Tutl

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics: Data Engineering and Analytics

Exploring the Possibilities of Applying
Transfer Learning Methods for Natural
Language Processing in Software
Development

Wei Ding

0



DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics: Data Engineering and Analytics

Exploring the Possibilities of Applying
Transfer Learning Methods for Natural
Language Processing in Software
Development

Erkundung der Moglichkeiten der
Anwendung von Transfer-Lernmethoden fiir
die Verarbeitung natiirlicher Sprachen in der

Softwareentwicklung
Author: Wei Ding
Supervisor: Prof. Dr. Florian Matthes
Advisor: Ahmed Elnaggar

Submission Date: 05 February 2021



I confirm that this master’s thesis in informatics: data engineering and analytics is my own
work and I have documented all sources and material used.

Munich, 05 February 2021 Wei Ding



Acknowledgments

First of all, I would like to thank Prof. Dr. Florian Matthes for giving me this opportunity to
work on this thesis in the SEBIS chair.

Secondly, I would like to offer my gratitude to my thesis advisor Ahmed Elnaggar for his
guidance during this thesis. He offers his help generously, answers my every question
patiently, and motivates me continuously throughout this thesis. I would not have the chance
to use one of the most advanced hardware resources in the world and work so smoothly on
such an up-to-date research topic if without his help.

This thesis is finished mainly from the year 2020 to 2021. It is an unusual year because of the
Coronavirus SARS-CoV-2. I still remember the first meeting of this thesis in Ahmed’s office.
We chatted a bit about a virus wide-spreading in Asia from Wuhan. We hoped that it would
disappear when the temperature went higher. At that moment, we did not know that this
virus would come to Germany and Europe immediately and influence our study, work, and
life so largely. And that meeting is the only face-to-face meeting for this thesis I had with
Ahmed in his office.

Therefore, I would like to thank my husband, Qunfei, for his support when we have to take
care of and teach our 6-year-old daughter Emilie at home. I want to thank all my friends who
encourage me all the time so that I never feel isolated during the lockdown. I want to thank
for the support from Technische Universitit Miinchen to allow me to work from home safely.
I also want to thank the medical and nursing staff fighting against this virus on the front line
and the scientists working on the vaccine days and nights to bring our normal life back.



Abstract

Nowadays, we have a growing number of mature applications in the field of natural language
processing (NLP), especially natural language understanding (NLU) and generation (NLG),
like chatbots or auto-generated reports. Such applications relieve users from repeatable
works and assist them in achieving high-demanding yields. We have different programming
languages in the software development domain, which require deep understanding by human
beings. Suppose we can apply methods for natural language processing in the software
development world. In that case, we could help both programmers with good programming
skills and project managers or data scientists, who need to understand code but do not have a
strong programming background, to do their job more convenient, by generating documents
to make the code easier to read and understand, generating code difference descriptions to
compare and evaluate codes quickly, or generating code structure or dependencies to make
programming more manageable.

In recent years, transfer learning is becoming quite successful. This machine learning method
pre-trains a model first on a large amount of unlabeled data with an unsupervised task, then
fine-tunes the same model on smaller labeled datasets. In this thesis, we examined the effect
of transfer learning for tasks in the software development domain. We compared transfer
learning with single-task learning and multi-task learning on thirteen tasks involving nine
programming languages. We used the transformer encoder-decoder architecture to develop
different sizes of models with these training strategies. We call these models CodeTrans. Our
CodeTrans models outperform all the state-of-the-art models for all the tasks.

The pre-trained models generated by transfer learning could be applied to the tasks in the
software development domain. Fine-tuning these models on new tasks would save a lot of
training steps and time. Therefore, we published our CodeTrans pre-trained and fine-tuned
models online so that everyone can use these models to generate text for relevant tasks or to
fine-tune new tasks freely.
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Kurzfassung

Heutzutage gibt es immer mehr Anwendungen im Bereich Natural Language Processing
(NLP), insbesondere Natural Language Understanding (NLU) und Generierung (NLG), wie
Chatbots oder automatisch generierte Reports. Solche Anwendungen entlasten den Benutzer
von repetitiven Arbeiten und unterstiitzen ihn beim 16sen anspruchsvoller Probleme. In der
Softwareentwicklung benutzt man zur Problemldsung verschiedene Programmiersprachen,
die ein tiefes Verstdndnis des Entwicklers erfordern. Hier konnen wir Methoden des Natural
Language Processing in der Softwareentwicklung anwenden.

Wir kénnen Dokumentationen fiir Programmier-Funktionen generieren, um den Code leichter
lesbar und verstandlich zu machen oder die Unterschiede von verschiedenen Code-Versionen
zusammenfassen, um Code schnell zu vergleichen und zu bewerten. AufSerdem kann auch
der Programmcode selbst generiert werden. Auf diese Weise wiirden wir Programmierern,
Projektmanagern oder Data Scientists bei der Entwicklung neuer Software helfen, egal ob sie
einen ausgepréagten Programmier-Hintergrund haben oder nicht.

In den letzten Jahren hat sich das Transfer-Learning sehr erfolgreich entwickelt. Bei die-
ser Methode des maschinellen Lernens wird ein Modell zunédchst auf einer grofien Menge
unannotierter Daten mit Hilfe eines unsupervised Tasks erst vor-trainiert, und dann das
gleiche Modell auf kleineren annotierten Datensédtzen weiter fine abstimmt. In dieser Mas-
terarbeit untersuchten wir den Effekt des Transfer-Learnings auf Aufgaben im Bereich der
Softwareentwicklung. Wir vergleichen Transfer-Learning mit Single-Task-Learning und Multi-
Task-Learning bei dreizehn Aufgaben mit neun Programmiersprachen. Wir verwendeten
die Transformer-Encoder-Decoder-Architektur, um verschiedene Grofien von Modellen mit
diesen Trainingsmethoden zu entwickeln. Wir nennen unsere Modelle CodeTrans. Unsere
CodeTrans-Modelle haben fiir alle Aufgaben bessere Ergebnisse als State-of-the-Art-Modelle
erzielt.

Die durch Transfer-Learning erstellten vor-trainierten Modelle konnen auf andere Aufgaben
in der Software-Entwicklungs-Doméne angewendet werden. Die Weiter-Finetuning dieser
Modelle auf neue Aufgaben wiirde eine Menge Trainingsschritte und Zeit sparen. Daher haben
wir unsere vor-trainierten und fein-abgestimmten CodeTrans-Modelle online verdffentlicht, so
dass jeder diese Modelle kostenlos und frei benutzen kann, um Texte fiir relevante Aufgaben
zu generieren oder um neue Aufgaben fein-abzustimmen.
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1. Introduction

1.1. Motivation

Software development can be considered as a process of designing, implementing, testing,
and maintaining information systems such as applications, frameworks, or other software
components[1]. It plays an inevitable role in today’s society. No matter in which industry,
every global company requires a solid software system to assist their business nowadays.
However, software development is a very complicated and expensive process. These compa-
nies all need teams full of software experts to support and maintain their software systems.
At the same time, experienced specialists in the software development domain try to invent
and use different tools and methods (for example, design patterns, code documentation, unit
tests, version control tools, etc.) to control and improve the software quality and make the
software developing process more effective and convenient.

In software development, works are done by using different programming languages. Pro-
gramming language can be considered a kind of language used to communicate with the
computer systems for achieving the requirements in software development. While looking
into the machine learning domain, we would notice the significant progresses achieved by
natural language processing in recent years. A growing number of mature natural language
processing applications, especially natural language understanding (NLU) and generation
(NLG) applications, are becoming more widespread in the industry world. For example,
chatbots for personalized customer communication, analytical intelligence dashboard, or
auto-generated reports and summarizations for transforming data into insightful text or vice
versa, such applications relieve users from repeatable works and help them concentrate on
more high-demanding tasks.

There is a trend now to apply natural language processing techniques to programming
languages to make the developing tools more helpful and the developing process smoother
for developers. The improved developing tools and methods could also help the non-
developing-experts like project managers or data scientists, who need to understand code
deeply in work but not have a strong programming background, to do their jobs more
efficiently.

Currently, in machine learning, especially the natural language processing world, transfer
learning helps more and more models achieve the best results on benchmarks. Transfer
learning allows the model to be fine-tuned for different kinds of downstream tasks in NLP
with relatively small task-relevant datasets, and makes it much easier and faster to get good
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results on personalized tasks with a low computational cost.

Therefore, this master thesis focuses on applying natural language processing techniques in
the software development domain. A large number of experiments are carried out. Different
software development tasks with various datasets are explored using the transfer learning
method in this thesis.

1.2. Problem Statement

We want to examine which deep learning models and training methods would reach the
best results in the software development domain. Single-task training, transfer learning and
multitask learning are involved and mixed during the experiment process. From small size to
large size models are included in the training on a large number of datasets. Consequently,
a lot of computational power will be consumed during the limited thesis working period.
Therefore, to make our experiment more efficient, we use one Nvidia GPU[2] and multiple
Google TPUs[3] for training.

Besides, the datasets involved in the experiment contain software code of different program-
ming languages, which is different from standard natural language text. The different datasets
also vary a lot in terms of size, source, and format. Such differences may also influence the
experiments and the results a bit. Considering this aspect, we used different parsers and
tokenizers for different programming languages to preprocess the data and saved them into
the same format. We observe and compare different model performances based on different
dataset in this thesis.

1.3. Research Questions

This thesis aims to investigate the following three main research questions:

¢ What kind of natural language processing models would work best for tasks in the
software development domain?

¢ How would transfer learning improve the performance comparing with only training
on the labeled data alone?

¢ Would transfer learning perform better than multi-task learning for the same tasks?

1.4. Thesis Contribution

In the course of this thesis, the following four main contributions are made:

Applying of different deep learning technologies on various tasks in the software de-
velopment domain: In this thesis, we used different deep learning methods like
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single-task training, transfer learning, and multitask learning. The datasets we used
cover nine programming languages, including Python, Java, Javascript, Php, Go,
Ruby, SQL, Csharp, and Lisp. Our experiment contains in total of thirteen tasks in
six categories.

Achievement of outstanding results on tasks in the software development domain: Our
models outperform the state-of-the-art models for all the tasks by comparing the
evaluation metrics.

Providing the transfer learning models which can be used for fine-tuning other tasks:
Transfer learning is useful because the pre-trained models can be continued to
fine-tune other similar tasks. However, pre-training would take most of the time
and requires extensive data with high-demand hardware. Therefore, we provide
our pre-trained transfer learning models for download. Other users can use it to
fine-tune their tasks on datasets in the software development domain.

Online user interface for all the models: We also created the github repository! for this
thesis. To allow users to use our models and generate results, we published our
models to the Hugging Face Model Hub? with the built-in user interface and APIs.
In addition, we chose the form of Google Colab?® notebook to create another user
interface, including preprocessing methods and best models from each training
technology for each task in the github repository.

1.5. Research Approach

The following steps are taken to study the research questions, reach good performances, and
contribute to the natural language processing in the software development domain.

1. Literature Review: In this stage, we reviewed literature about natural language pro-
cessing and its different technologies, software development, and natural language
processing tasks in the software development domain based on the research of Sev-
erini[4].

2. Defining Models: Text-to-Text Transfer Transformer (T5)[5] is the latest transformer
model. This model is very suitable for transfer learning and multitasks learning. It also
outperformed a lot of natural language processing tasks. Therefore, we chose to use T5
to carry out our experiment.

3. Defining Tasks: We adapted tasks from the experiment of Severini[4]. Furthermore, we
added new tasks about natural language processing in software development from the
latest paper we found during the literature review step.

Ihttps://github.com/agemagician/CodeTrans
Zhttps://huggingface.co/SEBIS
Shttps://colab.research.google. com/notebooks
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4. Pre-processing Dataset: We used different parsers for different programming languages
to parse and tokenize the code if the data is the programming language. For the natural
language, we examined and removed the not English data. Then we pre-processed the
data into the TSV format accepted by our models.

5. Training: We trained the tasks using single-task learning, transfer learning, as well as
multi-task learning and fine-tuning. We used the small, base, and large models to train
the tasks. We stopped training based on the performance of models on the validation
set by early stopping, and selected the best checkpoints.

6. Evaluation: In this step, we evaluated the performance of the best checkpoints on the
test set. We compared the results of different deep learning technologies taking the
model size and dataset size into account.

7. Publishing the Models and Generalization for User Interface: After evaluating the
models and getting the best checkpoints, we uploaded and published the models in
GitHub and Hugging Face Model Hub. We also built the Colab notebooks, including
input, pre-processing, model computation, and output as another user interface. In this
way, everyone can access our models and use them to generate text outputs or fine-tune
similar tasks.

1.6. Structure of the Thesis

This thesis is divided into seven chapters. In addition to the introduction in this chapter,
background knowledge is introduced in Chapter 2, including the definition of software
engineering, the development of natural language processing and deep learning in natural
language processing, the features of different NLP models and technologies, as well as the
current situation of natural language processing in software development. In Chapter 3,
task-related and model-related works are introduced. Chapter 4 explains our experiment’s
approaches, including the dataset details, model architecture, and evaluation metrics. The
experiment set-ups and processes are illustrated in Chapter 5. The evaluation results are
compared and discussed in Section 6. The conclusion of this thesis and future improvements
are drawn in Chapter 7.




2.

Background

In the following sections, an overview of the background knowledge of this thesis is
given.

2.1.

Software Engineering and Development

The term software was being coined in 1958 by the famous statistician John Tukey in his paper
"The Teaching of Concrete Mathematics[6]". Nowadays, there are millions of software pro-
fessionals worldwide working in the software engineering and development field. However,
generating high-quality software is not an easy thing. In the guide to software engineering[7],
IEEE proposed ten knowledge areas for creating a software:

Software requirements: How to correctly detect and discover users’ requirements and
record them clearly and preciously.

Software design: How to design and organize the software architecture to meet the
requirements and verify the defined models.

Software construction: During the life circle of coding, verification, unit testing, inte-
gration testing, and debugging, how to minimize the complexity, anticipate changes,
construct for verification, and apply standards.

Software testing: How to use different techniques and measures to evaluate product
quality and identifying defects or problems for improvement.

Software maintenance: How to provide cost-effective post-implementation support to
software.

Software configuration management: How to identify and control the software configu-
ration, account for the configuration status, audit the configuration, and manage the
software release and delivery.

Software engineering management: How to plan, coordinate, measure, monitor, control,
and report - ensure that the development and maintenance of software are systematic,
disciplined, and quantified.

Software engineering process: How to manage the definition, implementation, assess-
ment, measurement, management, change, and improvement of the software life cycle
processes.
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¢ Software engineering tools and methods: How to choose software development tools or
software engineering methods to support and assist the software life circle processes.

¢ Software quality: How to achieve software quality using static and dynamic techniques.

All these knowledge areas are highly connected. For example, in every knowledge field (like
design or construction), tools and methods could be very meaningful and improve software
quality. Tasks in this thesis may be more directly relevant to the software construction but
could implicitly influence software maintenance, software engineering tools and methods,
and software quality.

2.2. Natural Language Processing

"Natural Language Processing is a theoretically motivated range of computational techniques
for analyzing and representing naturally occurring texts at one or more levels of linguistic
analysis for the purpose of achieving human-like language processing for a range of tasks or
applications."[8] It aims to let computer systems understand the natural languages and finally
achieve processing language tasks like a human. Knowledge about computational linguistics,
computer science, and cognitive psychology is required in the natural language processing
process.

The first research project in natural language processing can be traced back to the late 1940s
when the earliest machine translation project was launched to break the enemy codes using
computer translation during World War II. Nowadays, NLP’s main applications can be consid-
ered as Information Retrieval, Information Extraction, Question-Answering, Summarization,
Machine Translation, and Dialogue Systems[8].

Moreover, the techniques applied in natural language processing have also frequently de-
veloped. Semantic approaches based on the relationship of concepts in the language, or
rule-based systems assisted by regular expression has dominated this field for a long time in
the beginning. In the 1980’s, statistical approaches, especially TF-IDF[9], gained importance
and was widely applied in NLP. Thanks to the development of the internet and computational
powers, it is very convenient to collect a vast amount of data from the internet. Therefore,
neural networks, especially deep learning, which requires a large amount of data for training
and many computations, have become the center of attention in recent years. Different models
based on deep learning break the records and achieve the highest score in various natural
language processing tasks.

2.2.1. Deep Learning in Natural Language Processing

As stated in the book "Deep Learning in Natural Language Processing", deep neural networks
are capable of learning representations from language data, using a cascade of multiple layers
with nonlinear processing units to extract features[10]. These deep learning architectures
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Hidden
layer

Input

Output
layer

Inputs
Outputs

Figure 2.1.: The architecture of a single-layer feed-forward neural network[11].

can extract both lower-level features and higher-level features, and gain sufficient knowledge
from these features.

A feed-forward neural network is the first and simplest type of artificial neural network[13].
It is composed of one input layer, one output layer, and the hidden layers. When there are
many hidden layers in this neural network, this network is called the deep neural network.
Each layer has a different number of nodes called neurons. Each neuron’s value is computed
by the neuron’s value in the former layer with the weights connecting them and the activation
function. The activation function of the neurons enables the network to learn the non-linear
features. The loss function after the output layer calculated the differences between the
model- and reference-output. The differences are backpropagated to the network to update
the weights and improve the network performance. However, the feed-forward neural
network does not have the ability to extract the features from sequence data like the language.
Therefore, deep learning developed its specific architectures for processing language data in
the natural language processing field.

One important architecture for acquiring the representation of words is the Word2Vec
model[14]. As shown in Figure 2.2, it uses an unsupervised way to gain the meaning of words
from sentences and uses embeddings to display these words with their relationships. The
pre-trained model of Word2Vec shows that the embedding vectors gained from the text can
form the mathematical equation as Vector(”King”) — Vector(”Man") + Vector("Woman”) =
Vector(”Queen”)[15]. These embeddings are quite useful for information retrieval or informa-
tion extraction tasks like sentiment classification.

When considering understanding the sentences or paragraphs, we need to take the context
into account as humans. The previous words or the previous sentences could significantly
influence the meaning of the current sentence or paragraph. So it is important that the neural
network could also remember and consider the previous context when dealing with the
natural language processing tasks. For this purpose, the Recurrent Neural Network (RNN)[16]
and the Long Short Term Memory Neural Network (LSTM)[17] are invented. As shown in
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Figure 2.2.: The word2vec models architecture. "The CBOW architecture predicts the current
word based on the context, and the Skip-gram predicts surrounding words given
the current word.[12]" The weight matrix gives the vector presentation of words.
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Figure 2.3.: The architecture and details of model RNN and LSTM_.

Figure 2.3a, a recurrent neural network loops over each input, extracts representations from
the former input, keeps the information, and passes it to the next cell when processing the
later input. LSTM is a special form of the recurrent neural network which can decide to
remember or forget the long dependencies using different computational gates (Figure 2.3b)
while RNN cannot drop the long redundant dependencies.

<EOS>

— =
Ly =

-]

s —>
x —3» —3 <
<~—> —>nN

>
o ——p
s}

<EOS>

Figure 2.4.: The Sequence to Sequence model reads the input "ABC", and produces the output
"WXYZ"[18].

Machine Translation is a kind of task that generates natural language as the final output. It
requires not only the ability to extract the features from the input information but also the
ability to process and interpret the features back to the natural language. Because of the high
requirement of the input and output interpretation, machine translation tasks benefit most
from deep learning.

Ihttps://colah.github.io/posts/2015-08-Understanding-LSTMs/
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2. Background

The Encoder-Decoder Sequence to Sequence model[18] has the most impact on this kind of
tasks. It uses the LSTM[19] to understand the input and obtain a vector representation and
uses the RNN language model[20] to extract the output sequence from that vector (Figure 2.4).
It is also worth mentioning that the neural network language models encode the input
tokens by 1 out of N encoding, where N is the corpus vocabulary size. It estimates output
probabilities based on the whole vocabulary history and produces the normalized output
probability values using a softmax activation function[19].

2.2.2. Transformer Model and Attention Mechanism

The Sequence to Sequence model has some drawbacks. It relies on recurrent layers that have
high computational complexity and hard to be parallelized for computation. The transformer
model gets rid of the recurrent layers completely. It relies entirely on the attention mechanism
to achieve global dependencies between input and output[21].

| am a student

*

e 1 8\
[ ENCODER ) > [ DECODER )
[y [}

[ ENCODER ) ( DECODER )
4 4
[ ENCODER ) ( DECODER )
[y [}

( ENCODER ) ( DECODER )
[y )

[ ENCODER J [7 DECODER J
[y [y
[ ENCODER J [ DECODER J
N 7y v,

Figure 2.5.: The encoder-decoder transformer architecture?.

As shown in Figure 2.5, the transformer also has an encoder-decoder structure. The encoder
lies on the left part of the figure and is consist of N=6 identical layers. Each identical layer
contains a multi-head self-attention layer followed by a simple feed-forward network. The
decoder of the right part of the figure also contains six identical layers. However, every
identical layer has two attention layers and one feed-forward layer. The additional attention
layer performs multi-head attention over the output of the encoder part. Figure 2.6 illustrates
the multi-head self-attention layer’s computational steps with the head number of eight.

’http://jalammar.github.io/illustrated-transformer/
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1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
W@
;:':':H : Qo
W, Q
* |n all encoders other than #0, Q1

s o —

we don't need embedding. [
We start directly with the output ,TH» H’ :ttl:

of the encoder right below this one

"\-N7O . .07

Figure 2.6.: The computational steps of the multi-head self-attention layer>.

Among these parameters, all the weight metrics presented by W are randomly initialized and
updated during the training. Multi-head attention allows the model to focus on different
sentence positions and gains multiple representations for each sentence’s subspace.

Since the transformer is composed of feed-forwarding layers and self-attention layers, the
computation can be parallelized easily. Moreover, computing self-attention layers is also faster
than computing recurrent layers. It has shorter paths for forward and backward signals to
traverse in the network, which improves the ability to learn long-range dependencies in the
network.

2.2.3. Transfer Learning

Training a deep neural network requires a large amount of data. However, data could be
outdated from time to time, and the data distribution may change along with society’s
development. In such a situation, the already-trained model may not perform well anymore.
So it is necessary to recollect the data and retrain the model from scratch, which would be
very costly to prepare the data and train the model with extra computational power, money
and time.

Because it is common for humans to transfer the knowledge they learned from experience
to solve new problems. It is also promising that neural networks can similarly apply the

Shttp://jalammar.github.io/illustrated-transformer/
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knowledge they have gained from the previous training tasks to the new tasks in a new
domain. Besides, when observing the first few layers of deep neural network gained when
learning the images, the features are not specific to the dataset or task, but very general and
basic like sharps or colors, which could also be used to continue to learn images in other
tasks or domains[22]. Therefore, such a way of transferring knowledge becomes a beneficial
neural network technology called transfer learning.

Transfer learning is divided into three types[23]:

¢ Inductive transfer learning: The target task is different from the source task. Some data
in the target domain should be labeled. The data in the source domain could be labeled
or not. So the target domain data are required to induce the knowledge learned in the
source task for the target task.

¢ Transductive transfer learning: The source and target tasks are the same. However, the
source and target domains are different. For example, feature spaces or the distribution
of data in the source and target domains are different. So the knowledge about the
skills dealing such kind of task should be learned.

¢ Unsupervised transfer learning: The target task is different from the source task.
Nevertheless, no labeled data are available in either source or target domain. So this
type of transfer learning focuses on unsupervised tasks like clustering or dimensional
reduction.

Pan et al.[23] also summarized four ways to carry out the transfer learning:

1. Instance-based transfer learning approach: It assumes part of the source data suggests a
similar or adjustable distribution as the target data. After training the source task, if we
reweigh the source data, we can get the optimal result for the target data in the target
task.

2. Feature-representation-transfer approach: The knowledge learned during pre-training
in the source domain is encoded into the feature representation to the target task’s
input. Using the new feature representation generated by the pre-training model as
input could improve the fine-tuning tasks” performance.

3. Parameter-transfer approach: Some parameters or features (weights) or prior distri-
butions of the hyperparameters could be shared among the source and target tasks.
Moreover, there are further options to use and freeze the parameters or update them
during fine-tuning. Although the improvement of performance depends on the distance
between the source and target tasks, transferring even the distant tasks can improve the
performance better than the random parameters[22].

4. Relational knowledge-transfer problem: It assumes that the data are not independent
and identically distributed random variables. However, the relationship between the
source data and target data is similar, which can be transferred from source data to
target data.

