncestorExtractor was able to process
49 out of 50 web pages, the other extractors processed 44 of 50 web pages
from the requirements sample.

41

5. Evaluation

too late too early correct

LowestCommonAncestorExtractor (see Chapter 4) 3 2 44
Boilerpipe ArticleExtractor 23 13 8
Boilerpipe LargestContentExtractor 32 1 11
Boilerpipe CanolaExtractor 3 27 14
JusText 8 15 19
Trafilatura 5 4 35

Table 5.2.: Performance of detecting the end of the T&Cs for the implementation pre-
sented in Chapter 4 and for each of the previously examined extractors
(taken from Chapter 5). LowestCommonAncestorExtractor was able to process
49 out of 50 web pages, the other extractors processed 44 of 50 web pages
from the requirements sample.

Test Sample

For evaluation purposes, another sample of 30 German and 20 English T&C pages from
the data set by Braun and Matthes [5] (GitHub1) is used. The data from the English
sample was again of lower quality. 35% of the data did not refer to the correct T&C
page of the respective online shop. These links were corrected manually.

The results of the evaluation based on the test sample are presented in Table 5.3.

too late too early correct

LowestCommonAncestorExtractor (see Chapter 4) - start 3 0 46
LowestCommonAncestorExtractor (see chapter 4) - end 0 2 47

Table 5.3.: Performance of detecting the start and end of the T&Cs for the implementa-
tion presented in Chapter 4 based on the test sample. LowestCommonAnces-
torExtractor was able to process 49 out of 50 web pages.

The errors in the test sample can be traced to the same reasons as those identified in
the requirements sample. The overall results from the test sample validate the results
from the requirements sample. There is no statistical evidence of potential overfitting.

1https://github.com/sebischair/TC-Detection-Corpus

42

5. Evaluation

5.2. Hierarchy Extraction

The hierarchy extraction algorithm was, similar to the content extraction, evaluated
with the sample used to derive requirements (see Appendix A) and a test sample
created for the purpose of evaluation. Errors arising from a failed content extraction are
ignored in this section, as they provide no information on the quality of the algorithm
applied during hierarchy extraction.

The deviations of the hierarchy extraction algorithm from the expected results are
determined by assigning the following scores to the extracted nodes:

• 0: each section with correct parent, correct content, and correct title

• 0.4: wrong parent

• 0.5: wrong content

• 0.1: wrong title

As different T&C pages contain different amounts of sections, the score is divided by
the total amount of sections identified by the algorithm. An error score of 0 accounts
for a perfect extraction.

As explained in the next paragraph, some properties of web pages can result in a large
number of wrong sections, which the human user would not identify as such. The
scores determined for the different T&C pages are thus only a rough estimate of the
performance of the algorithm. A precise analysis of the sources of errors can be found
in the next paragraph.

During the evaluation the following main sources of errors were identified:

1. Use of bold text: Some pages used bold text elements to highlight whole sections
or just some blocks (see Section 4.5.1). Due to the algorithm’s functionality, this
can screw up the whole result as the bold blocks might be identified as headlines.

2. Wrong enumeration: A surprisingly large amount of T&C pages contains errors
in their enumerations. As the algorithm requires a strict sequence of numerations,
this can lead to problems in the hierarchy extraction.

3. Violation of the assumption "Sections are not interrupted": The algorithms as-
sumes, that there is no more content of a section after one of its subsection, As
this assumption is violated in some cases, this leads to errors in the extracted
hierarchy.

4. Use of tables: Whenever tables occurred on a page (often in the context of shipping
costs), the algorithm separated each cell into its own block resulting in a large
number of blocks with different styles. A high frequency of numbers occurring

43

5. Evaluation

in the table worsened the results as the vast amount of detected enumeration
patterns triggered further adjustments to the table.

5. Failed style extraction: In order to link the custom DOM-tree structure to the
Selenium tree each DOM-node is attached its full XPath. As some pages render
elements like a cookie banner after a short timespan, these elements may not
be included in the parsed DOM-tree. As style extraction takes more time in the
browser, new elements can render and tackle the validity of the XPath attached
to the DOM-node. Visual features cannot be extracted resulting in an erroneous
result during the visual-based hierarchy extraction.

In order to evaluate the hierarchy extraction algorithm a small console application
was developed to support annotation of the algorithms results. It allowed the user to
classify the content as either correct xor [wrong parent or wrong content or wrong title].
A random sample of 10% of the evaluated pages was annotated by a second person.
No significant deviations from the first trial were found.

There is no statistical evidence of potential overfitting by comparing the error scores of
the requirements- and test-sample.

The time consumed to extract the 100 pages was approximately 15 minutes, as the
extraction of the DOM-nodes’ styles is rather time-intensive.

The meaning of the brackets used in Tables 5.4, 5.5, 5.6, and 5.7 is the following:

x ∈ [a; b) | x ≥ a ∧ x < b

Requirements Sample

The results of the evaluation based on the sample used to derive requirements are
presented in Tables 5.4 and 5.5.

