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Abstract

Privacy has long been overshadowed by security but is becoming increasingly important as
ever more data is collected, shared and analyzed. This has also been noticed by legislators,
leading to new privacy laws like the GDPR. It has become evident that cybersecurity measures
such as authentication and encryption are insufficient to ensure privacy. There is a need for
dedicated privacy-preserving methods. However, recent research has shown that traditional
approaches to privacy are deeply flawed, as they lack provable guarantees. This is addressed
by differential privacy which emerged in 2006. Although it is regarded as a gold standard in
privacy by research, a large part of the industry has not adapted it yet. The only exception
being key players like Google, Microsoft or the US Census Bureau. Other and especially
smaller companies seem to be hesitant in adopting it.

In this thesis, we want to investigate the reasons behind this imbalance. We evaluate the
challenges and benefits and overall maturity of differential privacy to close the gap between
research and practice. Even tough there are many tools available to facilitate the use of
differential privacy, only few address the question whether differential privacy should be
used in the first place. We want to guide practitioners in these earlier stages of their decision-
making process. To do so, we look into the current state of differential privacy in the industry
by studying the grey literature and conducting expert interviews. Based on these findings,
we design learning material to support practitioners in making informed decisions about the
use of differential privacy.
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Kurzfassung

Privacy stand lange Zeit im Schatten der klassischen Security, wird aber zunehmend wichtiger,
da immer mehr Daten gesammelt, geteilt und analysiert werden. Dies wurde auch von den
Gesetzgebern bemerkt und führte zu neuen Datenschutzgesetzen wie der GDPR. Es hat
sich gezeigt, dass Cybersecurity-Maßnahmen wie Authentifizierung und Verschlüsselung
nicht ausreichen, um die Privatsphäre zu schützen. Es besteht ein Bedarf an spezifischen
Methoden zur Wahrung der Privatsphäre. Jüngste Forschungen haben jedoch gezeigt, dass
herkömmliche Ansätze zur Wahrung der Privatsphäre Mängel aufweisen, da sie keine nach-
weisbaren Garantien bieten. Diesem Problem widmet sich Differential Privacy, eine Definition,
die im Jahr 2006 aufkam. Obwohl sie von der Forschung bereits als Goldstandard für Privacy
angesehen wird, wird sie in der Industrie kaum angewandt. Während zwar große Organisa-
tionen wie Google, Microsoft oder das US Census Bureau Differential Privacy bereits nutzen,
scheinen kleinere Unternehmen eher zögerlich zu sein.

Wir wollen bestehende Hindernisse identifizieren und Unternehmen einen besseren Zugang
zu Differential Privacy ermöglichen. Hierbei untersuchen wir die Herausforderungen und
Vorteile sowie den allgemeinen Reifegrad von Differential Privacy. Obwohl es bereits viele
Tools gibt, die den Einsatz von Differential Privacy erleichtern, beschäftigen sich nur weni-
ge mit der Frage, ob Differential Privacy überhaupt verwendet werden sollte. Wir wollen
Praxisanwender in diesen frühen Phasen ihres Entscheidungsprozesses unterstützen. Dafür
betrachten wir den aktuellen Stand von Differential Privacy in der Praxis, indem wir die
graue Literatur studieren und Experteninterviews durchführen. Basierend auf diesen Ergeb-
nissen erstellen wir Lernmaterial, um Praxisanwender bei ihren Entscheidungen bezüglich
Differential Privacy zu unterstützen.
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1 Introduction

This chapter motivates this thesis and states the research objectives and research approach of
this thesis

1.1 Motivation

Privacy has long been overshadowed by security but is becoming increasingly important as
ever more data is collected, shared, and analyzed. This has also been noticed by legislators,
leading to new privacy laws like the GDPR. It has become evident that cybersecurity measures
such as authentication and encryption are insufficient to ensure privacy. There is a need for
dedicated privacy-preserving methods. However, recent research has shown that traditional
approaches to privacy are deeply flawed. As soon as the supposedly anonymized data or
even statistics about it are released, conclusions can be drawn about individuals in said data.

An example of this is the Netflix Prize. A competition announced by Netflix in 2006, offering
one million dollars to those who managed to improve its current recommendation algorithm,
"Cinematch," by 10%. As a training dataset, they released the data of nearly half a million of
their users. Any personal information was removed. All that remained was which films the
users had seen and when and how they had rated them. Nonetheless, researchers Narayanan
and Shmatikov were able to re-identify users by comparing the data with that of the internet
movie database IMDb. It turned out that already 99% of all users could be uniquely identified
based on eight of their ratings from which two could even be completely wrong [1][2].
Similarly spectacular were Latanya Sweeney’s findings, who managed to identify individuals
in a medical dataset based on their date of birth, gender, and zip code. She further showed
that for 87% of the US population, the combination of these three values was a unique
identifier [3]. For aggregate statistics, the US Census Bureau demonstrated that based on the
statistics it released in 2010, it could reconstruct the records of all 308 million Americans that
took part in the US Census. The reconstructed records exactly matched those of 142 million
Americans (46% of the population), 50 million of which could be re-identified by linking the
reconstructed records to commercial datasets. [4][5]
Dinur and Nissim further proved that a shockingly small number of queries to a database
are sufficient to reconstruct it almost completely, even if the answers to those queries are
perturbed [6]. Their results raised the question of how much perturbation is required to
prevent such disastrous results, which ultimately led to the definition of differential privacy.
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1 Introduction

1.1.1 Differential Privacy

Differential privacy was introduced in 2006 by Cynthia Dwork [7]. It is a definition that
has to be satisfied by a mechanism releasing information about a dataset. It guarantees
every individual within that dataset that nothing specific to them can be learned through
such a data release. This guarantee can be mathematically proven and holds under any
circumstances. So no matter what an attacker does to the output of a differentially private
mechanism or which additional information he possesses, he cannot weaken the guarantee.
Therefore, differential privacy protects against all the aforementioned attacks. Because of its
strong guarantee and unique properties, differential privacy has already been declared the
gold standard of privacy protection. But even though it is promoted by major organizations
like Google, Microsoft, or the US Census Bureau, smaller companies seem to be hesitant in
adopting it. There are already attempts to facilitate the use of differential privacy, offering
tools to use differential privacy [8][9][10][11][12][13] or those that help in implementing it
[14][15][16]. But only few tackle the question whether differential privacy should be used in
the first place. We want to guide stakeholders in these earlier stages of their decision-making
process.

1.2 Research Objectives

As the title of this thesis implies, our goal is threefold. First, we want to support practitioners
in making informed decisions about the use of differential privacy. Second, this support
should be tailored to the stakeholders, meaning their role and prior knowledge. Third, this is
achieved with a web-based e-learning application.
The first aspect is broad and encompasses several questions practitioners could have regarding
the use of differential privacy. The most important one being whether they should use
differential privacy in the first place. Why should they use differential privacy? Is it even
necessary in their use case? What are the advantages and disadvantages of using it? What
are the possible alternatives? Moreover, they might want to know if they can even apply
differential privacy to their use case and, if they do so, in which form? There are approximately
225 variations and extensions of differential privacy [17], the local and the global model, and
different mechanisms to achieve differential privacy. All of these questions demand answers.
And none of them have definitive answers. Thus, we want to provide practitioners with
guidance and the necessary knowledge to answer them for themselves, i.e., make informed
decisions. This leads us to our first research question.

Research question 1: What are benefits and challenges of using differential
privacy?

First, we wanted to investigate the question whether differential privacy should be used. What
are the benefits of using it, and which challenges does it entail. Are there clear limitations
when it can be used, and is it even necessary? These findings should give practitioners an
understanding and will also be part of the learning nuggets. This question is answered in
chapter 5.

2



1 Introduction

The tricky part is that we cannot ask the target audience what they need because they do
not know about differential privacy. Instead, we have to ask those that already acquired the
necessary knowledge. We answer this research question by conducting a multivocal literature
review. It differs from a regular literature review in that it also includes literature that has not
formally been published. This is important to capture voices out of the industry by including
their blogs and documentations. This is further motivated in the research approach. It also
allows us to collect and compare existing learning materials on differential privacy, such as
lecture slides. Additionally, we conduct interviews with practitioners to explore important
themes.
After exploring whether differential privacy is worth investigating, we want to assess what
are the most important topics practitioners should know about.

Research question 2: What are the most important topics practitioners should
know about?

This question is answered on the one hand through expert interviews and on the other hand
by looking into existing learning material on differential privacy and assessing popular topics.

Research question 3: How can these topics be conveyed?

For this last question, the findings of the previous two are consolidated. It mainly revolves
around the design of the learning content. To answer it, learning nuggets for differential
privacy are created and evaluated.

1.3 Research Approach

The research approach of this thesis is aligned with the design science research paradigm.
It was introduced by Hevner et. al. in the field of information systems [18]. Peffers et. al.
presented a methodology, which incorporates practices and procedures required to carry
out such research [19]. Design science research is a pragmatic and outcome-based research
approach. It revolves around the creation and evaluation of artifacts. Such a design research
artifact can be any designed object in which a research contribution is embedded in the
design. In the case of this thesis, the artifact is a set of learning units about core aspects of
differential privacy.

1.4 Outline

In the next two chapters, we will explain the foundations of differential privacy and discuss
related work. In chapter 4 we summarize the findings of the interviews we conducted, which
will be the basis for chapter 5, in which we discuss the first research question, the benefits,
and challenges of differential privacy. Chapter 6 gives a broad overview of the learning
nuggets and the learning platform we conceptualized. Chapter 7 describes the evaluation we
carried out and paves the way for the conclusion and future work discussed in chapter 8

3



2 Foundations

In this chapter, we will explain the basics of differential privacy required to understand the
next chapters.

2.1 K-Anonymity

In 1998, one year after she famously re-identified the governor of Massachusetts, Latanya
Sweeney introduced k-anonymity together with Pierangela Samarati [20]. It is nowadays
among the most popular and well known privacy-preserving methods. Re-examining her
successful attack, Sweeney found that removing direct identifiers like name, address, or social
security number was not enough to prevent re-identification [3]. The combination of so-called
quasi-identifiers such as gender, age, and zip code was also unique to most individuals
and could therefore be used to identify them. K-anonymity addresses this vulnerability by
ensuring that for no record, the combination of its quasi-identifiers is unique.

K-Anonymity A dataset is k-anonymous if every record in it is indistinguishable from at
least k− 1 other records with respect to its quasi-identifiers. Such a group of k indistinguish-
able records is called an equivalence class. To ensure that every equivalence class contains the
minimum of k records, the dataset is usually transformed by generalization or suppression.
When quasi-identifiers are generalized, they become less precise. So, for example, instead of
exact age, only an age range will be displayed, and in the case of zip codes, the last digits
are redacted. To prevent too broad generalization caused by outliers, they can be suppressed.
This is the case for the record of Mrs. Wong in the example shown in Table 2.2. Including
her would change the first equivalence class from {Female, 60-70, 0214∗} to {Female, 10-70, ∗}
and thus cause a huge loss of information. However, suppression can lead to bias and should
therefore be used carefully.
For most datasets, there are multiple possible k-anonymous representations. Meyerson
and Williams [21] showed that for any k ≥ 3 finding, the optimal k-anonymity is NP-hard.
However, there are plenty of approximation algorithms available [22][23].
Let us come back to the example from Table 2.2 and examine the protection it provides.
Even if an attacker knows the gender, age, and zip code of his target Mr. Smith, he cannot
deduce which record belongs to him. A larger k is considered to be more secure but has a
larger impact on the utility. In the example of the medical dataset, a k of 3 or higher would
have forced all entries into one equivalence class. If, aside from Wong, no other record is
suppressed, this would result in {∗, 40− 70, 021 ∗ ∗}.

4



2 Foundations

Identifier Quasi-Identifier Sensitive Attribute
Name Gender Age Zip code Diagnosis
Garcia Female 78 02141 Parkinson’s disease
Smith Male 47 02138 Cancer
Brown Female 71 02142 Stroke
Wilson Male 41 02139 Cancer
Wong Female 19 19136 Flu

Table 2.1: A medical dataset

Identifier Quasi-Identifier Sensitive Attribute
Name Gender Age Zip code Diagnosis

* Female 60-70 0214* Parkinson’s disease
* Male 40-50 0213* Cancer
* Female 60-70 0214* Stroke
* Male 40-50 0213* Cancer

Table 2.2: A 2-anonymous version of the dataset

Weaknesses of K-Anonymity

Although k-anonymity provides a parameter to trade privacy for utility k has no clear relation
to the two. A k of 3 can provide reasonable protection and utility on some datasets and have
devastating effects on others. Likewise, increasing k does not evenly decrease utility and
increase privacy. Increasing a k up to 10 might be fine, but a k of 11 could render the entire
dataset useless. This can depend on the number of rows and the number of quasi-identifiers,
as k-anonymity is susceptible to "the curse of dimensionality" [24]. Moreover, it cannot
guarantee privacy and is vulnerable to several attacks.

Homogeneity Attack If all records within an equivalence class have the same sensitive
value, an attacker can still infer the sensitive value of his target even though he cannot tell
which record belongs to him [25]. In Table 2.2 an attacker that knows one of the men in the
second equivalence class can deduce that he has cancer.

Even if not all sensitive attributes in an equivalence class are equal, an attacker can still gain a
lot of information. If he targets Mrs. Brown, he knows that she either had a stroke or has
Parkinson’s disease. This in itself could be considered a privacy breach, as it narrows down
the possible disease she is suffering from. And the attacker might have additional information
that helps him determine which of the two options is more realistic.

Background Knowledge Attack An attacker can have background information about his
target or the general population. He might know that his neighbor Mrs. Brown was put
into an ambulance, which would have been an uncommon measure if she had a long time

5



2 Foundations

suffering like Parkinson’s disease. He could also make inferences based on age, ethnicity, or
other well-known facts.

Variants

To address these issues, Machanavajjhala, Kifer, Gehrke, and Venkitasubramaniam introduced
`-diversity in 2006 [25]. A dataset is `-diverse if, in every equivalence class, there exist at least
` different values for the sensitive attribute. To breach any individual’s privacy within the
table, an adversary would need `-1 pieces of background knowledge.

However, it reduces the utility even more and is still not sufficient to preserve privacy. These
flaws were pointed out by Ninghui, Tiancheng, and Venkatasubramanian which in turn
introduced t-closeness [26].

Composition Attack K-Anonymity and its variants all share the flaw that they do not
compose securely [27]. Two k-anonymous datasets taken together do not provide k-anonymity.
This means that two independently anonymized releases about an overlapping population
can be used to breach privacy. This can be used when organizations independently release
anonymized data about overlapping populations. For example a different hospital could also
release k-anonymous versions of their patient data. Someone who knows the quasi-identifiers
of Mrs. Garcia and that she visited both hospitals can infer that she has Parkinson’s disease,
as this is the only sensitive attribute present in both datasets (for these quasi-identifiers).

Identifier Quasi-Identifier Sensitive Attribute
Name Gender Age Zip code Diagnosis

* Female ≥ 70 02141 Parkinson’s disease
* Female ≥ 70 02141 Arthritis
* Female ≥ 70 02141 Heart Disease
* Male < 70 0213* Flu
* Male < 70 0213* Viral Infection
* Male < 70 0213* Tuberculosis

Table 2.3: A 3-anonymous dataset of a different hospital

2.2 Syntactic and Semantic Notions of Privacy

All these definitions share a common flaw. They are only heuristic approaches, meaning that
it cannot be mathematically proven how secure they are. So, whenever a new weakness is
discovered, they have to be adapted. Nissim and Wood argue that, although these "heuristic
approaches [...] have been defined using mathematical language, they are syntactic in nature
(i.e., specifying properties of how an anonymized dataset should look) rather than semantic

6



2 Foundations

(i.e., specifying restrictions on what an attacker may infer about the personal information that
is the input for the anonymization process by observing its outcome)". [28]
In 1977 Dalenius articulated a desideratum for statistical databases: nothing about an indi-
vidual should be learnable from the database that cannot be learned without access to the
database. In 2006 Dwork showed that this is not possible. For example, if a study finds out
that smoking causes cancer, a smoker is clearly harmed, as his insurance premiums might
rise. However, this could even happen if he was not among the study participants. This
caused Dwork to refine the definition from "nothing can be learned about an individual" to
nothing "specific," meaning nothing that could not have been learned without their data [7].