12
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Figure 2.7.: Bert model with one additional output layer for fine-tuning tasks. (a) and (b) are
sequence-level tasks, and (c) and (d) are token-level tasks. [24]

At the end of 2018, Jacob Devlin et al. from google Al Language published a bidirectional
transformer with the attention mechanism for language modeling — Bert[24], which obtained
new state-of-the-art results on eleven natural language processing tasks at that time. Bert’s
architecture has a multi-layer bidirectional Transformer encoder based on the Transformer
model[21] we introduced in Section 2.2.2. It used two unsupervised tasks (Masked LM
and Next Sentence Prediction) with BooksCorpus[25] and English Wikipedia dataset for
pre-training the model. An additional output layer is added to the model for fine-tuning
the downstream natural language processing supervised tasks, as shown in Figure 2.7. This
single additional layer also ensures that a minimum number of parameters need to be learned
from scratch again, which reduces the cost during fine-tuning.

Since then, different pre-training language models like ALBERT[26], RoBERTa[27], Distil-
Bert[28] and XLNet[29] have been published in the natural language processing field. The
architectures of these models are based on the Transformer, and they were optimized and
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outperformed Bert. In addition to their good results on the benchmarks, these models can also
be fine-tuned for different kinds of downstream NLP tasks with relatively small task-relevant
datasets as transfer learning. Such models’ good performance and convenience make the
transfer learning a trend in the natural language processing world. With the help of this
technology, it is much easier and faster to get good results on personalized tasks with a low
computational cost.

2.2.4. Multitask Learning

"Multitask learning is an approach to inductive transfer. Inductive transfer can help improve
generalization by using the domain information contained in the training signals of related
tasks as an inductive bias."[30] Similar to inductive transfer learning, they both use inductive
transfer mechanisms to improve generalization performance. However, multitask learning
tries to learn both the source task and the target task simultaneously, while inductive transfer
learning aims to transfer the knowledge learned from the source task to the target task[23].
During multitask learning, the model could gain the essential information shared by several
tasks efficiently. Moreover, multiple tasks’ task-specific knowledge being gathered at the same
time would lead to the inductive bias, which causes the model to try to explain each task
more general and avoid over-fitting.

Task Al [Task B [Task C Task- O

specific

Task B
EmpE—-p—rs N

f

f

" o

Shared Constrained
layers | f |‘_‘| H layers
(a) Hard parameter sharing (b) Soft parameter sharing

Figure 2.8.: Two different multitask learning methods for deep learning[31].

In general, there are two types of multitask learning in deep neural networks: hard and soft
parameter sharing of hidden layers[31]. Figure 2.8a illustrates the hard parameter sharing.
All the tasks share the first several hidden layers and their parameters, while the output layers
are designed separated for different tasks. During the sharing, the model tries to find the
representation capturing all the tasks, avoid being too specific for any single task or data, and
reduce the chance of over-fitting. In the soft parameter sharing, each task has its own hidden
layers and output layers. However, the hidden layers are being connected to each other so
that distance among the hidden layers” parameters is being regularized. In this way, soft
parameter sharing has a regularization effect on the model’s weights and avoids over-fitting
on each single task.

There are five reasons for the good performance of multitask learning[31]:
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1. Implicit data augmentation: Multitask learning collects several tasks, and implicitly
increases the amount of training data with different noise patterns. This helps the model
learn a general feature representation for all the data and average the noise patterns.

2. Attention focusing: Different tasks will help the model focus on the features that are
important for all the tasks. So when a task dataset is very noisy or limited, or high-
dimensional, other datasets will guide the model to find the meaningful features of that
nonoptimal dataset.

3. Eavesdropping: Some features in one task could be hard to learn, while its representation
in another task is more obvious. When a model learns these two tasks simultaneously,
they could share the information and help each other to discover the very unclear
hidden features.

4. Representation bias: The model will be biased to learn the representations which are
preferred by most of the tasks. This bias also helps the model to learn other tasks more
efficiently if these tasks are similar.

5. Regularization: Different tasks force the model to find the best weights for all the tasks,
avoid the model to learn the feature representation of a single training dataset, and
reduce the risk of over-fitting a single task.

P.(c|X) Sim(Xy, X3) P.(R|P,H) Rel(Q,A4)
(e.g., probability of (e.g., semantic (e.g., probability of (e.g., relevance score
labeling text X by ¢) similarity between X; logic relationship R of candidate answer A
and X ) between P and H) given query Q)
Task specific T T T T
layers O O
Single-Sentence Pairwise Text Pairwise Text Pairwise
Classification Similarity Classification Ranking
(e.g., ColA, S5T-2) (e.g., STS-B) (e.g., RTE, MNLI, (e.g., QNLI)
WNLI, QQP, MRPC)
[,: context embedding vectors, one for each token.
Transformer Encoder (contextual embedding layers)
Shared ) T
layers

1, : input embedding vectors, one each token.

i

Lexicon Encoder (word, position and segment)

i

X:a sentence or a pair of sentences

Figure 2.9.: The architecture of Multi-Task Deep Neural Network (MT-DNN) model[32]

In 2019, Liu et al. from Microsoft Research proposed a model called Multi-Task Deep Neural
Network (MT-DNN)[32]. The model is based on the Bert large model[24]. Its architecture
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consists of the transformer encoder with task-specific output layers as shown in Figure 2.9.
The training procedure contains the pre-training stage of Bert and multitask learning. After
using multitask learning and fine-tuning, MT-DNN obtains new state-of-the-art results
on ten Natural Language Understanding tasks. MT-DNN model could be considered as a
combination of transfer learning and multitask learning. Moreover, its better performance than
Bert also proves the effectiveness of multitask learning in natural language processing.

2.3. Natural Language Processing in Software Development

Software engineering, especially software development, is a way to generate applications
or automatic tools with a high complexity. According to the waterfall model, software
engineering has a life circle of 1) system and software requirements, 2) analysis, 3) software
design, 4) coding, 5) testing, and 6) operation. Various processes with tools for assistance
are invented, like version control or type check, to make software engineering phases easier
and keep the code quality high. On the one hand, these processes and tools help make the
software development process much easier to manage and control. On the other hand, they
increase the complexity of software engineering and the workload when requiring filling the
contents manually.

With the development of machine learning techniques, more and more mature machine
learning, especially deep learning applications, are being applied in daily life, like different
recommendation systems or object recognition systems. These applications usually are
trained on large amounts of data. Simultaneously, more and more open- or closed-source
code repositories are available online, which provides the condition to use machine learning
to automate the software engineering tasks.

We use natural language to communicate with each other. We use the programming language
to communicate with computer systems during software development. Natural language
and programming language both share the word language. So natural language processing
techniques are very promising to solve the tasks in the software development domain.

When looking into the history of natural language processing in software development, a
syntactic parser is commonly used to understand the SVO structure of natural language, like
a who-does-what structure or a subject-verb-object structure. After that, semantic patterns of
syntactic correspondences are applied to generate the object-oriented code skeletons. Fur-
thermore, the discovered statements are converted to the programming language statements
under the rule-based settings. Mihalcea et al. used this approach to generate programming
language code based on the programming assignment[33]. Stenmark et al. also produced
code instructions for industrial robots using the semantic and syntactic parser[34].

Deep learning becomes the trend in machine learning since 2010. Both technology and
hardware levels ensure that the training of neural networks with many layers of non-linear
hidden units could be competent and proficient[36]. However, the massive applications or
researches using deep learning in software engineering happen after 2015. Li et al. did

16



2. Background

Number of papers

2000 2003 2007 2008 2009 2010 2011 2013 2014 2015 2016 2017 2018
Year

Figure 2.10.: The numbers of publications about deep learning in software engineering and
development domain per year[35].
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Figure 2.11.: Software engineering tasks are categorized into six software engineering steps.
The right lower part with white background listed the tasks participated by
industry practitioners.[35].

a research on publications about deep learning in software engineering from 2000 to the
first quarter of 2018[35]. Figure 2.10 categories these 98 related research papers into the
publication year. This figure shows that a maximum of three papers about deep learning
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in software engineering was published yearly before 2015. Nevertheless, there were already
twelve relevant papers in the first three months of 2018.

The authors also grouped these 98 papers into six software engineering steps as Figure 2.11.
We may notice, most of the software engineering tasks lie in development (with 30 papers),
testing (with 27 papers), and maintenance steps (with 27 papers). They also listed 21 papers in
13 software engineering tasks involving industrial practitioners, including Google, Facebook,
Microsoft, and DeepMind. This indicates that the industry’s interest for deep learning in
software engineering will push the relevant task-study from research to the production
level.
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Figure 2.12.: Data type used in software engineering tasks[37]. The y-axis lists different type
of data. The x-axis indicates the number of tasks using each data type. The color
bars illustrates different software engineering tasks.

When analyzing the tasks and the type of data for deep learning in software engineering,
Cody Allen Watson[37] researched 84 related studies with 111 SE tasks from 2009 to 2019,
while it is confirmed that there was little work between 2009 to 2014. From Figure 2.12 we
can observe that the most common type of data being used is source code. Source code is
used in 49 out of 111 tasks from the relevant studies. One reason for the popularity of source
code is the plenty of code repositories in Github, Gitlab, or code snippets in StackOverflow
that can be downloaded freely. Common tasks like program comprehension, code generation,
description or summarization, and source code testing all need to be carried out based on the
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source code. Other primary data types for software engineering tasks are natural language
descriptions, repository metadata, input-output examples, and visual data. All these types
comprised 78.57% of the distribution in the data type.

The most popular task of deep learning in software engineering is Program Synthesis, which is
being researched in 20 papers out of the 84 related studies. It follows by Code Comprehension,
and Source Code Retrieval and Traceability. The author also listed some topics which could
be beneficial but still unexplored or underrepresented. Such topics include refactoring and
program analysis, software systems and mobile testing, software documentation, feature
location, and defect prediction. Because the problem itself is not well defined, or no current
architecture is suitable for such tasks or to process the available data[37].
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Figure 2.13.: Deep learning architectures used by software engineering tasks[37]. The y-axis
lists the number of tasks. The x-axis represents the different deep learning
architectures. The color bars illustrates different SE tasks.

Figure 2.13 shows the distribution of deep learning architectures applied in the software
engineering tasks. It is obvious that the recurrent neural network (RNN) is the most widely
used deep learning model architecture in SE. The Encoder-Decoder Sequence to Sequence
model, which generates a latent representation by the encoder from the input, and for the
decoder to understand and decode the representation to target, ranked directly after RNN. As
we have introduced in Section 2.2.1, recurrent neural network and Encoder-Decoder Sequence
to Sequence model have the ability to extract the sequential features of the data, and the
most common data type in SE tasks is source code. Source code has many features that are
embedded in its sequential nature. So RNN and Encoder-Decoder would perform well on
such tasks, which explains this architecture distribution. In addition, when the software
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engineering tasks include image or media data type, like the task image to structured
representation, convolutional neural network (CNN) is being applied. Because CNN has
good performance for extracting features in the images.

The transformer architecture is being applied to only one Program Synthesis task among the
studies researched by Cody Allen Watson[37]. The occasional use of transformer is because
he collected the papers till the year 2019, when transformer architecture is relatively new
at that time. Later, transformer and other transformer based models outperform RNN and
Sequence to Sequence architectures in a variety of natural language processing tasks. It is
worth applying the transformer architecture to more and more different natural language
processing tasks in software engineering.

In 2020, Facebook AI Research published a model called Transcoder for the Program Transla-
tion task[38]. This model translates functions between C++, Java, and Python based on the
transformer architecture. They downloaded the GitHub public repositories having C++, Java,
and Python files and broke down the files into function level code. Then they used three
unsupervised methods of machine translation to train the model: 1) cross-lingual masked
language model pre-training to build the language model using the masked pre-training, 2)
denoising auto-encoding to train the decoder always to generate valid sequences regardless of
the noisy input data, and 3) the back translation to let the model generate target programming
language from the source programming language, and to translate the target language back
to the source language. They evaluated a dataset composed of parallel functions in C++,
Java, and Python from the online platform GeeksforGeeks*. Their model outperformed the
rule-based and commercial baselines®® significantly using computational accuracy by evalu-
ating the code functions” output when given the same input to the reference and generated
code.

Meanwhile, Microsoft Research also proposed their pre-trained models for programming
and natural languages called CodeBert. We go into the details of this publication in Section
3.1.1.

“https://practice.geeksforgeeks.org
5ijy: https://github.com/natural/java2python
®Tangible Software Solutions: https://www.tangiblesoftwaresolutions.com/
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3. Related Work

In this chapter, we introduce the tasks related work and model related work about this
thesis.

3.1. Tasks Related Work

This thesis focuses on natural language processing tasks in software development. We include
six main tasks as follows, containing a total of thirteen subtasks:

¢ Code Documentation Generation

Source Code Summarization

Code Comment Generation

Git Commit Message Generation

API Sequence Recommendation
¢ Program Synthesis

These six main tasks together with the original models to solve these tasks are explained in
this section.

3.1.1. Code Documentation Generation

Making documentation for code is very important in software development. On the one
hand, writing documentation costs time and energy of programmers. It also occurs quite
often that documentation is no more up-to-date after changing the code, which may cause
misunderstandings. On the other hand, well-written documentation would help the reader
understand the code’s details quickly. Good documentation could also reduce the cost
of project maintenance and updating processes. So it is necessary if an Al system could
automatically generate the documentation for different programming language codes, save
time, and provide insight into the code.

Feng et al. from Microsoft Research Center Asia published CodeBERT[39] - a pre-trained
model for programming and natural languages, which presents the state-of-the-art perfor-
mance for the Code Documentation Generation task. Their multi-layer bidirectional Trans-
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former model followed Bert[24] and used the same model architecture as RoBERTa-base[27]
with 125M total number of model parameters.

They used CodeSearchNet Corpus Collection[40] as their pre-training data. This corpus
is collected from the publicly available open-source non-fork GitHub repositories. All the
selected repositories are used by at least one other project and have the license that permits
the re-distribution of parts of the project. Six programming languages, including Go, Java,
JavaScript, Python, PHP, and Ruby, are involved in the corpus. Part of the corpus has
functions or methods with their documentation, which contains more than three tokens. The
rest data are functions/methods without documentations. These functions are longer than
three lines. These function whose name contain the substring "test" is removed. Furthermore,
the documentations are truncated to the first full paragraph.

Pre-training

They have two unsupervised pre-training tasks, masked language modeling (MLM) and
replaced token detection (RTD). For the masked language modeling, 15% of the tokens from
the natural language and programming language pairs are randomly selected and masked out.
During the pre-training, the model needs to predict the original tokens, which are masked out.
For the replaced token detection task, tokens in some random position of natural language
documentations or programming language codes are replaced by plausible alternatives. In
this case, the model needs to determine whether the token in each position is original or
replaced. So the model learns to solve a binary classification problem.

Fine-tuning for Code Documentation Generation

After pre-training the model, the authors added a transformer[21] with 6 layers, 768-
dimensional hidden states, and 12 attention heads as the decoder for this model to generate
the text. Then they fine-tuned this model on six programming languages of the CodeSearch-
Net Corpus separately to generate the documentation for the programming language code.
The max input code length is set as 256, and the max output text length is 64. They used
Adam optimizer with a learning rate of 5e-5 and the batch size 64. Early stopping is applied
when tuning hyperparameters on the development set.

Evaluation

The authors used a smoothed BLEU score[41] to evaluate the CodeBERT with its decoder for
the Code Documentation Generation task. They compared their encoder model with three
other models, including the RNN-based Sequence to Sequence model[18], the Transformer,
and the RoBERTa. They also compared the CodeBERT model using different pre-training
ways like pre-training on code only, with RTD task only or MLM task only or with both RTD
task and MLM task. As shown in Figure 3.1, CodeBERT pre-trained with RTD and MLM
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MODEL RUBY  JAVASCRIPT GO PYTHON  JAVA PHP OVERALL
SEQ2SEQ 9.64 10.21 13.98 15.93 15.09 21.08 14.32
TRANSFORMER 11.18 11.59 16.38 15.81 16.26 22.12 15.56
ROBERTA 11.17 11.90 17.72 18.14 16.47 24.02 16.57
PRE-TRAIN W/ CODE ONLY 11.91 13.99 17.78 18.58 17.50 24.34 17.35
CODEBERT (RTD) 11.42 13.27 17.53 18.29 17.35 24.10 17.00
CODEBERT (MLM) 11.57 14.41 17.78 18.77 17.38 24.85 17.46
CODEBERT (RTD+MLM) 12.16 14.90 18.07 19.06 17.65 25.16 17.83

Figure 3.1.: The evaluation result of codeBERT for Code Documentation Generation tasks[39]

achieved the state-of-the-art performance for the Code Documentation Generation tasks on
CodeSearchNet Corpus.

3.1.2. Source Code Summarization

Unlike Code Documentation Generation, the Source Code Summarization task tries to
summarize the code not only at the function or method level but also at the code snippet
level. Code appearing on the internet like online forums is mostly in the form of code snippet.
Such code snippet is usually the critical part of a function, helping users exchange knowledge
with each other. So it is necessary to gain information from the code at the code snippet level
and summarize the code so that users can search and understand code more efficiently.

Based on the questions and code answers from the popular programming help website
StackOverflow!, Iyre et al. proposed the model CODE-NN[42] to summarize SQL and CSharp
code snippets. The CODE-NN architecture consisted of LSTM guided by a global attention
model[43] to compute a weighted sum of the embeddings of the code snippet tokens based
on the current LSTM state as shown in Figure 3.2a.

Model METEOR BLEU-4

g IR 7.9 (6.1) 13.7 (12.6)

c; ® MOSES 9.109.7) 11.6 (11.5)

< SUM-NN 10.6 (10.3) 19.3(18.2)

. I“T CODE-NN 12.3 (13.4) 20.5 (20.4)

; i ° IR 6.3 (8.0) 13.5(13.0)

sl c 5 | MOSES 8.3(9.7) 154 (15.9)

E 4 “ | SUM-NN 6.4 (8.7) 13.3(14.2)

m_END CODE-NN | 10.9(140) | 184 (17.0)
(a) The CODE-NN architecture illus- (b) Evaluation result on CSharp and SQL human-
trates the relationship of LSTM annotated development and test dataset. Performance

and the Attention model on the development set is indicated in parentheses.

Figure 3.2.: CODE-NN Architecture and the evaluation result[42].

Ihttp://stackoverflow.com
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For creating the dataset, they downloaded anonymized versions of posts having tags of SQL
and CSharp, containing a short title, a detailed question, and one or more responses, of
which one can be marked as accepted. Furthermore, they selected only the title and the code
snippet from accepted answers that contain exactly one code snippet. They also removed
the data whose title has no relation to the code snippet, parsed the code, and replaced the
context-specific literals with tokens denoting their types. After splitting the data into training,
validation, and test sets, they asked human annotators to provide two additional titles for
200 randomly chosen code snippets from the validation and test set. As a result, each code
snippet from the human-annotated dataset has three titles as the golden references.

The authors used supervised training with mini-batch stochastic gradient descent and back-
propagation. They also applied dropout and learning rate decay for training. For decoding,
the beam search with the beam size of 10 was chosen. The maximal summary length was set
as 20 words.

METEOR[44] and the smoothed BLEU-4[41] score were used for evaluation. The authors
only evaluated on the human-annotated data set. They also compared their model with
three other models, including an information retrieval baseline, the phrase-based machine
translation system MOSES[45], and the neural attention-based abstractive summarization
model SUM-NN][46]. Figure 3.2b shows the evaluation results on these two metrics. Moreover,
tive English native speakers rated the output summarizations in terms of the naturalness.
Additional five human evaluators familiar with SQL and CSharp evaluated the generated
titles for informativeness on a scale between 1 and 5. As a result, CODE-NN outperformed
all the other methods across all the metrics and achieved state-of-art performance.

3.1.3. Code Comment Generation

Similar to Code Documentation Generation, Code Comment Generation also focuses on
automatically generating code comments to help developers save time on understanding the
functionality of programming methods.

Hu et al. published the DeepCom[47] model for this task. They focused on Javadoc comments
extracted by Eclipse’s JDT compiler? from 9,714 Java open source projects from Github. They
considered the Javadoc description’s first sentence as the comment. Because following the
Javadoc guidance?, the first sentence describes the functionality of Java methods most. They
used a Sequence to Sequence[18] model consisting of an Encoder, an Attention[48], and a
Decoder Component to learn the Java code and generate comments. The encoder and decoder
are both LSTMs[19]. Figure 3.3a illustrates model architecture.

One highlight of their work is how they took advantage of the structured code feature.
Unlike the natural language text, programming languages are formal languages that are
unambiguous, structured, and contains strong logic. They did not input the source code as

Zhttp://www.eclipse.org/jdt/
3http://www.oracle.com/technetwork/articles/java/index-137868.html
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Decoder P(Y|X)

Cy )
:’W Approaches BLEU-4 score (%)

it

poo CODE-NN 25.30

Attention »9_“ ext Vector
Distribution .~ | !I | | 1N Seq2Seq 34.87
, F k - Cross-Entropy Attention-based Seq2Seq 35.50
Co-GD-GD~-~GED DeepCom (Pre-order) 36.01
DeepCom (SBT) 38.17

Encoder P(X)

(a) The DeepCom Sequence-to-Sequence model. (b) Evaluation results on Java methods.

Figure 3.3.: DeepCom Architecture and the evaluation result[47].

plain text directly into the model. Instead, they first used Eclipse’s JDT compiler to convert
the Java methods into Abstract Syntax Tree sequences. They then proposed a Structure-based
Traversal (SBT) method to traverse the AST to generate the final sequence as the model input
to use structure information of source code. Figure 3.4 shows how the Java code AST is
converted to the DeepCom input sequence by SBT. Figure 3.4a lists the original Java code.
The left part of Figure 3.4b is the AST of the code and the right part of that figure is the
converted sequence by SBT.

They used the smoothed BLEU-4[41] score as the evaluation metrics. CODE-NN[42], which
we introduced in Section 3.1.2, was used as the baseline model for this task. Moreover, they
compared DeepCom with a basic Sequence to Sequence model having unprocessed source
code as input, an attention-based Sequence to Sequence model using also the unprocessed
source code, and a DeepCom with a classical pre-order traversal method to process the code
for input. Figure 3.3b shows that DeepCom with the SBT traversal method outperformed the
other four models and methods. This result proved the effectiveness of both the DeepCom
architecture and the SBT preprocessing method.

3.1.4. Git Commit Message Generation

The development-assisted tool Git* is a version-control system for tracking changes in files
and codes during software development. Each git change contains the differences between
the current and previous versions of attached files and a commit message that summarizes
the change content and describes this change’s purpose. A well-structured code commit helps
to overview the project development and control the code changes and the development
quality.

Jiang et al. developed the Neural Machine Translation (NMT)[49] model to generate commit-
messages from git change diffs automatically. Their model architecture is composed of an

4https://git-scm.com/
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public String extractFor(Integer id){
LOG.debug("Extracting method with ID:{}", id);
return requests.remove(id);

(a) The Java code example.
| (MethodDeclaration T
MethodDeclaration ( Modjﬁer ~_public ) Modifier_public
( SimpleType
Modifier (public) ( SimpleName_String ) SimpleName_String
— SimpleType ) SimpleType
- - ( SingleVariableDeclaration
SimpleName (String) ( SimpleType
I SingleVariableDeclaration ( SimpleName_Integer ) SimpleName_Integer
) SimpleType

SimpleType ( SimpleName_id ) SimpleName_id

SimpleName (Integer) ()BSlmglieVaﬁableDeclaration
oc!
SimpleName (id) ( ExpressionStatemgnt
— Block SBT ( MethodInvocation
ExpressionStatement = (SimpleName_LOG ) SimpleName_LOG
L ( SimpleName_debug ) SimpleName_debug
MethodInvocation (SimpleName_ExtractingmethodwithID: {})
SimpleName_ExtractingmethodwithID: {}
SimpleName (Log) ( SimpleName_id ) SimpleName_id
SimpleName (debug) ) MethodInvocation
) ExpressionStatement
—{SimpleName (Extracting method with ID: {}) | ( ReturnStatement
SimpleName (id) ( Met'hodlnvocation )
ReturnStatement ( SimpleName_request ) SimpleName_request

( SimpleName_remove) SimpleName_remove
( SimpleName_id ) SimpleName_id
) MethodInvocation

L MethodInvocation

SimpleName (request)

- ) ReturnStatement
SimpleName (remove) ) Block
SimpleName (id) ( SimpleName_extractFor ) SimpleName_extractFor
) MethodDeclaration

—| SimpleName (extractFor) |

(b) Converting the Java code AST to input sequence by SBT.

Figure 3.4.: DeepCom SBT method example.

Encoder, an Attention, and a Decoder component[50]. The Encoder had two RNNs[20]: a
forward and a backward RNN. They read the source sequence with less than 100 tokens
in the forward and the reversed order and generated two hidden state sequences. The
Attention component took the concatenation of these two hidden state sequences. Further-
more, the RNN-Decoder computed the hidden state to text sequence with a maximum of 30
tokens.