The larger number of failures in the English requirements sample mostly resulted from
a failed content extraction. The 6 failed hierarchy extractions correspond to the 6 failed
content extractions mentioned in Section 5.1.

44

5. Evaluation

Error Score Amount

0 12
(0; 0.05] 12
(0.05; 0.1] 1
(0.1; 0.15] 2
(0.15; 0.2] 1
(0.2; 0.3] 1
(0.3; 0.5] 1
(0.5; 1] 0
Failed 0

Table 5.4.: Distribution of error scores for the hierarchy extraction of the German
requirements sample.

Error Score Amount

0 5
(0; 0.05] 4
(0.05; 0.1] 1
(0.1; 0.15] 2
(0.15; 0.2] 0
(0.2; 0.3] 0
(0.3; 0.5] 1
(0.5; 1] 0
Failed 6

Table 5.5.: Distribution of error scores for the hierarchy extraction of the English re-
quirements sample.

45

5. Evaluation

Test Sample

The results of the evaluation based on the test sample are presented in the Tables 5.6
and 5.7.

46

5. Evaluation

Error Score Amount

0 8
(0; 0.05] 11
(0.05; 0.1] 1
(0.1; 0.15] 1
(0.15; 0.2] 1
(0.2; 0.3] 1
(0.3; 0.5] 5
(0.5; 1] 0
Failed 2

Table 5.6.: Distribution of error scores for the hierarchy extraction of the German test
sample.

Error Score Amount

0 9
(0; 0.05] 3
(0.05; 0.1] 2
(0.1; 0.15] 1
(0.15; 0.2] 2
(0.2; 0.3] 2
(0.3; 0.5] 1
(0.5; 1] 0
Failed 0

Table 5.7.: Distribution of error scores for the hierarchy extraction of the English test
sample.

47

6. Conclusion and Future Work

In this chapter, the results are summarised. Furthermore, the topics that require further
research are discussed.

In this thesis, a new content extraction algorithm was developed that performs better
than existing solutions in its specific domain of T&C web pages. Since the algorithm is
based on some domain-specific assumptions, it is unclear how successfully it would
operate in a generic web corpus. Further research in the field could answer this question.
Initial small tests looked promising under the assumption that the content of the page
is not interrupted.

The style extraction is currently based on Selenium. However, the performance of
retrieving certain CSS properties is rather low slowing down the whole algorithm.
In the future, a more efficient solution for the extraction of styles may remedy this.
Alternatively, several content extraction threads can operate in parallel.

The general functionality of the rule-based approach to hierarchy extraction could
be demonstrated. The general idea of Manabe and Tajima [16] was extended by an
enumeration detection due to the frequent usage of enumerations to structure T&C
pages. It is much more difficult to achieve similar success rates in hierarchy extraction
as with content extraction, due to the many irregularities in visual representation. This
is probably due to the fact that the operators of different online shops often want to
highlight very different elements from the contract text visually. In cases where such
outliers do not occur in the visual representation, hierarchy extraction yields good
results.

Accurate results are necessary in the legal context of AGB-Check as erroneous results
propagate through the whole NLP-pipe.

RQ1: What are special requirements for the extraction of contracts in comparison
with regular (i.e. news articles, blogposts) content?

The main difference in the properties of T&C pages compared to the regular ones
found in this thesis was the continuous content. Compared to regular content, in which
addresses and telephone numbers rarely appear and often indicate a footer or the

48

6. Conclusion and Future Work

imprint, this information is part of the relevant content in the case of contracts.

RQ2: How to extract the relevant parts from contracts in raw HTML?

Content is extracted using the LowestCommonAncestorExtractor developed in this thesis.
It is based on the idea of identifying a node holding a minimum of 85% of the MCS.

RQ3: How to extract the structure and the hierarchy of paragraphs, (sub-)titles, and
related clauses?

The hierarchy is extracted using a rule-based approach. Structural information from
the DOM-tree are only regarded in terms of paragraphs and list elements. The seg-
menting algorithm looks into the visual representation and enumerations attached to
the paragraphs/blocks.

StructuredLegalExtraction Library

The methods provided by the library implemented based on the knowledge gained
from RQ2 and RQ3 are documented in Appendix C.

49

A. Sample

The sample used for the identification of requirements (see Chapter 3), the evaluation
of different implementation approaches of the content extraction (see Section 4.4), and
as a first try at the evaluation (see Chapter 5) was taken from the data set by Braun
and Matthes [5] available from Github1 under CC BY-SA 3.0 license. The sample was
generated using the statistical software R2.

German Sample

The T&C pages of the German sample appear to be less overloaded than these of the
English sample. This could be due to the smaller size of most of the online shops in the
German sample.