2.3 Differential Privacy

2.3.1 The Intuition

Differential privacy is a definition. It is a mathematical guarantee that can be satisfied by an
algorithm that releases statistical information about a dataset. Cynthia Dwork describes it
as "a promise, made by a data curator to a data subject: you will not be affected, adversely
or otherwise, by allowing your data to be used in any study, no matter what other studies,
data sets, or information from other sources is available"[29]. Differential privacy keeps this
promise by ensuring that the same conclusions will be reached, meaning that any output is
"essentially" equally likely to occur, independent of the presence or absence of any individual
in the dataset. Consequently, nothing specific about an individual is revealed because an
adversary seeing the output of an analysis cannot even tell whether an individual’s data
was used to compute it, regardless of any auxiliary information he possesses. Therefore,
every single individual has "essentially" the same level of protection they would have had
if they did not contribute their data Likewise, even individuals that are not in the dataset
have "essentially" the same protection as if they were. The term "essentially" is captured by
a parameter ε; it bounds how much more likely one scenario is than the other. We want to
promise every individual i, that for every possible output O:

e−ε ≤ Probability to see output O under Dwith individual i

Probability to see output O under Dwithout individual i

So, no matter what the output looks like, none of the two cases should ever be more than
eε-times more likely than the other one.

The Definition

More generally, this intuition can be expressed by the notion of neighboring databases D and
D′, i.e., pairs of databases that differ in at most one element. This brings us to the formal
definition of differential privacy, as first introduced by Cynthia Dwork in 2006 [7].

Definition 2.3.1 (Differential Privacy). A randomized mechanism M gives ε-differential
privacy if for any two databases D and D′ differing on at most one element, and any set of

7



2 Foundations

possible outputs S ⊆ Range(M)

Pr[M(D) ∈ S] ≤ eε ∗ Pr[M(D′) ∈ S] (2.1)

Since D and D′ can be arbitrarily exchanged, the same has to hold the other way around,
resulting in a lower as well as an upper bound for the odds, that an observed output O was
computed based on D instead of D′:

e−ε ≤ Pr[M(D) ∈ S]
Pr[M(D′) ∈ S]

≤ eε (2.2)

2.3.2 The Privacy Loss Parameter ε

The smaller we choose ε to be, the more private each individual is, as it becomes less likely that
they are in the dataset, and thus every associated risk becomes less likely as well. Therefore,
the parameter ε can quantify privacy risk. An ε of zero provides perfect privacy because the
probability distributions of two neighboring databases D and D′ are identical, i.e., for any set
of possible outputs S.

Pr[M(D) ∈ S] = Pr[M(D′) ∈ S]

However, their neighbors and the neighbors of their neighbors must also have this probability
distribution. This propagates to all possible datasets, including the empty set ∅

Pr[M(D) ∈ S] = Pr[M(D′) ∈ S] = Pr[M(D′′) ∈ S] = ... = Pr[M(∅) ∈ S]

Consequently, if the probability distribution is always the same, regardless of the underlying
dataset, nothing about the data can be learned. An ε of infinity, on the other hand, will yield
maximum utility but no meaningful privacy guarantee. Already an ε of 5 can hardly be
considered privacy-preserving. One scenario being e5 = 150 times more likely than the other,
is far from being "essentially" equally likely, and there is little protection for an individual if
an adversary can tell with 99% certainty whether they are in the dataset or not. Usually, an
ε ≤ 1 is recommended. As every output is possible under any dataset, it is always possible to
get an output with less or even no utility. But the larger the dataset and are, the less likely
this is. Hence, ε can be used to trade-off between utility and privacy.

2.3.3 Group Privacy

Since every output is possible under every dataset, the privacy guarantee also extends to
groups. This can be important if some records share the same value (e.g., household members
have the same address, (total) rent, living space etc.). As seen before, the inequalities
propagate, i.e., the bounds extend to neighbors of neighboring datasets as well:

Pr[M(D) ∈ S] ≤ eε ∗ Pr[M(D′) ∈ S] ≤ eε ∗ eε ∗ Pr[M(D′′) ∈ S] = eε + ε ∗ Pr[M(D′′) ∈ S]
(2.3)

8



2 Foundations

From this observation follows, that two datasets that differ in k rows are bounded by k ∗ ε.
Hence, an ε-differentially private mechanism is kε-differentially private for groups of size k.
However, only small groups are protected, as, in the end, the purpose of analytics is to learn
general trends about the population. As a rule of thumb, groups of size 1/ε can expect a
reasonable level of privacy [30, p.276].

2.3.4 Robustness Under Composition

It is inevitable, that multiple analyses on data about the same individuals will lead to an
increased privacy risk. For many privacy-preserving methods, this can even break privacy
entirely [27]. Differential privacy on the other hand is robust under composition, which
means that the combined result of two differentially private mechanisms is still differentially
private. Similarly, as in group privacy, the guarantee extends in a degraded fashion to the
combined results of multiple differentially private analyses. Intuitively, if an output O1 is
eε1-times and the output O2 is eε2-times more likely to be observed under D than under D′,
then the probability to see both is eε1 ∗ eε2 times more likely under D than under D′.

Probability to see O1 and O2 under D

≤ eε1 ∗ eε2 ∗ Probability to see O1 and O2 under D′ (2.4)

Formally, this can be proven by defining a mechanism, that is the paring of M1 and M1:
M1,2(D) = (M1(D), M2(D))

Repetitively applying this theorem shows that combining n differentially private mechanisms

is
n
∑

i=1
- differentially private. This form of composition is called sequential composition and

even accounts for subsequent computations that use the result of previous analyses of the
same dataset. Parallel composition allows for even better bounds: If the mechanisms operate
on disjoint datasets, then combined they are maxi ε i- differentially private [11]. Intuitively,
this makes sense, as every individual is only in one of k datasets and an analysis on one of
the other k− 1 datasets cannot disclose anything about them.
Sequential composition is essential, to allow multiple (adaptive) queries on the same dataset,
whereas parallel composition is useful when computing histograms or when aggregating
individual contributions in local differential privacy. Together they make it possible to create
more complex structures out of basic building blocks and to define a privacy budget, that can
be split up among several analyses and analysts.

2.3.5 Immunity to Post-Processing

As opposed to other privacy-preserving methods, differential privacy is immune to post-
processing. This means that the guarantees of differential privacy hold, no matter how the
output is manipulated, and which auxiliary information are used to do so. It ensures that the
results of differentially private computations can be safely released. "A data analyst cannot
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increase privacy loss — either under the formal definition or even in any intuitive sense —
simply by sitting in a corner and thinking about the output of the algorithm" [31, p.18]. If
there is a 75% chance that an individual answered truthfully, there is nothing that could be
done to the answer that could in- or decrease this probability. Any operation an adversary
might use to process the result of an analysis can be modeled as a function f ; it suffices to
show that:

Probability to see output O under D
Probability to see output O under D′

=
Probability to see f (output O) under D
Probability to see f (output O) under D′

(2.5)

Formally, the composition of a data-independent mapping f with an ε-differentially private
algorithm M is also ε-differentially private. Let M : N|X| → R be a randomized algorithm
that is ε-differentially private and let f : R → R′ be be an arbitrary randomized mapping,
then f ·M : N|X| → R′ is ε-differentially private.

Proof. We prove the proposition for a deterministic function f : R → R′. The result then
follows because any randomized mapping can be decomposed into a convex combination of
deterministic functions, and a convex combination of differentially private mechanisms is
differentially private. Fix any pair of neighboring databases under D, D′ and fix any event
S ⊆ R′. Let T = {r ∈ R : f (r) ∈ S}. We then have:

Pr[ f (M(D)) ∈ S] = Pr[M(D) ∈ T] ≤ eε ∗ Pr[M(D′) ∈ T] = eε ∗ Pr[ f (M(D′)) ∈ S] (2.6)

2.4 Achieving Differential Privacy

The Setting

Before we explain how differential privacy can be achieved, let us clarify the terminology we
will use and a few assumptions we make about the setting. We have a database or dataset D
that is a collection of records, each containing the data of a different individual. The database
is maintained by a trusted curator that has access to the raw data and either provides an
interface through which analysts can query the database or he releases statistical information
about it by himself. Since the latter can also be modeled as the result of a query, we will not
make any further distinctions between these two cases. We will use the terms query, analysis,
or study interchangeably. We assume that all of them can be modeled as a function f that
takes as input a database D and produces some output f (D). This output can be any possible
outcome of a study or analysis: a query result, a statistic, a diagram, or an entire machine
learning model. The curators’ task is to preserve the privacy of everyone within the database
while still allowing statistical analyses of the database as a whole.
The goal of differential privacy is to ensure that based on a query result, an adversary is not
able to tell whether an individual was part of this analysis, even when he knows all records
in the database except for that of this target. If he cannot even determine this, then he cannot
infer anything else about his target.

10
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2.4.1 Mechanisms

There are four major mechanisms to achieve differential privacy.

The Randomized Response Mechanism

Surveying participants on touchy subjects is often difficult. As truthful answers can be
embarrassing or even incriminating, the respondents may lie or refuse to participate in the
survey. To circumvent this problem, Warner introduced the randomized response technique
in 1965 [32]. It provides privacy through randomness, which can be introduced with a coin
toss, a spinner, or shuffled cards The process is simple; the interviewer asks a yes-no question,
the respondents flip a coin:

• If they get heads, they answer truthfully

• If they get tails, they answer falsely, i.e., the opposite of their true answer

Obviously, the coin has to be biased, otherwise observing "Yes" or "No" is equally likely for
every respondent, regardless of their true value. A common choice is a coin that comes up
heads 75% of the time The respondents are provided with "plausible deniability" because,
with a 25% chance, they did not answer truthfully. The underlying statistics can later be
recovered, as the collected "Yes" answers will, in expectation, consist of 3

4 of the real "Yes"
answers and 1

4 of the real "No" answers, i.e.

E[Yesobserved] =
3
4
∗Yesreal +

1
4
∗ Noreal =

3
4
∗Yesreal +

1
4
∗ (1−Yesreal) =

1
2
∗Yesreal +

1
4

This can be rearranged to get an estimate of the true distribution:

E
[

2 ∗
(

Yesobs −
1
4

)]
= Yesreal

Thus, meaningful conclusions about the population can be drawn without revealing the true
answer of any respondent.

Accuracy. Unfortunately, it is unlikely that heads will come up exactly 75% of the time. Small
deviations could already lead to greatly over-/underestimating trends in the population.
In the worst case, 50% of the coin flips are tails, rendering the survey completely useless.
Although these risks can never be completely ruled out, they become negligible for larger
sample sizes. For 100 coin tosses, there is already an 80% chance to get between 70- and
80-times heads, which corresponds to an additive error of at most ±5%. We can analyze the
accuracy of this algorithm more precisely by calculating the variance and standard deviation
of our estimator:
Variance:

VAR

[
1
n

n

∑
i=1

2 ∗
(

Yesobs −
1
4

)]
=

4
n2 ∗

n

∑
i=1

VAR[Yesreal ]
∗ =

4
n
∗

3
4
∗

1
4

=
3

4n
(2.7)
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Standard deviation: √
3

2 ∗
√

n
(2.8)

The latter already indicates that we have noise in the order of O(
1
√

n
).

This conclusion can also be reached with the Chernoff bound. It gives bounds on how much
the sum of independent random variables deviates from its expected value. It can be used to
determine a threshold below which this difference stays with probability 1− β.

Pr

∣∣∣∣∣2
(

Yesobs −
1
4

)
−Yesreal

∣∣∣∣∣ ≥ 2

√
ln(2/β)

2n

 ≤ β (2.9)

Privacy-Utility-Trade-Off. We have seen that the result becomes more accurate the more
people we survey. But a larger sample size requires considerably more effort. Alternatively,
the accuracy could also be improved by increasing the bias of the coin. If head comes up
more often, there are less random answers that we need to account for. The direct effect of
such an adjustment becomes apparent when generalizing the formulas from before, with
[0.5,1]* being the probability of getting heads in the coin flip:

Estimator:

E[Yesobs] = γ ∗Yesreal + (1− γ) ∗ (1−Yesreal) = (2γ− 1) ∗Yesreal + (1− γ) (2.10)

Variance:

VAR

[
1
n

n

∑
i=1

(Yesobs − (1− γ))

2γ− 1

]
=

1
n2 ∗ (2γ− 1)2 ∗

n

∑
i=1

VAR[Yesobs] =
γ ∗ (1− γ)

n ∗ (2γ− 1)2 (2.11)

Standard deviation: √
γ ∗ (1− γ)

√
n ∗ (2γ− 1)

(2.12)

Chernoff bound:

Pr

[∣∣∣∣∣Yesobs − (1− γ)

2γ− 1)
−Yesreal

∣∣∣∣∣ ≥
√

ln(2/β)
√

2n ∗ (sγ− 1

]
≤ β (2.13)

The parameter can be used to trade privacy with utility. With a of 99% the standard deviation
is in the range of ±1%. But at the same time, there is only a 1% chance that a respondent
did not answer truthfully, which cannot be considered privacy-preserving. Finding the right
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balance in this trade-off is a challenge you will also encounter when dealing with differential
privacy.

Randomized Response and Differential Privacy. As indicated in the introduction, the
randomized response technique is differentially private. Differential privacy is a definition
that has to be satisfied by an algorithm. It guarantees that the result of an analysis is
"essentially" equally likely to occur, independent of the presence or absence of any individual
in the dataset. This is achieved by enforcing for every individual that, based on the result of
an analysis, it is at most eε -times more likely that they contributed their (real) data than that
they did not. A simple proof suffices to show that the randomized response algorithm fulfills
this requirement:

Pr[Response = Yes|Truth = Yes]
Pr[Response = Yes|Truth = No]

=
γ

1− γ
=

Pr[Response = No|Truth = No]
Pr[Response = No|Truth = Yes]

= e
ln

 γ

1− γ



So, with γ = 0, 75 it is 3 times more likely that an individual responded truthfully, thus the

algorithm would be ln(3)-differentially private. With γ =
eε

eε + 1
a truthful answer is eε-times

more likely than the complementary event
1

eε + 1
. The formulas can be adjusted accordingly:

Standard deviation:√
eε

eε + 1
∗

1
eε + 1

√
n ∗
(

2 ∗ eε

eε + 1
− 1

) =

√
eε

(eε + 1)2

√
n ∗
(

eε − 1
eε + 1

) =

√
eε

√
n ∗
(

eε − 1
eε + 1

)
∗ (eε + 1)

=

√
eε

√
n ∗ (eε − 1)

(2.14)

Chernoff bound:

Pr

∣∣∣∣∣1 + eε

eε − 1

(
r−

1
1 + eε

)
− q(D)

∣∣∣∣∣ ≥ 1 + eε

eε − 1

√
log(s/β)

2n

 ≤ β (2.15)

The randomized response algorithm is a technique to preserve the privacy of respondents in
a survey. It provides them with "plausible deniability" since, with a certain probability, they
did not answer truthfully. This probability can be adjusted to either improve the accuracy
of the analysis or the privacy of the individuals. The accuracy can be determined through
probability bounds, i.e., by assessing how likely it is that the difference between the true
and the estimated value is above a certain threshold. The randomized response algorithm is
differentially private and introduces noise in the order of O(

√
n)
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Another approach to achieve differential privacy is the Laplace mechanism. It assumes a
trusted data curator and adds noise to the output instead of the input of analysis, leading to
significantly lower noise. However, the randomized response algorithm is locally differentially
private, meaning it does not require a trusted data curator and provides privacy already
in the data collection stage. An example where this comes in handy is Google RAPPOR, a
real-world application of differential privacy based on the randomized response algorithm. It
is used in the Google Chrome browser to collect user data.