Based on a dataset with 1000 Java repositories having most Github stars, they extracted more
than 2 million commits from GitHub. They kept only the first sentences from the commit
message since the first sentence typically summarizes the entire commit message. Then they
removed issue ids from the sentences and the commit ids from the diffs. They dropped merge,
and rollback commits since these messages do not contain too much summary information.
They also removed diffs that are larger than 1 MB. Then they implemented the Verb-Direct
Object filter to select sentences having a verb/direct-object pattern. Finally, they trained on
these selected commits with the mini batch-size of 80.
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Below are two commit messages,

Message 1: Added Android SDK Platform with API level 16 to Travis build file
Message 2: Remove redundant commands in travis config.

Model BLEU Len(;en LenRef P1 P2 P3 P4 How similar are the two messages (in terms of the meaning)?
MOSES  3.63 129889 22872 83 3.6 2.7 2.1 0
NMT1 3192 24344 22872 380 311 295 297 _  wu w1 2 s a 5 6 e
NMT2 32.81 . 21287 22872 40.1 340 334 343 ¢
23.10 20303 18658 30.2 233 207 19.6 o o o [©) o [©) o o

(a) The model evaluation score results on the test set. (b) One of the evaluation page for participants to score
NMT1 is the NMT model with V-DO filter. NMT2 is a the similarity. The scala is from 0 to 7.
model trained without V-DO filter. Leng,,, is the total
length of the generated messages. Leng, is the total
length of the reference messages.

Figure 3.5.: NMT models evaluation results by metrics and one human evaluation exam-
ple.[49]

The authors evaluated the model using the BLEU[51] score that having the modified n-gram
precision. They used MOSES[45] model as the baseline. To test the Verb-Direct Object filter’s
effectiveness, they also trained NMT on unfiltered data and evaluated results on test data
with and without Verb-Direct Object filter. From the Figure 3.5a, we can observe that NMT
models performed much better than the MOSES baseline. NMT without Verb-Direct Object
filter outperformed the model with Verb-Direct Object filter. This is because the model had
2.5 times more training data when the filter was not being applied.

Moreover, the authors also carried out human evaluation. Unlike the way CODE-NN[42] used
to generate more reference data, they hired 20 participants with programming experience for
30 minutes to evaluate the similarity of the generated message with the original message in
a survey study. Figure 3.5b showed one of the evaluation questions participants needed to
answer.

3.1.5. API Sequence Recommendation

Developers usually learn new libraries or software frameworks through understanding how
to use their APIs. However, it is challenging to obtain the API usage sequence if the usage
patterns are not well documented. So it would be beneficial to suggest developers the API
sequence when searching and asking about the corresponding usages.

Gu et al. proposed the model DeepAPI[52] that generated API usage sequences for a given
natural language query. Their model architecture was an Attention-based Encoder-Decoder
model[53]. The Encoder and Decoder were GRUs[53] with 1000 hidden units. The dimension
of word embedding was 120. They applied their own defined negative log-likelihood as the
cost function. They used minibatch Adadelta[54] with a batch size of 200 to train the model
and applied the Beam Search[55] to generate output.

By creating the dataset, they downloaded Java projects with at least one star from Github.
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VEEE

* Copies bytes from a large (over 2GB) InputStream to an OutputStream.
* This method uses the provided buffer, so there is no need to use a
* BufferedInputStream.
* @param input the InputStream to read from
*
* @since 2.2
*/
public static long copylLarge(final InputStream input,
final OutputStream output, final byte[] buffer) throws IOException {
long count = 9;
int n;
while (EOF != (n = input.read(buffer))) {
output.write(buffer, 0, n);
count += n;
}

return count;

J

API sequence: InputStream. read — OutputStream. write
Annotation: copies bytes from a large inputstream to an outputstream.

Figure 3.6.: An example for extracting an API sequence and its query from a Java method.

Then they used the Eclipse JDT compiler to parse the source code files into Abstract Syntax
Trees and split the JavaDoc comments and the code. They extracted the first sentence of
a documentation comment for a method since the first sentence can summarize a method.
After excluding the irregular comments like those starting with "TODO," they considered
these comments as the code query. For getting the API sequences, they traversed the AST of
code and applied several replacements like replacing new C() as the API C.new to the API
sequence. Figure 3.6 showed an example for extracting an API sequence and its query from a
Java method.

They evaluated DeepAPI using the BLEU[51] score and compared it with the other models
with totally different Architecture - Lucene+UP-Miner[56] and SWIMI[57]. Besides, they
also compared DeepAPI with a pure RNN architecture and another attention-based encode
decoder without the specifically designed cost function. DeepAPI outperformed all other
models and reached the BLEU score of 54.52%.

3.1.6. Program Synthesis

Program synthesis is the task of synthesizing or generate programming codes based on
the users” commands. It would be beneficial to reduce the workload of programmers.
However, this task is very challenging because the natural language commands could be very
ambiguous, and the generated programs should meet high requirements and have satisfying
functionality.
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(ztoer)

partial0

given array divisible by two
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Figure 3.7.: The architecture of Seq2Tree encoder-decorder model.

Polosukhin and Skidanov proposed the Seq2Tree[58] model for this task. They used a se-
quence encoder and a tree decoder to synthesize LISP-inspired domain-specific language
(DSL). The encoder used GRU[53] cell. The decoder used a doubly-recurrent neural network
for generating AST tree-structured output. Attention component was also applied to aug-
ment the current step with information from the encoder. Figure 3.7 illustrates the model
architecture. Moreover, they used Tree-Beam search to control the output length and select
the best-generated program.

The authors also built a dataset AlgoLisp[59] focusing on LISP-inspired DSL. They chose
tasks from homework assignments for basic computer science and algorithms courses. Since
the number of tasks is limited, they then modified and combined assignments and the
corresponding code to generate more similar tasks. For example, they generated a new task,
"find all odd elements in an array," based on "find all even elements in an array."

For evaluation, they also implemented ten tests for each task. Since the same problem can be
solved by the programs written differently, they judged a solution as correct if the solution
passed all the tests for the given assignment. In this way, they used accuracy to evaluate the
model output and defined accuracy as:

Ne

Acc = =%
cc N

where N, is the number of tasks passing tests, and N is the number of total tasks. They
compared Seq2Tree with an Attentional Sequence to Sequence model[43] and an 102Seq[60]
model. They also made a difference among the models with and without Beam Search.
Seq2Tree outperformed all other models and achieved the state-of-the-art for this LISP-
inspired DSL program synthesis task.

3.2. Model Related Work

In this section, we introduce the model we used for this thesis.
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3.2.1. Text-to-Text Transfer Transformer

Pre-training a language model and then fine-tuning on the downstream tasks has proven its
effectiveness on natural language processing tasks in recent years. Nowadays, there are many
unlabeled text data on the Internet, which can be used for the unsupervised pre-training. So,
this method is particularly friendly to fine-tune downstream tasks with datasets having only
a small amount of labeled data.

Raffel et al. from Google proposed a model called Text-to-Text Transfer Transformer (T5)[5]
for this scenario. The architecture of T5 is an encoder-decoder Transformer closely following
its originally-proposed form as we introduced in Section 2.2.2[21]. They built an unsupervised
pre-training clean and natural English large dataset "Colossal Clean Crawled Corpus®" based
on the Common Crawl’s web extracted text. Then they applied their model to the various
set of downstream tasks, including machine translation, question answering, abstractive
summarization, and text classification. They also explored a variety of pre-training and fine-
tuning technologies to gain insights and achieve state-of-the-art in many of the tasks.

Y. Y, -
. Language model Prefix LM
%DDD X, X3 Yy ¥, X X3 ¥, Y, -
(&)

200) OO0 am

annas (0
0 00000 0

3 y1 y2 X1 X2 X3 y1 y2

Figure 3.8.: Different transformer architectures. Dark grey lines means the fully-visible
masking and light grey lines means the causal masking. The left one is used in
the base model.

Their baseline transformer model consists of 12 blocks. Each block comprises self-attention,
optional encoder-decoder attention, and a feed-forward network with a dropout probability of
0.1. This model has about 220 million parameters. They compared their baseline model with
Language model architecture[61], prefix LM architecture[62], and the encoder-decoder with
reduced layers, parameters, and denoising objective. Figure 3.8 illustrated these Transformer
architecture variants. The encoder-decoder model with the denoising objective outperformed
other architectures. The Encoder-decoder with sharing parameters performed similar well as
the former one. This result confirmed that "sharing parameters across Transformer blocks
can be an effective means of lowering the total parameter count without sacrificing much
performance."[26]

Shttps://www.tensorflow.org/datasets/catalog/c4
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Objective Inputs Targets

Prefix language modeling  Thank you for inviting me to your party last week .

BERT-style Thank you <M> <M> me to your party apple week . (original text)

Deshuffling party me for your to . last fun you inviting week Thank  (original text)

Li.d. noise, mask tokens Thank you <M> <M> me to your party <M> week . (original text)

Li.d. noise, replace spans  Thank you <X> me to your party <Y> week . <X> for inviting <Y> last <Z>

L.i.d. noise, drop tokens Thank you me to your party week . for inviting last

Random spans Thank you <X> to <Y> week . <X> for inviting me <Y> your party last <Z>

Figure 3.9.: The different denoising objective examples.

They tried different pre-training denoising methods regarding the unsupervised objectives,
including Prefix language modeling, BERT-style[24], and Deshuffling. They concluded that
BERT-style denoising objectives perform best. Furthermore, they explored different masking
strategies to the BERT-style objective, including masking token-spans, replacing corrupted
token-spans, and dropping corrupted token-spans. Figure 3.9 showed the different denoising
details. It turned out that all the variants perform similarly, and replacing corrupted token-
spans made the target sequence shorter and the training faster. So they further tried different
corruption rates and different span lengths by replacing corrupted token-spans. They found
that a larger corruption rate slowed down the training, so a corruption rate of 15% would
be optimal. Moreover, an average span length of 3 slightly but significantly outperformed
other length options. The flow chart in Figure 3.10 summarized their experiment process on
unsupervised objectives. Based on this evaluation result, we applied the replacing corrupted
token-spans with a corruption rate of 15% and a length of 3 to our pre-training unsupervised
tasks.

Corruption Corrupted
High-level Corruption rate span length
approaches strategies ( ) ( )
[pprosees TR 10% 2
Language \ J \ J
modeling Mask f ‘/' )
—
P— > 4 15% > 3
Replace \ J L J
| BERT-style ] > | spans | - g p 4
—_—\ — 25% 5
Deshuffling Drop = 2 p ¢
|
— 50% 10
L& J & J/

Figure 3.10.: Experiment steps on unsupervised objectives and the selected decisions.

Besides, they also tried different per-tained datasets, different fine-tuning parameters, different
multitask training ways, and different model sizes. They concluded that additional pre-
training, increasing the batch size, and the number of training steps could help to get good
results. They also showed that pre-training on a multi-task mixture of unsupervised and
supervised tasks performed similarly to pre-training on the unsupervised task alone. Their
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research gave us many inspirations for training our tasks in the software development domain.
Their proposed tensorflow T5° library is very suitable for applying transfer learning and
multitask learning. So we used their Small (around 60 million parameters), Base (about
220 million parameters), and Large (roughly 770 million parameters) model configurations
implemented by the T5 library in our experiments.

®https://github.com/google-research/text-to-text-transfer-transformer
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In this chapter, we explain our approach used in this thesis. We introduce the datasets we
used, including the unsupervised and supervised datasets, the model architecture, and its
parameters. Also, we describe the vocabulary model and the evaluation metrics for the
experiments.

4.1. Datasets

In this section, we introduce our unsupervised and supervised datasets, their statistics, and
the pre-processing methods on each dataset.

4.1.1. Unsupervised Dataset

We first introduce the unsupervised Datasets we used in this thesis. These datasets involve
different programming languages and the English natural language. These datasets are used
in the transfer learning pre-training steps and the multi-task learning. They are helpful to
build a language model for tasks in the software development domain and make the final
model more generalized against overfitting.

CodeSearchNet Corpus Collection

As we have mentioned in Section 3.1.1, CodeSearchNet Corpus Collection[40] is extracted
from the open-source GitHub repositories. It contains six programming languages” func-
tions/methods, including Python, Java, Go, Php, Ruby, and Javascript. This dataset can be
divided into two parts - functions with the function documentation and functions without
documentation. The dataset is stored in JSON format and contains already tokenized code
and docstrings. The code is parsed and tokenized by the modified tree-sitter! library for each
programming language.

Both parts of the dataset are being used for the pre-training. We directly used the parsed and
tokenized functions without the documentation as unsupervised input. In this way, the model
could understand the relationship between code structures, parameters, and statements for
each programming language.

Ihttps://github. com/tree-sitter/tree-sitter-python
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When applying the dataset with functions containing documentation for pre-training, we first
used the language detection library langdetect? to extract documentation having English text.
Then we concatenated each pair of tokenized-function and its tokenized-documentation as
one input sentence sequence:

(function, documentation) — function - documentation

In this way, the model could learn the programming languages and their relation to the
English documentation. Since we only used the training data from this dataset, our model
would not see the documentations in the validation and test set and would not corrupt the
evaluation stage.

The Public Git Archive - Java

Four out of six supervised tasks involve the programming language Java. So an unsupervised
dataset for Java would be essential to help the model understand this programming language.
We used the Java code from the Public Git Archive dataset[63] as our unsupervised dataset
for Java. This dataset contains top-rated repositories on GitHub. It has an index file with
files in the Siva format, which is a novel archive format tailored for efficiently storing Git
repositories.

Different from the fact that code from CodeSearchNet Corpus is function-level, the Public Git
Archive has code in the Java file-level containing the import statements, multiple functions,
and comments. This file-level data could help the model understand more information like
API usage and benefit our downstream tasks.

After getting the Java code, we applied the javalang® Python library to parse and tokenize
the code and consider the file-level tokenized Java code as the input Java data for pre-training.
We replaced the code type of string and number as CODESTRING and CODEINTEGER.

The Public Git Archive - CSharp

Similar to Java unsupervised dataset, we also used the CSharp code extracted from the Public
Git Archive dataset[63]. The CSharp data is the file-level code as well. Each input sequence
contains importing libraries, multiple CSharp functions, and comments to part of the code.
We used the ANTLR (ANother Tool for Language Recognition)* library to parse and tokenize
the CSharp code before putting it into our pre-training model. We replaced the code type of
string and number as CODESTRING and CODEINTEGER.

2https://pypi.org/project/langdetect/
Shttps://github.com/c2nes/javalang
‘https://github.com/antlr/antlr4d

34


https://pypi.org/project/langdetect/
https://github.com/c2nes/javalang
https://github.com/antlr/antlr4

4. Approach

150k Python Dataset

We also have two supervised tasks about Python code. One task involves the function-level
code understanding while the other tries to summarize Python in the code-snippet-level. So
when choosing the unsupervised tasks, in addition to the Python dataset from CodeSearchNet
Corpus Collection, we also included the 150k Python Dataset’[64] from the SRILAB® (the
Secure, Reliable, and Intelligent Systems Lab) at ETH Zurich.

The Python programs in this dataset are collected from GitHub repositories with permissive
and non-viral licenses by removing duplicate files, forked projects, and obfuscated files.
Raychev et al.[64] also parsed the code using the Python AST parser’ included in Python 2.7
and kept only programs having at most 30,000 nodes in the AST.

We used the file-level Python code as the pre-training input for our model. We applied the
Python tokenize® library to parse the code and replace the token type of string and number
as CODESTRING and CODEINTEGER. Then we tokenized code and fed the pre-processed
code into our neural network.

StaQC - SQL

Our source code summarization task for SQL uses the code snippets from StackOverflow.
So we chose another SQL Dataset, StaQC?[65], which is also extracted from StackOverflow.
StaQC contained SQL question-code pairs of questions tagged by "sql," "database," or "oracle"
from StackOverflow. The SQL code in 5taQC is code-snippet level as well.

We only used the SQL code part of StaQC. We further applied the Python library sqlparse!”
to parse the dataset. We cleaned the code and replaced the column and tab names as col or
tab followed by an integer to differentiate different columns and tabs in one code snippet. We
also replaced numbers in the code as CODEINTEGER, CODEFLOAT, or CODEHEX. Then we
tokenized the cleaned SQL code as the input to our model.

LISP Dataset

The supervised program synthesis task used LISP inspired DSL programming language.
However, we did not find any LISP or LISP related dataset on the internet. So we built the
LISP dataset by ourselves.

We selected 20 GitHub repositories having the most stars from the Lisp Topic11 in Github.

S5sri.inf.ethz.ch/py150

®https://www.sri.inf.ethz.ch/
"https://docs.python.org/2.7/1library/ast.html
8https://docs.python.org/2/library/tokenize.html
“https://github.com/LittleYUYU/StackOverflow-Question-Code-Dataset
10https://pypi.org/project/sqlparse/
Hhttps://github.com/topics/lisp?o=descks=stars
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Then we used the GitHub Rest API'? to download these repositories. Moreover, we wrote
a LISP parser to go through each file, selected the function-level LISP code, removed the
comments, and tokenized the code as the input to our pre-training model.

One Billion Word Language Model Benchmark - English

Despite the programming languages, our model would also understand and generate the
natural English language. So we need an unsupervised English dataset to help the model
understand English words, word phrases, and sentences. We chose one Billion Word Language
Model Benchmark corpus!®[66] as our unsupervised English dataset.

Text data in one Billion Word Language Model Benchmark corpus is obtained from the
WMT11 website!*. Normalization and tokenization are applied to the data. Duplicated
sentences are removed. The vocabulary is constructed by discarding all words with a count
below three. Words outside of the vocabulary are mapped to <UNK> token. Sentence order
is randomized. Finally, the corpus contains almost one billion words of training data.

Since the text data from this corpus is already tokenized, we directly used the sentence from
this corpus as our input to the pre-training models.

Statistics

Before we put the data into the model, we removed the unnecessary empty spaces in the data.
In addition we replaced the token \t as <tab> and the token \n as <newline>. We used the
Python pandas'® library to load the data, carry out the preprocessing, and save the data in
the TSV file format.

Table 4.1 shows the number of samples each dataset used in unsupervised learning. In
total, we have around 40 million samples for this unsupervised pre-training. One Billion
Word Language Model Benchmark corpus has more than 30 million data samples and is
the corpus with the most number of samples. Among the programming language datasets,
CodeSearchNet Corpus is the most extensive corpus. When comparing only the programming
languages, the Java language has the most unsupervised samples with more than two million
inputs. Javascript and Python follow it. Both of them have more than one million samples.
Ruby, SQL, and LISP have the least number of unsupervised inputs. They have only around
150,000 samples or even fewer samples each.

Table 4.2 lists the data attributes of each programming language unsupervised dataset, like
the data source, the code level, and the average length per sample. Most of the unsupervised
programming language data is extracted from GitHub, except the StaQC - SQL dataset, which

2https://docs.github. com/en/free-pro-team@latest/rest/reference/repostcontents
Bhttp://www.statmt.org/lm-benchmark/
4phttp://statmt.org/wmt1l/training-monolingual . tgz

Bhttps://pandas.pydata.org/
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Language Wi’chglz(;1 E)S(f: rCthV\iIte}: Doc 15%(612:2011 gll’:eAI:clﬁllxl/Ce StaQC LISP VVOOIES ]23;12?13 Total

Python 657,030 375,210 149,114 1,181,354
Java 1,070,271 373,412 720,124 2,163,807
Go 379,103 300,882 679,985
Php 398,058 369,923 767,981
Ruby 110,551 43,803 154,354
Javascript 1,717,933 99,646 1,817,579
CSharp 469,038 469,038
SQL 133,191 133,191
LISP 122,602 122,602
English 30,913,716 30,913,716
Total 5,895,822 149,114 1,189,162 133,191 122,602 30,913,716 38,403,607

Table 4.1.: The number of samples of each unsupervised dataset for different programming

languages and the English natural language. The first column listed the languages.
For programming languages, each sample can be considered as one function or a
programming file, or part of the code, depending on the code level of that dataset.
For the English language, one sample means one sentence.

Dataset Data Source Code Level Average Length per Sample
CodeSearchNet - Without Documentation GitHub Function 178
CodeSearchNet - With Documentation GitHub Function 191

150K Python Dataset GitHub File 1055

The Public Git Archieve - Java GitHub File 770

The Public Git Archieve - CSharp GitHub File 239

StaQC - SQL StackOverflow Code Snippet 55

LISP GitHub Function 101

Table 4.2.: The programming language datasets have different data attributes, including the

data source, code level, and average length per sample in each dataset.
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contains the SQL queries from StackOverflow. The code level of the StaQC is also code
snippet level. Each sample of the CodeSearchNet and LISP dataset is a code function or code
method. The rest of the corpus contains each sample as a whole code file, including multiple
functions.

We also list here the average length per sample in each dataset. Since we used the Sentence-
Piece!® library to generate the model vocabulary, few single tokens may be split into multiple
components in our vocabulary. Here we calculated the number of vocabulary SentencePiece
components in each sample. We explain the SentencePiece vocabulary in Section 4.2. We
can observe that each code function and each code snippet has less than 200 vocabulary
components averagely. The average of each CSharp file has a length of 239. The average
length of each Java file is 770. Each Python sample has the most vocabulary components
averagely with a length of 1055.

2500 1

2000 o

1500 4

1000 4

00 O 0O
@ O

500 1

— == T

average median 75quantile 90quantile

Figure 4.1.: The Boxplot of the unsupervised datasets’ sample-length in average, median,
75-percent-quantile and 90-percent-quantile. The vertical axis shows the number
of SentencePiece tokens in one sample. We call it the length of the sample. We
calculated the average, median, 75-percent-quantile, and 90-percent-quantile of the
sample length in each dataset. We collected statistics for the whole unsupervised
datasets and plotted each value using the boxplot. We can infer from this plot
that 90% of the samples in most datasets have less than 500 tokens.

Furthermore, we calculated the average, median, 75-percent-quantile, and 90-percent-quantile
of each unsupervised data corpus component length and plotted them using the boxplot in
Figure 4.1. We can see that 75 percent of the 90-percent-quantile sample length in each corpus

1ohttps://github.com/google/sentencepiece
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is less than 500. So we would cover most data information for unsupervised learning if we
choose the input length as 512.

4.1.2. Supervised Dataset

In this section, we introduce the supervised Datasets we used in this thesis. There are six
datasets, with those, we did experiments on six tasks. We have already introduced the original
source of these datasets in Section 3.1. We give more details and examples about the datasets
here.

Code Documentation Generation

We selected CodeSearchNet Corpus Collection[40] for the Code Documentation Generation
supervised task. We used the dataset preprocessed by CodeBERT[39]. This part of the dataset
contains functions with their documentations for six programming languages. Based on
the data downloaded from the CodeSearchNet GitHub repository”, CodeBERT removed
comments in the code, and programming codes that cannot be parsed into an abstract syntax
tree. In addition, they removed documents contain special tokens like "<img ...>" or "https"
and only kept English documentations with the token size between 3 and 256. The code and
documentations we used are already tokenized.

For the Code Documentation Generation task, we inputted the code function into our model
and trained the model to generate the corresponding documentations. The standard reference
for the model is the documentation from the dataset. Figure 4.2 shows an Python program
example. The left side of the arrow is the Python function and the right side of the arrow is
the desired documentation to generate.

def e(message, exit_code=None):
print_log(message, YELLOW, BOLD)
if exit_code is not None:
sys.exit(exit_code)

_— Print an error log message.

Figure 4.2.: A Python example from CodeSearchNet Corpus Collection. The left side of the
arrow is an example of the Python method as the input to our model. The right
side of the arrow is the expected output from the model.

Source Code Summarization

We used the same datasets as CODE-NNJ42] for the Source Code Summarization task. In their
experiments, they only trained and tested CODE-NN on CSharp and SQL code. Nevertheless,

https://github. com/github/CodeSearchlet
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they also provided Python training and testing datasets in their repository. We downloaded
the CODE-NN GitHub repository'8, then we followed their instructions, preprocessed the
dataset, parsed the code, and replaced some tokens with their code types. We tokenized the
natural language summarization using the tokenize package from the Natural Language
Toolkit (NLTK). We inputted the Python, SQL, and CSharp code snippet into our model and
expected the model to generate a summarization for this code snippet. We also chose only the
examples annotated by human-annotators, to evaluate our model output performance.