ID URL

4840 https://www.uhrenbay.com/agb
4026 https://www.surifrey.com/agb
4353 https://www.benzkosmetik.de/agb
2260 https://campingtoilette-guenstig.de/allgemeine-geschaeftsbedingungen
174 https://steinehelden.de/agb
3746 https://corporate.brax.com/de_de/shop/agb-widerrufsrecht
2899 https://www.lederhose.com/de-AT/info/agb
2533 https://www.allergiker-shop-alfda.de/info/allgemeine-geschaeftsbedingungen.html
3377 https://www.radarfriends.net/agb/
4716 https://www.my-perfect-skin.de/allgemeine-geschaeftsbedingungen
1006 https://www.handwerkerstore24.de/agb
4515 https://www.buegelrevolution.de/agb
2791 https://www.buyandfeelgood.de/de/unsere-agb
4271 https://www.metro.de/unternehmen/agb_marktplatz
2853 http://www.t-zone24.de/Unsere-AGBs.html

1https://github.com/sebischair/TC-Detection-Corpus
2https://www.r-project.org

50

A. Sample

ID URL

414 https://www.pnshop.de/cgi-bin/pnshop/de_DE/generalTermsConditions.html
2264 https://www.augenblicke-eingefangen.de/agb-und-kundeninformationen
2265 https://www.tennis-heine.de/allgemeine-geschaeftsbedingungen
3909 https://www.schulranzen-fachmarkt.de/de/c/agb_1
3980 https://www.wohnplanet.de/agb
4678 https://www.lohmeier-shop.de/agb
3168 https://www.parfuemerie-ruthe.de/AGB/
1465 https://www.myspirits.eu/agb
3879 https://www.matratzen-concord.de/ueber-uns/agb/
4559 https://www.empinio24.de/agb?belboon=2004111812239900144&pid=12401
3314 https://somnishop.com/allgemeine-geschaeftsbedingungen/
1328 https://www.stormbreaker.de/AGB
3649 https://www.spielzeug-und-mehr.de/AGB/
4384 https://www.takeashot.de/pages/agb
1458 https://www.mein-gartenshop24.de:443/agb

Table A.1.: German sample.

51

A. Sample

English Sample

The T&C pages of the English sample do often contain more boilerplate content than
those of the German sample. One reason could be the larger size of the online shops in
the English sample.

ID URL

7 https://www.tyres-guru.co.uk/AGBs.html
362 https://www.ghostbikes.com/terms-and-conditions.html
335 https://www.electricalworld.com/en/Terms-and-Conditions/cc-3.aspx
300 https://www.forzasupplements.co.uk/pages/terms
266 https://www.telescopehouse.com/terms-and-conditions
412 https://www.chemist.co.uk/terms-and-conditions.html
238 https://www.samueljohnston.com/de/ABOUT—Terms-and-Conditions/cc-4.aspx
99 https://www.expresschemist.co.uk/info/terms-conditions
126 https://www.uktights.com/page/terms
259 https://www.gardenchic.co.uk/terms-conditions-i7
41 http://www.cartridgepeople.com/UserTemplate/Content___page=terms.html
173 https://www.hunterboots.com/us/en_us/terms-of-sale
417 https://www.beautyflash.co.uk/terms-of-use.html
81 https://www.escentual.com/help-and-advice/terms-and-conditions/
37 https://www.wexphotovideo.com/help/terms-and-conditions/
487 https://www.just-rackets.co.uk/shop/customer-services.html#terms
58 https://www.jdsports.co.uk/customer-service/terms/
529 https://thesportsedit.com/pages/terms-conditions
345 https://www.shoesyouwant.com/terms-conditions
442 https://www.dorothyperkins.com/page/terms-and-conditions.html

Table A.2.: English sample, rows highlighted in red were updated as the link pointed
to a wrong page.

52

B. Processing Demo

This chapter presents the algorithm and the intermediary results in detail to allow for
a better understanding of its functionality. Tasks fulfilled by other libraries or more
generic tasks like parsing and downloading are not presented. The HTML code of the
demo website used is presented in Listing B.1, a rendered version can be seen in Figure
B.1.

Figure B.1.: Rendered Demo Shop T&C web page used in processing demo.

53

B. Processing Demo

Listing B.1: HTML representation of Demo Shop used in processing demo.