The Laplace Mechanism

The Laplace mechanism is the best-known mechanism to achieve differential privacy. It
was introduced in 2006 by Dwork, McSherry, Nissim, and Smith shortly before the term
differential privacy was coined [33].
We assume that a query, analysis, or study* can be modeled as a function f that takes as input
a database or dataset* D and returns a numeric value f (D). Differential privacy requires that
an adversary should not be able to tell apart two neighboring databases D and D′ based on a
query result. The Laplace mechanism achieves this by adding random values to the query
result f (D). Intuitively, we want to hide the presence (or absence) of any individual in the
database by masking the maximum impact a single individual could have on the result of a
query f , i.e., the maximum difference in the query result f (D) between any two neighboring
databases D and D′. This is captured by the sensitivity ∆ f .

Definition 2.4.1 (`1-sensitivity). The sensitivity ∆ f of a query f is defined as:

max
D,D′∈N|X |

‖D−D′‖1=1

‖ f (D)− f (D′)‖1

According to differential privacy, for any output, it should be at most eε-times more likely
that it was computed on the true database D than on a neighboring database D′. Hence,
the random number added to the result should be drawn from a probability distribution
that decreases by a factor of eε over intervals of length ∆ f , as this is the maximum distance
between two neighboring databases. One distribution that has these properties is the Laplace
distribution; it is a symmetric version of the exponential distribution.
The Laplace distribution:

Lap(x|b) = 1
2b

e
−|x|b

As its name suggests, the Laplace mechanism draws this noise from the Laplace distribution.
Formally, it is defined as follows:
Given a function f : D ∈N|X | → R over a dataset D, mechanism M provides ε-differential
privacy if it follows:

M(D) = f (D) + Lap
(

∆ f
ε

)
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What immediately stands out is that the noise does not depend on the size of the dataset n.
This means it has more impact on queries over smaller datasets. Intuitively this makes sense,
as the presence or absence of a single individual has a bigger impact on smaller datasets,
needing relatively more noise to cover it up.
The smaller we choose ε to be, the more do the probability distributions of neighboring
databases overlap and the harder it will get for an adversary to tell them apart. But at the
same time, it becomes more likely to get larger random values and consequently less accurate
results.
This allows us to answer k queries at once. Assuming all of them are counting queries, i.e., a
single individual can influence each of them by at most 1, we have a sensitivity of k. This
means we must add Lap(k/ε) to every coordinate of the output vector. Note that this will
lead to the same amount of noise as if we had (made use of sequential composition and)
posed the queries sequentially, splitting the privacy budget ε equally among them. Then
we would have had to add Lap

(
1/ ε

k

)
= Lap

(
k
ε

)
to each of the k k

ε -differentially private
queries. We can do better if a single individual can only affect one of the counts, like in a
histogram with k disjunct bins. In such a case, it suffices to add Lap to the count of each bin
(parallel composition).

The Exponential Mechanism

The Laplace mechanism can only be used for queries that are robust to perturbation and
relatively insensitive to changes in the data of a single individual. It is not suitable for
optimization problems or when dealing with non-numeric values.
The Laplace and the Gaussian mechanism are not suitable for such problems, as they achieve
differential privacy by adding real-valued noise to the result of an analysis. They work best if
these results are relatively insensitive to changes in the data of a single individual and if their
usefulness is relatively unaffected by additive perturbations. So, for example, in counting
queries, where an individual can only influence the count by one and adding noise to the
result affects its accuracy just marginally Optimization problems, on the other hand, are
not robust to additive perturbations and highly sensitive. Additionally, they may contain
structural information that cannot be easily perturbed, like in bin packing, where a binary
variable bi states whether bin i is used or not.
The same applies to machine learning, where models and classifiers are produced or, in
general for queries with non-numeric outputs, such as asking for the most common eye color
of a population.
To address these issues Frank McSherry and Kunal Talwar developed the exponential mecha-
nism It assigns a utility to every possible output and returns those with better utility with an
exponentially higher probability The set of possible outputs R has to be determined in ad-
vance and independent of the underlying dataset. Otherwise, this could lead to outputs with
non-zero probability in one dataset and zero probability in a neighboring set and thus violate
differential privacy For the eye colors this could be {blue, brown, green, grey} or {0, 1, 2, 3, 4, 5}
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in the case of the optimal price.
Formally, the algorithm is defined with respect to a utility function u : D ∈ N|X | × R→ R,
which maps a database-output pair (D, r) to utility scores. The utility function u(D, r) tells us
how good the output r is for the dataset D. So, in our example, u would be the revenue, and a
price r of 4 would be optimal. But for a different set of customers D′, where no one is willing
to pay more than 3$, it would be an unfavorable result The query result can be arbitrarily
sensitive; we only consider the sensitivity of the utility function u, i.e., the maximum possible
impact a single individual could have on the utility

∆u = max
r∈R

max
D,D′
|u(D, r)− u(D′, r)|

The exponential mechanism on inputs D,R and u outputs some object r ∈ R, where the
probability a particular r is selected is proportional to:

exp
(

ε ∗ u(D, r)
2 ∗ ∆u

)
This means the probability to see an element r is:

Pr[M(D) = r] =
exp

(
ε ∗ u(D, r)

2 ∗ ∆u

)
∑

r′∈R
exp

(
ε ∗ u(D, r′)

2 ∗ ∆u

)
Intuitively, the result r should be at most eε-times more likely on D, than on a neighboring
dataset D′, where the utility is (up to) ∆u lower. However, a single individual cannot only
affect the utility of one result but the normalization term as well. The exponential mechanism
reserves half of the privacy budget to account for this, explaining the factor 2 in the exponent.

exp

u(D, r)
∆u
ε/2

 = exp
(

ε ∗ u(D, r)
2 ∗ ∆u

)

The exponential mechanism M is ε-differentially private Fix D,D′ as neighboring datasets,
and some outcome r ∈ R. Then we express the ratio of the probability of r being output
under D and D′ as follows:
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Pr[M(D) = r]
Pr[M(D′) = r]

=

exp

(
ε ∗

u(D, r)
2 ∗ ∆u

)

∑
r′∈R

exp
(

ε ∗ u(D, r′)
2 ∗ ∆u

)
exp

(
ε ∗ u(D′, r)

2 ∗ ∆u

)
∑

r′∈R
exp

(
ε ∗ u(D′, r′)

2 ∗ ∆u

)

= exp

(
ε ∗ (u(D, r)− u(D, r′))

2 ∗ ∆u

)
∗


∑

r′∈R
exp

(
ε ∗ u(D′, r′)

2 ∗ ∆u

)

∑
r′∈R

exp

(
ε ∗ u(D, r′)

2 ∗ ∆u

)
 ≤ exp

( ε

2

)
∗ exp

( ε

2

)
= eε

(2.16)

1. From the definition of the sensitivity ∆u we know that u(D, r)− u(D′, r) ≤ ∆u and thus
follows:

exp

(
ε ∗ (u(D, r)− u(D, r′))

2 ∗ ∆u

)
≤ exp

(
ε ∗ ∆u
2 ∗ ∆u

)
= exp

( ε

2

)
(2.17)

2. Likewise, we can conclude that u(D′, r′) ≤ u(D, r′) + ∆u, plugged into the formula this
shows that:

∑
r′∈R

exp

(
ε ∗ u(D′, r′)

2 ∗ ∆u

)

∑
r′∈R

exp

(
ε ∗ u(D, r′)

2 ∗ ∆u

) ≤ ∑
r′∈R

exp

(
ε ∗ u(D′, r′) + ∆u

2 ∗ ∆u

)

∑
r′∈R

exp

(
ε ∗ u(D, r′)

2 ∗ ∆u

)

=

∑
r′∈R

exp

(
ε ∗ u(D′, r′) + ε

2

2 ∗ ∆u

)

∑
r′∈R

exp

(
ε ∗ u(D, r′)

2 ∗ ∆u

) =

exp
( ε

2

)
∗ ∑

r′∈R
exp

(
ε ∗ u(D′, r′)

2 ∗ ∆u

)

∑
r′∈R

exp

(
ε ∗ u(D, r′)

2 ∗ ∆u

) = exp
( ε

2

)
(2.18)

Pr

[
u(M(D)) ≤ OPT(D)−

2 ∗ ∆u
ε

(
ln

(
|R|
|ROPT|

)
+ t

)]
≤ e−t (2.19)
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This can be rewritten to:

Pr

[
u(M(D)) ≥ OPT(D)−

2 ∗ ∆u
ε

(ln (|R|) + t)

]
≥ 1− e−t (2.20)

By setting t =
1

1− β
we can determine the minimum amount of utility we will get with

probability β

Pr

[
u(M(D)) ≥ OPT(D)−

2 ∗ ∆u
ε
∗ ln

(
|R|

1− β

)]
≥ β (2.21)

With f being a function that returns a real number, the Laplace mechanism can be modeled
with the utility function

u(D, r) = −| f (D)− r| (2.22)

Consequently, this results in the sensitivity

∆u = max
D,D′

(| f (D)− r| − | f (D′)− r|) ≤ max
D,D′

(| f (D)− f (D′)|) = ∆ f (2.23)

The exponential mechanism returns an output r = f (D) + x with probability proportional to

exp

(
ε ∗ u(D, r)

2 ∗ ∆u

)
= exp

(
− ε

2 ∗ ∆ f
∗ |x|

)
(2.24)

which is Laplace noise with parameter
2∆ f

ε
. Output the true value with probability

Pr[M(0) = 0] = Pr[M(1) = 1] =
exp

(
ε ∗ u(D, r)

2 ∗ ∆u

)
∑

r′∈R
exp

(
ε ∗ u(D, r′)

2 ∗ ∆u

) =
e

ε
2

e
ε ∗ 0

2 + e
ε
2
=

e
ε
2

1 + e
ε
2

(2.25)

In both cases, the exponential mechanism is worse by a factor of two. This is due to half of
the privacy budget being reserved for changes an individual could have on the normalization
term. In the case of these two mechanisms, it can be shown that the normalization term is
unaffected, e.g., for randomized response, it is 1 + eε/2, no matter if D is 0 or 1, thus leading
to better accuracy.
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3 Related Work

In this chapter, we briefly summarize the core literature this thesis is based on and discuss
existing efforts to teach differential privacy. They were also crucial in selecting important
topics for our learning content.

3.1 Scientific Literature

To date, there are more than 3400 scientific papers available on differential privacy. However,
most of them focus on highly specific, narrow topics.

The Algorithmic Foundations of Differential Privacy

After introducing differential privacy in 2006, Dwork subsequently published further work
on it. She summarized first results [34], explored its use in the area of statistics [35][36],
explained the guarantees differential privacy provides and clarified common misconceptions
about it [37]. She then consolidated these findings in 2014 in "the Algorithmic Foundations
of Differential privacy" “The algorithmic foundations of differential privacy” together with
Aaron Roth, who previously wrote a thesis on “New Algorithms for Preserving Differential
Privacy” [38]. To this date, "Algorithmic Foundations of Differential Privacy" is the most
comprehensive work on differential privacy. It explains the definition and properties, the basic
mechanisms, sensitivity, variants and alternate use cases. However, as the book is already
seven years old, it lacks information about current advancements, tools and real-world
applications.

The Complexity of Differential Privacy

Together with "the Algorithmic Foundations of Differential Privacy", this work constitutes
the basis of most lectures on differential privacy [39][40][41][42]. They mostly overlap in the
topics they cover.

Differential Privacy: A Primer for a Non-Technical Audience

Wood et al. wrote a simplified and informal introduction to differential privacy [30]. On 70
pages, they primarily describe the guarantee provided by differential privacy and explain
it with illustrative examples. About the purpose of their paper, they write that: "It can help
guide practitioners as they make decisions regarding whether to use differential privacy
and, if so, what types of promises they should make to data subjects about the guarantees
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differential privacy provides." This is closely related to our goal. However, it lacks the depth
we strive for as it does not go beyond the definition and only explains in an abstract manner
how differential privacy is achieved without mentioning any of the mechanisms. Based on
this source alone, a practitioner will not be able to apply differential privacy. They also briefly
touch on differential privacy tool, other privacy preserving methods, and discuss benefits of
differential privacy [30, p.213].

Differential Privacy and Applications

In their work, Zhu et. al. discuss the application of differential privacy to different use cases,
ranging from recommender systems to location privacy. They further provide a flowchart
showcasing the various steps that can be followed when solving a privacy preservation
problem for a particular application. They also consider possible challenges, most of which
are related to utility, e.g. high sensitivity, large query sets, data sparsity and correlated data.
They

3.2 Grey Literature

The grey literature is less involved with niche applications. Nevertheless, it also gained a lot
of traction. Many tools and resources emerged in the last two years, and practitioners are
beginning to make their first experiences with them. An especially interesting kind of grey
literature for us are learning materials on differential privacy.

Programming Differential Privacy Joseph P. Near, is an assistant professor of the University
of Vermont and also helped in developing Ubers differential privacy solutions [43][44]. In the
fall of 2020 he held a course on data privacy. The textbook of the course is hosted online as
a Jupyter notebook and openly accessible. He explains core themes of differential privacy
with code examples and programming exercises. He covers de-identification, k-anonymity,
differential privacy, and its properties, approximate differential privacy and other variants,
(local) sensitivity, the core mechanisms, the sparse vector technique, local differential privacy,
machine learning, and synthetic data. He also provides learning objectives aligned to Blooms
taxonomy, exercises and homework.

Algorithms for Private Data Analysis Also in the fall of 2020, Prof. Gautam Kamath held
a course on differential privacy. He provides detailed lecture nodes and recordings of the
lectures [45].
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4 Interviews

As outlined in the research approach, we wanted to include voices out of the industry to
ensure the practical relevance of our work. This was accomplished in two ways, on the one
hand, by studying the grey literature, and on the other hand by conducting semi-structured
expert interviews.

The use of differential privacy by key players like Google [46], Microsoft [47][48], LinkedIn
[49], Apple [50], Amazon [51][52], Uber [43][44], Snapchat[54], and the US Census Bureau
[55][56][57] is already well-known and well-documented. Although the documentations are
mostly about technical details, the only exception being the US Census Bureau which also
wrote about the challenges it faced [58][59] and the lessons it learned from using differential
privacy [60].

For most companies, however, little information was available about their experiences with
Differential Privacy. It was difficult to assess how widely used or known it was in the industry.
To address this gap, we conducted interviews with practitioners.

4.1 Procedure

Five interviews were conducted between September and November 2020. They were sched-
uled for one hour and held online using video conferencing tools. The respondents received
the questionnaire in advance so that they could prepare for the interview or request changes.
Four of them allowed us to record the interview to facilitate the transcription process. In total,
40 pages of transcripts were produced.

Identifying interview partners

We searched for companies that had patents or publications on differential privacy, offered it
as a product, attended conferences about it, or stated on their website, blog, or privacy policy
that they used it. We then reached out to them via email.

We also contacted those that did not meet these criteria but were involved in privacy and
security related issues or had corresponding research departments. We hoped to find
practitioners that deliberately decided against using differential privacy. Their reasoning
behind this decision and the methods they were using instead would have been an interesting
addition to our findings. However, we could not find anyone to whom this applied.
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Questionnaire

The questionnaires were adapted to the respondents and consisted of up to 10 questions as
well as some sample follow-up questions. The following six key questions were part of every
questionnaire:

• What motivated you to use differential privacy?

• What are the benefits of using differential privacy?

• What challenges did you face when working with differential privacy, and how did you
overcome them?

• What tools and sources did you rely on when working with differential privacy?

• How mature is differential privacy, in your opinion?

• What topics should we cover in our learning content?

We discuss the answers to these questions in the next section.