Figure 4.3 illustrates one SQL example from the dataset. The most above SQL is the original
code snippet from StackOverflow. We preprocessed the original SQL and generated the SQL
in the middle. We also list three golden references for the model output at the bottom of this
Figure. The first of three is the summarization extracted from StackOverflow. The rest two
are human-annotated summarization for this SQL snippet.

select time(fieldname) from tablename

!

select time ( col0 ) from tabO ;

l

datetime implementation in php mysql
view a table column in time format
retrieving only the time values of a given field from a table

Figure 4.3.: A SQL example for the Souce Code Summarization task. The upper row is the
original code snippet from StackOverflow. The middle row is the code snippet
after preprocessing. We list three ground truth summarizations for this code
snippet at the end of the arrow.

Code Comment Generation

We used the same corpus!® as DeepCom[47] for the Code Comment Generation task. Different
from their pre-processing steps, we did not convert the code into AST or SBT. We used
javalang library to parse and tokenized the Java method. We then used the tokenized code to
let the model generate a comment for the code, which described what the code is used. We
tokenized the reference comment using the tokenize package from the Natural Language
Toolkit (NLTK).

Figure 4.4 shows an example for this task. The left side of the arrow is the Java code. The
right side of the arrow is the comment our model need to generate.

18https://github.com/sriniiyer/codenn
Phttps://github. com/xing-hu/DeepCom
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protected String renderUri(URI uri){
return uri.toASCIIString(); . Render the URI as a string .

}

Figure 4.4.: A Java example for Code Comment Generation task. The left part of the arrow is
an example of the Java method as input to the model. The right part of the arrow
is the desired model output.

Git Commit Message Generation

The task Git Commit Message Generation aims to generate a commit message describing
the git commit changes. We used the dataset?® provided by Jiang et al[49]. We inputted the
Java comment changes into the model and got a commit message as the output. The input
comment changes and output commit messages are all preprocessed and tokenized. Since
the reference commit message only contained one sentence. So the output also should have
one sentence. Figure 4.5 is an example of this task.

mmm a / CHANGELOG . md

ppp b/ CHANGELOG . md

# Changelog
-#2.2.0(16/07/2015)-SNAPSHOT
+#2.1.1(29/02/2016)- SNAPSHOT

- Added AppCompat Styles (
AppCompatTextView will now pickup
textViewStyle etc ) . Thanks @ paul - turner
- Fix for Toolbar not inflating * TextView " s
upfront .

Fix snapshot version

Figure 4.5.: An example for the Git Commit Message Generation task. The left side of the
arrow is the git commit diff. "+" means the adding content for this change while
"-" means the removing part during this commit. We put this whole diff in the
model and expected the output as the arrow’s left side to describt this commit
change.

The left side of the arrow is the git commit diffs. The right side of the arrow is the commit
message our model should generate.

https://sjiangl.github.io/commitgen/
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API Sequence Recommendation

We aimed to generate the API usage sequence from a short natural language description in
this task. We adopted the dataset?! extracted by Gu et al[52]. for training and evaluating the
DeepAPI model. Figure 4.6 gives an example from the dataset for this task. The sentence
above tells the model to give API suggestions for converting RGB to HSB. We put this sentence
into our model. The expected model output below suggests that we need to use the library
Color, use the RGBtoHSB method from this library to finish the converting process, and use
the getHSBColor method to return the HSB result. The original authors already tokenized the
dataset they have published.

convert from normal rgb to java hsb

|

Color. RGBtoHSB Color. getHSBColor

Figure 4.6.: An example for the API Sequence Recommendation task. The upper part of the
arrow is the description for a programming task request, which is also the input
to our model. It expects the recommendation that the Color library needs to
be used and call methods "RGBtoHSB" and "getHSBColor." The model should
suggest this API Sequence Recommendation as the output.

Program Synthesis

We used AlgoLisp?? dataset[59] for the Program Synthesis task. This dataset is extracted from
homework assignments for introductory computer science courses, so each example in this
dataset consists of a question and an answer. We inputted the question into our model and
expected the model to output the correct LISP-inspired DSL answer. The dataset is already
parsed and tokenized as a list format and stored in a JSON file. We concatenated each element
from the list using the space and converted the list to the String. So we have String as the
model input and output as shown in Figure 4.7.

Statistics

Table 4.3 compares the number of samples in training, validation, and testing datasets per
supervised learning tasks. We could observe that the API Sequence Recommendation has
the largest number of samples. It has 600 times more samples than the smallest dataset for
the Source Code Summarization Python task. It is also larger than all the unsupervised
programming language datasets. The second-largest dataset is the Code Comment Generation
dataset. The sample number of the rest datasets is around or less than 250,000. Four out of

2lhttps://github. com/guxd/deepAPI
2https://github. com/nearai/program_synthesis/tree/master/program_synthesis/algolisp
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you are given an array of numbers a and a
number b, compute the difference of
elementsinaandb

l

[mapa[partiallb-]]

Figure 4.7.: An example for the Program Synthesis task. Above the arrow is the input for
the model. It describes a question the code should solve. Below the arrow is the
expected output. It is a LISP inspired DSL code.

six tasks have the datasets extracted from GitHub. Furthermore, three out of six tasks used
the function-level datasets.

Moreover, we calculated the SentencePiece token length per input and output sample. It is
evident that programming languages have more tokens than natural languages. Besides, we
calculated the average, median, 75-quantile, and 90-quantile of the input and output sample
SPM lengths. We plot the result using the Boxplots in Figure 4.8. We can see that most of
the samples have a token length of less than 500. So it is also acceptable for the supervised
learning model to have an input size of 512.
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SPM Length in Supervised Tasks: 0 means input length, 1 means output length

average median

400

300 1

200 4

75quantile 90quantile

400 -
300 4
200 1

100 4 )
°

b _ =2

T T T T
0 1 0 1

Figure 4.8.: Input and output sample length in boxplot for supervised datasets. The vertical
axis means the number of SentencePiece tokens in each sample as the sample
length. 0 means the input sample, 1 means the output sample. We calculated the
average, median, 75-quantile-percentage, and 90-quantile-percentage of the sam-
ple length for each dataset. Then we collected this statistic for all the supervised
datasets and plotted them using the boxplot. From this Figure, we can infer that
90% of the samples in most datasets have samples with less than 500 tokens.

4.2. Vocabulary

Vocabulary is an essential aspect in natural language processing. Vocabulary itself contains
much information about the corpus, like the corpus domain, formality, tone, and target
audience. Vocabulary is helpful when preprocessing the text corpus. The preprocessing
methods like one-hot-encoding or bag-of-words are based on a fixed size of the vocabulary.
Vocabulary is also the storage to construct the output of the model. The choice of vocabulary
would have a critical impact on model performance and output quality. The token frequency
in the vocabulary also indicates the different importance of the text information.

However, there is one problem when choosing the vocabulary - It is impossible to choose an
unlimited size of the vocabulary. So the chosen vocabulary should contain most of the tokens
from the datasets and could reconstruct the most information from the corpus.

We used the SentencePiece? library to construct the vocabulary for this thesis. It extracts

Zhttps://github.com/google/sentencepiece
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the sub-word units from the complete corpus to create the open-vocabulary. It is designed
initially to solve the fixed word vocabulary problem in machine translation. Because limiting
vocabulary size would increase the number of unknown tokens and makes the translation
output inaccurate. Breaking up rare words into subword units is a common way to deal with
this problem.

We used the unigram language model algorithm[67] provided by this library. This algorithm
first uses all characters” union and the most frequent substrings in the corpus to obtain an
initial vocabulary. In the second step, it optimizes the subword occurrence probabilities based
on the EM algorithm. Then it computes the loss about how likely the input sentences having
lower likelihood if using the current subwords to construct the sentences. Top subwords are
then kept by sorting based on the loss. This second step is performed repeatedly to get the
desired vocabulary size. The final vocabulary can be considered as a probabilistic mixture of
characters, subwords, and word segmentations.

We applied the Python glob?* library to collect all the supervised and unsupervised datasets
used in this thesis by recursively searching TSV files in our corpus folders. Then we connected
all the file names to a string using the comma symbol as the file input for our SentencePiece
training method. We set the id for padding token (<pad>) as 0, EOS token (</s>) as 1,
Unknown token (<unk>) as 2, and BOS token (<s>) as 3. We set the size of the vocabulary
as 32,000. The whole datasets have in total more than 46 million lines (Each line could
be considered as one model input example and one SentencePiece input sentence). It is
tremendous when using the unigram language model algorithm and would cause the training
crash for training on the whole sentences. So we limited the "input sentence size" to 40
million, shuffled the input sentences to get random sentence inputs, and enabled the setting
for training an extremely large corpus. We set the character coverage as 0.9999 because
the corpus may contain not English characters or meaningless symbols. In this way, we
could exclude these noises from the vocabulary. The SentencePiece training code is listed as
follows:

import sentencepiece as spm

spm.SentencePieceTrainer.train(input=spm_input,
pad_id=0, eos_id=1, unk_id=2, bos_id=3,
model_prefix= ,
vocab_size=32000,
input_sentence_size=40000000,
shuffle_input_sentence=True,
character_coverage=0.9999,
model_type= ,
train_extremely_large_corpus=True)

Listing 4.1: Code example for exacting the vocabulary from the total corpus using Sentence-
Piece library

Zhttps://docs . python.org/3/library/glob.html
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From the generated vocabulary, we may notice there are quite a lot tokens indicating the
programming languages and processes, including "function,” "String," "var," "import," etc.
So this vocabulary is suitable for the natural language processing tasks in the software

development domain.

4.3. Model Architecture

Output
Probabilities

Add & Norm
Feed
Forward
| Add & Norm ;
- Add & Norm ) Multi-Head
Feed Attention
Forward ) ) Nx
~— ]
Nix Add & Norm
f_’l Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
t At 4
\_ J \ —
Positional o) & Paositional
Encoding Encoding
Input QOutput
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 4.9.: The transformer architecture[21].

We used the Text-to-Text Transfer Transformer (T5) framework to build our model. As
introduced in Section 3.2, T5 is an encoder-decoder Transformer while both the encoder and
decoder part contains attention-layers followed by the feed-forward neural network. Figure
4.9 illustrate these components in the architecture. Five different sizes of T5 are provided -
Small, Base, Large, 3B, and 11B. We used the Small, Base, and Large model in this thesis.

Table 4.4 lists the Small, Base, and Large model’s size and hyperparameters. Each block
consists of self-attention, optional encoder-decoder attention, and a feed-forward network.
The Small, Base and Large model has 6, 12, and 24 blocks in both the encoder and the decoder.
The feed-forward networks in each block contain a dense layer with an output dimensionality
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Small Base Large

Number of Blocks Each 6 12 24
Dense Layer Output Dimension 2048 3072 4096
Attention Layer Key Value Dimension 64 64 64
Number of Attention Heads 8 12 16
Sub-layers and Embeddings Dimension 512 768 1024
Total Parameters (in Million) 60 220 770

Table 4.4.: Important hyperparameters for the architecture of text-to-text transfer transformer
model in the size of small, base, and large model.

of 2048, 3072, and 4096, followed by a ReLU nonlinearity and another dense layer in the Small,
Base Large models. These three models have the inner dimensionality of 64 for the "key" and
"value" matrices in each attention layer. Nevertheless, the number of attention heads and the
dimensionality of all other sub-layers and embeddings are different. In conclusion, the Base
T5 model has 3.6 times more parameters than the Small model, and the Large model has 3.5
times more parameters than the Base model.

We call our models CodeTrans because these models are based on the Transformer architec-
ture. We set the input and output length of the model as 512. We disabled the method of
reduce_concat_tokens. This method is designed originally to concatenate multiple unrelated
documents to create the exact right length and avoid wasting space on padding. However,
this would also cause the training example to be split into multiple parts and break the
programming codes” sequences. For the unsupervised objective, we applied the replacing
corrected spans corruption strategies with the corruption rate of 15% and the corrupted span
length of 3. We considered a span of average 3 corrupted tokens as an entirety and used an
unique mask token to replace it. The target sequence consisted of the corrupted spans with
the mask tokens in front of these spans, which were used to replace them in the input.

The T5 framework is very suitable for transfer learning, multi-task learning, and fine-tune the
models. It has the Python Class TaskRegistry and MixtureRegistry. Each task can be built as
one TaskRegistry. One or more TaskRegistries can build one MixtureRegistry. We built 13
TaskRegistries, one MixtureRegistry for unsupervised learning, and another MixtureRegistry
for multi-task learning. We used the mesh_transfomer method to train the model with a
null init checkpoint. We just specified the pre-trained checkpoint as the init checkpoint for
fine-tuning the model and continued to train diverse tasks based on that checkpoint. We
chose the norm decay learning rate for training and fine-tuning. All these can be explicitly
configured using the gin-config?® settings.

Bhttps://github. com/google/gin-config
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4.4. Evaluation Metrics

The evaluation of natural language generation tasks measures the quality of the generated
texts. It is not easy to compare the meaning of texts, because different combinations of tokens
would have the same meaning. We used in this thesis mainly the objective human likeness
measures. Such methods compare the model’s output with the golden standard reference
and calculate the overlap between generated outputs and the standard reference. We explain
these metrics in this section.

4.4.1. BLEU score

BLEU score is proposed by Papineni et al. in 2002[51]. It is used initially to compare the
machine translation outputs with several human translation references. It calculates the word
overlap between the model output and the reference to get the model’s precision. The basic
formula of BLEU score is:

N
BLEU = BP - exp() Wy log pn) (4.1)
i=1
1 c>r
BP = , 42
{el_c c<r 42)

Word maximal occurrence of model output in reference

(4.3)

Pn = Word occurrence in model output

N means the word n-gram, which considers the continuous sequence of n tokens as a whole
for the calculation. It is normally set as 4. W, is the weight to n-grams. p, is the modified
precision. c is the length of the model output. r is the length of the golden standard
reference.

The smoothed BLEU score is proposed by Lin and Och[41]. This smoothing technique adds
one count to the n-gram hit and the total n-gram count if n is larger than 1. In this way,
the candidate output with less than n words can still get a positive smoothed BLEU score
from shorter n-gram matches. Moreover, it will not influence the zero result score if nothing
matches.

T5 framework applies the tool ScareBLEU?® to compute the model text output. ScareBLEU
is proposed by Matt Post[68] and aims to solve different reference preprocessing and pa-
rameter settings when computing the BLEU score. It tries to get a unified BLEU score for
different models. ScareBLEU expects detokenized outputs and applies its own metric-internal
preprocessing before calculating the score.

2ohttps://github.com/mjpost/sacrebleu
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We used the score from the original task papers, which we described in Section 3.1 as
the baseline. We compared our model performance with theirs. So in addition to the T5
ScareBLEU script, it is essential that we apply the same BLEU score scripts with theirs when
evaluating the results to keep consistency.

4.4.2. ROUGE score

ROUGE is called Recall-Oriented Understudy for Gisting Evaluation[69]. The BLEU score is
a precision-related measurement, while the ROUGE score is a recall-related measurement.
BLUE score calculates how much n-grams in the model outputs appear in the reference,
while ROUGE score computes how much n-grams in the references appear in the machine
outputs.

The ROUGE score formular is as follows:

Z Z Countmatch (gramn)

Se{ReferenceSummaries} gramy €S

)3 Y. Count(gram,)

Se{ReferenceSummaries} gram, €S

ROUGE, = (4.4)

where n means the length of n-gram. Count,,(gram,) is the maximum number of the
n-gram co-occurring in the model output and the standard references.

We selected n equals 1 and 2, which refer to the overlap of unigram and bigrams between
the system and reference summaries. Besides, we also applied ROUGE-L standing for the
Longest Common Subsequence. It identifies the longest co-occurring in sequence n-grams
automatically.

The T5 ROUGE score metrics are based on the Python library rouge-score?’.

4.4.3. Accuracy
Accuracy is a very common metrics to evaluate machine learning models. It is defined as:

number of correct predictions
total number of predictions

Accuracy = (4.5)

This metrics is rigorous when computing for a sequence data like a sentence or a programming
function. Only if the complete sequence data is exactly the same as the reference data, it could
be counted as one correct prediction. In the software development domain, if a programming
code function could return the expected result, this code function could also be considered as

correct. Therefore, functional testing can be designed to calculate the code accuracy defined
as follows:

number of predictions that passed the functional tests
total number of predictions

Code_Accuracy = (4.6)

2https://pypi.org/project/rouge-score/
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The Program Synthesis task applied the Code_Accuracy by Polosukhin and Skidanov[59]
to evaluate their model on the AlgoLisp dataset. Due to the complexity of converting text
strings to a programming code, we applied the absolute accuracy to the same task. Since this
accuracy is more strict than the Code_Accuracy, if a programming function is the same as the
reference, it could definitely also pass the functional tests.
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This chapter explains our experiment details, including the hardware information, training
and evaluation settings, and training processes using different training strategies.

5.1. Experimental Setup

In this section, we list the hardware information and software usage for our experiment.

5.1.1. Hardware

Calculation inside one neural network model requires a large number of matrix computations.
Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs) are very suitable
to carry out such large computational tasks. These two kinds of hardware can focus on
multiplication computations, which are exceptionally costly during matrix computation.
According to the research by Wang et al.[70], TPU is well suited for large batch training, while
GPU is a good choice for large datasets.

We used two types of Google TPUs, v2-8, and v3-8. We got access to two TPUs v2-8 through
the Google Colab notebooks! and multiple TPUs v3-8 using Google Cloud Console. TPUs
v3-8 are mainly used for multi-task learning, transfer learning pre-training, and fine-tuning
models for large datasets, while TPUs v2-8 are applied for single-task training for the base
model and fine-tuning the pre-trained models on relatively small datasets. Table 5.1 lists the
specifications of these two types of TPU.

TPU type TPU cores Total TPU memory

v2-8 8 64 GiB
v3-8 8 128 GiB

Table 5.1.: Specifications of two kinds of Google Cloud TPUs we used in this thesis.

We also used one NVIDIA GPU Quadro RTX 80002. It has 576 NVIDIA Tensor Cores, 72
NVIDIA RT Cores, and 48 GB GDDR6 with ECC GPU memory. This GPU is mainly utilized
for single-task training the T5 small models.

Inttps://colab.research.google.com/notebooks/intro. ipynb#recent=true
’https://www.nvidia.com/en-us/design-visualization/quadro/rtx-8000/
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5.1.2. Software Usage

We split the experiment stage into training, fine-tuning, and evaluation. The training stage
for single-task learning uses similar scripts as the pre-training stage for multi-task learning
and transfer learning. We evaluated the models on the validation sets to apply early stopping
and find the best checkpoints. We got the models’ final performance by evaluating them on
the test sets.

Training

As explained in Section 4.3, T5 uses TaskRegistry and MixtureRegistry to assign the experi-
ment tasks. Therefore, we first configured the 13 single-task learning tasks in TaskRegistry.
Then we set two MixtureRegistries: one for multi-task learning tasks and one for transfer
learning tasks. These registries were written in a Python file.

The training script is as follows. We imported the Python file containing the above configured
tasks using the module_import. T5 uses gin-config to set the function parameters. So we set
the MIXTURE_NAME as the name of the task to train. We chose the input token length
as 512, hence the tokens_per_batch is 512 multiple batch size. The model size was set as
"t5.1.0.small/base/large.gin". We set the training steps in train_steps and the init_checkpoint as
none. We also configured the hardware settings like TPU type, TPU zone, model parallelism,
etc. We ran the scripts to train the models.

python -m t5.models.mesh_transformer_main \
--module_import= \
--tpu= \
--gcp_project= \
--tpu_zone= \
--model_dir= \
--gin_file= \
--gin_file= \
--gin_file= \
--gin_param= \
--gin_param= \
--gin_param= \
--gin_param= \
--gin_param= \
--gin_param= \
--gin_param= \
--gin_param= \
--gin_param= \
--gin_param=

Listing 5.1: Code example for training tasks using T5 library
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Fine-tuning

The fine-tuning scripts are almost identical to the training scripts. But fine-tuning is a kind
of training based on the pre-trained checkpoints. So we set the pre-trained checkpoint
address for init_checkpoint in the gin parameter. It worthes to notice that the train_steps
should also take the pre-trained steps into account. So if the pre-training takes 100 steps, and
we want to fint-tune 50 steps, we need to set the train_steps as 150. We changed different
MIXTURE_NAME to fine-tune different tasks.

Evaluation

The evaluation script is listed below. We need to specify the address of operative_config.gin file
of the trained model. We used the beam search to evaluate the model. The beam size is set as
four. This script generates a file containing all the output for the evaluation examples, and
returns the scores for evaluation metrics. These evaluation metrics are also defined in the
Python file imported using the module_import.

python -m t5.models.mesh_transformer_main \
--module_import= \
--tpu= \
--gcp_project= \
--tpu_zone= \
--model_dir= \
--gin_file= \
-—gin_file= \
--gin_file= \
--gin_file= \
--gin_param= \
--gin_param= \
--gin_param= \
--gin_param=

Listing 5.2: Code example for evaluating models with tasks using T5 library

5.2. Single-task Learning

For Single-task Learning, we trained the 13 tasks separately using the T5 framework. We
applied the small and base models. So we generate two models for each task and, in total,
26 models. We tuned the batch size using the grid search inside the range of 2° and 2'°. We
determined the training steps using early stopping concerning the models” performance on
the validation sets based on the T5 built-in BLEU and ROUGE scores.

Table 5.2 shows the batch-size, hardware, and the training step for the small and base model
with the best performance on each task. We also list here the number of samples in each
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Task Language Sample Size Model Size Batch Hardware Steps
Pebon 10 gl G rpuvis oo

e des R T TUvas s0000

Small 256 TPU v2-8 5,000

Code Documentation Generation “ o Base o s SO
Php 241,241 Small 256 TPU v2-8 200,000

Base 1024 TPU v3-8 30,000

Ruby 24,927 ;I:siu ES TPU(\;IE—% 13:888

R - B

SN O T

Source Code Summarization Csharp 52,943 SBZ:ZH 1;2 ggg 2,288
s men gl 0 A

Code Comment Generation Java 470,451 SB;r;aell igg ;IIZE zg:g 5;8:888
Git Commit Message Generation Java 26,208 SB?SEZH ;ig TPUC\;,I;E 1451:888
API Sequence Recommendation ~ Java 7,475,850 ;z;aell ;gg ?gg Zg:g ?ig:ggg
Program Synthesis DSL 79,214 SB;r:Saell ;2 ;Izg Zi:g 18:888

Table 5.2.: The single-task learning experiment setups for each task. We list here the batch-
size, hardware, and the training step for the small and base model with the best
performance on each task using single-task learning.

dataset for comparison. We used GPUs to train part of the small models and base models
with a small batch size for tasks having a small sample size in the dataset. We could notice
the following points during single task training:

¢ The number of samples in a dataset has an essential impact on the model size and the
training steps. Task API Sequence Recommendation and Code Comment Generation
have the two most enormous datasets. The small models for these two tasks require
almost seven times more training steps than the base models till the models could
converge.

¢ Corpus for Source Code Summarization converges extremely fast. For SQL and CSharp
datasets in this corpus, the base model converged already in 500 training steps even the
batch size is only 32, and the model had not seen the complete dataset yet. The scores
on this task’s validation set became worse if we trained the model with more steps. So
it is very easy to overfit the models for the Source Code Summarization task.
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¢ Half of the models achieves the best performance with a batch size of 256. However, it
varies slightly among different tasks, like the Source Code Summarization task requiring
small batch sizes. Nevertheless, large batch sizes do not result in better performance,
no matter the number of samples in the dataset.

We evaluated the models using the BLEU and ROUGE scores (and Accuracy for the Program
Synthesis task additionally) on the test dataset to obtain its final performance and compare
the result with the baseline. We explain these comparisons in Section 6.

5.3. Transfer Learning

Transfer Learning has two steps, pre-training and fine-tuning. We applied the small, base,
and large T5 models for transfer learning.

5.3.1. Pre-training

All the unsupervised tasks are used in the pre-training step. We set the T5 model to mask
the spans of input data by enabling unsupervised parameter gin file. The model needs to
predict what is the masked content and builds an initial language model in this way. Since
our pre-trained models used the datasets containing nine programming languages, these
models are suitable be fine-tuned on other downstream tasks in the software development
domain.

loss learning_rate
0.01
115
8e-3
1.05 663
4e-3
0.95
2e-3
0.85 0
0 100k 200k 300k 400k 500k 0 100k 200k 300k 400k 500k
(a) The loss change of T5 small model in trans- (b) The learning rate change of T5 small model
fer learning pre-training steps. The y-axis in transfer learning pre-training steps. The
shows the loss and the x-axis lists the train- y-axis shows the learning rate and the x-axis
ing steps. lists the training steps.