<html>
<head>

<title>Terms and Conditions of Demo-Shop</title>
</head>
<body>

<div>
<h1>Welcome to the Demo-Shop</h1>
<table border=’solid’>

<tbody><tr>
<td>Navigation</td><td>Products</td>
<td>Sale</td><td>About Us</td>

</tr></tbody>
</table>

</div>
<div>

<h3>Terms and Conditions</h3>
<h5>1. Lorem Ipsum</h6>
<p>dolor sit amet, consectetuer adipiscing elit. Aenean commodo
ligula eget dolor. Aenean massa. Cum sociis natoque penatibus
et magnis dis parturient montes, nascetur ridiculus mus.</p>
<h6>1.1 Donec quam</h6>
<p>felis, ultricies nec, pellentesque eu, pretium quis, sem.
Nulla consequat massa quis enim. Donec pede justo, fringilla
vel, aliquet nec, vulputate eget, arcu.</p>
<h6>1.2 In enim justo, rhoncus</h6>
<p>ut, imperdiet a, venenatis vitae, justo. Nullam dictum
felis eu pede mollis pretium. Integer tincidunt. Cras
dapibus. Vivamus elementum semper nisi. Aenean vulputate
eleifend tellus.</p>
<h5>2. Aenean leo</h5>
<p>ligula, porttitor eu, consequat vitae, eleifend ac, enim.
Aliquam lorem ante, dapibus in, viverra quis, feugiat a,
tellus. Phasellus viverra nulla ut metus varius laoreet.
Quisque rutrum. Aenean imperdiet.</p>

</div>
<p>Thanks for visiting Demo-Shop</p>

</body>
</html>

54

B. Processing Demo

B.1. Content Extraction

The content extraction presented in this demo is using the 4.4.4 Common Ancestor
Extractor: Naive Style and Short Text Exclusion.

Gathering the MCS (naive + min. of 4 words)

Style Characters Characters discarded (less than 4 words)

h1${} 24 0
td${} 30 30
h3${} 20 20
h5${} 27 27
p${} 742 0
h6${} 40 14
b${} 11 11

Table B.1.: Styles and their number of characters (naive + min. of four words). MCS
highlighted in green, characters violating the min. of 4 words rule in red.

The style p${} is identified as the MCS. p${} described all dom nodes with tag p and
not attributes assigned. As this is the naive style approach, this is only an approximation
of the actual style.

The other two styles considered in the selection (h1${} [24 relevant characters] and
h6${} [26 relevant characters]) are by far less prominent than p${}.

Finding Lowest Common Ancestor covering 95% of p${} characters

Only DOM-nodes containing the MCS (p${}) are regarded in this step. The algorithm
looks for the node with the highest depth and coverage above 95%. A list of all
investigated nodes and the one covering at least 95% of the MCS is presented in Table
B.2.

The threshold is set to 95% for demonstration purposes only. The total amount of
characters of the demo shop is untypical low for a regular T&C web page justifying
this adjustment in this particular case.

The nodes /html/body/div[2]/p[1 - 4] are investigated first, as their depth is higher
than the depth of /html/body/div[2] and /html/body/p. As none of them is able

55

B. Processing Demo

Node (XPath) Coverage Depth

/html/body/div[2] 0.9663573085846868 1
/html/body/div[2]/p[1] 0.2354988399071926 2
/html/body/div[2]/p[2] 0.19837587006960558 2
/html/body/div[2]/p[3] 0.2529002320185615 2
/html/body/div[2]/p[4] 0.27958236658932717 2
/html/body/p 0.033642691415313224 1

Table B.2.: Nodes containing style p${} with their coverage and depth. Lowest common
ancestor holding the identified main content in green.

to reach a coverage of more than 95%, the next lower depth (1) is investigated. The
DOM-node with XPath /html/body/div[2] has a coverage of more than 95% and is
thus identified as the element holding the main content of the web page. An HTML
representation of the main content can be found in Listing B.2.

56

B. Processing Demo

Listing B.2: HTML representation of the identified main content.

<div>
<h3>Terms and Conditions</h3>
<h5>1. Lorem Ipsum</h6>
<p>dolor sit amet, consectetuer adipiscing elit. Aenean commodo
ligula eget dolor. Aenean massa. Cum sociis natoque penatibus
et magnis dis parturient montes, nascetur ridiculus mus.</p>
<h6>1.1 Donec quam</h6>
<p>felis, ultricies nec, pellentesque eu, pretium quis, sem.
Nulla consequat massa quis enim. Donec pede justo, fringilla
vel, aliquet nec, vulputate eget, arcu.</p>
<h6>1.2 In enim justo, rhoncus</h6>
<p>ut, imperdiet a, venenatis vitae, justo. Nullam dictum
felis eu pede mollis pretium. Integer tincidunt. Cras
dapibus. Vivamus elementum semper nisi. Aenean vulputate
eleifend tellus.</p>
<h5>2. Aenean leo</h5>
<p>ligula, porttitor eu, consequat vitae, eleifend ac, enim.
Aliquam lorem ante, dapibus in, viverra quis, feugiat a,
tellus. Phasellus viverra nulla ut metus varius laoreet.
Quisque rutrum. Aenean imperdiet.</p>

</div>

57

B. Processing Demo

B.2. Hierarchy Extraction

The hierarchy extraction is based on the visual features and enumeration patterns in
the main content.