4.2 The Findings

In this section, we will discuss the insights we gained from the interviews. It is structured
according to the key questions we asked. To preserve the privacy of our interview partners,
we refer to them by a randomly assigned identifier Ei. The experts are quoted within the text.
As not all interviews were recorded or conducted in English, the quotes may not reflect the
exact wording. However, the interviews were transcribed and translated faithfully, and the
interviewees had the opportunity to review them and request changes.

Background Information

All of our interview partners started working with differential privacy in 2017/2018. So about
the time, the GDPR entered into force, and the first differential privacy libraries emerged.
They all either had a Ph.D. or were working towards it. Most came from privacy-related
fields, such as cryptography.

The use cases of our interviewees and their clients ranged from banking, financial services,
and insurance to the automotive sector, healthcare, the public sector, telecommunication,
location data, and trajectories as well as machine learning in general.

Motivation

We started the interview by asking the experts what motivated them to use differential privacy.
According to E4, the general interest in privacy-preserving methods stemmed from the desire
to analyze sensitive data. IT-security measures ensured that the data was stored securely,

22



4 Interviews

with no unauthorized person having access to it. But then the crucial part was to be able to
use this data. Without privacy-preserving methods, the data could only be used in a very
restricted fashion, always requiring the user’s consent. E1 argued similarly: "If [...] there is a
dataset somewhere in your company that you cannot access because of restrictions such as
the GDPR, it takes six to eight months of internal compliance processes just to have a look
at it. And then you might realize that this does not work for you and you need additional
information, then the whole process starts over. So, for us, the goal was to speed up that
process to get a sneak peek of datasets within a couple of days, making everything more agile."

All experts were or quickly became aware of the shortcomings of traditional de-identification
techniques. Their search for a more sophisticated privacy-preserving method eventually led
them to differential privacy. For E2 and E5 this search started out of research interest. In the
case of E3, an existing system had to be upgraded with as little effort as possible. He explained:
"It used k-anonymity. This may be sufficient for privacy-preserving data publishing, but our
clients wanted to use it for data mining, i.e., to draw conclusions from the results and to
use these conclusions to request the same data again. And because k-anonymity does not
compose at all, i.e., multiple requests on the same datasets are no longer k-anonymous, even
if the individual outputs are k-anonymous, they needed a better approach."

Alternatives

Since the topic was already brought up in the motivation, we continued by asking for possible
alternatives to differential privacy. There was, however, little variety in the responses. All
experts were aware of common practices such as de-identification or pseudonymization and
agreed that they were outdated and insufficient. For privacy-preserving machine learning E2

mentioned methods such as homomorphic encryption, secure multi-party computation, and
federated learning. They all had their own application domain. But for a normal machine
learning workflow, with data that did not need to be shared, and trust in the infrastructure
on which the training was performed, differential privacy was the best choice.

K-Anonymity

The experts’ opinions diverged when it came to k-anonymity. On the one hand, it got heavily
criticized for being a purely syntactic notion of privacy, lacking composability and any real
guarantee. E3 illustrated how, in theory, even mechanisms where it was obvious that they
were not privacy-preserving could satisfy k-anonymity. For example, if each row of the
original data was replicated k times, then the resulting dataset was k-anonymous, although
an attacker could simply reverse this process. E2 also deemed it unsuitable for machine
learning. Aggregating data points into classes would destroy individual correlations, which
were exactly the dependencies that machine learning was about. Furthermore, E2 argued that
for some data types, too much information got lost through generalization. This was better
with differential privacy, as here, the noise was added to the gradient instead of the dataset.
Thus, any gradient-based method could be used, regardless of the data type.
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On the other hand, E4 also defended k-anonymity. For him, it was equivalent to differential
privacy and would not be replaced by it. Both had their justification in the real world.
Moreover, he said that it was not about k-anonymity or differential privacy, but about
pseudonymizing and hoping for the best, or using anonymization methods, that offer privacy
guarantees. According to him, this included differential privacy as well as k-anonymity,
l-diversity, and the like. He further argued that k-anonymity was easier to understand.
This was crucial when several stakeholders with different backgrounds were involved in
deciding which method to use. Not only was the concept itself more intuitive, but also how it
affected the utility. He explained this based on an example: "Imagine I would like to know
how many 35-year-old women watch a certain TV show between 7 and 8 pm. [...]. Here I
can argue that generalizing the age to 5-year steps is absolutely fine because I would have
done it anyway. This loss of information is then not considered to be severe. I probably
do not care whether someone is 36 or 37 because I have to aggregate them anyway for a
sufficiently large population". The impact of such changes could be worse than that of those
caused by differential privacy, but in return, they were more comprehensible. Nonetheless, he
also acknowledged that differential privacy provided stronger protection, was more broadly
applicable, and allowed for a better analysis of the utility of the results.

Benefits

The benefits our interviewees named coincided with those we found in the literature. Across
the board, the strong protection and formal guarantee differential privacy provide were
viewed as its greatest advantages. E1 argued that while other methods only claimed to be
privacy-preserving, this could actually be proven for differential privacy. According to E4,
this made it easier to justify the use of differential privacy to a data protection officer or
supervisory authorities. E3 stated that in general, they advised their clients to choose a
solution that provides mathematically provable guarantees instead of one where it might
not be known how to attack it today, but where this could change in the future. Ideally, one
should use a parameterizable procedure, as this made it easier to react to changes in privacy
laws and regulations. Having a parameter to trade off between privacy and utility and the
resulting quantifiability of privacy risk were also regarded as major benefits by the other
interviewees.

Versatility turned out to be another advantage of differential privacy. Initially, we asked for
the limitations of differential privacy and if there were cases where it could not be used. But
the common response was that it was universally applicable because it was such a general
principle. E3 even believed that whenever there was a solution to a problem, then there
would be a differentially private one as well. He further acknowledged that there were use
cases that were difficult to implement, for example, when the data was highly correlated. To
ensure privacy, there would probably only be noise left. But he questioned whether this was
a limitation of differential privacy or if it was mathematically simply not possible to learn
something from this data without violating privacy. E3 elaborated that there was often just
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a misunderstanding of what privacy was about. "They want you to make the anonymity
requirements magically disappear so that they can do everything they could have done on
the raw data.

Another aspect was data accessibility and availability. E1 explained how differential privacy
could accelerate the approval processes he mentioned in the motivation. E5 further added
that differential privacy could open up new areas for data collection and processing.

Challenges

We proceeded to ask our interview partners which challenges they faced when using differen-
tial privacy and how they overcame them. The most frequent answer was the limited utility.
E5 noted that too much noise had to be inserted for real privacy guarantees. E3 pointed out
that with a fixed privacy budget, either the number of queries was limited or more noise had
to be introduced with every subsequent query. The implications of the second approach were
criticized by E4: "It is very difficult to deal with information decay in a database environment.
Why? Well, how would a data scientist behave when he sees data? He asks this, then that he
wants to be exploratory. And if he accidentally chooses the wrong order, he has less accurate
information than if he had asked the other way around". However, a limited number of
queries was also problematic unless it was known in advance how often the dataset would be
queried.

According to E2, low utility was less of an issue in machine learning. Good accuracy could
be achieved through hyperparameter tuning in the differentially private stochastic gradient
descent. The problem was rather the search for the right hyperparameters. This was a lengthy
process since differentially private training took significantly longer than regular model
training. Each data point was processed individually, clipped, and perturbed as opposed
to regular machine learning, where the whole batch was processed at once, followed by a
joint update. This was said to be a significant performance difference. Therefore, it was often
not feasible to find the right parameters for high accuracy. E3 also considered implementing
differential privacy efficiently to be the biggest challenge. As an example, he brought up
the exponential mechanism. It required to iterate over all possible outputs, which was not
feasible in most cases. The universe of all possible outputs was just too huge to compute this
in the lifetime of machines.
Of course, it was case-dependent whether the performance was considered to be a challenge.
For simple applications, differential privacy only requires that noise is added to a query
result. So it was neither a surprise nor a contradiction that other experts praised differential
privacy for being computationally inexpensive. Especially when it was compared to other
privacy-preserving methods like secure multi-party computation or homomorphic encryption.

However, all of our interviewees agreed that the complexity of differential privacy was a
major challenge. They argued that differential privacy was hard to understand and to explain.
E2 said that if a company used it, its customers would not understand it and therefore could
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not verify how well protected they were. This might even lead to a false sense of security. E4

supported E2 in that the parameter epsilon was abstract and hard to interpret. E3 also agreed
that k-anonymity was more intuitive in this regard.
E1 mentioned that differential privacy was difficult to implement and to prove. There was
an "unimaginable number of things that could go wrong." Reportedly, this was even more
severe in the past, as there were no open-source projects or examples to get inspiration from.
"You just had the paper and had to implement whatever was on the paper," E1 explained.
But according to him, this changed for the better. E2 complained that existing differential
privacy libraries were not very user-friendly. This further added to the complexity. "It is often
unclear how parameters are set. You could improve a lot by suggesting values to the users or
by explaining which values have which consequences."

How could these challenges be overcome

The discussion surrounding the complexity of differential privacy already touched on how
this challenge could be addressed. The experts emphasized the need for good explanations of
differential privacy. E1 went on about the importance of developing differential privacy tools
in an open-source environment. That way, anyone could test them and help to prevent grave
mistakes. At his work, they also tried to be based on as many open-source projects as possible.
When it came to interpreting the parameter epsilon, E2 explained that as a proxy, they were
simulating attacks, such as the membership inference attack. These were pre-implemented
in libraries like Tensorflow Privacy. They then compared the differentially private machine
learning model with a regular model and checked whether the risk had decreased. This,
however, was only a temporary solution. In the long run, we needed a framework that
quantified which effects which epsilon would have on the real world for different datasets
and machine learning models. It should show how likely it was that a specific datapoint
could be recovered or that certain attributes could be revealed.

Regarding the performance E2 argued that this could become less of an issue in the future.
Either through more efficient implementations of existing libraries and algorithms or because
of the natural growth in computing power. This would simultaneously improve the utility in
the aforementioned cases. Nonetheless, it would never be possible to completely eliminate
inaccuracies due to the inherent trade-off between privacy and utility. When it came to dealing
with the introduced noise, E3 exemplified how this could be handled in practice: "You do not
assume that all attackers in the world, who have ever seen a differentially private statistic
will collude. Instead, you have agreements with data recipients, for example, that they will
only use the data in a specific context and not simply put it online. That way, the privacy
budget can be limited to specific use cases, customers, or time periods. You can classify the
customers according to their trustworthiness. Those where I do not know what they will do
with the data receive a fixed budget. With others, I have legal agreements and only have to
ensure that an individual statistician [. . . ] cannot learn anything about individuals in the
dataset. But I am legally protected against the company joining forces with others and trying
to reconstruct my raw data." To avoid the limited number of queries or the information decay,
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E4 suggested using local instead of global differential privacy.

Tools

As already indicated, E2 used TensorFlow Privacy and its attack frameworks. The decision to
choose it over alternatives like PySyft was rooted in TensorFlow Privacy being developed by
Google. Since Google’s scientists were contributing extensively to the field of differentially
private machine learning, E2 assumed that their implementations would always be incorpo-
rated into TensorFlow Privacy. This ensured that the library would be frequently updated
and got new features faster than others.

The other experts did not use differential privacy tools, although they were aware of them.
E3 further elaborated that he mostly dealt with individual solutions and that it would be
hard to find a broadly applicable library. Most of the existing libraries were from the area of
machine learning, which he had little to do with or general implementations of algorithms,
with an outcome that was differentially private but not usable for individual applications. He
questioned if there ever would be the jack of all trades that everyone could use.

Sources

There was also no broad range of recommended sources. The RAPPOR paper from Google
[46] was said to be an interesting read, and PrivBayes [61] was mentioned in the context of
differentially private synthetic data generation. E4 advised us to stick to "the algorithmic foun-
dations of differential privacy." This was sufficient to cover the basics, and then, depending
on the use case, one should look for a suitable follow-up paper.

Maturity

All experts reported that they saw a growing interest in privacy and received more inquiries
about it. According to E3 and E4 supervisory authorities were already aware of differential
privacy. It was further said to be a well-established definition and mature enough to be used
in practice.

Naturally, this raised the question why this is then rarely the case. The experts came back to
the challenges they mentioned earlier. The complexity, performance issues, and loss of utility
were obstacles that slowed down the spread of differential privacy. E2 argued: "I think many
companies are starting to experiment with it, but the number of companies using differential
privacy in their core products is still small. One of the most prominent players is Google, but
they only use it for analytics in their chrome browser and not in their core product, the search
algorithm. They would lose money if the predictions worsened, and they could no longer
place the right ads. I think that is how many companies feel. They like to use it as a gimmick,
where it does not hurt, but they do not dare to modify their core products yet." E4 added: "Of
course, every data scientist is afraid of changes to the data in any form. The whole point of
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storing data is to be able to retrieve it as it was before. Every form of perturbation raises the
question [...] whether my analysis is still reliable." But not only were companies discouraged
from using differential privacy, some just did not see the need for it. E5 explained: "In
business, the question always is ’why do we have to change what we are doing right now?’ If
the legislation says that removing PII is enough, then they see no need for change." For E3

this missing awareness was the biggest obstacle: "People in charge do not yet really see what
differential privacy does and why they should use it. So it is the same problem that security
has: ’Why do I need security? Until now, nothing has ever gone wrong?’" Furthermore,
differential privacy required analysts to adapt their tools unless they were using synthetic
data. The proposed solution to overcome these obstacles, which were mostly human factors,
was once again education. E5 deemed it also as helpful if differential privacy was legally
required. E2 explained that security was taken more seriously than privacy because legal
regulations demanded it. So far, only the GDPR existed for privacy. No one knew what this
meant for machine learning, which was why many did nothing in this regard. As often ev-
erything was developed in a hurry and privacy cost extra time and money, it was often left out.

In light of these challenges, we asked our interviewees how long they thought it would take
for differential privacy to be widely used. We mentioned the estimate of the Gartner Hype
Cycle as a reference. According to their analyst Van Baker [62], it would take five to ten years
until differential privacy reached the plateau of productivity. Most of our interviewees shared
this assessment. E1 guessed that it would take more than five years to be commonly adopted.
It was emerging, but nowhere near where it needed to be, in terms of wide adaptation. E5

thought that until then, we would probably see developments in niche applications. E3 was
indecisive whether differential privacy was the definitive solution everyone would end up
using, but he believed that it would gain in popularity. We were still in the early stages
of implementing the GDPR, and analyzing personal data became increasingly important.
For him, the estimate of five to ten years was realistic. But this was difficult to predict. He
compared it to other methods and brought up an example from cryptography. Just a few
years ago, TLS 1.3 had been standardized. Public-key cryptography was now 40 years old. So,
pessimistically, one could say that it took almost 40 years to establish a reasonable standard.
Likewise, E5 argued that for multi-party computation it took 40 years to be where we were
today and that there the only challenge was performance.

Promising Trends

To wrap up the predictions about the future of differential privacy, we asked our interviewees
if there were any developments they looked forward to. They mostly answered with general
statements, like improved utility or efficiency. Among the more specific answers were smooth
sensitivity, local differential privacy, distributed learning, and differentially private synthetic
data.
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Which Topics Should Be Covered?

Finally, we asked which topics we should cover in our learning content. E5 recommended
us to explain the known mechanisms and when they were applied, the local and the global
model, and the interaction between utility and noise. This was supported by E3 who told
us that everything he had seen so far got along quite well with the absolute basics. This
included a good understanding of the definition, the composition theorem, and the Laplace
mechanism. He further regarded it as beneficial to develop a broad understanding of the
subject. So knowing the difference between semantic and syntactic notions of privacy, being
aware of the risks, and understanding the limits of anonymity. E1 suggested to structure the
content into multiple layers of complexity. The first layer should be "super easy to understand
and super intuitive," without being technically untrue. With every additional layer, this had
to be backed up with more technical examples, definitions, and formulas. E4 advised us
to explain the concepts based on a concrete scenario. This was endorsed by E5: "Examples
would be good too. Datasets, even if they are mocked, where you can observe the effect of
adding a certain level of privacy and see how this impacts the queries. What does it mean to
add noise with epsilon 0.5 compared to noise with an epsilon of 1?" E1 also proposed tools,
where users could "play with a few parameters (and) see how the animation changes."