Figure 5.1.: The development of Loss and learning rate of the T5 small model during pre-
training

We chose the batch size as 4096 and training steps as 500,000 for pre-training the small model.
We utilized the TPU v3.8 in the pre-training. It took around 17 days to pre-train the small T5
model for half a million steps. Figure 5.1 illustrates the loss and learning rate changes during
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the pre-training. We obtained these charts using the Tensorboard®. After training more than
50,000 steps, the pre-training loss stayed under 1.0 stably. There existed variations, but the
primary trend of the loss was going down slightly. The learning rate decayed, along with the
increase of training steps. The pre-trained small model’s final loss is 0.926.

loss learning_rate
6e-3
074
0.7 4e-3
0.66
2e-3
0.62
058 0
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(@) The loss change of T5 base model in trans- (b) The learning rate change of T5 base model
fer learning pre-training steps. The y-axis in transfer learning pre-training steps. The
shows the loss and the x-axis lists the train- y-axis shows the learning rate and the x-
ing steps. axis lists the training steps.

Figure 5.2.: The development of Loss and learning rate of the T5 base model during pre-
training

We chose the batch size as 4096 and training steps as 500,000 for pre-training the base model
utilizing the TPU v3.8. Pre-training the base T5 model for 500,000 steps cost around 53 days.
The changes of the base model’s loss and learning rate during the pre-training are shown
in Figure 5.2. We could see that the training loss went down rapidly during the first 50,000
steps. It increased largely again in the 370,000 steps then continued to decrease. This may
mean that our base model jumped out of its local minimum in that step. The overall trend of
the loss was decreasing. The pre-trained base model’s final loss is 0.586.

We chose the batch size as 4096 and stopped the transfer learning pre-training at 240,000 steps
for the large model because of the time constraint. We used TPU v3-8 during the pre-training.
Pre-training the large T5 model for 240,000 steps cost more than 83 days. The changes of loss
and learning rate during the pre-training are shown in Figure 5.3. We could observe that
the training loss went down rapidly during the first 20,000 steps. The loss achieved 0.5 after
80,000 steps. After that, it continued to decrease slowly. The complete loss change was very
smooth. The pre-trained large model’s final loss is 0.476.

5.3.2. Fine-tuning

After obtaining the pre-training model on the 500,000 training steps for the small and base
models and 240,000 steps for the large model, we fine-tuned the models for the 13 supervised

Shttps://www.tensorflow.org/tensorboard
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Figure 5.3.: The development of Loss and learning rate of the T5 large model during pre-
training

tasks. We have noticed that half of the single-task learning models reached their best
performance with a batch size of 256. So we chose 256 as the batch size for fine-tuning the
downstream tasks. We applied the early stopping to determine the fine-tuning steps based
on the models” performance on the validation sets using BLEU and ROUGE scores.

Based on the experience gained from the single-task learning, we started to fine-tune the
small models 5,000 steps for most of the tasks, recorded the validation scores, and continued
to fine-tune 5,000 steps repeatedly until the models” performance converged on the validation
sets. We also adjusted this step interval concerning the dataset attributes and the model size.
We set this interval as 2,000 for the base models and 500 for the large models. We reduced
this fine-tuning step interval for the Source Code Summarization task to 1,000 for the small
models, 500 for the base models, and 100 for the large models because this corpus is very easy
to overfit the models. For Code Comment Generation and API Sequence Recommendation
tasks, we increased this interval to 50,000 for the small models and 10,000 for the base and
the large models.

Table 5.3 lists the fine-tuning steps for the small, base, and large models to reach the best
performance on each task. Quite a lot tasks reach the best performance already after fine-
tuning the first 500/2,000/5,000 steps iteration. This can prove that fine-tuning downstream
tasks using transfer learning can save the downstream tasks’ training steps. The larger the
model is, the fewer fine-tuning steps the model requires. Nevertheless, tasks with large
datasets like Code Comment Generation and API Sequence Recommendation still require
many fine-tuning steps, especially for the small models.

To make sure that our fine-tuning step interval is small enough to cover the best performance
checkpoint, especially for the Source Code Summarization task, we fine-tuned the SQL task
for 1,000 steps using the interval of 100 steps. Table 5.4 presents the evaluation results on the
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Task Language Sample Size Model Size Hardware TF-FI-Steps
Small TPU v3-8 5,000

Python 251,820 Base TPU v3-8 2,000

Large TPU v2-8 500

Small TPU v2-8 10,000

Java 164,923 Base TPU v3-8 5,000

Large TPU v2-8 500

Small TPU v2-8 10,000

Go 167,288 Base TPU v2-8 5,000

. . Large TPU v2-8 1,000

Code Documentation Generation Small TPU v2-8 10,000
Php 241,241 Base TPU v2-8 65,000

Large TPU v2-8 18,000

Small TPU v3-8 5,000

Ruby 24,927 Base TPU v3-8 5,000

Large TPU v2-8 1,000

Small TPU v2-8 40,000

Javascript 58,023 Base TPU v3-8 35,000

Large TPU v2-8 4,000

Small TPU v3-8 5,000

Python 12,004 Base TPU v2-8 1,000

Large TPU v2-8 100

Small TPU v2-8 2,000

Source Code Summarization Csharp 52,943 Base TPU v2-8 500
Large TPU v2-8 200

Small TPU v3-8 1,000

SQL 25,671 Base TPU v2-8 500

Large TPU v2-8 200

Small TPU v3-8 750,000

Code Comment Generation Java 470,451 Base TPU v3-8 80,000
Large TPU v3-8 60,000

Small TPU v2-8 5,000

Git Commit Message Generation Java 26,208 Base TPU v2-8 2,000
Large TPU v2-8 4,500

Small TPU v2-8 1,400,000

API Sequence Recommendation  Java 7,475,850 Base TPU v3-8 340,000
Large TPU v3-8 180,000

Small TPU v3-8 5,000

Program Synthesis DSL 79,214 Base TPU v2-8 45,000
Large TPU v2-8 3,500

Table 5.3.: The transfer learning fine-tuning experiment setups for each task. We list here the
hardware, and the fine-tuning step for the small and base model with the best
performance on each task.
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Score\Step 100 200 300 400 500 600 700 800 900 1000

Bleu 1.625 1981 1973 2015 2.095 2068 1761 1482 1225 1.215
Rougel 17.33 19.04 20 1815 19.29 1882 1873 1839 1676 16.7
Rouge2 385 438 441 373 422 407 393 34 319 298

RougeLsum 16.11 17.38 18.18 16.45 17.54 17.13 16.83 16.6 1538 1522

Table 5.4.: Evalutation on the validation set of the Source Code Summarization SQL task for
fine-tuning 1,000 steps using the interval of 100. We evaluated using the T5 in-built
Bleu and Rouge scores here.

validation set. It shows that our model achieved the best performance exactly after fine-tuning
500 steps. The model has been overfitting afterward, and the scores on the validation set
decreased.

5.4. Multi-task Learning

Multi-task learning trains a single model on a mixture of tasks. We trained 13 supervised
tasks together with all the unsupervised tasks using the T5 framework. The unsupervised
tasks are desired to help the model gain information about the language attributes and build
a language model in the software development domain. Simultaneously, the supervised tasks
assist each other in making the model more generalized for all the tasks and avoid overfitting
on each specific task.

We used examples-proportional mixing to select samples in proportion to the size of each
task’s dataset and concatenated them. We recorded the model checkpoint every 20,000
training steps. The batch size is 4096. Usually, all the tasks should share one same best
performance checkpoint. T5 paper proposed a way to relax this goal and select a different
checkpoint for each task. We also evaluated the model on the validation set and selected the
best checkpoint for each task. So each task could have a different checkpoint from the same
model. We investigated the T5 small, base, and large models. We utilized only TPU v3-8 to
train these models for multi-task learning.

We trained the T5 small model for 500,000 steps and collected 25 checkpoints. The whole
training took more than 17 days. Figure 5.4 illustrates the change of loss in the training set
and the change of the model learning rate. The training loss went down very fast at first
and reached 0.9 at around 150,000 steps. The loss changed slightly around 0.9 during further
training. The final loss is 0.887 after training half a million steps. The multi-task learning
small model’s loss change curve is smoother than the transfer learning small model.

We trained the T5 base model for 500,000 steps and collected 25 checkpoints. The whole
training took more than 52 days. Figure 5.5 illustrates the change of loss in the training set
and the change of the model learning rate. The training loss reached 0.6 at around 100,000
steps. Since then, the loss changed slightly around 0.6 but still had a tiny trend to decay.
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Figure 5.4.: The development of Loss and learning rate of the T5 small model during the
multi-task learning.
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Figure 5.5.: The development of Loss and learning rate of the T5 base model during the
multi-task learning.

The final loss is 0.590 after training 500,000 steps. The multi-task learning base model’s loss
change curve is also smoother than the transfer learning base model.

We trained the T5 large model for 260,000 steps and collected 13 checkpoints because of this
thesis’s time constraint. The whole training took more than 86 days. Figure 5.6 illustrates the
change of loss in the training set and the change of the model learning rate. The training loss
went down very fast at the first 20,000 steps. It reached 0.5 at around 80,000 steps. Since then,
the loss decayed slightly and slowly. It did not have much fluctuation like the small and base
multi-task learning models. The final loss is 0.4707 after training 260,000 steps.
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Figure 5.6.: The development of Loss and learning rate of the T5 large model during the
multi-task learning.

Task Language Sample Size Steps in Small Model Steps in Base Model Steps in Large Model
Python 251,820 420,000 420,000 80,000
Java 164,923 400,000 480,000 180,000
Code Documentation Generation Go 167,288 340,000 340,000 60,000
Php 241,241 420,000 360,000 240,000
Ruby 24,927 420,000 160,000 80,000
Javascript 58,023 500,000 440,000 120,000
Python 12,004 300,000 260,000 80,000
Source Code Summarization Csharp 52,943 300,000 160,000 120,000
SQL 25,671 460,000 500,000 120,000
Code Comment Generation Java 470,451 360,000 460,000 260,000
Git Commit Message Generation Java 26,208 280,000 480,000 220,000
API Sequence Recommendation ~ Java 7,475,850 500,000 480,000 240,000
Program Synthesis DSL 79,214 300,000 360,000 220,000

Table 5.5.: The best multi-task learning checkpoints (training steps) for different tasks in the
small and base model.

Table 5.5 lists the best training steps we chose for each task regarding the checkpoint perfor-
mance on the validation sets. For the T5 small model, these checkpoints are collected in the
latter half of the multi-task learning and distributed from 280,000 to 500,000 training steps.
Like the small model, the base model also has its best checkpoints in the last 100,000 training
steps for more than half of the tasks. This could indicate that these two models still improved
in the latter part of the training. However, two of the tasks achieve their best performance
for the base model in 160,000 training steps. So the best checkpoint for each task could vary
a bit. For the large model, most tasks from Code Documentation Generation and Source
Code Summarization achieve the best performance during the first 120,000 steps. Tasks with
a large dataset like Code Comment Generation and API Sequence Recommendation need
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more steps to have the best performance. So the best checkpoints for these tasks lie at the end
of pre-training. If we train the large model using multi-task learning with more steps, the
large model could better perform the tasks.

5.5. Multi-task Learning with Fine-tuning

We fine-tuned each supervised task separately based on the multi-task learning checkpoints
of 500,000 steps for the small and base model, and the checkpoint of 260,000 steps for the
large model. Like the transfer learning fine-tuning, we chose the batch size of 256 and applied
the early stopping to determine the fine-tuning steps based on the models” performance on
the validation sets.

We used the TPU v3-8s mainly for the Code Comment Generation and the API Sequence
Recommendation tasks. These two tasks have enormous datasets and consumed the longest
training time when carrying out the transfer learning fine-tuning. The rest of the tasks were
trained mostly using the TPU v2-8s. For small and base models, We set the fine-tuning step
interval to 2,000 for most of the tasks, while we adjusted this value to 500 for the Source
Code Summarization, and 20,000 for the Code Comment Generation and API Sequence
Recommendation tasks. We reduced this value to 500 for the majority of tasks for the large
models, 100 for the Source Code Summarization, 5,000 for the Code Comment Generation
task, and 10,000 for the API Sequence Recommendation task.

Table 5.6 lists the small, base, and large models’ fine-tuning steps to reach their best perfor-
mance for each task. Most of the tasks reach the best performance directly after fine-tuning
the step interval (e.g., 500 steps or 2,000 steps) once. However, the number of fine-tuning
steps varies significantly among the different sizes of models for tasks with large datasets.
For such tasks with large datasets, the smaller the model is, the more steps fine-tuning
requires. The Code Comment Generation task large model needs 25,000 steps to have the
best performance. The base model requires double the steps (60,000), and the small model
requires 30 times more fine-tuning steps (750,000). This situation also happens in the API
Sequence Recommendation task. In this way, although running one iteration would take
more time for larger models, the less fine-tuning steps would still help a large model reach
the best performance with less time in total.
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Task Language Sample Size Model Size Hardware MT-FT-Steps
Small TPU v2-8 4,000

Python 251,820 Base TPU v2-8 4,000

Large TPU v2-8 500

Small TPU v2-8 2,000

Java 164,923 Base TPU v2-8 2,000

Large TPU v2-8 500

Small TPU v2-8 2,000

Go 167,288 Base TPU v2-8 2,000

Code Documentation Generation Large TPU v2-8 4,500
Small TPU v2-8 2,000

Php 241,241 Base TPU v3-8 5,000

Large TPU v2-8 8,000

Small TPU v2-8 2,000

Ruby 24,927 Base TPU v2-8 12,000

Large TPU v2-8 2,000

Small TPU v2-8 32,000

Javascript 58,023 Base TPU v3-8 10,000

Large TPU v2-8 2,500

Small TPU v2-8 600

Python 12,004 Base TPU v2-8 1,000

Large TPU v3-8 100

o Small TPU v2-8 1,200

Source Code Summarization Csharp 52,943 Base TPU v2-8 500
Large TPU v3-8 100

Small TPU v2-8 1,200

SQL 25,671 Base TPU v2-8 500

Large TPU v3-8 100

Small TPU v3-8 750,000

Code Comment Generation Java 470,451 Base TPU v3-8 60,000
Large TPU v3-8 25,000

Small TPU v2-8 8,000

Git Commit Message Generation Java 26,208 Base TPU v2-8 16,000
Large TPU v2-8 3,000

Small TPU v3-8 1,150,000

API Sequence Recommendation  Java 7,475,850 Base TPU v3-8 320,000
Large TPU v3-8 130,000

Small TPU v2-8 16,000

Program Synthesis DSL 79,214 Base TPU v2-8 30,000
Large TPU v2-8 2,000

Table 5.6.: The multi-task learning fine-tuning experiment setups for each task. We listed here
the hardware, and the fine-tuning steps for the best performance of the small, base
and large models for each task.
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6. Evaluation Results and Discussion

This chapter presents our experiment results for all the tasks using single-task learning,
transfer learning, multi-task learning, and fine-tuning. We call our model CodeTrans because
the model is based on the Transformer architecture. We compare our CodeTrans results with
the baseline and discuss the reasons impacting the results.

6.1. Evaluation Results

In this section, we list the evaluation results of all the CodeTrans models for each task. The
models” performance on the validation set can be found in Appendix A. We choose the
models we explained in Section 3.2 as our baseline. The performance of most of these models
can be considered as the state-of-the-art performance for that specific task. We estimated our
models’ final performance on the test set. We use the same metric script for evaluation as
the baseline models to compare the model performances. Additionally, we also apply the T5
built-in BLEU and ROUGE metrics to get more insights into the results.

6.1.1. Code Documentation Generation
We present the results of six Code Documentation Generation tasks separately.

Table 6.1 compares different model performances on the Code Documentation Generation
- Python task. We can see that most of our transfer learning, multi-task learning, and
multi-task learning fine-tuning models outperform the state-of-the-art model CodeBERT in
this task. Among them, the CodeTrans base model with the multi-task learning strategy
achieves the best result and has more than one percent higher Smoothed BLEU score than
CodeBERT.

Table 6.2 lists evaluation results of the Code Documentation Generation - Java task. Our
CodeTrans models with transfer learning, multi-task learning, and multi-task learning with
fine-tuning all outperform the baseline CodeBert model. Among them, CodeTrans multi-task
learning large model performs best and outperforms CodeBERT by more than four percent
in Smoothed BLEU. CodeTrans multi-task learning fine-tuning large model has the highest
score in T5 built-in BLEU metric. Nevertheless, the multi-task learning base and large models’
performances are very similar to the performances of the multi-task learning fine-tuning base
and large models on all the scores.
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Model Model Size Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans Small 17.31 5.92 30.91 10.60 28.80
Single-Task Learning Base 16.86 6.97 29.51 9.89 27.31
CodeTrans Small 1993  7.38 35.96 14.09 3371
T Base 2026  7.83 36.44 14.66 34.15
8 Large 2035 741 36.33 14.59 34.16

CodeTran Small 1964  7.12 35.45 13.71 332
M‘iﬂtei_tasks Learnin Base 2039  7.99 36.82 14.82 34.34
8 Large 2018  7.94 36.72 14.53 34.25

CodeTran Small 19.77 758 35.74 13.91 33.37
MO lf._taks Learning Fine-tuning 335 1977  7.83 35.81 14.04 33.39
Hitirtaskc Learhing FIetining - 1 arge 1894 730 35.22 13.42 32.75
CodeBERT 19.06 - - - -

Table 6.1.: The evaluation results for the task Code Documentation Generation - Python. We
compare the CodeTrans performance using different training strategies with the
state-of-the-art CodeBERT.

Table 6.3 shows evaluation results of the Code Documentation Generation - Go task. The
CodeTrans transfer learning large model works best and outperforms CodeBERT by more
than one percent. The CodeTrans multi-task learning fine-tuning model has the highest score
on the T5 built-in BLEU metric. Regarding the ROUGE-L, the large model of multi-task
learning performs best. The difference among the different sizes of CodeTrans models is
minimal for this task.

The evaluation results of the Code Documentation Generation - Php task are shown in
Table 6.4. The CodeTrans multi-task learning base model works best and outperforms
CodeBERT by more than one percent on the Smoothed BLEU score. Regarding the T5 built-in
BLEU score, the multi-task learning fine-tuning large model performs best. The multi-task
learning base model works better than the large model. However, if we could train the
multi-task large model longer, we may achieve a better result.

The Code Documentation Generation - Ruby task’s evaluation results are listed in Table 6.5.
The CodeTrans transfer learning, multi-task learning, and multi-task learning fine-tuning
models all outperform the CodeBERT. The multi-task learning base model also performs
best on four metrics and has a three percent better score than the CodeBert model. The
transfer-learning large model has the best performance on the T5 built-in BLEU metric.

Table 6.6 presents evaluation results of the Code Documentation Generation - Javascript task.
The CodeTrans transfer learning large model outperforms the CodeBERT by more than four
percent on the smoothed BLEU score. The multi-task learning fine-tuning large model shows
a similar performance and achieves the best score on ROUGE-1 and ROUGE-L. Moreover, the
multi-task learning fine-tuning base model has the best performance on the T5 built-in BLEU
metric. However, the three multi-task learning models have extremely low scores using the
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Model Model Size Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans Small 1665  8.60 31.22 1221 28.95
Single-Task Learning Base 17.17  8.92 30.90 12.24 28.74
CodeTrans Small 1948 839 36.33 1591 34,02
T Base 2019 844 36.36 16.43 34.17
J Large 2006 7.92 36.79 1651 34.54

CodeT Small 19.00 720 35.73 15.25 33.51
Mottt Leanin Base 2122 9.93 37.98 17.99 35.80
& Large 21.87  12.04 38.60 18.75 36.29

CodeTran Small 2004 7.90 36.37 1630 34.28
Multiotosk Learning Fine-tunine 525 2112 9.99 37.86 17.81 35.67
& & Large 2142 1246 38.44 18.49 35.99

CodeBERT 17.65 - - - -

Table 6.2.: The evaluation results for the task Code Documentation Generation - Java. We
compare the CodeTrans performance using different training strategies with the
state-of-the-art CodeBERT.

Model Model Size Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans Small 16.89 5.98 37.14 14.27 35.58
Single-Task Learning Base 17.16 9.41 37.41 14.49 3543
CodeTrans Small 18.88 8.60 41.29 17.29 39.23
Transfer Learning Base 19.50 9.52 42.09 18.07 39.86

Large 19.54 9.89 42.43 18.51 40.29
CodeTrans Small 19.15 7.83 41.90 17.83 39.69
Multi-task Learning Base 19.43 9.06 41.94 18.24 39.98

Large 19.38 8.41 42.20 18.50 40.33
CodeTrans Small 19.36 8.19 41.99 18.32 39.99
Multi-task Learning Fine-tuning Base 18.86 8.00 41.31 17.52 39.42

Large 18.77 10.81 41.04 16.90 38.73
CodeBERT 18.07 - - - -

Table 6.3.: The evaluation results for the task Code Documentation Generation - Go. We
compare the CodeTrans performance using different training strategies with the
state-of-the-art CodeBERT.
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Model Model Size Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans Small 23.06 12.23 37.10 15.23 35.02
Single-Task Learning Base 2298 1227 36.60 14.98 34.64
CodeTrans Small 25.35 10.45 42.04 17.77 39.96
Transfer Learning Base 25.84 14.51 41.61 18.64 39.37

Large 26.18 14.06 42.29 18.92 40.21
CodeTrans Small 24.68 9.23 41.11 17.06 39.08
Multi-task Learning Base 26.23 10.85 43.07 19.18 41.00

Large 26.08 11.50 42.63 18.69 40.53
CodeTrans Small 25.55 9.20 42.19 17.62 40.24
Multi-task Learning Fine-tuning Base 25.79 10.83 41.65 18.07 39.65

Large 26.20 15.11 42.44 19.39 40.17
CodeBERT 25.16 - - - -

Table 6.4.: The evaluation results for the task Code Documentation Generation - Php. We
compare the CodeTrans performance using different training strategies with the
state-of-the-art CodeBERT.

Model Model Size Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans Small 9.19 2.12 15.54 3.00 14.47
Single-Task Learning Base 823  2.08 13.16 2.39 12.23
CodeTrans Small 13.15 3.78 26.09 8.07 23.99
Transfer Learning Base 14.07 4.70 28.12 9.35 25.73

Large 14.94 5.52 29.10 10.68 26.90
CodeTrans Small 14.91 3.62 29.00 10.04 27.04
Multi-task Learning Base 15.26 4.48 30.28 11.26 28.21

Large 15.00 4.15 29.81 10.74 27.64
CodeTrans Small 13.70 3.84 26.81 8.42 24.65
Multi-task Learning Fine-tuning Base 14.24 5.25 28.33 9.37 25.85

Large 14.19 5.35 28.03 9.77 25.89
CodeBERT 12.16 - - - -

Table 6.5.: The evaluation results for the task Code Documentation Generation - Ruby. We
compare the CodeTrans performance using different training strategies with the
state-of-the-art CodeBERT.
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Model Model Size Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans Small 13.70 9.43 20.94 7.31 19.50
Single-Task Learning Base 13.17  10.13 18.82 7.19 17.75
CodeTrans Small 1723  12.60 28.52 11.44 26.48
Transfer Learning Base 18.25 14.39 30.34 13.21 28.23

Large 18.98 14.08 31.58 13.75 29.26
CodeTrans Small 15.26 3.00 27.63 9.13 25.88
Multi-task Learning Base 16.11 3.52 29.34 10.29 27.53

Large 16.23 4.36 30.05 10.94 28.11
CodeTrans Small 1724 1294 28.55 11.78 26.54
Multi-task Learning Fine-tuning Base 18.62 14.58 30.97 13.61 28.96

Large 18.83 14.56 31.82 13.71 29.52
CodeBERT 14.90 - - - -

Table 6.6.: The evaluation results for the task Code Documentation Generation - Javascript.
We compare the CodeTrans performance using different training strategies with
the state-of-the-art CodeBERT.

T5 built-in BLEU metric. Factors like the output length could influence this evaluation metric.
So it is worthwhile to have multiple metrics when comparing results.

6.1.2. Source Code Summarization

We present the results of three Source Code Summarization tasks separately.

Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L

CodeTrans Small 8.45 1.05 15.23 2.55 13.63
Single-Task Learning Base 9.12 1.62 16.58 3.80 15.08
CodeTrans Small 10.06 1.53 18.97 3.72 16.77
Transfer Learning Base 10.94 2.22 21.44 4.33 18.71
Large 12.41 2.17 23.54 5.32 20.71
CodeTrans Small 13.11 3.60 26.85 7.46 23.70
Multi-task Learning Base 13.37 448 27.81 8.05 24.64
Large 13.24 4.16 27.57 7.88 24.30
Small 12.10 2.89 23.92 5.65 21.17

f/ﬁteftr;fLeamin Fine-tuning 535 1064 211 21.07 429 18.25
& & Large 1214 285 23.73 5.94 20.95

Table 6.7.: The evaluation results for the task Source Code Summarization - Python. We
compare the CodeTrans performance among different training strategies.