Creating the BlockList

As structural information is no longer regarded in this processing step, the DOM-tree
is parsed into a BlockList. The section presented in Listing B.3 is subject to the merger
of different DOM-nodes, as the tag does not form its own block (i.e. paragraph)
but is part of its parent <p> DOM-node. As the paragraph (<p>) contains 145 characters
whereas its child () holds only 11 characters, the style of the parent (<p>) is adopted
for the block.

Listing B.3: HTML representation of the paragraph <p> and its child which need
to be merged..

<p>felis, ultricies nec, pellentesque eu, pretium quis, sem.
Nulla consequat massa quis enim. Donec pede justo, fringilla
vel, aliquet nec, vulputate eget, arcu.</p>

The extracted BlockList is shown in Table B.3.

58

B. Processing Demo

ID
Te

xt
C

on
te

nt
Fo

nt
-S

iz
e

Bo
ld

U
nd

er
lin

ed

1
Te

rm
s

an
d

C
on

di
ti

on
s

18
px

ye
s

no
2

1.
Lo

re
m

Ip
su

m
13

px
ye

s
no

3
do

lo
r

si
t

am
et

,c
on

se
ct

et
ue

r
ad

ip
is

ci
ng

el
it

.A
en

ea
n

co
m

m
od

o
lig

ul
a

eg
et

do
lo

r.
A

en
ea

n
m

as
sa

.C
um

so
ci

is
na

to
qu

e
pe

na
ti

bu
s

et
m

ag
ni

s
di

s
pa

rt
ur

ie
nt

m
on

te
s,

na
sc

et
ur

ri
di

cu
lu

s
m

us
.

16
px

no
no

4
1.

1
D

on
ec

qu
am

10
px

ye
s

no
5

fe
lis

,u
lt

ri
ci

es
ne

c,
pe

lle
nt

es
qu

e
eu

,p
re

ti
um

qu
is

,s
em

.N
ul

la
co

ns
eq

ua
t

m
as

sa
qu

is
en

im
.D

on
ec

pe
de

ju
st

o,
fr

in
gi

lla
ve

l,
al

iq
ue

t
ne

c,
vu

lp
ut

at
e

eg
et

,a
rc

u.

16
px

no
no

6
1.

2
In

en
im

ju
st

o,
rh

on
cu

s
10

px
ye

s
no

7
ut

,i
m

pe
rd

ie
t

a,
ve

ne
na

ti
s

vi
ta

e,
ju

st
o.

N
ul

la
m

di
ct

um
fe

lis
eu

pe
de

m
ol

lis
pr

et
iu

m
.I

nt
eg

er
ti

nc
id

un
t.

C
ra

s
da

pi
bu

s.
V

iv
am

us
el

em
en

tu
m

se
m

pe
r

ni
si

.A
en

ea
n

vu
lp

ut
at

e
el

ei
fe

nd
te

llu
s.

16
px

no
no

8
2.

A
en

ea
n

le
o

13
px

ye
s

no
9

lig
ul

a,
po

rt
ti

to
r

eu
,c

on
se

qu
at

vi
ta

e,
el

ei
fe

nd
ac

,e
ni

m
.A

liq
ua

m
lo

re
m

an
te

,
da

pi
bu

s
in

,v
iv

er
ra

qu
is

,f
eu

gi
at

a,
te

llu
s.

Ph
as

el
lu

s
vi

ve
rr

a
nu

lla
ut

m
et

us
va

ri
us

la
or

ee
t.

Q
ui

sq
ue

ru
tr

um
.A

en
ea

n
im

pe
rd

ie
t.

16
px

no
no

Ta
bl

e
B.

3.
:B

lo
ck

Li
st

ge
ne

ra
te

d
fr

om
th

e
pr

ev
io

us
ly

id
en

ti
fie

d
m

ai
n

co
nt

en
t.

59

B. Processing Demo

Visual Separation

The BlockList is now transformed into a tree build from nodes containing the previously
formed blocks. The BlockList is separated based on the extracted style. The algorithm
needs knowledge on the MCS which is determined the same way as during content
extraction. The results of determining the MCS are shown in Table B.4.

Style Characters Characters discarded (less than 3 words)

18px, bold 20 20
13px, bold 27 27
16px 724 0
10px, bold 40 14

Table B.4.: Styles and their number of characters. MCS highlighted in green, characters
violating the min. of 3 words rule in red.

The style with a font-size of 16px and no further properties is identified as the MCS
for the visual separation. Thus all blocks with a different style are considered to be
headlines.

Figures B.2, B.3, and B.4 visualize the steps of the separation algorithm.

Figure B.2.: Step 1 of the visual segmentation algorithm. Segments in green boxes,
headlines underlined in dark blue.

60

B. Processing Demo

Figure B.3.: Step 2 of the visual segmentation algorithm. Segments in green boxes,
headlines underlined in dark blue.

Figure B.4.: Step 3 of the visual segmentation algorithm. Segments in green boxes,
headlines underlined in dark blue.