4.3 Conclusion

The interviews helped us to gain valuable insights into the use of differential privacy in
practice. They laid the foundation for answering our research question about the potentials
and limitations of differential privacy. Additionally, they contributed significantly to the
selection of relevant topics for our learning materials as well as to their design and contents.

Although the benefits of differential privacy are evident, and it was deemed a promising
solution to address privacy risks, it is still at an early stage and has not yet fully advanced
from research into practice. It will take more than five years until we will see differential
privacy widely used. At the moment, its complexity and the missing awareness for privacy-
related issues are among the biggest obstacles hindering its spread. Both challenges can
be addressed through education, which reinforces the importance of our efforts to provide
learning materials on differential privacy.
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5 Benefits and Challenges of Differential
Privacy

In this chapter, we will discuss the benefits and challenges of differential privacy we discovered
in the literature research and the interviews. It addresses the question whether differential
privacy should be used.

5.1 The Benefits of Differential Privacy

The benefits of differential privacy can in large part be derived from the properties of
its definition, namely the quantification of privacy risk, group privacy, robustness under
composition, and the immunity to post-processing.

Strong Privacy Protection Every individual in the dataset has essentially the same pro-
tection as if they had not contributed their data. Therefore, nothing specific to them can
be learned. This protects against arbitrary risks incurred from participating in a dataset
that go beyond re-identification (e.g., rise in insurance premiums). Additionally, it can be
mathematically proven whether a mechanism provides this guarantee. The guarantee also
extends to groups, albeit to a lesser extent.

This formal guarantee holds, no matter what an adversary does with the output or which
auxiliary information he possesses. This includes attacks that are currently unknown as well
as future data sources. Thus, the guarantee is future proof. Naturally, the strength of the
guarantee will degrade when combining the results of multiple differentially private analyses
on the same dataset, but it will not break, as it is robust under composition.
Differential privacy is the only approach that provides such a formal, mathematically prov-
able privacy guarantee [30, p.214, p.270][63, p.33] Other privacy-preserving methods are
mostly syntactic in nature and, therefore, susceptible to linkage attacks, might break under
composition, or only protect against certain types of attacks or risks [28].

Versatility Differential privacy is not a method that is applied but a definition that must be
fulfilled, and there are numerous ways to do so. Thus, differential privacy is quite versatile
and can be adapted to various use cases, ranging from simple statistics to machine learning
[64]. This is further facilitated by its robustness under composition, as it allows to construct
complex algorithms from smaller building blocks.
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Since all the properties of differential privacy are part of the definition and independent of
the implementation, there is a high degree of freedom in how it can be realized. Differential
privacy can also handle various data types, such as numeric, non-numeric, graph, or location
data.
Unlike other approaches, differential privacy protects against arbitrary risks and attacks
Moreover, it can even be used for purposes apart from privacy. For example, to prevent
strategic lies in mechanism design, to ensure generalizability in adaptive data analysis, or to
prevent overfitting in machine learning.
Not only can the privacy loss parameter ε be used to adjust the level of protection, but there
are also different variations and relaxations of differential privacy that adapt it to settings
with a computationally bounded adversary. They modify various parts of the definition, e.g.,
how neighboring databases or the sensitivity are defined or which properties are protected.
Moreover, differential privacy can be combined with other privacy-enhancing methods like
federated learning or secure multiparty computation to rule out additional attack vectors,
like a data leakage at the curator or during transmission.

Availability If the outcome for users is the same, no matter if they are in the dataset or not,
it will be easier to incentivize them to contribute their data. More data reduces the sampling
error and other biases in the data and therefore outweighs the loss in utility caused by the
noise introduced to preserve privacy.
Due to the hard worst-case assumption of differential privacy and its immunity against post-
processing, there is no need for attack modeling, i.e., assessing what an adversary might know
or how he might attack Hence, data can be shared without hesitation. This can significantly
reduce the time it takes to get access to sensitive data.
Collect, process, and share data, where this was not possible before, due to privacy concerns.
Sensitive data could become more accessible, enabling more people to research it for the
greater good

A Framework to Reason About Privacy Risk The privacy loss parameter ε quantifies
privacy risk and how it accumulates across multiple differentially private analyses. This
makes it possible to compare how private different algorithms are and to reason about
the appropriate level of privacy. "Traditional de-identification techniques often require
concealment of the extent to which the data has been transformed, thereby leaving users with
uncertainty regarding the accuracy of analyses on the data" 2,p.271 When using differential
privacy on the other hand, it isn’t necessary to keep implementation details like parameters
secret Thus, users can precisely determine the accuracy of their analysis, making it easier to
compare differentially private algorithms in terms of their accuracy and level of privacy.

5.2 The Challenges of Differential Privacy

Limited Utility The most frequently mentioned argument against differential privacy is
the limited utility. A fixed privacy budget for a database results either in a finite number of
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queries, after which the database may never be queried again, or in increasingly higher noise
with each query, that quickly renders query results useless. This is even worse for everything
beyond counting queries, such as analyses of highly skewed or correlated data And when
counting the number of people suffering from a rare disease, even a small amount of noise
could lead to false conclusions. This raises the question whether it can be afforded to worsen
the results of (medical) research just to prevent attacks that are theoretically possible under a
hard worst-case assumption.

This is not an issue of differential privacy, but privacy itself. Too many too accurate queries
will eventually break privacy. Every analysis with non-zero utility leaks information about
the underlying dataset, this in inevitable. Differential privacy just makes this issue visible.
It quantifies the privacy loss and states the amount of noise necessary to bound it The
worst-case assumption of an omnipotent adversary might be too strong, but this definition
can be relaxed. Noise can also be decreased using local sensitivity or advanced composition
theorems. In general, it is advisable to use robust statistics, which are less sensitive to outliers.
For example, using the median instead of the mean. Moreover, "the claim that differential
privacy is inconsistent with a specific accuracy goal is hard to prove. The poor utility of a
specific differentially private algorithm should not be confused with a failure of differential
privacy per se" [37] although better algorithms might be (computationally) more complex,
adding efficiency to the trade-off between privacy and utility. When weighing up the benefits
of more accurate study results against privacy, it should be considered that the data might not
be available otherwise. Ultimately, the data subjects should decide for themselves whether
they want to contribute their data and which level of privacy they demand in return. Variants
of differential privacy such as personalized privacy could make this possible in the future
[65].

Complexity Differential privacy is complex. It is hard to understand, explain and implement.
There are many misconceptions regarding its guarantee and implications, even among
scholars. Communicating differential privacy to clients and colleagues can be cumbersome.
Customers might either not acknowledge it or have a false sense of security if they hear that
differential privacy is used. Like in the case of Apple, that permits an overall daily privacy
loss of 16 [50], which is far from private. This is something a user can hardly check, especially
since Apple kept their implementation details secret. Implementing a differentially private
algorithm has many pitfalls and requires mathematical proof that it satisfies the guarantee.
Even simple post-processing operations, like bounding the results to positive values, can lead
to significantly less utility. Choosing the right parameters is not a trivial task either. Neither
are there clear guidelines on how to choose , nor is it easy to determine the sensitivity of a
query, i.e., the biggest impact a single individual could have on the result of the query. When
it comes to an understanding and explaining differential privacy, there are already plenty of
resources available. The same goes for differential privacy tools that help in implementing it,
either by providing basic building blocks or by verifying whether an algorithm is differentially
private. If the sensitivity is hard to determine, clamping the values or falling back on the
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sample and aggregate model are possible solutions.

Requires Change Analysts have to change the way they work with data. They cannot
access raw data directly anymore and need new approaches to interpret the results. They
"are accustomed to the data looking a certain way, and to interpreting those data as the
’ground truth.’ As such, they are unaccustomed to seeing population counts with fractional
or negative values". Moreover, the data can have logical inconsistencies, for example, that
the sum of subpopulations does not equal the total population. Also, they have to resist the
temptation to repeat analysis if the result is far off. Besides this cultural change, the tools they
work with have to be adjusted as well. Differential privacy is future proof, but to ensure this,
the remaining privacy budget of every user has to be tracked and once the overall privacy
budget is depleted, the database may never be queried again.
There are vendors that offer differentially private synthetic data. It mimics the original data
and thus allows to work with it as one would have done with the raw data. However, it
doesn’t capture all use cases as a single row doesn’t correspond to an existing individual
anymore. Additionally, several differential privacy tools are already designed to be similar to
their non-private counterpart [8][9][15], thus facilitating the transition.
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6 Learning Nuggets

6.1 Categories

The learning nuggets are intended to support practitioners in their decision whether they
should use differential privacy. We identified four major questions they might have when
making this decision and aligned the learning nuggets accordingly.

1. Should I use differential privacy?
The learning nuggets from the motivation category address the question whether it is
necessary to use differential privacy and if there are any alternatives available. The
discussion category then provides arguments for and against the use of differential
privacy by listing the benefits and challenges of using differential privacy.

2. Can I use differential privacy? Another question practitioners might have, is whether
they can use differential privacy in their particular use case. To which settings can it be
applied, and which problems it solves is addressed in the learning nuggets from the
definition category.

3. How should I use it? There are different forms of differential privacy (variants and
extensions, the local and the global model, global or smooth sensitivity etc.) and different
ways to achieve it. Learning nuggets from the application and outlook category address
these topics.

4. Who or what can help me to use it? The Outlook category presents vendors offering
differential privacy as a product, real-world applications to get inspiration from, and
tools that help in using differential privacy.

6.2 Structure

All of the learning nuggets were created in PowerPoint. This makes it easier to edit and
maintain them. To ensure that the learners use them as intended, the presentation is set to
kiosk mode and saved as a .ppsx file (PowerPoint Show). That way, users cannot edit the
slides and can only view them in the presentation mode. Moreover, they cannot use the arrow
keys, click or scroll to change the slide they are currently on. Instead, they have to rely on the
navigation options we provide them with.
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Navigation Elements

Users can navigate within and across learning nuggets. The navigation bar depicted in figure
6.1 is located in the upper right corner of every slide. Additionally, a user can click on words
highlighted in blue to go to the corresponding learning nugget or glossary entry. They can
then use the curved arrow from the navigation bar to go back to the learning nugget they
were coming from.

Figure 6.1: Navigation elements

The learning nuggets themselves all follow the same structure. They begin with an introduc-
tion, followed by the content, which is then summarized in the Key Takeaways. Afterward,
the outlook and the list of sources provide the user with suggestions on where to go next.

Introduction

The first slide states which learning nuggets the user should have read in order to understand
the contents of the following slides. These prerequisites are divided into necessary and
beneficial prior knowledge. Afterward, the topic of the learning nugget is motivated. A few
introductory sentences briefly summarize the most important aspects of the previous units
and outline how the current one will tie in with them. Lastly, the learning objectives are listed.
They are structured according to Bloom’s taxonomy and represent the order of the content.

Content

The content spans over several slides. To avoid overwhelming learners with large blocks
of text, it is split up into a bulleted list of sentences that no slide has more than ten of.
Graphs and images are used to further loosen the content up. Additionally, examples and
mathematical proofs are contained in extra boxes or slides since they can be regarded as
optional content, and some users might want to skip them altogether.
Some slides, such as the one in figure 6.3 also have interactive elements. By double-clicking
on the table on the right, the user can access an excel sheet. Here he can change parameters
and see how they affect the other values in the table.

35



6 Learning Nuggets

Figure 6.2: Introduction slide

Figure 6.3: A slide with an interactive element
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Figure 6.4: An interactive element

Exercises

Some learning nuggets also contain exercises. They allow users to apply the theory they
just read about. This also helps them to check if they really understood it. Other learning
nuggets rather contain comprehension questions. They usually ask the learner to apply
formulas and algorithms from the learning nugget. They also transfer knowledge, extend the
content to things that would be out of scope. Sometimes they require programming or bring
in knowledge from other learning nuggets The solution to the exercises are shown on the
following slides; the users have to check for themselves whether they were correct.

Key Takeaways

At the end of the learning nugget, the most important points are summarized. The learner can
use this opportunity to check if he got them all while reading the learning nuggets. Others
might want to skip the content altogether and just read the key takeaways to move on to
other learning nuggets. The outlook gives a preview of related nuggets The last slide lists the
sources referenced throughout the learning nuggets as well as those that might be interesting
for further reading.

6.3 The List of Learning Nuggets

In total, 22 learning nuggets were designed. They can be grouped into five categories.

Motivation
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Figure 6.5: Exercise solution slide

Figure 6.6: Key takeaways
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1. Attacks on Privacy

2. Privacy-preserving Methods

3. K-Anonymity

Definition

1. Privacy Through Perturbation

2. The Definition of Differential Privacy

3. The Adversary’s Perspective

Discussion

1. The Benefits of Differential Privacy

2. The Challenges of Differential Privacy

3. Putting Noise Into Perspective

Application

1. The Randomized Response Algorithm

2. The Laplace Mechanism

3. The Exponential Mechanism

4. The Gaussian Mechanism

5. Comparing the Mechanisms

6. The Sensitivity

7. Local Differential Privacy

Outlook

1. The Maturity of Differential Privacy

2. Differential Privacy Tools

3. Real-world Applications of Differential Privacy

4. Differential Privacy Vendors

5. Differential Privacy in Machine Learning
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6. The Differential Privacy Family

We will discuss them in the next section. In doing so, we will address the choices made in
designing them, the primary sources they are based on, and the key learnings they should
convey.

6.4 Learning Nuggets Overview

6.4.1 Motivation

The goal of this set of learning nuggets is to raise awareness for privacy issues. It emphasizes
the need to take them seriously and the shortcomings of traditional privacy-preserving
methods. None of the learning nuggets from this category are necessary to understand
differential privacy. They do, however, highlight desiderata for privacy-preserving methods,
properties such methods should have, the attacks they should protect against and criteria that
are met by differential privacy. Of course, someone who is already aware of these issues or
wants to get straight to the point can proceed directly to the definition of differential privacy.

Attacks on Privacy

This learning nugget illustrates prominent attacks on privacy and further serves as an
introduction of core terminology and concepts like re-identificiation, de-identification, quasi-
identifiers, auxiliary information, linkage and reconstruction attacks.
It starts by presenting three infamous cases of re-identification: the AOL scandal, the re-
identification of governor William Welds and the Netflix Prize. Based on the examples, the
following insights are discussed: the flaws of de-identification, the power of linkage attacks
and the fact that even innocuous information can be used to breach privacy and might entail
even greater harm. This shows that one never knows which auxiliary information is available
and what an attacker might learn.

Privacy-Preserving Methods

This learning nugget discusses various approaches to preserve privacy and their shortcomings.
This encompasses traditional de-identification and pseudonymization techniques, query
restriction, query auditing, output, and data perturbation. It also touches on security measures
(e.g., encryption, access control, homomorphic encryption, secure multiparty computation)
and highlights how they are also essential and address different privacy risks. Learning:
We need methods that provide provable guarantees, and thus there is no real alternative to
differential privacy.

Exercises - Sketch how methods could be combined - Unknown method: Show how it could
be broken
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k-Anonymity

We revisit the re-identification of Governor William Welds and how this led to the definition
of k-anonymity. We explain the property, how generalization and suppression work and then
proceed to explain the weaknesses. That it is susceptible to homogeneity and background
knowledge attacks and that it is not robust under composition. This leads to the final
conclusion that the issue lies in them being syntactic instead of semantic notions of privacy.