Table 6.7 shows the results for Source Code Summarization - Python. Because the CODE-NN
did not provide the evaluation on this Python task, so we compare the results among different
CodeTrans training strategies. From the table, we can observe that the small, base and large
CodeTrans multi-task learning models perform better than the rest of the CodeTrans models.
The multi-task learning base model achieves better results than the small and the large
models over all the metrics.
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Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L

CodeTrans Small 19.74 2.80 20.02 4.61 18.29
Single-Task Learning Base 18.65 2.69 20.55 4.69 18.69
CodeTrans Small 20.40 3.60 22.88 5.93 20.98
Transfer Learning Base 21.12 3.84 23.27 6.18 21.36

Large 21.43 4.02 23.68 6.40 21.89
CodeTrans Small 22.39 3.74 23.43 6.16 21.34
Multi-task Learning Base 23.20 4.23 24.71 6.65 22.50

Large 23.57 4.39 24.71 6.90 22.62
CodeTrans Small 22.03 3.60 22.67 5.93 20.84
Multi-task Learning Fine-tuning Base 21.40 4.20 24.33 6.56 22.18

Large 21.10 3.68 22.84 5.65 20.67
CODE-NN 20.50 - - - -

Table 6.8.: The evaluation results for the task Source Code Summarization - CSharp. We
compare the CodeTrans performance using different training strategies with the
state-of-the-art CODE-NN.

Table 6.8 presents the evaluation results for the Source Code Summarization - Csharp task.
We compare the CodeTrans performances with the CODE-NN as our baseline. CodeTrans
multi-task learning large model outperforms the CODE-NN by more than three percent
on this task. It also outperforms other CodeTrans models. The multi-task learning base
model has similar good performance and achieves the same highest scores on the ROUGE-1
metric.

Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L

CodeTrans Small 17.55 1.54 18.10 3.57 16.36
Single-Task Learning Base 15.00 1.28 16.27 2.86 14.51
CodeTrans Small 17.71 1.75 18.69 3.86 17.06
Transfer Learning Base 17.66 225 19.94 4.41 17.97

Large 1840 217 20.37 4.27 18.20
CodeTrans Small 1915 1.95 19.05 4.20 17.03
Multi-task Learning Base 1924 210 19.53 4.10 17.65

Large 19.49 2.29 20.34 4.49 18.21
CodeTrans Small 1825  1.88 18.77 3.97 16.97
Multi-task Learning Fine-tuning Base 16.91 1.95 19.42 3.98 17.57

Large 1998  1.97 17.48 4.03 16.26
CODE-NN 18.40 - - - -

Table 6.9.: The evaluation results for the task Source Code Summarization - SQL. We compare
the CodeTrans performance using different training strategies with the state-of-the-
art CODE-NN.

Table 6.9 shows the models” performance on the Source Code Summarization - SQL task. For
this task, the multi-task learning fine-tuning large model performs best on the smoothed
BLEU score and has more than 1.5 percent than the baseline CODE-NN. The multi-task
learning large model has the second-highest score on the smoothed BLEU and outperforms
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all other models on the T5 built-in BLEU, ROUGE-2, and ROUGE-I metrics. The CodeTrans
large transfer-learning model has the highest score on ROUGE-1. Since the smoothed BLEU
only took 100 samples from the test dataset, the other metrics consider the whole test
dataset, so the CodeTrans multi-task learning large model’s performance should be better in
general.

6.1.3. Code Comment Generation

The evaluation results of the Code Comment Generation task are presented in Table 6.10. We
compare the CodeTrans with the DeepCom model as our baseline. In total, the CodeTrans
transfer learning large model achieves the best 39.50 smoothed BLEU score among all the
models, which is also higher than the state-of-the-art DeepCom by more than one percent.
The multi-task learning fine-tuning large model achieves a similar manner of performance
and has the highest score for the T5 built-in BLEU metric. For this task, the small, base, and
large multi-task learning models perform even worse than those that only applied single-task
learning. But the improvement is huge for the multi-task learning when the model size
increases.

Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L

CodeTrans Small 3798 36.05 46.61 34.83 45.47
Single-Task Learning Base 38.07 36.79 46.77 35.06 45.62
CodeTrans Small 38.56 36.31 47.93 35.56 46.71
Transfer Learning Base 39.06 37.38 48.95 36.34 47.66

Large 39.50 37.86 49.68 37.07 48.37
CodeTrans Small 20.15 11.97 34.23 17.38 32.78
Multi-task Learning Base 2744 19.96 40.61 25.25 39.21

Large 34.69 30.74 46.21 32.53 44.83
CodeTrans Small 38.37  36.81 47.79 35.59 46.58
Multi-task Learning Fine-tuning Base 3890 37.60 48.95 36.38 47.57

Large 39.25 38.54 49.21 36.76 47.91
DeepCom 38.17 - - - -

Table 6.10.: The evaluation results for the task Code Comment Generation. We compare the
CodeTrans performance using different training strategies with the state-of-the-art
DeepCom.

6.1.4. Git Commit Message Generation

Table 6.11 shows the evaluation results for the task Git Commit Message Generation. We did
not apply the smoothed BLEU score for this task because the baseline NMT model was only
evaluated using the BLEU metric. All our CodeTrans models outperform the baseline model.
The performance of models used transfer learning and multi-task learning fine-tuning are
quite similar. The CodeTrans transfer learning large model achieves the best BLEU score as
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44.41. The CodeTrans multi-task learning fine-tuning large model has the best performance
on the ROUGE-2 score.

BLEU ROUGE-1 ROUGE-2 ROUGE-L

CodeTrans Small 39.61 3791 28.89 37.69
Single-Task Learning Base 38.67 37.77 28.30 37.59
CodeTrans Small 44.22 47.05 34.74 46.57
Transfer Learning Base 4417 4741 35.14 46.84

Large 44.41 48.36 35.66 47.76
CodeTrans Small 36.17 38.15 25.38 37.84
Multi-task Learning Base 39.25 43.71 29.90 43.32

Large 41.18 46.36 32.42 45.86
CodeTrans Small  43.96 47.39 35.00 46.94
Multi-task Learning Fine-tuning Base 44.19 47.96 3561 47.43

Large 44.34 48.08 35.75 47.52
NMT 32.81 - - -

Table 6.11.: The evaluation results for the task Git Commit Message Generation. We compare
the CodeTrans performance using different training strategies with the state-of-
the-art NMT.

6.1.5. API Sequence Recommendation

Table 6.12 presents the evaluation results of the task API Sequence Recommendation. We
compare our results with the DeepAPI model as our baseline. We applied the same BLEU
metric script as the DeepAPI used, in addition to the T5 built-in BLEU and ROUGE scripts.
All the CodeTrans models outperform the DeepAPI model. Among the CodeTrans models,
those trained using only multi-task learning perform worst. The CodeTrans large model with
multi-task learning fine-tuning has the highest scores across all the models. The CodeTrans
transfer learning large model also has a similarly good performance.

6.1.6. Program Synthesis

Table 6.13 presents the evaluation results. We evaluated our models using the absolute
Accuracy and comparing them with the code Accuracy of the baseline model Seq2Tree. If
the absolute Accuracy is high, then the model could definitely achieve a high code Accuracy.
Nine out of Ten CodeTrans models outperform the Seq2Tree model. The CodeTrans multi-
task learning fine-tuning small model achieves the best score on Accuracy. The CodeTrans
transfer learning small model performs best on T5 built-in BLEU and ROUGE scores. For
these two training strategies, smaller models perform better. For multi-task learning, the
performance increases along with the model size. This task’s scores are very high, which
means that this is an easy task with very similar validation and test sets, and bigger models
may easy to be overfitted.
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DeepAPI BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L

CodeTrans Small 68.71 7092 77.40 68.72 77.37
Single-Task Learning Base 7045 72.32 79.11 70.55 79.09
CodeTrans Small 68.90 70.85 77.80 68.91 77.76
Transfer Learning Base 7211  73.65 80.64 72.43 80.65

Large 7326  74.38 81.67 73.69 81.69
CodeTrans Small 58.43  59.69 67.22 56.97 67.19
Multi-task Learning Base 6797  69.82 76.72 67.66 76.70

Large 7229 7355 80.82 72.50 80.76
CodeTrans Small 69.29 71.31 78.01 69.18 78.02
Multi-task Learning Fine-tuning Base 72.89 74.16 81.32 73.20 81.33

Large 73.39 74.53 81.80 73.81 81.78
DeepAPI 54.42 - - - -

Table 6.12.: The evaluation results for the task API Sequence Recommendation. We compare
the CodeTrans performance using different training strategies with the state-of-
the-art Deep APL

Accuracy BLEU ROUGE-1 ROUGE-2 ROUGE-L

CodeTrans Small 89.43  94.62 98.93 98.21 98.60
Single-Task Learning Base 89.65 94.64 99.04 98.43 98.72
CodeTrans Small 90.30 94.73 99.30 98.62 98.84
Transfer Learning Base 90.24 94.72 99.13 98.59 98.82

Large 90.21 94.72 99.13 98.61 98.50
CodeTrans Small 82.88 94.03 98.58 97.57 98.25
Multi-task Learning Base 86.99  94.52 98.97 98.25 98.68

Large 90.27 94.71 99.12 98.62 98.83
CodeTrans Small 90.31 94.72 99.12 98.60 98.82
Multi-task Learning Fine-tuning Base 90.30 94.72 99.12 98.61 98.83

Large 90.17  94.70 99.12 98.56 98.81
Seq2Tree 85.80 - - - -

Table 6.13.: The evaluation results for the task Program Synthesis. We compare the CodeTrans
performance using different training strategies with the state-of-the-art Seq2Tree.
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6.2. Discussion

Our CodeTrans models with the encoder-decoder transformer architecture outperform the
baseline models in all the thirteen tasks. This proves the effectiveness of the transformer
encoder-decoder architecture for these tasks in the software development domain. Table 6.14
shows one example of the outputs from all CodeTrans models with the input javascript code
and the golden reference. From this table, we can see all the models give readable outputs
and these outputs are highly similar to the golden reference. The examples for other tasks are
listed in the Appendix B.

Model Size  Model Output
CodeTrans Small Returns true if the browser is a native element .
Single-Task Learning Base  Returns whether the givenEnv should be focused .

Small Checks if the current browser is on a standard browser environment .
CodeTrans

. Base  Check if browser environment is a standard browser environment
Transfer Learning

Large Check if the environment is standard browser .

Small Returns true if the browser environment is a standard browser environment .
Base  Checks if the current browser environment is a standard browser environment .
Large Determines if the current environment is a standard browser environment

CodeTrans
Multi-task Learning

Small Standard browser environment has a notion of what React Native does not support it .
CodeTrans . .
Multi-task Learning Fine-tunin Base  Check if the browserEnv is standard .

8 8 Large Checks if the browser is in a standard environment .

function isStandardBrowserEnv () { if ( typeof navigator !== ‘undefined” && ( navigator . product
Code Snippet as Input === "ReactNative’ | | navigator . product === "NativeScript’ | | navigator . product === 'NS") )

{ return false ; } return ( typeof window !== "undefined’ && typeof document !== "undefined” ) ; }
Golden Reference Determine if we re running in a standard browser environment

Table 6.14.: The models’ output for an example of the task Code Documentation Generation -
Javascript.

Nevertheless, the models” performance varies a bit when using different training strategies
for different sizes of models on different datasets.

We have noticed that the model size plays an essential role in the model’s performance. For
single-task learning, the larger the dataset is, the fewer training steps a bigger model requires.
A bigger model reaches a lower loss under the same batch size and the same evaluation steps
when applying the multi-task learning or transfer learning strategy. Although the pre-training
may cost more time for bigger models, they need fewer iteration steps during fine-tuning for
each task than the small models. As a result, for most of the tasks, the bigger the model is,
the better evaluation scores the model could achieve with even less fine-tuning time.

The evaluation results also prove that transfer learning and multi-task learning with fine-
tuning strategies outperform the models that only used single task learning on all the tasks.
The performance of models using transfer learning is very similar to those using multi-task
learning fine-tuning. It is hard to say which one is better. However, transfer learning does
not require the task dataset to be involved in the pre-training steps. For a new task, the
dataset only needs to be trained for relatively few fine-tuning steps, while multi-task learning
with fine-tuning needs the new task dataset during pre-training. We can say that transfer
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learning would save many training steps and times for a new task when only fine-tuning on
a pre-trained model checkpoint.

Code Comment Generation Source Code Summarization - SQL
= small = base large = small = base large

50 25

40 20 A\//\/\

30 1.5

20 //J—/\,J 1.0

10 0.5

0 0.0

100,000 200,000 300,000 400,000 100,000 200,000 300,000 400,000
(a) The Code Comment Generation task’s training (b) The Source Code Summarization - SQL task’s
dataset has 470,486 samples. training dataset has 22,492 samples.

Figure 6.1.: The evaluation of multi-task learning checkpoints on the validation set for two
tasks. The x-axis lists the training steps. The y-axis is the T5 built-in BLEU score.
Different colors indicate different sizes of models.

The performance of multi-task learning depends highly on the data size and attributes
of the task itself. Figure 6.1 illustrates the small, base, and large models” performance on
the validation sets for two different kinds of datasets during the multi-task learning. For
large datasets like the dataset for the task Code Comment Generation and API Sequence
Recommendation, multi-task learning models are even worse than the models that only
applied single-task learning. Figure 6.1a shows that the model’s performance improves a
lot when we increase the model size for the Code Comment Generation task with a large
dataset. Half a million multi-task training steps are not enough for this task, even using the
large model. When the dataset is tiny and easy to be overfitted, multi-task learning could
achieve the best result, and a bigger model does not lead to a certain better performance. In
Figure 6.1b, we can see that the base model performs overall better than the small model for
the source code summarization - SQL task, but the large model has several overlaps with the
base model. The large model has a sign of overfitting after 120,000 training steps, and the
model performance decreases since then.

Table 6.15 lists the outputs of each CodeTrans models comparing with the golden reference
extracted from the StackOverflow. The input for the models is "select time ( col0 ) from tab0".
We can observe that all the models” outputs are readable sentences. The majority of them have
a question format. Because the dataset contains questions and answers from StackOverflow,
the models have learned how to ask a question. Outputs from the models with only single-
task learning did not make much sense. The other outputs all notice this code is about time.
All the multi-task learning models also specify the mysql database system. The CodeTrans
multi-task learning large model mentions the keyword datetime, which also appears in the
golden reference. Besides, the transfer learning and multi-task learning fine-tuning base
models have reasonable outputs as well. The CodeTrans transfer learning and multi-task
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Model Size  Model Output
CodeTrans Small mysql : how to get the difference of a column in a table ?
Single-Task Learning Base  how do i get the average of a date range in sql server 2005 ?

Small how to get the time in milliseconds since the start time of the transaction was taken ?
Base  how to get current date time in sql server ?
Large mysql time () function

CodeTrans
Transfer Learning

Small how to get the time in mysql ?
Base  how can i get the time of a date in mysql ?
Large how to convert datetime to time in mysql ?

CodeTrans
Multi-task Learning

Small how to get the correct time from mysql database ?
CodeTrans .
. . . . Base  how to convert date to time in mysql ?
Multi-task Learning Fine-tuning .
Large select time from mysql table

Code Snippet as Input select time ( col0 ) from tab0

Golden Reference datetime implementation in php mysql

Table 6.15.: The models” output for an example of the task Source Code Summarization. We
compare different CodeTrans model outputs and the golden reference for the
input SQL code "select time ( col0 ) from tab0". The golden reference is the one
extracted from the StackOverflow.

learning fine-tuning models focus more on the code function and structure to summarize this
code snippet. In total, our judge for the models” performances matches the ranking of our
evaluation metrics.

Moreover, most of the Code Documentation Generation tasks achieve the best evaluation
performance when using the multi-task learning strategy. It could be that we have two more
unsupervised tasks from the same CodeSearchNet corpus during the multi-task learning.
These give more similar samples for the supervised Code Documentation Generation tasks,
so the model would focus on training these tasks more. Moreover, using different types of
tasks during multi-task learning also avoids overfitting efficiently.

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

BLEU 1194 1196 1150 11.13 11.78 11.66 1236 11.83 12.07 11.79
ROUGE-1 39.59 38.73 3779 37.55 372 3666 3721 3701 3693 36.77
ROUGE-2 19.79 1873 176 1739 17.09 16.69 17.02 16.79 16.83 16.57
ROUGE-L 37.39 36.26 352 3506 3466 3411 3455 3443 3426 34.03

Table 6.16.: The evaluation of the task Code Documentation Generation - Java on the validation
set when fine-tuning the multi-task base model. The first row listed the fine-
tuning steps. The rest of the rows are the scores on each step regarding different
evaluation metrics.

It is worth mentioning that we chose the best checkpoint based on different metrics from
the models” performance on validation sets. BLEU score and ROUGE scores may point
to different best checkpoints. Table 6.16 shows the model performance on the validation
set regarding different evaluation metrics when we fine-tuned the Code Documentation

76



6. Evaluation Results and Discussion

Generation - Java task. The ROUGE scores indicate that the model has the best performance
on 2,000 fine-tuning steps, while the BLEU metric achieves the highest score on 14,000 steps.
We tested the model using both 2,000 and 14,000 fine-tuning checkpoints. It turns out that
checkpoint 2,000 also gives higher BLEU and ROUGE scores on the test set. So it is helpful to
decide the best model considering different metrics.

6.3. Models Publication

© @ https://huggingface.co/SEBIS/code_trans_t5_base_code_documentation_generation_java_multitask finetune?text=public+static+<+T+%2C+U+>+Function+<+T+%2C+U+>+castFunc: [ +=

¥ Hugging Face Models Datasets Pricing  — Resources Loghh  SignUp

e code_trans_t5_base_code_documentation_generation_java_multitask_finetune

b Summarization () PyTorch  t5
Model card Files and versions < Usein transformers

CodeTrans model for code documentation generation java Downloads last month

Pretrained model on programming language java using the t5 base model architecture. It was first
released in this repository. This model is trained on tokenized java code functions: it works best with Hosted inference API

tokenized java functions. Summarization

public static <T, U >Function <T , U> castFunction (Class <U > target) { return

Model description new CastToClass<T, U>(target) ;}

This CodeTrans model is based on the t5-base model. It has its own SentencePiece vocabulary model.
It used multi-task training on 13 supervised tasks in the software development domain and 7 G
unsupervised datasets. It is then fine-tuned on the code documentation generation task for the java

function/method
Returns a function that casts the given object to the given class .

JSON Output 1 APIEndpoint

Intended uses & limitations

The model could be used to generate the description for the java function or be fine-tuned on other java
code tasks. It can be used on unparsed and untokenized java code. However, if the java code is

tokenized, the performance should be better.

How to use

Here is how to use this model to generate java function documentation using Transformers

SummarizationPipeline:

Figure 6.2.: The multi-task learning fine-tuning base model page for the task Code Documen-
tation Generation - Java from the Hugging Face Model Hub.

We trained the transformer architecture models for tasks in the software development domain
in this thesis. These tasks are useful during the software development life cycle, and the
performance of the models is very satisfying. We converted the best checkpoints and published
all our models on the Hugging Face Model Hub!, which is a platform containing the largest
collection of models, datasets, and metrics about advance Al and NLP. The models are listed
under the organization Software Engineering for Business Information Systems (sebis)?. Users
across the world can use these models freely on their demand.

Figure 6.2 presents the website page of the multi-task learning fine-tuning base model for the
task Code Documentation Generation - Java from the Hugging Face Model Hub. On the left
side of the page is the model card. It describes the background information and the usage of

Ihttps://huggingface.co/
’https://huggingface.co/SEBIS
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this model. The right side of the page is the user input-output interface. By giving the code
to summarize the documentation in the text box on the right side and clicking the button
"Compute," the documentation generated by our model would show under the button in
few seconds. These models can also be downloaded and compute batches of codes using the
Python package transformers® following the description in the model card.

Besides, our transfer learning pre-trained checkpoints are suitable for fine-tuning new tasks
in the software development domain, especially those involving Python, Java, Php, Javascript,
Ruby, and Go, SQL, CSharp, and Lisp programming languages. Our pre-trained multi-task
learning checkpoints are more fit for Code Documentation Generation tasks since more
relevant tasks are involved during pre-training. Fine-tuning based on these checkpoints may
save users a lot of time and improves task performance. We published these pre-trained
checkpoints in our GitHub Repository* together with all our training datasets and the training
scripts. We also built the Colab Notebooks about preprocessing the datasets and running the
models for each task to guide the users using these models.

Shttps://huggingface.co/transformers/
“https://github.com/agemagician/CodeTrans
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7. Conclusions and Future Work

In this chapter, we come to the conclusions for this master thesis, and point out the directions
for the future work.

7.1. Conclusions

This thesis explores the CodeTrans models with Transformer Encoder-Decoder architecture on
six main tasks and, in total, thirteen subtasks in the software development domain covering
nine programming languages. We carried out experiments with different training strategies,
including single-task learning, transfer learning, multi-task learning, and multi-task learning
fine-tuning. We utilized different sizes of the models based on the Google Tensorflow Text-
To-Text Transfer Transformer framework by applying the Nvidia GPU and Google Cloud
TPUs.

Our CodeTrans models outperform all the baseline models and achieve the state-of-the-art
over all the tasks. Our experiments on various tasks have provided us many insights about
training a neural network model on software development relevant tasks. We find that,
first of all, larger models may bring a better model performance. Secondly, models with
transfer learning perform as well as models with multi-task learning fine-tuning, and the
pre-training models can be fine-tuned on the new downstream tasks efficiently while saving
a lot of training time. Moreover, multi-task learning is very beneficial for the small dataset on
which the model will overfit easily. Finally, we also examine the effect of different metrics
for the natural language generation tasks, and considering several metrics would be helpful
for finding the best model checkpoint. It is also promising that these experiences can be
generalized for training natural language processing tasks on different domains.

In addition to these findings, we have published our models on the internet with a friendly
user interface and sufficient documentation so that everyone can access our models and use
them for their purposes. We also provide the online downloading links to the pre-trained
checkpoints generated from our CodeTrans transfer learning pre-training. These checkpoints
are suitable for fine-tuning other tasks in the software development domain if the task’s
programming language is covered in this thesis.

In conclusion, during this thesis work, we gain valuable experiences in training neural
network models for natural language processing, give contributions to solve the software
development domain tasks, and achieve our research goals.
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7.2. Future Work

We involved small, base, and large models in this thesis. However, we only trained the large
model for around 250,000 steps due to lack of time, because every 20,000 steps cost almost
one week for a large model. It worths continuing to train the large model and obverse the
model converge and the model performance in the further iteration steps.

When working on the Code Documentation Generation tasks, we have noticed that a program-
ming language function has two aspects influencing the model performance: the function
names/parameter names and the code structure. A well-named function would lower the
difficulty for the model to generate the documentation. Further researches about functions
with disguised parameter names or function names would be valuable. We considered a
function as a sentence during our thesis work. From this aspect, we did not fully make use of
the code structure. So how to present the code is also a good research point. Experiments
about finding the best way to present the features of code structure can be carried out.

We preprocessed the datasets by parsing and tokenizing the programming codes using
different Python libraries for each programming language. So when using our models,
applying the same preprocessing way would draw the best results. Nevertheless, not every
user is a programming expert, and the preprocessing increases the complexity for users to get
the best model performance. It would be meaningful to examine the effect of preprocessing
for the software development tasks and train models with good performance but without
preprocessing like parsing and tokenizing.

For measuring the performance of models, we only applied the objective human likeness
measures of BLEU and ROUGE scores in this thesis. For examining the generated natural
languages, subjective human judgments could also be applied. Human annotators could be
invited to evaluate the model output and to examine the model performance considering
aspects like grammaticality, correctness, or human-likeness.

Moreover, more tasks can be explored using transformer encoder-decoder architecture. It
would be interesting to examine our models’ performance on the unseen programming
languages. Evaluation could be run directly on similar tasks with an unseen programming
language using the multi-task learning CodeTrans models. The pre-trained models can
also be fine-tuned on tasks with unseen programming languages and examine the model
outputs.