61

B. Processing Demo

Enumeration Patterns

In order to adjust and validate the previous results, enumeration patterns of all blocks
are examined. The results are presented in Table B.5.

ID Enumeration

1 []
2 [1]
3 []
4 [1, 1]
5 []
6 [1, 2]
7 []
8 [2]
9 []

Table B.5.: Enumeration patterns extracted for the previously specified blocks. IDs
taken from Table B.3.

Thus, there are no further necessary adjustments to the identified enumeration patterns.

B.3. Generating the Target Format

After identifying the language of the main content and separating the text in the
non-headline blocks, the result is dumped into JSON format. The expected output for
this demo process can be seen in Listing B.4.

Listing B.4: JSON result of the extraction.
{
{

"content": [
{

"subsections": [
{

"subsections": [
{

"subsections": [],
"text": [

[
"felis",
",",
"ultricies",
"nec",
",",
"pellentesque",
"eu",
",",

62

B. Processing Demo

"pretium",
"quis",
",",
"sem",
"."

],
[

"Nulla",
"consequat",
"massa",
"quis",
"enim",
"."

],
[

"Donec",
"pede",
"justo",
",",
"fringilla",
"vel",
",",
"aliquet",
"nec",
",",
"vulputate",
"eget",
",",
"arcu",
"."

]
],
"title": "1.1 Donec quam"

},
{

"subsections": [],
"text": [

[
"ut",
",",
"imperdiet",
"a",
",",
"venenatis",
"vitae",
",",
"justo",
"."

],
[

"Nullam",
"dictumfelis",
"eu",
"pede",
"mollis",
"pretium",
"."

],
[

"Integer",
"tincidunt",
"."

],
[

"Cras",
"dapibus",
"."

],
[

"Vivamus",
"elementum",
"semper",
"nisi",
"."

],

63

B. Processing Demo

[
"Aenean",
"vulputate",
"eleifend",
"tellus",
"."

]
],
"title": "1.2 In enim justo, rhoncus"

}
],
"text": [

[
"dolor",
"sit",
"amet",
",",
"consectetuer",
"adipiscing",
"elit",
"."

],
[

"Aenean",
"commodo",
"ligula",
"eget",
"dolor",
"."

],
[

"Aenean",
"massa",
"."

],
[

"Cum",
"sociis",
"natoque",
"penatibus",
"et",
"magnis",
"dis",
"parturient",
"montes",
",",
"nascetur",
"ridiculus",
"mus."

]
],
"title": "1. Lorem Ipsum"

},
{

"subsections": [],
"text": [

[
"ligula",
",",
"porttitor",
"eu",
",",
"consequat",
"vitae",
",",
"eleifend",
"ac",
",",
"enim",
"."

],
[

"Aliquam",
"lorem",
"ante",

64

B. Processing Demo

",",
"dapibus",
"in",
",",
"viverra",
"quis",
",",
"feugiat",
"a",
",",
"tellus",
"."

],
[

"Phasellus",
"viverra",
"nulla",
"ut",
"metus",
"varius",
"laoreet",
"."

],
[

"Quisque",
"rutrum",
"."

],
[

"Aenean",
"imperdiet",
"."

]
],
"title": "2. Aenean leo"

}
],
"text": [

[]
],
"title": "Terms and Conditions"

}
],
"extractionDate": [

90309,
8,
41,
11,
28,
7,
2021

],
"id": 1751660308386330068,
"source": "file:///Users/tobias/Desktop/test.html",
"title": "Terms and Conditions of Demo−Shop"

}
}

65

C. Library Documentation

The methods provided by the developed library are presented in this chapter.

C.1. Methods

extractTandC()

• Functionality: Extracts T&Cs of a single page and returns JSON as a string.

• Parameters:

1. url: URL of the T&C page which shall be parsed

2. contentExtractor: content extraction method (available options presented
in Section C.2), standard value: NaiveStyleAndShortTextExclusion

3. threshold: minimum coverage of MCS of lowest common ancestor required
during content extraction, standard value: 0.85

4. driver: Selenium driver used to control a browser

• Return value: JSON as string

extractTancD_multiple()

• Functionality: Extract multiple T&Cs using the same driver and returns all JSON
results as a list of strings.

• Parameters:

1. links: list of URLs of the T&C pages which shall be parsed

2. contentExtractor: content extraction method (available options presented
in Section C.2), standard value: NaiveStyleAndShortTextExclusion

3. threshold: minimum coverage of MCS of lowest common ancestor required
during content extraction, standard value: 0.85

4. driver: Selenium driver used to control a browser

• Return value: List of JSON a strings

66

C. Library Documentation

C.2. Related

Content Extractors

The different content extractors offer different methods of approximating the MCS.
These methods were outlined in Section 4.4.