Exercises

1. The learners have to make a dataset k-anonymous

2. A k-anonymous dataset is presented, and the learners have to break it

6.4.2 Definition

This category consists of the basic learning nuggets necessary to understand what differential
privacy is. To understand the guarantees it provides and what it protects. Based on these
learnings, practitioners should be able to decide if it addresses their privacy concerns.

Privacy Through Perturbation

This learning nugget was initially not intended but created when the first Think-aloud
sessions showed that learners had some open questions left. It explores the basic intuition
behind output perturbation as a means of preserving privacy. It shows that infinite noise
is required, that it is no good idea to rely on privacy through hiding information Based on
the example of a simple output perturbation technique, the users learn about the need for
infinite noise and that security through obscurity is not advice-able according to Kerckhoff’s
principle.

The Definition of Differential Privacy

This learning nugget covers the guarantee differential privacy provides and describes how
this translates into the definition. It further explains the properties of differential privacy,
namely group privacy, robustness under composition, and immunity to post-processing.

Exercises To strengthen the intuition about the protection differential privacy provides,
learners are presented several cases of privacy breaches and have to decide which of them
could have been prevented through the use of differential privacy. Additionally learners have
to argue why any non-trivial mechanism satisfying differential privacy, or any reasonable
notion of privacy in general, has to be non-deterministic.
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The Adversary’s Perspective

This learning nugget facilitates to interpret the privacy loss parameter ε and also showcases
how it can be used to quantify privacy risk. It introduces the Bayesian interpretation of
differential privacy and how the level of protection provided can be determined in the form
of the maximum information gain of an adversary in the worst case. This possibility is
showcased on the example of Gertrude, presented in the differential privacy primer [30].

6.4.3 Discussion

The learning nuggets in this category provide the learner with arguments to consider when
deciding about using differential privacy.

The Benefits of Differential Privacy

We list the benefits of differential privacy according to the structure already presented in
chapter 5. We start off with the strong protection, followed by its versatility, how it increases
the availability and accessibility of data, and end with the quantifiability of privacy risk and
the transparency it enables and how this makes it a perfect framework to reason about risk.
The benefits were those stated in literature and expert interviews.

The Challenges of Differential Privacy

The learning nuggets present the limited utility and the complexity of differential privacy
and that the way we handle data requires re-orientation. We discuss how these challenges
can be overcome. The challenges were obtained from the literature and the expert interviews.

Putting Noise Into Perspective

Practitioners tend to worry about the inaccuracy caused by differential privacy. We put the
introduced noise into perspective by comparing it to the sampling error and re-stating the
database reconstruction theorem. We further argue that the noise is an opportunity because it
rewards the information minimization principle.

Exercises Learners have to decide which one out of two queries is less private than the
other, and thus requires more noise.

6.4.4 Application

This category revolves around achieving differential privacy. It introduces the basic mecha-
nism and targets everyone interested in implementing differential privacy.

42



6 Learning Nuggets

The Randomized Response Algorithm

The randomized response algorithm is an ideal introduction to the topic of differential privacy
as it originated from the social sciences, is simple and intuitive but in fact, also differentially
private. This allows us to explore important aspects of differential privacy, such as the utility
privacy trade-off. The randomized response algorithm provides local differential privacy, but
it introduces more noise than the other mechanisms.

Exercises Learners have to design an own variant of the randomized response algorithm that
allows three instead of two answers. Further, they can explore the properties of differential
privacy based on the randomized response algorithm by showing how the algorithm behaves
under composition and by investigating the level of privacy it provides for groups.

Local Differential Privacy

This learning nugget teaches the difference between the global and the local model of
differential privacy. They are compared in terms of security they provide and the amount of
noise introduced. The comparison enables practitioners to decide which fits better to their
case. Also, they learn that most companies using differential privacy apply the local model
because it does not require trust in the data curator. We further touch on the shuffle model
and using secure multiparty computation to simulate the global model.

The Sensitivity

This learning nugget teaches how to get the most out of the previously presented mechanisms
as most of them introduce noise scales to the sensitivity. We discuss the sensitivity of different
statistics. Further, local sensitivity (AI) is introduced, which has to be determined independent
of the database to be analyzed. We talk about ways to use this local sensitivity like the propose-
test-release-approach or smooth sensitivity. We will show practices to reduce sensitivity by
clipping, which bounds the sensitivity. Finally, a subsample-and-aggregate-framework is
illustrated for cases in which it is difficult to determine the sensitivity.

Exercises Learners are provided with examples and have to determine the sensitivity.

The Laplace Mechanism

The Laplace mechanism is the best-known mechanism for differential privacy. In this unit, we
will cover the proof, the formal definition, and the accuracy of this mechanism. It is taught
how to apply the Laplace mechanism. We start to explain it for single-valued queries and
end with vector-valued queries. Learnings: After studying this learning nugget, learners are
able to explain how the Laplace mechanism achieves differential privacy and how accurate an
instance of the Laplace mechanism is. Further, learners can illustrate the utility and privacy
trade-off of differential privacy based on this mechanism.
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Exercises In the respective exercise, learners have to implement the Laplace mechanism and
plot a histogram with the results of repeated queries. This visualizes the composition because
the histogram will take on the shape of the Laplace distribution.

The Exponential Mechanism

The Laplace and the Gaussian mechanism can only be used for queries that are robust to
perturbation and relatively insensitive to changes in the data of a single individual. It is
not suitable for optimization problems or when dealing with non-numeric values. This
learning nugget showcases how differential privacy can be achieved in these settings using
the exponential mechanism. We will cover the motivation, the formal definition, the proof,
and the accuracy of this mechanism. Moreover, we show that it is a general framework that
captures any mechanism that gives differential privacy.

Exercises The exercise is to apply the exponential mechanism to a simple counting case
to return the most popular item of a set. Learners, therefore, implement the exponential
mechanism.

The Gaussian Mechanism

We explore the Gaussian mechanism and the benefits we obtain from sampling from the
Normal distribution. We prove why this only achieves ε, δ-differential privacy, and we explain
the `2-sensitivity and why it can be applied in this case, and the advanced composition
theorem.

Comparing the Mechanisms

We compare the different mechanisms to achieve differential privacy. We give guidelines to
assist practitioners in their decision for one of the mechanism. The randomized response
algorithm as a means to achieve local differential privacy, the Laplace mechanism to achieve
pure ε-differential privacy for numeric valued queries, the Gaussian mechanism for better
composition properties / i.e. more queries with less noise, as long as it is acceptable to just
achieve ε, δ-differential privacy, and lastly the exponential mechanism for dealing with non-
numeric values or optimization problems. We also visualize and compare their performances
(error terms, amount of noise introduced etc.).

Exercises Now that the learners know about all the basic mechanisms to achieve differential
privacy, they are tasked to design a differentially private version of the k-means algorithm by
choosing the right (combinations of) mechanisms.

6.4.5 Outlook

The learning nuggets within the outlook category will give the practitioners guidance on
where to proceed (after the completion of the previous learning nuggets). So if a practitioner
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decides to use differential privacy, he might be interested in tools and vendors that can help
him use differential privacy and real-world applications from which he can get inspiration.
It also touches on the maturity of differential privacy, the vast field of differentially private
machine learning, and variations and extensions of differential privacy (the DP family).

The Maturity of Differential Privacy

In this learning nugget, we share the insights we gained in our interviews and give the learner
an impression of the current state of differential privacy by providing them with a timeline
listing the most important milestones.

Real-World Applications of Differential Privacy

We will give an overview of the areas in which Google, Apple, Uber, the US Census Bureau,
Microsoft, LinkedIn, Snapchat, and Salesforce use differential privacy. We take a more
in-depth look into Google RAPPOR and Apple’s differential privacy solution.

Differential Privacy Vendors

A major obstacle of using differential privacy is its complexity. Although there are already
differential privacy tools practitioners can use, they might not want to implement it themselves
and rather refer to a commercial solution. This learning nugget presents companies that assist
practitioners interested in commercial differential privacy solutions: The SAP HANA Data
Anonymization platform and differentially private synthetic datasets as they are provided by
Statice, Hazy, or LeapYear.

Differential Privacy Tools

We list the most popular differential privacy tools and discuss their feature set.

Differential Privacy in Machine Learning

This learning unit gives an overview of differential privacy in machine learning. For a long
time machine learning models were thought to be private simply because of their complex
nature. But as illustrated in attacks on privacy, research has already proven otherwise. Since
covering the whole field and various models of machine learning would be too extensive, only
neural networks are discussed in more depth. Nevertheless, a list of machine learning models
for which a differentially private version already exists is provided, to give an impression
how broadly applicable it already is in the field of machine learning, and if applicable the
library that implements them.

The Differential Privacy Family

There are approximately 225 variations and extensions of differential privacy. As practitioners
are probably overwhelmed by this amount of all those different notions, we want to guide
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them based on the taxonomy developed by Desfontaines and Pejó[17]. We introduce the
seven dimensions of the taxonomy and provide an example for each of them. Users will be
able to use them to find the right variant of differential privacy for their use case.

6.5 Learning Platform

In this section, we will outline the concept of the e-learning platform that was conceptualized
within this thesis and later implemented by a group of students in a practical course. They
further refined these initial ideas. Their solution is covered in the outlook of this thesis.

6.5.1 Motivation

Our goal was to make differential privacy more accessible. We wanted to offer learners more
than just text and visualizations. They should be able to learn about differential privacy in an
exploratory manner by using interactive widgets. However, existing e-learning platforms and
learning management systems are restrictive in the way content can be created and displayed.
Their goal is to keep the creation process simple to protect the content creator from himself.
Therefore, they are often limited to text, pictures, and videos. As we wanted to provide
various interactive elements alongside our learning content, we decided to develop an own
dedicated e-learning platform for differential privacy.

6.5.2 Views

The application is divided into multiple views. The landing page provides an overview of
all learning nuggets. Each of them is represented by a tile, displaying the title and a short
description of the learning nugget. They are ordered by relevance. Those that were deemed
helpful by other users with the same role as the current one are ranked higher. A learner can
also use search and filter functions to access specific content that might interest him. Clicking
on a learning unit will forward the user to its detail view.
In the detail view, the whole content of the unit is displayed. The content is mainly text-
based but may contain tables, pictures, videos, and interactive elements. These range from
simulations to graphs that are plotted based on the parameters the users have chosen.

6.5.3 Prototype

A small prototype (Figure 6.8) was developed as a proof of concept. The tool allows a user
to upload a .csv file, choose an ε value and either compute a differentially private linear
regression or histogram. An unmodified result is provided as a reference. The differentially
private results are computed by diffprivlib, the differential privacy library of IBM [15]. The
unmodified results are provided by sci-kit-learn. The prototype was later integrated into the
learning platform.
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Figure 6.7: MockUp of the Landing Page

Figure 6.8: Prototype
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The learning nuggets went through multiple evaluation steps. In an early stage, we had
informal Think-Aloud tests with five students. We observed how they approached the
learning nuggets, how long they stayed on each slide, and discussed the issues they had with
the content. This first input primarily revolved around the complexity of the topic and led
to the inclusion of more examples and visual elements. Second, the learning nuggets were
reviewed by other researchers working on differential privacy to ensure their overall quality
and correctness. Lastly, a formal evaluation with 17 participants was conducted. Due to time
reasons they were only provided with a sample of seven learning nuggets:

1. Privacy Through Perturbation

2. The Randomized Response Algorithm

3. The Definition of Differential Privacy

4. The Laplace Mechanism

5. The Exponential Mechanism

6. The Benefits of Differential Privacy

7. The Challenges of Differential Privacy

The evaluation form consisted of 27 items, most of which were Likert scale questions with
five response options ranging from strongly disagree to strongly agree. The questions were
grouped into five categories:

1. General Information

2. Usability

3. Content

4. Acquired Competence

5. Personal Opinion

The questions about the usability and content were based on the "Learning Object Review
Instrument (LORI)" proposed by Leacock and Nesbit [66]. Those about the acquired com-
petence relied on self-assessment and were aligned to the six levels of the revised edition of
Bloom’s taxonomy [67]. In the following sections, we will discuss the results of each category.
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General Information

The first set of questions assessed the profession or field of study of the participants, their
prior knowledge, which learning nuggets they completed, how long it took them, and how
they approached the learning nuggets, i.e., whether they skimmed them or read everything
thoroughly. These questions helped us interpret individual responses. Clearly, someone
who completed all learning nuggets and took 45 minutes for each of them is going to report
a vastly different learning effect than someone who only briefly skimmed two or three of
them. The profession and prior knowledge of the respondents might further influence their
judgment.
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Figure 7.1: Evaluation Results - Average Time

The average time it took respondents to complete a learning nugget ranged from 5 to 45
minutes. Multiple factors can explain this significant difference. First, those who took less
than 10 minutes reported that they have skipped complex formulas, proofs, and the exercises
or only skimmed the text. Naturally, someone who does the exercises takes significantly
longer. Second, it depended on the learning nuggets they completed. Whereas the benefits
and challenges of differential privacy are easy to digest, the mechanisms are far more
complex. Lastly, participants with prior knowledge of differential privacy have far less trouble
understanding it.
We consider it an advantage that the learning nuggets can be completed in less than 10
minutes, but that someone who wants to understand the topic in depth can spend up to 45
minutes on them. That way, different audiences are addressed, which ties neatly into the
philosophy behind our learning nuggets. By offering shortcuts like the key takeaways and
optional content like examples and proofs, we encourage users to learn at their own paste and
to study the topics they are most interested in, in greater detail. Nevertheless, we consider an
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average completion time of 21 minutes to be too high. In future refinements existing learning
nuggets should be split up and reduced in content.

Usability

Since it was safe to assume that everyone knew how to use a PowerPoint slide deck and
there were only a few interactive elements embedded, the usability section primarily revolved
around the structure and design of the slides, as most usability aspects become important
once the learning platform is deployed [68].

Strongly Disagree Disagree Neutral Agree Strongly Agree
0

5

10

15

N
um

be
r

of
Pa

rt
ic

ip
an

ts

The design of the slides is appealing
Visual elements are helpful
The writing is clear and concise

Figure 7.2: Evaluation Results - Usability

The design of the slides was predominantly perceived as appealing. Visual elements such as
pictures, diagrams, and tables were widely appreciated and seen as useful aids. The writing
was mostly seen as clear and concise, but still seems to deserve improvement.
We ended the section with an open question on how the design and usability could be
improved. An overwhelming number of respondents suggested reducing the amount of
content per slide and trimming the text. This must be considered in further refinements.

Content

Next up, we evaluated the content of the learning nuggets. First, we wanted to assess if
the learning nuggets’ scope was perceived as too broad or even too narrow and whether
the content had an adequate level of detail. Thirteen participants reported that the scope of
the learning nuggets was neither too broad nor too narrow. The remaining four reported
that it was a bit too broad. This showed us that we are on a good track, but as the answers
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to previous questions already indicated, it would be beneficial to reduce the content of
the learning nuggets. The level of detail was well-received. Sixteen respondents agreed or
strongly agreed that key points and significant ideas were emphasized with an appropriate
level of detail.

Strongly Disagree Disagree Neutral Agree Strongly Agree
0

5

10

15

N
um

be
r

of
Pa

rt
ic

ip
an

ts

Key points are emphasized with an appropriate level of detail
The learning objectives are well aligned with the learning content
The learning content follows a logical structure
Claims are supported by evidence or logical argument

Figure 7.3: Evaluation Results - Content

Secondly, we wanted to assess whether the content was too complex and difficult to under-
stand. However, we had to make sure that it was not the difficulty of the topic that was
evaluated but whether the explanations about it were overly complicated. So instead of
asking directly for the complexity of the content, we asked how it compared to other sources,
i.e., if it was as simple as a blog post (1) or as complex as a scientific paper (5). Eight of the
respondents placed it in between (3), and seven answered that it was almost as complex as
an academic paper (4). We strive to be more formal than an ordinary blog, and, in the best
case, a learner does not have to look into the scientific literature after completing our learning
nugget. However, we do not intend to rival the scientific literature in terms of complexity. In
future iterations learning nuggets should be kept shorter and simpler.