Finally, the performance of our CodeTrans models can be the baseline for tasks introduced
in this thesis. They can be used to comparing the effectiveness of new natural language
processing model architectures in the future.
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A. Appendix - Hyperparameter Turning and

Evaluation on Validation Set

A.1. Single-task Learning

A.1.1. Code Documentation Generation

Python, small model, batch size: 256

Steps 20000 40000 60000 80000 100000

BLEU 5.646 5.852 6.261 6.256 6.242

ROUGE1 30.14 2945 2941 29.12 28.82

ROUGE2 10.08 9.62 9.61 9.57 9.37

ROUGELsum 28.02 2738 2722 27.07 26.72

Python, small model, batch size: 512

Steps 10000 20000 30000 40000 50000 60000 70000

BLEU 4.645 5899 6.009 6329 6.379 6.15 6.289

ROUGE1 28.67 29.03 29.13 28.8 2886 2859 28.79

ROUGE2 9.45 9.59 9.37 9.52 9.56 9.31 9.55

ROUGELsum 27.02 27.01 2699 2671 26.77 2654 26.76

Python, small model, batch size: 1024

Steps 10000 20000 30000

BLEU 5.372  5.831 5.842

ROUGE1 28.44 28.46 28.3

ROUGE2 9.15 9.28 9.2

ROUGELsum 26.46 26.49 26.33

Python, base model, batch size: 384

Steps 7500 15000 22500 30000 37500 45000 50000 55000 60000 65000 70000 75000 80000 85000 90000 95000 100000
BLEU 3.361 5.213 5.594 5929 5856 5.949 6.0009 6.025 6.056 624 6.303 6.218 6.334 6.153 6.495 6.491 6.435
ROUGE1 27.16 278 2745 2813 2773 2777 28.87 2843 27.83 2793 28.03 2795 28.69 2797 2852 28.25 28.18
ROUGE2 7.87 8.38 8.39 8.81 8.64 8.72 8.89 8.98 8.8 9.03 8.95 8.94 9.18 8.89 9.24 9.11 9.16
ROUGELsum 2541 25.67 255 26.1 25,6 2564 2585 2629 2576 2582 25.89 259 26,55 2588 2633 26.12 26.13
Python, base model, batch size: 512

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

BLEU 3405 4366 5202 5334 5561 5.641 5.879 576 5935 6.246 597 6.019

ROUGE1 2571 26.03 26.89 2759 2739 2751 2749 2759 2764 2793 27.83 27.89

ROUGE2 699 745 796 834 83 858 86l 859 863 888 874 8.8

ROUGELsum 2395 2424 2491 2555 2527 2555 2547 2552 2554 25.83 2579 2577
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Python, base model, batch size: 1024

Steps 5000 8000 11000 14000 19000 24000
BLEU 4493 475 4833 5379 5112 5541
ROUGE1 2643 26.01 2598 2592 26254 2687
ROUGE2 734 7.66 7.48 7.57  7.671 7.95

ROUGELsum 24.39 2426 2422 24.06 24292 24.76

Java, small model, batch size: 256

Steps 20000 40000 60000 80000 100000
BLEU 6.846 8.071 8.667 8.465 8476
ROUGE1 3157 3178 3201 3176 3172
ROUGE2 1205 1231 1258 1252 1254

ROUGELsum 294 2946 29.69 29.46 29.5

Java, small model, batch size: 512

Steps 10000 20000 30000 40000 50000
BLEU 6.049 745 7909 8.484 7984
ROUGE1 2949 29.04 30.65 3044 30.19
ROUGE2 103 1071 1152 1139 11.3

ROUGELsum 27.39  27.1 28.6 281 28

Java, small model, batch size: 1024

Steps 10000 20000 30000
BLEU 6.842 8792 8.161
ROUGE1 29.93 31.08 30.48
ROUGE2 1121 1176 11.74

ROUGELsum 28.14 28.69 28.46

Java, base model, batch size: 128

Steps 8000 16000 32000 48000 56000 64000 72000 80000 88000 96000 104000
BLEU 349 5052 6522 6798 7003 7912 7808 7482 7547 7117  7.852
ROUGE1 2664 2756 28.69 29.73 2933 297 2998 2991 29.64 29.33  30.32
ROUGE2 8.19 8.58 10.04 10.6 10.34 1052 11.03 1093 10.65 1046  11.16

ROUGELsum 24.98 25.49 26,6 27.61 2725 2752 2779 27.85 2755 2721 28.11

Java, base model, batch size: 256

Steps 24000 32000 40000 48000 56000 64000 72000 80000
BLEU 8.051 8259 8959 8744 8.676 8.647 8.675 8.793
ROUGE1 3092 302 3114 30.72 31 3098 308 30.87
ROUGE2 119 1137 1193 11.73 1183 1213 11.88 12.02

ROUGELsum 28.83 28.03 28.85 2849 2874 2875 28.68 28.68

Java, base model, batch size: 512

Steps 5000 10000 15000 20000 25000 30000 35000 40000
BLEU 5949 7116 8126 8555 8349 8874 874 8822
ROUGE1 2833 281 29.78 30.18 3043 30.27 30.36 30.71
ROUGE2 9.78 983 1095 1118 11.36 11.25 1124 11.52

ROUGELsum 2643 2622 27.82 2801 282 2799 2813 28.44

Java, base model, batch size: 1024

Steps 3000 6000 9000 11000 13000 15000 17000 19000 23000 27000
BLEU 4706 7282 7248 7.868 8.047 6.819 8443 7759 8213 8414
ROUGE1 2799 29.09 27.64 2877 2917 281 2931 29.34 29.55 29.09
ROUGE2 924 1049 938 992 1037 9.89 1041 1032 10.66 10.31

ROUGELsum 2621 2719 2573 26.65 27 2621 27.09 2722 27.36 26.9
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Go, small model, batch size: 256

Steps 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

BLEU 5413 7.792 9598 9.254 10.757 9.363 6.345 10.051 9.63 10.457

ROUGE1 33.11 3848 403 4046 41.74 4175 36.86 4158 41.12 41.67

ROUGE2 1465 1789 1922 193 2039 202 1638 20.11 19.63 20.36

ROUGELsum 32.04 3694 387 39.02 40.02 40.14 3541 3996 394 40.18

Go, base model, batch size: 128

Steps 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

BLEU 10985 10.387 11.596 12.155 12512 12.764 12.676 12.845 12.805 12.751

ROUGE1 4159 4158 41.64 41.82 4211 42.65 425 4267 4219 42.38

ROUGE2 20.15 20.09 2044 2055 2064 21.14 2097 21.18 20.9 20.95

ROUGELsum 3992 39.82 39.85 40  40.23 40.7 40.64 40.7 40.35 40.48

Go, base model, batch size: 256

Steps 5000 10000 15000 20000 15000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000
BLEU 10.779 11.681 11.534 12.812 12.628 12.826 12.843 12.659 13.238 12.812 12946 12912 13.556 12996 1346 13.267
ROUGE1 41.05 4121 41.62 4219 4223 4248 4222 422 4259 422 4253 4233 4266 422 4259 4281
ROUGE2 20.17 2013 2039 2079 2081 21.14 20.89 2098 21.33 2083 21.13 2098 2134 20.88 21.17 2135
ROUGELsum  39.59 3946 39.92 40.3 4028 40.56 403 4026  40.78 4026 40.55 404 4067 4029 40.72 40.84
Go, base model, batch size: 384

Steps 6000 12000 18000 24000 30000 36000 42000 48000 50000 56000 62000 68000 74000 80000 86000 92000 98000 100000
BLEU 8.822 11.621 11.328 11.706 11.47 12.03 11.833 12.063 12474 12.018 12315 12.009 12.171 12.526 12.215 12.05 12.048 12.315
ROUGE1 40.51 42.05 415 4181 4176 4219 4193 42.09 41.85 4192 4213 4218 4196 4215 4191 41.75 419 42.07
ROUGE2 19.55 2037 2009 2041 2025 20.61 2038 2072 2054 20.53 20.82 20.56 20.63 20.79 2057 2033 20.44 20.6
ROUGELsum 3895 4025 39.64 40 39.83 4031 40.06 40.19 399 3997 4029 40.18 40.18 4021 40.04 39.81 39.95 40.25
Go, base model, batch size: 512

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 53000 56000

BLEU 10.813 13.151 13.138 12951 13.448 13.305 13.334 13577 13.316 13.603 13.579 12.7

ROUGE1 411 4182 4203 4224 4259 421 4238 4238 4237 4249 4256 4231

ROUGE2 2024 2072 2089 21.01 2131 21.1  21.08 212 21.09 2136 2131 21.02

ROUGELsum  39.57 39.99 40.28 4051 40.69 4041 4047 40.6 4043 40.67 40.66 40.52

Php, small model, batch size: 256

Steps 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000 240000

BLEU 9979 12.826 13.479 13.752 14.047 13546 14.213 14.624 14.022 14.832 14.586 14.139

ROUGE1 36.73 374 3708 37.01 37.07 37.34 37.93 37.8 37.83 37.69 37.78 37.49

ROUGE2 1497 1561 1573 15.88 16.11 16.06 16.42 16.43 16.55 16.36 16.49 16.29

ROUGELsum 35.04 3556 3528 35.21 35.25 35.61 36.01 35.89 36.06 35.73 35.95 35.74

Php, small model, batch size: 512

Steps 10000 20000 30000 40000 50000 60000 70000 80000

BLEU 9.532 12729 13.153 13.33 14.032 13.591 14.441 13913

ROUGE1 3563 3695 3641 3648 37.09 37.01 3699 37.07

ROUGE2 13.89 15.08 153 1548 1599 159 1586 15.93

ROUGELsum 3394 3518 34.64 3474 3529 3534 3517 35.36

Php, small model, batch size: 1024

Steps 10000 20000 30000

BLEU 11.748 12.324 13.38

ROUGE1 35.85 35.61 36.2

ROUGE2 14.05 1456 15.08

ROUGELsum 34 3394 3449

Php, base model, batch size: 256

Steps 8000 32000 40000 48000 56000 64000 72000

BLEU 5783 12.895 14.169 13.517 13.765 13918 14.152

ROUGE1 3397 3559 3676 36.02 36.02 3642 37.14

ROUGE2 11.78 14.63 1556 1509 1513 1543 15.89

ROUGELsum 3252 3392 3498 3418 3426 34.66 35.39
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Php, base model, batch size: 512

Steps 5000
BLEU 10.369
ROUGE1 34.15
ROUGE2 12.97

ROUGELsum  32.13

10000
12.198
34.94
13.95
33.16

15000 20000 25000 30000 35000 40000
13.528 14.041 14.075 13.949 14.786 14.598

35.43 35.

14.36

14.72

3 3579 3581

1493  15.02

33.55 3343 33.99 34.1

3597  36.05
1532 1516
3422 3419

Php, base model, batch size: 1024

Steps 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

BLEU 9.035 13.999 14.177 14.055 14.484 14.855 14.986 15 14.89 14.626

ROUGE1 34.76  36.53 365  36.18 364 3661 3659 3669 367 36.84

ROUGE2 1319 1542 1538 1569 1565 1582 1594 16.04 159 16.06

ROUGELsum 33.05 347 3472 3443 34.63 3486 3482 3496 3499 35.05

Ruby, small model, batch size: 128

Steps 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

BLEU 0.857 1.508 1.828 2.098 2.065 1.982 2226 1976 2067 2.384

ROUGE1 1622 1589 1671 169 16.35 16.09 1698 1649 1598 16.93

ROUGE2 27 259 3.02 35 313 297 315 296 285 3.56

ROUGELsum 1493 1458 1551 15.81 15.08 14.87 15.67 1524 14.79 15.81

Ruby, small model, batch size: 256

Steps 1000 2000 3000 4000 5000

BLEU 0.958 1.756 1.879 2.216 2.085

ROUGE1 1311 13.83 14.47 1441 1436

ROUGE2 1.81 225 236 265 242

ROUGELsum 12.37 1291 13.27 1321 13.23

Ruby, base model, batch size: 32

Steps 1000 2000 3000 4000 5000

BLEU 0.315 0.739 0.776 0.746 0.932

ROUGE1 10.64 14.06 12.85 1324 11.55

ROUGE2 08 166 196 192 138

ROUGELsum 10.05 12.84 119 1222 10.64

Ruby, base model, batch size: 128

Steps 2000 4000 6000 8000 10000

BLEU 11 1726 187 1.897 1.853

ROUGE1 13.62 13.1 1297 13.,57 12091

ROUGE2 224 223 213 241 2.06

ROUGELsum 1256 12.21 11.82 1241 11.87

Javascript, small model, batch size: 128

Steps 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000

BLEU 2.756 5274 5416 6946 6.645 7.079 6.778 6.757 7.256 7.043

ROUGE1 18.68 19.82 19.3 2094 20.69 2099 2044 2091 2091 2048

ROUGE2 45 615 615 733 697 731 713 7.09 7.38 7.08

ROUGELsum 1743 1874 1817 19.62 19.37 19.71 1925 19.63 19.62 19.29

Javascript, small model, batch size: 256

Steps 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000 20000
BLEU 1.18 1.633 226 4.036 5.358 5255 5.849 6.249 6589 6.686 6.731 7.345 749 7.468 7.29
ROUGE1 18.06 16.88 17.87 1952 19.82 19.65 18.81 19.39 20.55 20.82 2039 20.71 21.04 2054 20.84
ROUGE2 379 355 415 576 653 629 629 645 7 701 686 737 734 7.29 7.44
ROUGELsum 17.04 158 16.92 1842 1881 1849 1774 18.19 19.33 1953 19.27 1943 19.88 19.29 19.61
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Javascript, small model, batch size: 512

Steps 1000 2000 3000 4000 5000

BLEU 1.849 2736 4.623 5982 6.021

ROUGE1 18.64 1832 1825 19.65 19.75

ROUGE2 38 442 533 656 636

ROUGELsum 1748 1727 1712 1858 1853

Javascript, base model, batch size: 32

Steps 1000 2000 5000 6000 7000 8000 9000 10000

BLEU 0.643 0.568 092 1.536 1258 0.941 1.616 1.528

ROUGE1 1259 1159 1455 1554 14.33 13.74 15.07 14.77

ROUGE2 152 179 245 3.01 26 239 285 2.51

ROUGELsum 11.72 11.16 13.74 14.61 1354 1295 14.09 13.78

Javascript, base model, batch size: 128

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 24000 28000 32000 36000 40000
BLEU 1.083 2.67 4149 5339 5685 5619 5784 6.051 5905 5481 652 6.155 6.241 6.714 6.206
ROUGE1 1584 14.87 16.15 17.38 17.14 1759 1734 1785 1786 1739 1834 18.08 18.15 1849 17.79
ROUGE2 295 347 459 533 5.67 5.76 5.46 59 5.78 5.3 6.19 5.98 5.94 6.44 5.77
ROUGELsum 15.03 14.04 152 16.39 162 1662 1625 1682 1694 16.28 17.16 17.02 16.95 17.47 16.8
Javascript, base model, batch size: 256

Steps 4000 6000 8000 10000 12000 14000 16000 18000 20000

BLEU 6.312 6.326 6.618 6.555 6.65 7.053 7.169 7.499 7.143

ROUGE1 1831 1797 1817 1799 1874 1884 1853 1891 1895

ROUGE2 592 634 644 6.25 6.61 6.65 6.65 6.84  6.62

ROUGELsum 17.14 1694 17.14 1697 1776 1778 1751 17.79 17.78
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A.1.2. Source Code Summarization

Python, small model, batch size: 233

Steps 3000 4000 5000 6000 7000 8000 9000 10000 11000

BLEU 0.689 0.628 1.046 0.894 0.823 0.785 0.732 0936 0.884

ROUGE1 15.02 13.65 1523 15.04 1536 1448 14.67 1531 15.04

ROUGE2 249 186 255 243 235 214 225 2.49 2.32

ROUGELsum 13.39 12.17 13.63 1339 1353 1294 13.02 1351 1342

Python, small model, batch size: 384

Steps 3000 9000 15000 20000 23000 29000 32000 38000 44000 53000 59000 65000 68000 70000

BLEU 0.689 0.755 0717 0.744 0814 095 0.813 0.846 0.686 0.869 0.8 072 0.698 0.758

ROUGE1 15.02 145 1476 1503 147 1512 1491 1498 1471 1464 144 1464 1535 145

ROUGE2 249 214 234 232 231 237 237 243 234 232 223 228 248 214

ROUGELsum 13.39 128 13.13 1328 13.07 1336 13.01 1336 1294 1297 1277 1297 13.56 12.85

Python, base model, batch size: 32

Steps 1000 2000 3000 4000 5000

BLEU 1.615 059 0.737 0.631 0.672

ROUGE1 16.58 13.64 13.51 14.01 1347

ROUGE2 3.8 195 1.8 2 197

ROUGELsum 15.08 12.17 12.02 1251 11.97

Python, base model, batch size: 384

Steps 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 44000 48000 50000

BLEU 0.67 0.673 0.691 0633 0687 074 0724 0729 0.697 0.714 0.658 0.685 0.669

ROUGE1 14.19 1371 1346 1394 13.65 13.68 14.03 13.82 13.81 14.05 14.07 14.01 14.16

ROUGE2 216 195 182 198 18 194 194 197 197 203 205 206 208

ROUGELsum 1244 1213 11.81 1224 121 1217 1233 1213 1215 1243 1247 1231 1243

SQL, small model, batch size: 64

Steps 500 1000 1500 2000 2500 3000

BLEU 1.54 1.685 1.506 1.028 1.071 0.874

ROUGE1 181 15.89 16.6 1397 1496 14.21

ROUGE2 357 315 324 219 232 222

ROUGELsum 16.36 14.55 15.16 12.73 13.54 12.81

SQL, small model, batch size: 128

Steps 500 1000 1500 2000 2500 3000

BLEU 1706 1.172 1.114 0.859 0.724 0.671

ROUGE1 17.71 159 1492 1411 1329 1294

ROUGE2 399 277 259 206 173 1.69

ROUGELsum 16.09 1445 13.72 1267 12.02 11.65

SQL, small model, batch size: 384

Steps 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 33000 36000 39000 42000 45000 48000 50000
BLEU 0.636 0.647 0787 0.792 0.69 0.738 0.741 0.7 0664 0.607 0.679 0.658 0.791 0.589 0.647 0.735 0.645
ROUGE1 133 13.14 1322 1344 1323 1329 1321 1327 1322 13.13 131 1329 1341 132 1289 1299 1326
ROUGE2 1.71 1.7 175 1.78 1.67 1.7 1.74 1.71 1.64 1.62 1.7 1.6 1.78 1.71 1.63 1.68 1.7
ROUGELsum 1197 11.72 11.87 12.04 1187 1196 119 11.89 1179 1179 1175 11.86 1201 11.86 1158 11.7 11.86
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SQL, base model, batch size: 32

Steps 500 1000 1500 2000 2500 3000
BLEU 1.281 1.138 1.209 1.164 0.828 0.696
ROUGE1 16.27 16.12 15 1444 1405 1231
ROUGE2 2.86 28 259 236 221 142

ROUGELsum 14.51 14.76 137 13.14 1277 11.25

SQL, base model, batch size: 4000

Steps 1100 2200 3300 4400 5000 3000
BLEU 0.715 0.752 0.653 0.586 0.568 0.696
ROUGE1 1196 1236 1244 123 1221 1231
ROUGE2 1.5 158 154 156 156 1.42

ROUGELsum 10.78 11.18 11.16 11.02 10.97 11.25

CSharp, small model, batch size: 32

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 2423 2439 2094 1955 1719 1.687 1.619 1.75 1491 1.508
ROUGE1 20.01 18.07 1746 16,52 1554 1591 1619 1561 1558 15.28
ROUGE2 453 416 354 331 283 292 3.08 282 276 269

ROUGELsum 184 16.7 1598 1524 1417 1453 1471 1418 1417 13.89

CSharp, small model, batch size: 64

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 2401 212 1787 1.683 1.648 1.541 148 1.649 1504 1.558
ROUGE1 189 17.69 16.14 16.64 1599 1548 1559 1575 1552 1556
ROUGE2 444 373 3.05 322 292 291 277 292 277 287

ROUGELsum 17.39 1624 1473 15.17 1455 1413 1419 1429 14.04 1415

CSharp, small model, batch size: 128

Steps 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
BLEU 2.099 2799 1975 2043 1.697 1.631 1.843 1.804 1.638 1.457
ROUGE1 18.17 20.02 1659 1722 16.03 16.16 1637 16.01 1534 14.87
ROUGE2 377 461 327 352 296 298 3.22 3 274 247

ROUGELsum 16.86 18.29 15.06 1572 14.61 1471 1495 1464 1398 13.54

CSharp, small model, batch size: 384

Steps 2000 4000 6000 8000 10000
BLEU 1441 1.652 1.67 1.409 1.505
ROUGE1 1554 1581 1597 1517 15.66
ROUGE2 293 29 298 258 277

ROUGELsum 1427 14.37 1449 13.83 14.2

CSharp, base model, batch size: 32

Steps 500 1000 1500 2000 2500 3000
BLEU 2686 1998 1.857 2117 2361 2.105
ROUGE1 2055 17.75 17.67 1742 1938 17.61
ROUGE2 4.69 38 349 328 422 3.9

ROUGELsum 18.69 16.76 16.62 16.15 17.6 1622
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A.1.3. Code Comment Generation

Java, small model, batch size: 128

Steps 1000 5000 15000 40000
BLEU 2825 14111 21437  30.7
ROUGE1 2734 37.69 43.87 49.17
ROUGE2 1224 2227 29.63 36.09

ROUGELsum 26.53 36.55 4279 48.14

Java, small model, batch size: 256

Steps 100000 200000 230000 260000 290000 320000 350000 380000 410000 440000 460000 480000 500000 520000 540000
BLEU 43.365 48313 49.246 49.895 50.041 50.382 50.386 50.827 50.731 50.864 50.872 50.881 50.934 50.843 50.871
ROUGE1 5527 5694  57.19 5713 5752 5744 5756 5748 57.68 5748 5762 5764  57.58 57.64  57.59
ROUGE2 439 4598  46.19 4637  46.64 46.67 46.76 46.8 4686  46.77 4684 4686 4685  46.93  46.87

ROUGELsum 5431 4598 56.26  56.15 56.55 5651 56.63 5654 56.72 5654 56.66 56.69 56.62 56.66  56.64

Java, small model, batch size: 512

Steps 5000 10000 20000 30000 40000 50000
BLEU 18.881 26.729 33.301 40.004 39.888 42.135
ROUGE1 43.07 46.64 5028 5244  53.09 543
ROUGE2 28.84 3333 3812 4055 4196 43.19

ROUGELsum 42,07 4561 4935 51.39 5218 53.37

Java, small model, batch size: 1024

Steps 10000 20000 30000
BLEU 32.075 4029 41.86
ROUGE1 48.85 52.71 54.32
ROUGE2 36.28 41.04 43.23

ROUGELsum  47.82 51.73 5343

Java, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000
BLEU 21.372  30.134 38.078 42.894 47.233 48.788 49.601 50.379 50.566 50.976 51.108 51.362 51.534 51.516 51.382 51.561
ROUGE1 43.1 484 51.83 5411 5588 56.58 56.87 5723 5741 5758 57.64 57.5 57.78 5759 5757 57.63
ROUGE2 29 3559 39.89 43.01 4503 46.01 4651 46.8 47.02 4716 4718 47.16 47.38 4723 4726 4728

ROUGELsum 421 4741 5085 5318 5491 55.72 56 5629 56.51 56.65 56.72 56.54 56.84 56.69 56.65 56.71

Java, base model, batch size: 512

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
BLEU 20967 29.166 4599 49.678 50.088 50914 51.022 50.919 51.314 51.12
ROUGE1 45.64 52.02 5447 5555 5598  56.54 56.8 56.46 56.53 56.55
ROUGE2 33.14 4044 4401 4517 4589 4626 4642 4641 46.55 4649

ROUGELsum 4478 51.11 53.65 5461 55.06 55.64 559 5558 55.62 55.65

Java, base model, batch size: 1024

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 22398 24.244 40488 45714 48.146 49.783 49.136 50.803 51.14 51.408
ROUGE1 41393  47.27 51.7 54244 5549 56.3 5643 56.41 56.6  56.87
ROUGE2 26.997 35307 4042 43.722 451 4586  46.15 4623 4646 46.72

ROUGELsum 40211 46352 50.71 53.329 54.62 554 5565 5554 55.66 55.92
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A.1.4. Git Commit Message Generation

Java, small model, batch size: 128

Steps 5000 10000 15000 20000
BLEU 40.073 40.242 40.196 39.866
ROUGE1 3896 3913 39.22 38.76
ROUGE2 29.26 29.6 29.68 29.53

ROUGELsum 3877 38.88 39.03 38.54

Java, small model, batch size: 256

Steps 2000 4000 6000 8000 10000
BLEU 40.018 40.222 39.934 40.002 39.819
ROUGE1 38.87 3889 39.04 39.11 39.18
ROUGE2 293 2952 2949 29.66 29.56