The following extractors are available:

• NaiveStyle: approximates the style by combining tag and attributes

– NaiveStyleAndShortTextExclusion: requires a node to have at least 4 words
(separated by white spaces) to be accounted for during MCS determination

• RenderedStyle: renders the actual CSS style (performance intensive)

– RenderedStyleAndShortTextExclusion: requires a node to have at least 4
words (separated by white spaces) to be accounted for during MCS determi-
nation

Selenium Driver

A Selenium driver for your browser version needs to be downloaded to your machine.
The driver is then instantiated using:

from selenium import webdriver

driver = webdriver.<browser> (executable_path=<path>)

67

List of Figures

1.1. AGB-Check Context . 2
1.2. RQ Relationship . 3

3.1. Withdrawal Form . 12
3.2. Hierarchy Styles (de) . 15
3.3. Hierarchy Styled (en) . 15
3.4. Table of Contents . 17

4.1. Architecture of Library . 19
4.2. Sequence Diagram of Library . 20
4.3. DOM-Tree incl. CSS . 24
4.4. Amount of Nodes (de) . 29
4.5. Amount of Nodes (en) . 30
4.6. Relation all Nodes vs. content Nodes (de) 31
4.7. Hierarchy Tree . 32
4.8. Example Extraction . 33
4.9. Example Content Blocks . 34
4.10. Target Output Format . 39

B.1. Rendered Demo Shop (demo) . 53
B.2. Visual Separation, Step 1 (demo) . 60
B.3. Visual Separation, Step 2 (demo) . 61
B.4. Visual Separation, Step 3 (demo) . 61

68

List of Tables

3.1. Extractor Performance (start) . 13
3.2. Extractor Performance (end) . 13
3.3. Extractor Performance (center) . 14

4.1. Coverage of Nodes in the German Sample 27
4.2. Coverage of Nodes in the English Sample 28

5.1. Evaluation Extractor Performance on Requirements Sample (start) . . . 41
5.2. Evaluation Extractor Performance on Requirements Sample (end) 42
5.3. Evaluation Extractor Performance on Test Sample 42
5.4. Evaluation Hierarchy (Requirements Sample, de) 45
5.5. Evaluation Hierarchy (Requirements Sample, en) 45
5.6. Evaluation Hierarchy (Test Sample, de) 47
5.7. Evaluation Hierarchy (Test Sample, en) 47

A.1. German Sample . 51
A.2. English Sample . 52

B.1. MCS Results (demo) . 55
B.2. Lowest Common Ancestor Results (demo) 56
B.3. BlockList (demo) . 59
B.4. MCS for Visual Separation (demo) . 60
B.5. Extracted Enumeration Patterns (demo) 62

69

Bibliography

[1] Y. Bakos, F. Marotta-Wurgler, and D. Trossen. “Does Anyone Read the Fine Print?
Consumer Attention to Standard-Form Contracts.” In: The Journal of Legal Studies
43 (Jan. 2014), pp. 1–35. doi: 10.1086/674424.

[2] A. Barbaresi. “Generic Web Content Extraction with Open-Source Software.” In:
Proceedings of the 15th Conference on Natural Language Processing, KONVENS 2019,
Erlangen, Germany, October 9-11, 2019. 2019.

[3] M. Baroni, F. Chantree, A. Kilgarriff, and S. Sharoff. “Cleaneval: A Competition
for Cleaning Web Pages.” In: Jan. 2008.

[4] D. Braun. “Automatic Semantic Analysis, Legal Assessment, and Summarization
of Standard Form Contracts.” PhD thesis. Technical University of Munich, July
2021.

[5] D. Braun and F. Matthes. “Automatic Detection of Terms and Conditions in
German and English Online Shops.” In: 16th International Conference on Web
Information Systems and Technologies, WEBIST 2020. SciTePress. 2020.

[6] D. Braun and P. Philip. AI-Supported Legal Review of Terms and Conditions to
Strengthen Consumer Protection. 2020. url: https://web.archive.org/web/
20210506064242/https://wwwmatthes.in.tum.de/pages/1c5btiiss32n1/
AI- Supported- Legal- Review- of- Terms- and- Conditions- to- Strengthen-
Consumer-Protection-AGB-Check (visited on 05/06/2021).

[7] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. “VIPS: a Vision-based Page Segmentation
Algorithm.” In: (Jan. 2003).

[8] S. Debnath, P. Mitra, N. Pal, and C. Giles. “Automatic Identification of Informative
Sections of Web Pages.” In: Knowledge and Data Engineering, IEEE Transactions on
17 (Oct. 2005), pp. 1233–1246. doi: 10.1109/TKDE.2005.138.

[9] S. Evert. “A Lightweight and Efficient Tool for Cleaning Web Pages.” In: Jan.
2008.

[10] J. Gibson, B. Wellner, and S. Lubar. “Adaptive Web-Page Content Identification.”
In: Jan. 2007, pp. 105–112. doi: 10.1145/1316902.1316920.