Thirdly, we focused on the overall quality of the content. The questions were tightly aligned
with the characteristics of good content quality presented in LORI. All respondents agreed
that the learning content followed a logical structure and that claims were supported by
evidence or logical argument. The learning objectives were also considered to be well
aligned with the learning content. Here we could strive for even tighter integration. Instead of
revisiting them in the key takeaways, we could already highlight them on the respective slides.

Again, we ended with an open question about suggestions for improvement. Two respondents
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emphasized that the content should be kept clear and simple. At the same time, one demanded
more examples, subsections, and sub-key-takeaways, and another one that certain aspects are
explained in more detail.

Acquired Competence

To capture the learning effect, we had to rely on self-assessment. The questions were aligned
to the six levels of Bloom’s Taxonomy.

Most of the respondents achieved the first two levels of Bloom’s Taxonomy, remembering,
and understanding. The participants were less confident that they could apply the methods
and formulas covered in the learning nuggets. This can be partly explained by how they
approached the learning nuggets. Nine reported that they ignored complex formulas, and
six that they skipped the exercises. Nonetheless, this is another argument in favor of more
examples.
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Figure 7.4: Evaluation Results - Acquired Competence 1/2

The answers diverged when it came to the higher levels of Bloom’s Taxonomy. Only a
few were skeptical that they could evaluate whether differential privacy should be used
in a specific case. Considerably more doubted that they could design an algorithm that
satisfies differential privacy. They might have underestimated themselves, as an algorithm
that ignores the underlying dataset and returns random numbers would already suffice to
satisfy differential privacy. However, we should address this gap with more exercises that
require the learner to develop differentially private versions of known mechanisms.
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Figure 7.5: Evaluation Results - Acquired Competence 2/2

Overall, the respondents almost unanimously agreed that they now had a more solid under-
standing of differential privacy than before and were more interested in the subject. Outliers
were those that already had prior knowledge about differential privacy.

Personal Opinion

In the end, we asked the participants what they liked about the learning nuggets and what
should be improved. The structure of the slides, the examples and the exercises were praised.
Suggested improvements were to reduce the text per slide and to add more visual elements.

Discussion

All in all, the learning nuggets were deemed helpful, led to a learning effect, and fulfilled
common quality criteria. This confirms their overall usefulness and that they will be a
good basis for future iterations. The evaluation also showed that they should be shortened
and use even more examples, exercises, and visualizations. These are requirements the
learning platform directly addresses. It will enrich the content with interactive elements that
invite the users to try out the algorithms they read about. Next to interactive examples and
visualizations, the exercises can also be designed to be more engaging, e.g., in the form of
quizzes. The learning platform can also address the issue of overcrowded slides. Buttons
that allow users to show or hide formulas, proofs, and examples prevent them from being
overwhelmed by large amounts of content. The use of tooltips can further help to get rid of
remarks, footnotes, and glossary slides.
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Limitations

The evaluation had a limited scope, both in terms of the number of learning nuggets and the
number of participants. There were too few learning nuggets to make out popular learning
paths. Due to the limited number and diversity of participants, we could not conclude which
topics different roles are most interested in. It was challenging to find enough participants,
as studying the learning nuggets was a significant time investment. Additionally, we could
not find respondents from our target audience, i.e., practitioners planning to use differential
privacy. Moreover, the learning nuggets need to be evaluated together with the learning
platform to see how they work in the environment they are supposed to be in. This will also
enable us to monitor user behavior and to get more precise statistics about the time it takes
to complete certain learning nuggets or about the most popular learning nuggets among
different stakeholders.
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8 Conclusion and Future Work

In this chapter, we will conclude the thesis, discuss the limitations of this work and the
challenges we encountered. Further, an outlook on future work is given.

8.1 Conclusion

The goal of this thesis was to support diverse stakeholders to make informed decisions about
the use of differential privacy. The core question being whether they should use differential
privacy led to the first research question, assessing the benefits and challenges of differential
privacy. With the second research question, "What are the most important topics practitioners
should know about" we narrowed down the complexity of differential privacy to its key
concepts. Finally, we researched how these topics could be conveyed in a convenient way to
teach differential privacy to practitioners.

Research question 1: What are benefits and challenges of using differential
privacy?

We addressed this first research question by studying the grey literature and conducting
expert interviews. We found that differential privacy can be rightfully considered to be a
promising technique but is still in an early stage. Most benefits can be directly derived from
the definition of differential privacy and thus come by default, independent of the use case or
its implementation.

Research question 2: What are the most important topics practitioners should
know about?

The interviews also influenced our selection of important topics. The selection was further
refined by looking into lecture slides of other universities and analyzing the most-taught
topics. These topics encompass the definition of differential privacy, its properties, the core
mechanisms, the different models, variations and extensions, and real-world applications and
tools available for differential privacy.

Research question 3: How can these topics be conveyed?

Among the biggest challenge was the complexity of differential privacy. To convey the most
important topics on differential privacy in a less complex manner, we conceptualized a
learning platform and designed several learning nuggets. They address different questions
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practitioners might have and were grouped in five categories.

In the final evaluation, the learning nuggets were deemed helpful and led to a significant
learning effect.

8.2 Limitations and Challenges

We already stated limitations and challenges in the respective chapters. We will briefly recap
them and state overall challenges and limitations, paving the way for the outlook and future
work.

Novelty of the Topic One of the biggest challenges was the novelty of differential privacy
and the high research interest in it. When we started working on it, there were about 2800
scientific papers listed in Scopus; by the end, there were more than 3400. This increase of 600
papers is still a conservative estimate, as it only takes into account one literature database. The
amount of grey literature grew even faster due to its shorter publication processes. Also, many
of the university courses we evaluated started in Fall 2020, and new tools emerged during
our work on differential privacy, such as SmartNoise, the joint project between Microsoft and
Harvard, and Opacus from Facebook. This underscores the need for our learning content to
be easily extensible, which is especially important for the learning nuggets from the outlook
category.

The Maturity of Differential Privacy Differential privacy is still in an early stage, and many
practitioners are not aware of it. This made it harder to find suitable interview partners and
respondents for the evaluation. And even practitioners who already worked with differential
privacy did so just for a short amount of time and might not have developed guidelines. As
most tools were also rather new, there was little information that could be gained about them.
There might even be challenges we are not aware of.
In the future, when more companies start looking into differential privacy, it would be
interesting to conduct case studies and document their experiences with differential privacy.

Topic selection We assessed important topics by checking existing literature and courses
on differential privacy for the topics they selected. More work is required on the needs of
companies working with differential privacy. How to deduce the questions most important to
them has to be evaluated in the future.

Legal Aspects We did not cover legal aspects. Of course, they have to be considered as well
and might be among the most important arguments to decide for proper privacy-preserving
methods.
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8.3 Future Work

8.3.1 Learning content

In the future, the learning content should be extended to different levels of complexity. Many
of the existing learning nuggets gave an overview of multiple methods or tools. However, a
more in-depth analysis of the different tools available and learning nuggets grouped by use
cases or areas of application, like recommender systems, location privacy, machine learning,
would be beneficial. With more than 700 papers and tools in this area, those are really
interesting for many practitioners. Further learning nuggets could provide an overview of the
most important institutions and their work on differential privacy and short summaries of
important literature to get a better overview of the field. As the basics of differential privacy
are already covered, future iterations could focus stronger on application, including advanced
algorithms. Finally, the content would also profit from including the legal aspects of privacy.

8.3.2 The Learning Platform

The learning platform conceptualized within this thesis was later refined and implemented
by four students in a practical course. We discussed their progress in weekly sprint meetings
and assisted them with differential privacy-related topics. Pictures of there current state can
be found on the following pages. On the landing page (Fig. 8.1) users can filter the learning
nuggets based on the categories they belong to, the time it takes to complete them or by
searching for keywords. The "create a learning nugget"-view (Fig. 8.2) offers users a rich text
editor with the functionality to add text, tables, pictures and formulas. It even allows users to
create their on interactive graphs or tables. The prototype that was developed within this
thesis also made its way into the application (Fig. 8.3).

Figure 8.1: Landing Page
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Figure 8.2: Create Learning Nugget

E-Learning Features

Another important aspect will be to further make use of the benefits e-learning offers and
provide quizzes. As the backend of the learning platform is written in Python and the
differential privacy library of IBM is already embedded, programming exercises directly in
the learning platform are possible.

Recommendation Algorithm

A key element that is still missing in the learning platform is a recommendation algorithm
that provides learners with learning nuggets that fit to their role, prior knowledge, and
learning goals. The four students adapted our prototypical implementation.

Collaborative Tools

The exchange among students is crucial in learning. Communication among learners would
be great. And as basic CRUD functionalities and an editor are already implemented, this
should not be too hard. Especially in the discussion category, under learning nuggets like:
"the challenges of differential privacy," this could lead to great discussions and new input. It
could become a place to share experiences they made with differential privacy.
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Figure 8.3: Differential Privacy Lab

59



List of Figures

6.1 Navigation elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Introduction slide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 A slide with an interactive element . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4 Interactive element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5 Exercise slide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.6 Key takeaways slide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.7 MockUp of the Landing Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.8 Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.1 Evaluation Results - Average Time . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Evaluation Results - Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.3 Evaluation Results - Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4 Evaluation Results - Acquired Competence 1/2 . . . . . . . . . . . . . . . . . . 52
7.5 Evaluation Results - Acquired Competence 2/2 . . . . . . . . . . . . . . . . . . 53

8.1 Landing Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.2 Create Learning Nugget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.3 Differential Privacy Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

60



List of Tables

2.1 A medical dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 A 2-anonymous version of the dataset . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 A 3-anonymous dataset of a different hospital . . . . . . . . . . . . . . . . . . . 6

61



Bibliography

[1] A. Narayanan and V. Shmatikov. “How To Break Anonymity of the Netflix Prize
Dataset”. In: December 1999 (2006), pp. 1–10. arXiv: 0610105 [cs]. url: http://arxiv.
org/abs/cs/0610105.

[2] A. Narayanan and V. Shmatikov. “Robust de-anonymization of large sparse datasets”.
In: Proceedings - IEEE Symposium on Security and Privacy. 2008. isbn: 9780769531687. doi:
10.1109/SP.2008.33.

[3] L. Sweeney. “Simple demographics often identify people uniquely”. In: Carnegie Mellon
University, Data Privacy Working Paper 3. Pittsburgh 2000 (2000).

[4] J. M. Abowd. Tweetorial: Reconstruction-abetted re-identification attacks and other traditional
vulnerabilities. 2019. url: http://blogs.cornell.edu/abowd/special-materials/245-
2/ (visited on 01/31/2021).

[5] S. Garfinkel, J. M. Abowd, and C. Martindale. “Understanding database reconstruction
attacks on public data”. In: Communications of the ACM (2019). issn: 15577317. doi:
10.1145/3287287.

[6] I. Dinur and K. Nissim. “Revealing Information while Preserving Privacy”. In: Proceed-
ings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
2003. doi: 10.1145/773153.773173.

[7] C. Dwork. “Differential privacy”. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2006. isbn:
3540359079. doi: 10.1007/11787006_1.

[8] C. Radebaugh and U. Erlingsson. “Introducing TensorFlow Privacy: Learning with
Differential Privacy for Training Data”. In: Medium (2019).

[9] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and J. Passerat-
Palmbach. A generic framework for privacy preserving deep learning. 2018. arXiv: 1811.
04017.

[10] D. Testuggine and I. Mironov. Introducing Opacus: A high-speed library for training Py-
Torch models with differential privacy. 2020. url: https://ai.facebook.com/blog/
introducing-opacus-a-high-speed-library-for-training-pytorch-models-with-

differential-privacy/ (visited on 01/30/2021).

[11] F. McSherry. “Privacy integrated queries”. In: Communications of the ACM (2010). issn:
0001-0782. doi: 10.1145/1810891.1810916.

62

https://arxiv.org/abs/0610105
http://arxiv.org/abs/cs/0610105
http://arxiv.org/abs/cs/0610105
https://doi.org/10.1109/SP.2008.33
http://blogs.cornell.edu/abowd/special-materials/245-2/
http://blogs.cornell.edu/abowd/special-materials/245-2/
https://doi.org/10.1145/3287287
https://doi.org/10.1145/773153.773173
https://doi.org/10.1007/11787006_1
https://arxiv.org/abs/1811.04017
https://arxiv.org/abs/1811.04017
https://ai.facebook.com/blog/introducing-opacus-a-high-speed-library-for-training-pytorch-models-with-differential-privacy/
https://ai.facebook.com/blog/introducing-opacus-a-high-speed-library-for-training-pytorch-models-with-differential-privacy/
https://ai.facebook.com/blog/introducing-opacus-a-high-speed-library-for-training-pytorch-models-with-differential-privacy/
https://doi.org/10.1145/1810891.1810916


Bibliography

[12] S. Kessler, J. Hoff, and J. C. Freytag. “SAP HANA goes private - From privacy research
to privacy aware enterprise analytics”. In: Proceedings of the VLDB Endowment. 2018. doi:
10.14778/3352063.3352119.

[13] J. Eicher, R. Bild, H. Spengler, K. A. Kuhn, and F. Prasser. “A comprehensive tool for
creating and evaluating privacy-preserving biomedical prediction models”. In: BMC
Medical Informatics and Decision Making (2020). issn: 14726947. doi: 10.1186/s12911-
020-1041-3.

[14] SmartNoise. 2020. url: https://smartnoise.org/ (visited on 02/14/2021).

[15] N. Holohan, P. M. Aonghusa, S. Braghin, and K. Levacher. Diffprivlib: The IBM differential
privacy library. 2019. arXiv: 1907.02444.

[16] M. Hay, A. Machanavajjhala, G. Miklau, Y. Chen, and D. Zhang. “Principled evaluation
of differentially private algorithms using DPBENCH”. In: Proceedings of the ACM SIG-
MOD International Conference on Management of Data. 2016. isbn: 9781450335317. doi:
10.1145/2882903.2882931. arXiv: 1512.04817.

[17] D. Desfontaines and B. Pejó. “SoK: Differential privacies”. In: Proceedings on Privacy
Enhancing Technologies (2020). doi: 10.2478/popets-2020-0028. arXiv: 1906.01337.

[18] A. R. Hevner, S. T. March, J. Park, and S. Ram. “Design science in information systems
research”. In: MIS Quarterly: Management Information Systems (2004). issn: 02767783. doi:
10.2307/25148625.

[19] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. “A design science
research methodology for information systems research”. In: Journal of Management
Information Systems (2007). issn: 07421222. doi: 10.2753/MIS0742-1222240302.

[20] P. Samarati and L. Sweeney. “Protecting Privacy when Disclosing Information: k-
Anonymity and its Enforcement Through Generalization and Suppresion.” In: Proc of
the IEEE Symposium on Research in Security and Privacy (1998).

[21] A. Meyerson and R. Williams. “On the complexity of optimal k-anonymity”. In: Proceed-
ings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
2004. doi: 10.1145/1055558.1055591.

[22] V. Ayala-Rivera, P. McDonagh, T. Cerqueus, and L. Murphy. “A Systematic comparison
and evaluation of k-Anonymization algorithms for practitioners”. In: Transactions on
Data Privacy (2014). issn: 20131631.

[23] A. Gkoulalas-Divanis, G. Loukides, and J. Sun. Publishing data from electronic health records
while preserving privacy: A survey of algorithms. 2014. doi: 10.1016/j.jbi.2014.06.002.

[24] C. C. Aggarwal. “On k-anonymity and the curse of dimensionality”. In: VLDB 2005 -
Proceedings of 31st International Conference on Very Large Data Bases. 2005. isbn: 1595931546.

[25] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. “<i>L</i> -
diversity”. In: ACM Transactions on Knowledge Discovery from Data (2007). issn: 15564681.
doi: 10.1145/1217299.1217302.