70

https://doi.org/10.1086/674424
https://web.archive.org/web/20210506064242/https://wwwmatthes.in.tum.de/pages/1c5btiiss32n1/AI-Supported-Legal-Review-of-Terms-and-Conditions-to-Strengthen-Consumer-Protection-AGB-Check
https://web.archive.org/web/20210506064242/https://wwwmatthes.in.tum.de/pages/1c5btiiss32n1/AI-Supported-Legal-Review-of-Terms-and-Conditions-to-Strengthen-Consumer-Protection-AGB-Check
https://web.archive.org/web/20210506064242/https://wwwmatthes.in.tum.de/pages/1c5btiiss32n1/AI-Supported-Legal-Review-of-Terms-and-Conditions-to-Strengthen-Consumer-Protection-AGB-Check
https://web.archive.org/web/20210506064242/https://wwwmatthes.in.tum.de/pages/1c5btiiss32n1/AI-Supported-Legal-Review-of-Terms-and-Conditions-to-Strengthen-Consumer-Protection-AGB-Check
https://doi.org/10.1109/TKDE.2005.138
https://doi.org/10.1145/1316902.1316920

Bibliography

[11] F. V. Jiménez, M. A. Sánchez-Pérez, H. Gómez-Adorno, J. Posadas-Durán, G.
Sidorov, and A. Gelbukh. “Improving the Boilerpipe Algorithm for Boilerplate
Removal in News Articles Using HTML Tree Structure.” In: Computación y Sis-
temas 22 (2018).

[12] A. Kilgarriff. “Last Words: Googleology is Bad Science.” In: Computational Lin-
guistics 33.1 (2007), pp. 147–151. doi: 10.1162/coli.2007.33.1.147.

[13] C. Kohlschütter, P. Fankhauser, and W. Nejdl. “Boilerplate Detection Using Shal-
low Text Features.” In: Oct. 2010, pp. 441–450. doi: 10.1145/1718487.1718542.

[14] G. Lejeune and L. Zhu. “A New Proposal for Evaluating Web Page Cleaning
Tools.” In: Computación y Sistemas 22 (2018).

[15] M. Lui, T. Baldwin, and N. Vrl. “Cross-domain Feature Selection for Language
Identification.” In: (July 2021).

[16] T. Manabe and K. Tajima. “Extracting logical hierarchical structure of HTML
documents based on headings.” In: Proceedings of the VLDB Endowment 8 (Aug.
2015), pp. 1606–1617. doi: 10.14778/2824032.2824058.

[17] J. Obar. “The Biggest Lie on the Internet: Ignoring the Privacy Policies and Terms
of Service Policies of Social Networking Services.” In: SSRN Electronic Journal
(Jan. 2016). doi: 10.2139/ssrn.2757465.

[18] H. Okada and H. Arakawa. “Automated extraction of non -tagged headers in
webpages by decision trees.” In: SICE Annual Conference 2011. 2011, pp. 2117–
2120.

[19] J. Pasternack and D. Roth. “Extracting article text from the Web with maximum
subsequence segmentation.” In: Jan. 2009, pp. 971–980. doi: 10.1145/1526709.
1526840.

[20] J. Pomikálek. “Removing boilerplate and duplicate content from web corpora.”
PhD thesis. Masaryk University, Faculty of informatics, Brno, Czech Republic,
2011.

[21] H. Sano, S. Shiramatsu, T. Ozono, and T. Shintani. “A Web Page Segmentation
Method based on Page Layouts and Title Blocks.” In: (May 2021).

71

https://doi.org/10.1162/coli.2007.33.1.147
https://doi.org/10.1145/1718487.1718542
https://doi.org/10.14778/2824032.2824058
https://doi.org/10.2139/ssrn.2757465
https://doi.org/10.1145/1526709.1526840
https://doi.org/10.1145/1526709.1526840

	Acknowledgments
	Abstract
	List of Abbreviations
	Contents
	Introduction
	Context in AGB-Check
	Research Objectives
	Research Approach

	Related Literature
	Content Extraction
	Hierarchy Extraction

	Requirements
	Content Extraction
	Manual Review
	Evaluation of Existing Solutions
	Derived Requirements

	Hierarchy Extraction
	Manual Review
	Derived Requirements

	Implementation
	Architecture
	Additional Technology
	Web Page Download
	HTML Parser
	Sentence Segmentation and Tokenising
	Language Determination

	DOM-Tree
	Content Extraction
	Threshold
	Common Ancestor Extractor: Naive Style
	Common Ancestor Extractor: Rendered Style
	Common Ancestor Extractor: Naive Style and Short Text Exclusion

	Hierarchy Extraction
	Content Blocks
	Visual Styles
	Enumerations

	Target Format

	Evaluation
	Content Extraction
	Hierarchy Extraction

	Conclusion and Future Work
	Sample
	Processing Demo
	Content Extraction
	Hierarchy Extraction
	Generating the Target Format

	Library Documentation
	Methods
	Related

	List of Figures
	List of Tables
	Bibliography