63

https://doi.org/10.14778/3352063.3352119
https://doi.org/10.1186/s12911-020-1041-3
https://doi.org/10.1186/s12911-020-1041-3
https://smartnoise.org/
https://arxiv.org/abs/1907.02444
https://doi.org/10.1145/2882903.2882931
https://arxiv.org/abs/1512.04817
https://doi.org/10.2478/popets-2020-0028
https://arxiv.org/abs/1906.01337
https://doi.org/10.2307/25148625
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1145/1055558.1055591
https://doi.org/10.1016/j.jbi.2014.06.002
https://doi.org/10.1145/1217299.1217302


Bibliography

[26] L. Ninghui, L. Tiancheng, and S. Venkatasubramanian. “t-Closeness: Privacy beyond
k-anonymity and -diversity”. In: Proceedings - International Conference on Data Engineering.
2007. isbn: 1424408032. doi: 10.1109/ICDE.2007.367856.

[27] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith. “Composition attacks and auxiliary
information in data privacy”. In: Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 2008. isbn: 9781605581934. doi: 10.1145/
1401890.1401926. arXiv: 0803.0032.

[28] K. Nissim and A. Wood. “Is privacy privacy?” In: Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 376.2128 (2018), pp. 1–19. issn:
1364503X. doi: 10.1098/rsta.2017.0358.

[29] C. Dwork. “The promise of differential privacy: A tutorial on algorithmic techniques”.
In: Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS. 2011.
isbn: 9780769545714. doi: 10.1109/FOCS.2011.88.

[30] A. Wood, M. Altman, A. Bembenek, M. Bun, M. Gaboardi, J. Honaker, K. Nissim, D.
O’Brien, T. Steinke, and S. Vadhan. “Differential Privacy: A Primer for a Non-Technical
Audience”. In: SSRN Electronic Journal (2019). issn: 1556-5068. doi: 10.2139/ssrn.
3338027.

[31] C. Dwork and A. Roth. “The algorithmic foundations of differential privacy”. In:
Foundations and Trends in Theoretical Computer Science (2013), p. 7. issn: 15513068. doi:
10.1561/0400000042.

[32] S. L. Warner. “Randomized Response: A Survey Technique for Eliminating Evasive
Answer Bias”. In: Journal of the American Statistical Association (1965). issn: 1537274X.
doi: 10.1080/01621459.1965.10480775.

[33] C. Dwork, F. McSherry, K. Nissim, and A. Smith. “Calibrating noise to sensitivity in
private data analysis”. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2006. isbn: 3540327312.
doi: 10.1007/11681878_14.

[34] C. Dwork. “Differential Privacy: A Survey of Results”. In: Theory and Applications of
Models of Computation. 2008. doi: 10.1007/978-3-540-79228-4_1.

[35] C. Dwork and J. Lei. “Differential privacy and robust statistics”. In: Proceedings of
the Annual ACM Symposium on Theory of Computing. 2009. isbn: 9781605585062. doi:
10.1145/1536414.1536466.

[36] C. Dwork and A. Smith. “Differential Privacy for Statistics: What we Know and What
we Want to Learn”. In: Journal of Privacy and Confidentiality (2010). doi: 10.29012/jpc.
v1i2.570.

[37] C. Dwork, F. Mcsherry, K. Nissim, and A. Smith. “Differential Privacy – A Primer for
the Perplexed”. In: Joint UNECE/Eurostat work session on statistical data confidentiality
(2011).

[38] A. Roth. “New Algorithms for Preserving Differential Privacy”. In: (2010).

64

https://doi.org/10.1109/ICDE.2007.367856
https://doi.org/10.1145/1401890.1401926
https://doi.org/10.1145/1401890.1401926
https://arxiv.org/abs/0803.0032
https://doi.org/10.1098/rsta.2017.0358
https://doi.org/10.1109/FOCS.2011.88
https://doi.org/10.2139/ssrn.3338027
https://doi.org/10.2139/ssrn.3338027
https://doi.org/10.1561/0400000042
https://doi.org/10.1080/01621459.1965.10480775
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-3-540-79228-4_1
https://doi.org/10.1145/1536414.1536466
https://doi.org/10.29012/jpc.v1i2.570
https://doi.org/10.29012/jpc.v1i2.570


Bibliography

[39] M. Gaboardi. Topics in Differential Privacy. 2017. url: http://cs-people.bu.edu/
gaboardi/teaching/CSE660-fall17.html (visited on 02/14/2021).

[40] G. Kamath. Algorithms for Private Data Analysis. 2020. url: http://www.gautamkamath.
com/CS860-fa2020.html (visited on 02/14/2021).

[41] G. Rothblum. Foundations of Privacy in Data Analysis, Fall 2017. 2017. url: https :

//guyrothblum.wordpress.com/foundations-of-privacy-in-data-analysis-fall-

2017/ (visited on 02/14/2021).

[42] H. Kaplan. Seminar on differential privacy. 2019. url: https://www.cs.tau.ac.il/%7B~%
7Dhaimk/privacy-seminar/main-page.html.

[43] N. Johnson, J. P. Near, and D. Song. “Towards practical differential privacy for SQL
queries”. In: Proceedings of the VLDB Endowment. 2018. doi: 10.1145/3177732.3177733.
arXiv: 1706.09479.

[44] N. Johnson, J. P. Near, J. M. Hellerstein, and D. Song. “Chorus: A Programming
Framework for Building Scalable Differential Privacy Mechanisms”. In: Proceedings -
5th IEEE European Symposium on Security and Privacy, Euro S and P 2020. 2020. isbn:
9781728150871. doi: 10.1109/EuroSP48549.2020.00041.

[45] G. Kamath. A Course In Differential Privacy [Video]. 2020. url: https://www.youtube.
com/watch?v=FJMjNOcIqkc%7B%5C&%7Dlist=PLmd%7B%5C_%7DzeMNzSvRRNpoEWkVo6QY%

7B%5C_%7D6rR3SHjp (visited on 02/14/2021).

[46] Ú. Erlingsson, V. Pihur, and A. Korolova. “RAPPOR: Randomized aggregatable privacy-
preserving ordinal response”. In: Proceedings of the ACM Conference on Computer and
Communications Security. 2014. isbn: 9781450329576. doi: 10.1145/2660267.2660348.
arXiv: 1407.6981.

[47] S. Bird. Putting differential privacy into practice to use data responsibly. 2020. url: https:
//blogs.microsoft.com/ai- for- business/differential- privacy/ (visited on
01/31/2021).

[48] B. Ding, J. Kulkarni, and S. Yekhanin. “Collecting telemetry data privately”. In: Advances
in Neural Information Processing Systems. 2017. arXiv: 1712.01524.

[49] R. Rogers, S. Subramaniam, S. Peng, D. Durfee, S. Lee, S. K. Kancha, S. Sahay, and
P. Ahammad. LinkedIn’s audience engagements API: A privacy preserving data analytics
system at scale. 2020. arXiv: 2002.05839.

[50] Apple Differential Privacy Technical Overview. url: https://www.apple.com/privacy/
docs/Differential%7B%5C_%7DPrivacy%7B%5C_%7DOverview.pdf.

[51] T. Diethe, O. Feyisetan, B. Balle, and T. Drake. “Preserving privacy in analyses of textual
data”. In: CEUR Workshop Proceedings 2573 (2020), pp. 1–3. issn: 16130073.

[52] Protecting data privacy. 2018. url: https://www.aboutamazon.com/news/amazon-
ai/protecting-data-privacy (visited on 01/31/2021).

65

http://cs-people.bu.edu/gaboardi/teaching/CSE660-fall17.html
http://cs-people.bu.edu/gaboardi/teaching/CSE660-fall17.html
http://www.gautamkamath.com/CS860-fa2020.html
http://www.gautamkamath.com/CS860-fa2020.html
https://guyrothblum.wordpress.com/foundations-of-privacy-in-data-analysis-fall-2017/
https://guyrothblum.wordpress.com/foundations-of-privacy-in-data-analysis-fall-2017/
https://guyrothblum.wordpress.com/foundations-of-privacy-in-data-analysis-fall-2017/
https://www.cs.tau.ac.il/%7B~%7Dhaimk/privacy-seminar/main-page.html
https://www.cs.tau.ac.il/%7B~%7Dhaimk/privacy-seminar/main-page.html
https://doi.org/10.1145/3177732.3177733
https://arxiv.org/abs/1706.09479
https://doi.org/10.1109/EuroSP48549.2020.00041
https://www.youtube.com/watch?v=FJMjNOcIqkc%7B%5C&%7Dlist=PLmd%7B%5C_%7DzeMNzSvRRNpoEWkVo6QY%7B%5C_%7D6rR3SHjp
https://www.youtube.com/watch?v=FJMjNOcIqkc%7B%5C&%7Dlist=PLmd%7B%5C_%7DzeMNzSvRRNpoEWkVo6QY%7B%5C_%7D6rR3SHjp
https://www.youtube.com/watch?v=FJMjNOcIqkc%7B%5C&%7Dlist=PLmd%7B%5C_%7DzeMNzSvRRNpoEWkVo6QY%7B%5C_%7D6rR3SHjp
https://doi.org/10.1145/2660267.2660348
https://arxiv.org/abs/1407.6981
https://blogs.microsoft.com/ai-for-business/differential-privacy/
https://blogs.microsoft.com/ai-for-business/differential-privacy/
https://arxiv.org/abs/1712.01524
https://arxiv.org/abs/2002.05839
https://www.apple.com/privacy/docs/Differential%7B%5C_%7DPrivacy%7B%5C_%7DOverview.pdf
https://www.apple.com/privacy/docs/Differential%7B%5C_%7DPrivacy%7B%5C_%7DOverview.pdf
https://www.aboutamazon.com/news/amazon-ai/protecting-data-privacy
https://www.aboutamazon.com/news/amazon-ai/protecting-data-privacy


Bibliography

[53] B. Balle and Y. X. Wang. “Improving the Gaussian mechanism for differential privacy:
Analytical calibration and optimal denoising”. In: 35th International Conference on Machine
Learning, ICML 2018. 2018. isbn: 9781510867963. arXiv: 1805.06530.

[54] V. Pihur, A. Korolova, F. Liu, S. Sankuratripati, M. Yung, D. Huang, and R. Zeng.
Differentially-private “draw and discard” machine learning. 2018. arXiv: 1807.04369.

[55] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. “Privacy: Theory
meets practice on the map”. In: Proceedings - International Conference on Data Engineering.
2008. isbn: 9781424418374. doi: 10.1109/ICDE.2008.4497436.

[56] A. D. Foote, A. Machanavajjhala, and K. McKinney. “Releasing Earnings Distributions
using Differential Privacy”. In: Journal of Privacy and Confidentiality (2019). doi: 10.
29012/jpc.722.

[57] G. Long. Formal Privacy Methods for the 2020 Census. Tech. rep. 2020. url: https://www2.
census.gov/programs-surveys/decennial/2020/program-management/planning-

docs/privacy-methods-2020-census.pdf.

[58] S. L. Garfinkel, J. M. Abowd, and S. Powazek. “Issues encountered deploying differential
privacy”. In: Proceedings of the ACM Conference on Computer and Communications Security.
2018. isbn: 9781450359894. doi: 10.1145/3267323.3268949. arXiv: 1809.02201.

[59] S. L. Garfinkel and P. Leclerc. “Randomness Concerns when Deploying Differential
Privacy”. In: WPES 2020 - Proceedings of the 19th Workshop on Privacy in the Electronic
Society. 2020. isbn: 9781450380867. doi: 10.1145/3411497.3420211. arXiv: 2009.03777.

[60] Michael B. Hawes. “Implementing Differential Privacy: Seven Lessons From the 2020
United States Census”. In: Harvard Data Science Review (2020). doi: 10.1162/99608f92.
353c6f99.

[61] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. “PrivBayes: Private
data release via Bayesian networks”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data. 2014. isbn: 9781450323765. doi: 10.1145/2588555.
2588573.

[62] B. Woo, B. Willemsen, and V. Baker. Hype Cycle for Privacy, 2020. Tech. rep. 2020,
pp. 13–14. url: https://www.gartner.com/en/documents/3987903/hype-cycle-for-
privacy-2020.

[63] I. Wagner and D. Eckhoff. Technical privacy metrics: A systematic survey. 2018. doi:
10.1145/3168389.

[64] Z. Ji, Z. C. Lipton, and C. Elkan. “Differential Privacy and Machine Learning: a Survey
and Review”. In: (2014), pp. 1–30. arXiv: 1412.7584. url: http://arxiv.org/abs/1412.
7584.

[65] Z. Jorgensen, T. Yu, and G. Cormode. “Conservative or liberal? Personalized differen-
tial privacy”. In: Proceedings - International Conference on Data Engineering. 2015. isbn:
9781479979639. doi: 10.1109/ICDE.2015.7113353.

66

https://arxiv.org/abs/1805.06530
https://arxiv.org/abs/1807.04369
https://doi.org/10.1109/ICDE.2008.4497436
https://doi.org/10.29012/jpc.722
https://doi.org/10.29012/jpc.722
https://www2.census.gov/programs-surveys/decennial/2020/program-management/planning-docs/privacy-methods-2020-census.pdf
https://www2.census.gov/programs-surveys/decennial/2020/program-management/planning-docs/privacy-methods-2020-census.pdf
https://www2.census.gov/programs-surveys/decennial/2020/program-management/planning-docs/privacy-methods-2020-census.pdf
https://doi.org/10.1145/3267323.3268949
https://arxiv.org/abs/1809.02201
https://doi.org/10.1145/3411497.3420211
https://arxiv.org/abs/2009.03777
https://doi.org/10.1162/99608f92.353c6f99
https://doi.org/10.1162/99608f92.353c6f99
https://doi.org/10.1145/2588555.2588573
https://doi.org/10.1145/2588555.2588573
https://www.gartner.com/en/documents/3987903/hype-cycle-for-privacy-2020
https://www.gartner.com/en/documents/3987903/hype-cycle-for-privacy-2020
https://doi.org/10.1145/3168389
https://arxiv.org/abs/1412.7584
http://arxiv.org/abs/1412.7584
http://arxiv.org/abs/1412.7584
https://doi.org/10.1109/ICDE.2015.7113353


Bibliography

[66] T. L. Leacock and J. C. Nesbit. A framework for evaluating the quality of multimedia learning
resources. 2007.

[67] D. R. Krathwohl. “A Revision Of Bloom’s Taxonomy Of Educational Objectives”. In:
Theory into Practice (2002). issn: 00405841. arXiv: arXiv:1202.2745v1.

[68] T. C. Reeves, L. Benson, D. Elliott, M. Grant, D. Holschuh, B. Kim, H. Kim, E. Lauber,
and C. S. Loh. “Usability and Instructional Design Heuristics for E-Learning Evaluation.”
In: World Conference on Educational Multimedia, Hypermedia and Telecommunications (2002).

67

https://arxiv.org/abs/arXiv:1202.2745v1

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Differential Privacy

	Research Objectives
	Research Approach
	Outline

	Foundations
	K-Anonymity
	Syntactic and Semantic Notions of Privacy
	Differential Privacy
	The Intuition
	The Privacy Loss Parameter 
	Group Privacy
	Robustness Under Composition
	Immunity to Post-Processing

	Achieving Differential Privacy
	Mechanisms


	Related Work
	Scientific Literature
	Grey Literature

	Interviews
	Procedure
	The Findings
	Conclusion

	Benefits and Challenges of Differential Privacy
	The Benefits of Differential Privacy
	The Challenges of Differential Privacy

	Learning Nuggets
	Categories
	Structure
	The List of Learning Nuggets
	Learning Nuggets Overview
	Motivation
	Definition
	Discussion
	Application
	Outlook

	Learning Platform
	Motivation
	Views
	Prototype


	Evaluation
	Conclusion and Future Work
	Conclusion
	Limitations and Challenges
	Future Work
	Learning content
	The Learning Platform


	List of Figures
	List of Tables
	Bibliography