ROUGELsum 387 38.63 38.81 3895 38.88

Java, small model, batch size: 512

Steps 1000 2000 3000 4000 5000
BLEU 39.725 40.106 40 40.123 40.05
ROUGE1 38.79 3931 39.16 39.48 39.14
ROUGE2 28.87 2937 2954 29.95 29.82

ROUGELsum 38.6 39.05 38.88 39.25 38.96

Java, base model, batch size: 32

Steps 2000 4000 6000 8000 10000
BLEU 32.854 35213 36.872 37.247 37.635
ROUGE1 3278 3429 3557 36.97 36.725
ROUGE2 2255 2492 26.68 2743 27.993

ROUGELsum 32,69 3407 3529 36.76 36.479

Java, base model, batch size: 128

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000
BLEU 39.021 3892 39.205 39.325 39.29 39.331 39.343 39.372 39.402 39.667 39.465
ROUGE1 38.25 3836 3858 386 3871 39.04 39.08 3872 3876 3883 3891
ROUGE2 28.82  29.01 291 2929 2929 2946 2941 2924 2932 2948 2942

ROUGELsum  38.05 3812 3839 3831 3843 3882 3884 3845 3849 38.64 38.77

Java, base model, batch size: 256

Steps 2000 4000 6000 8000 10000
BLEU 38.603 39.184 36.825 39.623 39.433
ROUGE1 379 3879 3812 38.82 3856
ROUGE2 28.69  29.35 29 29.52 2942

ROUGELsum  37.74 3848 3792 38.64 38.4

Java, base model, batch size: 512

Steps 2000 4000 6000 8000 10000 12000 14000
BLEU 39.251 39.206 39.359 39.368 39.774 39.716 39.261
ROUGE1 3876 3887 3856 3881 3911 39.05 3875
ROUGE2 2956 2954 2952 29.66 2998 29.87 29.51

ROUGELsum  38.47 38.6 3828 3856 38.88 38.8 38.5
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A.1.5. API Sequence Generation

Java, small model, batch size: 256

Steps 200000 400000 440000 480000 520000 560000 600000 640000 680000 720000 760000 800000 840000 880000 920000

BLEU 67.539 69.224 69.581 69.768 69.89 69.949 70.235 70.446 70.568 70.733 70.493 70.567 70.916 70.536 70.845

ROUGE1 74.82 76.02 76.3 76.5 76.49 76.69 76.78 76.94 76.98 77.16 77.01 77.23 77.4 77.24 77.38

ROUGE2 65.55 67.07 67.42 67.62 67.61 67.81 67.96 68.18 68.3 68.38 68.31 68.43 68.72 68.49 68.73

ROUGELsum 74.79 76.01 76.27 76.5 76.46 76.68 76.77 76.95 76.98 77.15 76.99 77.21 77.37 77.24 77.39

Java, small model, batch size: 512

Steps 10000 20000 30000 40000 50000 60000 70000 80000 140000 150000

BLEU 55.962 60.503 62922 64.331 64.945 65994 66.116 66.336 68402 68.489

ROUGE1 64.2 68 7008 7138 7226 73.02 734 7366 7519  75.38

ROUGE2 53.68 57.82 6027 6176 6266 6351 6399 6434 66.08  66.28

ROUGELsum 64.16 6796 70.08 7134 7224 7298 7338 7364 7515 75.38

Java, small model, batch size: 1024

Steps 10000 20000 30000

BLEU 59.444 62912 65.27

ROUGE1 66.62 7015 72.09

ROUGE2 56.47 6047 62.62

ROUGELsum 6658 70.15 72.18

Java, base model, batch size: 256

Steps 20000 40000 60000 80000 85000 90000 95000 100000 105000 110000 115000 120000 125000 130000 135000 140000 145000 150000
BLEU 62.376 66.938 68.656 69.559 70.483 70399 70425 70937 71.128 71366 71495 71.696 71.719 72155 71.811 71.989 72316 72.242
ROUGE1 69.59 7381 75584 7676 7724 7731 7757 77.75 78.15 78.16 78.32 78.41 78.5 78.88 78.82 78.73 79.11 78.96
ROUGE2 59.55 64.52 66.582  68.11 68.5 68.5 68.88 69.09 69.39 69.56 69.75 69.74 69.99 70.32 70.29 70.3 70.55 70.51
ROUGELsum  69.56 73.78 75.604 7679 77.21 773 7755 77.71 78.11 78.17 78.33 78.42 78.48 78.83 78.8 78.72 79.09 78.93
Java, base model, batch size: 512

Steps 8000 10000 12000 14000 16000 18000 20000 24000 26000 28000 30000

BLEU 59.443 60.519 62.519 63.552 64.827 64.855 66.192 67324 67.583 67.771 68.177

ROUGE1 67.61 6844 69.92 7098 7202 7239 7314 7432 74.68 75 7529

ROUGE2 57.09 5833 60.09 6109 6241 62.86 638 6486 6537 6573 66.05

ROUGELsum  67.56 684 69.89 7094 7199 724 7313 7432 7464 75 7526

Java, base model, batch size: 1024

Steps 6000
BLEU 33.84
ROUGE1 68.62
ROUGE2 58.67

ROUGELsum  68.6

8000
62.4
70.7

60.62
70.72

10000
64.631
71.82
62.29
71.8
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A.1.6. Program Synthesis

DSL, small model, batch size: 128

Steps 4000 8000 12000 16000 20000
BLEU 93.925 94.327 94478  94.48 94.361
ROUGE1 94.25 98.9 9737 971  94.28
ROUGE2 92.87 9842 96.68 9633  93.06
ROUGELsum 9397  98.7 9718 969 94.09
Accuracy 78.131 80.137 84.869 87.125 80.331

DSL, small model, batch size: 256

Steps 2000 4000
BLEU 93.688 93.983
ROUGE1 94.68 94.05
ROUGE2 93.16 92.72
ROUGELsum  94.33 93.82
Accuracy 75.183 75.183

DSL, small model, batch size: 512

Steps 2000 4000 6000
BLEU 94.213 93.335 94.401
ROUGE1 99.02  93.68 9594
ROUGE2 98.47 9223 9493
ROUGELsum 98.77 9344 95.73
Accuracy 78917 77.641 79.638

DSL, base model, batch size: 32

Steps 1000 2000
BLEU 75.733 75.54
ROUGE1 87.76 91.49
ROUGE2 72.83 78.12
ROUGELsum  81.71 85.69
Accuracy 13.929 39.967

DSL, base model, batch size: 128

Steps 4000 8000 12000 16000 20000
BLEU 93.605 94.503 94.333 94.133 94.344
ROUGE1 98.51 99.11 9877 941 94.26
ROUGE2 97.68 98.62 9827 9285 93.03
ROUGELsum  98.18 98.89 9855 9392 94.08
Accuracy 86.246 91.635 88.372 80.1  80.59

DSL, base model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000
BLEU 93.293 94353 94.187 94.446 94.438 94.236 93.543 94.525
ROUGE1 98.4 99 98.9 99.04 9916 98.79 9881 97.73
ROUGE2 97.04 9845 9828 9843 9873 9822 9837 97.11
ROUGELsum  97.79 9876 98.67 9877 9893 9856 98.63 97.55
Accuracy 85452 90.692 77.909 91.081 80.118 79.582 79.185 85.156
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A.2. Transfer Learning

Code Documentation Generation - Python, small model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

BLEU 6.724 6923 6.607 6284 6751 6962 7.023 6.853 6.568 6.754

ROUGE1 3495 34.57 339 3351 3341 3306 3312 3271 323 3249

ROUGE2 1321 1293 1259 12.39 123 12.09 1205 11.84 11.62 11.72

ROUGELsum 32.67 3223 31.66 31.39 31.2 30.8 30.85 30.42 30.08 30.21

Code Documentation Generation - Python, base model, batch size: 256

Steps 2000 4000 6000 8000 10000 14000 18000 20000 24000 28000 30000 35000 40000 45000 50000 55000 60000 65000 70000
BLEU 7247 7494 7262 7569 7.367 7318 6982 7544 7917 8.099 8.05 8.009 7957 8045 8.123 8.338 8.041 8235 8237
ROUGE1 35.57 3554 3522 3435 3431 3385 3298 3322 33.02 3238 3295 3285 3255 3272 3292 33.1 3245 3286 3288
ROUGE2 14.02 1399 13.63 13.01 129 1274 1209 1229 1212 11.82 12.1 1211 12.03 12.02 1224 1238 1195 1216 12.28
ROUGELsum 33.39 3322 3294 3195 3199 3154 30.77 3087 30.63 29.81 3046 3036 30.16 3026 3054 30.64 30.04 30.37 3048
Code Documentation Generation - Python, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000

BLEU 6.95 72 7137 7.098 7.618 7.501

ROUGE1 35.58 3549 35.19 35 3517 35.14

ROUGE2 14.07 14.03 13.75 13.67 13.65 13.51

ROUGELsum 33.49 33.26 33.02 3283 32.68 3273

Code Documentation Generation - Java, small model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000

BLEU 6959 8464 7379 7.642 8115 8543 8.91 8.81 8969 9.217 9.178 9.934 9922 9518

ROUGE1 36.07 3693 3539 3532 35.63 3511 3525 3549 35.04 3525 3523 3512 3495 34.4

ROUGE2 1632 16.51 15.08 1497 1522 1481 15.16 153 15.05 1525 15.09 1499 1483 1441

ROUGELsum 34.12 34.53 33.17 33.03 33.3 32.8 3287 3317 3273 3297 3293 3277 3259 3207

Code Documentation Generation - Java, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000

BLEU 8.099 9247 9.662 10.84 10.803 10.872 11.491 11.242 11.278 11.22 11.677 11.807 11.456 11.703

ROUGE1 36.82 3655 3599 36.06 36.02 3597 3623 36.61 36.02 3631 3675 36.3 365 3644

ROUGE2 16.88 16.09 1539 15.84 157 1572 1599 1627 1574 1621 1653 16.1 1624 16.07

ROUGELsum 34.64 34.09 3344 336 3341 3339 33.69 34 334 3386 3419 3374 3393 33.81

Code Documentation Generation - Java, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

BLEU 8432 7479 9.068 9.23 9.012 10.723 10.013 9.285 11.351 10.985

ROUGE1 3775 36.77 3795 3822 3717 3797 3715 3639 3717 37.68

ROUGE2 18.11 17.02 17.88 1798 1686 1747 1693 1637 1696 17.47

ROUGELsum 35.68 34.83 357 3594 3478 3539 34.66 34.13 347 35.03

Code Documentation Generation - Go, small model, batch size: 256

Steps 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000 150000 160000

BLEU 13.145 13.364 13.718 14.243 13.639 13.824 14201 14.468 14.275 14473 14582 14.679 14529 14.702 14508 14.543
ROUGE1 46.69  46.26 455 45.08 452 4548 4503 4494 4476 444 44.83 447 44.76 44.6 44.39 44.57
ROUGE2 24.01 23.67 2319 2277 2292 2282 2258 2258 22.65 22.33 2247 22.52 22.63 22.6 22.38 22.7
ROUGELsum  44.68 4411 4331 42.81 43 4318 4271 4266 4253 4223 42.55 4243 42.49 42.37 42.13 424
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Code Documentation Generation - Go, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000

BLEU 13.68 13.789 15.06 15.066 15225 15.381 15.045 15.34 15.339 15.624 15416 15371 15527 1557

ROUGE1 47.66 4635 4634 46.08 46.09 46.08 46.15 4593 46.08 4584 46.07 4599 46.08 46.05

ROUGE2 248 2395 2379 2353 2372 2374 2372 2362 2378 23.63 2372 2366 2385 23.86

ROUGELsum 4545 4422 44.04 4386 43.86 43.88 4392 4383 4393 43.62 4387 4376 4395 4384

Code Documentation Generation - Go, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000

BLEU 14.02 14.114 12.862 13.532 14.38 13.955

ROUGE1 48.03 48.24 4724 4706 46.74 4641

ROUGE2 252 2541 2488 247 2423  24.05

ROUGELsum 46.05 46.07 4538 45.05 4457 44.35

Code Documentation Generation - Php, small model, batch size: 256

Steps 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000

BLEU 11494 11.241 12979 13289 12.899 14.837 14923 1543 14.621 15.79 15.758 15.294

ROUGE1 4134 4098 40.7 4047 4013 4036 4022 4049 40.23 40.15 40.02 40.48

ROUGE2 1796 18.04 1778 1772 1779 1813 1813 1823 1823 18.14 18.26 18.55

ROUGELsum 39.45 39.11 38.66 3855 3828 3829 3825 3844 3838 38.03 38.04 38.6

Code Documentation Generation - Php, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000 85000
BLEU 11.697 14216 15171 15996 17.248 17.133 16.876 1692 17973 17979 17416 18.098 17.872 17.327 18.401 18.302 17.65
ROUGE1 419 4213 4245 4214 4176 4181 4196 421 4212 4235 4246 4184 4266 4195 4219 4246 4243
ROUGE2 19.08 1942 1978 19.92 19.6 1971 20.07 19.92 20.07 20.33 204 2025 2057 2025 2036 2051 20.51
ROUGELsum  40.18  40.19 405 40.17 39.66 39.77 40.06 40.11 40.06 40.26 4049 39.76 40.64 40.08 40.13  40.39 40.5
Code Documentation Generation - Php, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000
BLEU 8594 12.038 13279 12934 13799 14038 14474 15143 15723 15373 1662 17309 17533 17.805 17.742 17.701 17782 17.719 17.847 18266 17426 18515 18404
ROUGE1 4074 4236 4261  43.06 42 4218 4221 4213 4193 4266 4256 4284 4268 429 4273 4249 4264 4254 4258 4284 4305 4241 4227
ROUGE2 1774 1912 1992 1967 1957 1967 1944 1966 1974 2033 2042 2049 2061 2067 20.68 2047 2057 2077 2067 20.87 2106 2063 20.65
ROUGELsum 39.06 4048 4066 4101 4001 4014  40.1 40 3989 4068 4058 4076 40.63 40.86 4064 405 406 4059 4047 408 4112 402 4021
Code Documentation Generation - Ruby, small model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

BLEU 4.144 4141 4277 4398 4469 4.663 4469 4329 4421 4226

ROUGE1 28 2782 2794 276 2724 2775 2738 2762 2741 27.3

ROUGE2 8.69 8.33 8.38 8.33 8.08 8.43 8.41 8.3 8.11 8.31

ROUGELsum 25.85 2549 25.54 255 25.06 2558 2522 2529 2514 25.04

Code Documentation Generation - Ruby, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

BLEU 5309 4.881 5294 4939 5194 5148 5.039 5.097 4.603 5.106

ROUGE1 30.04 29.68 30.23 2993 2992 29.87 2926 2941 2922 29.69

ROUGE2 1029 10.06 10.18 9.95 10.1 1042 9.75 9.79 9.36 9.78

ROUGELsum 27.77 27.19 27.64 2746 2754 2752 2676 2686 26.69 27.38

Code Documentation Generation - Ruby, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

BLEU 4.889 539 5339 5001 5.09 5427 5197 5426 5419 5481 5.487 5.104

ROUGE1 2991 3099 30.57 29.88 3099 30.02 29.7 3022 3043 30.18 30.25 30.18

ROUGE2 10.83 11.19 10.82 1043 1098 1027 1049 10,5 10.88 10.53 10.39 10.21

ROUGELsum 27.79 2852 28.04 27.34 2831 275 274 2781 28.04 2785 27.83 2771

Code Documentation Generation - Javascript, small model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

BLEU 4859 6926 7983 8736 8855 9.017 9.201 92 9.191 9.323 944 9413

ROUGE1 28.18 285 2828 2857 2876 285 28.64 2882 28.69 2853 2833 281

ROUGE2 9.74 10.65 10.82 112 1131 1131 11.29 11.32 1122 11.27 1122 11.18

ROUGELsum 26.39 26.69 2623 26.61 26.84 2657 26.63 26.89 2657 2649 2631 2617
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Code Documentation Generation - Javascript, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 650000

BLEU 9.1 10.246 10.674 10.773 10.712 10.592 10.948 10.723 10.604 10.533 10.644 10.661 10.621

ROUGE1 30.59 31.04 3071 30.68 31.14 30.51 30.72  30.77  30.58 30.3 3033 3036 30.45

ROUGE2 1239 1294 1297 1284 1315 13.07 13.25 13.07 1297 1291 1288 12.78 12.99
ROUGELsum 284 2892 28.66 2847 2897 2852 286 2873 2853 28.19 282  28.26 28.28

Code Documentation Generation - Javascript, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

BLEU 5156 6.577 8745 10.372 10.543 10.465 10.975 10.551 10.78 10.863

ROUGE1 30.14 30.77 307 3173 3175 3116 3122 3168 3148 3129

ROUGE2 11.14 11.89 12.64 1335 1344 13.04 133 13.64 1342 1356

ROUGELsum 284 2886 2887 2955 29.66 29.03 29.06 2954 2932 2929

Source Code Summarization - Python, small model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000

BLEU 1.532  1.681 1.66 1.796 1579 1.464 1.657

ROUGE1 18.97 18.86 19 1891 1872 1828 18.85

ROUGE2 3.72 37 366 367 363 332 345

ROUGELsum 16.77 16.63 16.7 1657 1639 16.02 1643

Source Code Summarization - Python, base model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 6000 7000 8000 9000 10000
BLEU 2.084 2.223 2.148 1973 2208 2137 2161 2054 1871 2001 0796 195 1.898 2029 1.968
ROUGE1 18.38 21.44 20.27 20.78 19.7 20.54 2045 20.18 1949 1995 8.89 19.72 19.6 19.76 19.69
ROUGE2 392 433 411 423 397 424 422 426 379 395 169 397 4  4.05 3.94
ROUGELsum 16.63 18.71 17.82 1823 1738 17.89 1792 17.77 17.06 1755 8.11 1735 1724 1749 17.33
Source Code Summarization - Python, large model, batch size: 256

Steps 100 200 300 400 500 600 700 800 900 1000

BLEU 2165 1439 1.658 2.073 1.869 2221 2173 2188 2136 2127

ROUGE1 23.54 19.02 20.05 1986 20.6 21.03 2025 20.56 2048 21.05

ROUGE2 532 318 361 396 411 442 411 439 412 457

ROUGELsum 20.71 16.68 1724 1736 18.09 1835 179 18.15 1798 1851

Source Code Summarization - SQL, small model, batch size: 256

Steps 1000 2000 5000 10000 15000 20000

BLEU 1.751 1513 0919 1.108 1.1027 0.946

ROUGE1 18.69 17.22 1491 1434 14.46 13.98

ROUGE2 386 305 217 214 2.18 2.06

ROUGELsum 17.06 1554 1343 1299 13.02 12.66

Source Code Summarization - SQL, base model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

BLEU 2253 1512 1226 123 0.885 0931 0.817 086 0977 1.15

ROUGE1 19.94 1643 156 1598 14.83 14.63 1504 14.62 148 1452

ROUGE2 441 339 269 276 235 221 232 219 234 227

ROUGELsum 17.97 15.08 14.06 14.33 133 13.15 1348 13.13 1328 13.04

Source Code Summarization - SQL, large model, batch size: 256

Steps
BLEU
ROUGE1
ROUGE2

ROUGELsum

100
2.025
19.2
4.5
17.1

200
2172
20.37

4.27
18.2

300
1.33
18.37
3.43
16.68

400
1.068
14.43

2.5
13.41

500
0.819
15.56

2.25
14.13

600
1.129
153
2.77
13.97
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Source Code Summarization - CSharp, small model, batch size: 256

Steps 1000 2000 3000 4000 5000 10000 15000 20000

BLEU 3.291 3.599 2985 3.001 2949 2.382 2499 2.325

ROUGE1 2226 22.88 21 209 20.86 19.02 18.73 18.28

ROUGE2 563 593 498 5.08 49 4.03 3.86 3.69

ROUGELsum 20.57 20.98 19.19 192 1897 1725 1692 16.53

Source Code Summarization - CSharp, base model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

BLEU 3.835 3.704 3.729 2714 2401 248 2955 2957 2464 2745

ROUGE1 23.27 2294 2341 20.72 1947 2036 21.02 2121 19.7 19.68

ROUGE2 618 591 6.17 48 414 468 487 495 431 437

ROUGELsum 21.36 20.89 2136 189 1761 1855 19.01 19.18 17.81 17.85

Source Code Summarization - CSharp, large model, batch size: 256

Steps 100 200 300 400 500 600

BLEU 3.379 4.024 3933 3304 3503 3.07

ROUGE1 2272 23.68 234 21.64 2267 2094

ROUGE2 6.07 64 634 559 589 486

ROUGELsum 21.18 21.89 21.59 1993 20.68 18.96

Code Comment Generation, small model, batch size: 256

Steps 50000 150000 250000 350000 450000 500000 550000 600000 650000 700000 750000 800000 850000 900000 950000 1000000
BLEU 32449 41.859 45.569 48.47 50.036 50.566 50.948 51.233 51.289 51475 51.263 51454 51.569 51.502 51.697 51.49
ROUGE1 51.63 55.46 56.76 57.56 58.15 58.15 58.16 58.24 58.3 58.51 58.71 58.66 58.51 58.46 58.57 58.58
ROUGE2 38.52 43.82 45.67 46.77 47.36 47.48 47.56 47.62 47.71 47.85 47.95 47.89 47.88 47.83 47.85 47.78
ROUGELsum  50.41 54.36 55.67 56.47 57.08 57.11 57.1 57.16 57.23 57.42 57.66 57.57 57.43 57.41 57.48 57.52

Code Comment Generation, base model, batch size: 256

Steps 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
BLEU 2674 36.605 42.734 47416 50.696 51.565 52.024 52.41 52163 52.351
ROUGE1 4995 5411 5637 5791 5885 5942 4957 59.73 59.59  59.54
ROUGE2 3635 4136 4449 4646 476 4825 4853 48,57 4852  48.38
ROUGELsum 4871 52.84 5521 56.64 57.66 5827 5837 585 5843 5831
Code Comment Generation, large model, batch size: 256
Steps 5000 20000 30000 40000 50000 60000 70000 80000 90000 100000
BLEU 23.148 51.905 52491 52566 52507 52.604 52.837 52551 52415 52.632
ROUGE1 4314 5992 60.25 60.2 5995 6035 6023 59.94 60.04 60.1
ROUGE2 28.88 4879 4998 49.17 4893 49.25 4923 4882 4895 48.94
ROUGELsum 4185 5882 59 59.16 5886 59.25 59.12 58.87 5897  59.01
Git Commit Message Generation, small model, batch size: 256
Steps 5000 10000 15000 20000 25000
BLEU 44.762 44.698 44.178 44.37 44.201
ROUGE1 4792 4785 4713 4776 47.38
ROUGE2 3557 3583 3523 3549 35.34
ROUGELsum 4745 4726 4654 472 46.79
Git Commit Message Generation, base model, batch size: 256
Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 448 44893 44549 44.719 44.536 44.732 44.897 45.004 44.689 44.613
ROUGE1 48.76  48.62 48.66 48.72 4831 4871 4865 4847 4848 4825
ROUGE2 3614 3589 3591 3574 3556 36.02 3605 3576 3572 35.62
ROUGELsum 4818 4796 4813 4817 47.74 4815 4801 4707 4795 47.73
Git Commit Message Generation, large model, batch size: 256
Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BLEU 44283 44953 44.867 44.889 44963 45061 44.885 44.989 45.366 44.953
ROUGE1 4857 49.04 4884 4894 493  48.99 48.7 4925 4941 49.1
ROUGE2 3537 3616 3581 36.18 3652 36.09 36.18 36.42 364 36.39
ROUGELsum  47.95 48.37 482 4824 4863 4848 4812 4856 48.83 4852
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API Sequence Generation, small model, batch size: 256

Steps 50000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1050000 1100000 1150000 1200000 1250000 1300000 1350000 1400000 1450000
BLEU 60411 63813 66706 67.882 68315 68952 69.375 69.367 69971 70275 70275 7052 70563  70.662 70464 70706 70495 70925  70.849  70.752
ROUGEL1 6824 7126 7362 7469 7547 7588 7624 7636 7691 7723 7741 773 7735 774 7734 776 7759 7774 7197 7772
ROUGE2 57.84 61.43 6417 6527  66.21 66.73 67.1 67.24 67.8 6823 68.41 68.33 68.41 68.49 68.51 68.69 68.7 68.86 68.92 68.82
ROUGELsum 6822 7124 736 7464 7545 7586 7623 7634 7688 7721 7741 7729 7732 7738 773 7757 7756 7773 7775 77.7
API Sequence Generation, base model, batch size: 256

Steps 10000 20000 50000 100000 150000 200000 250000 260000 270000 280000 290000 300000 310000 320000 330000 340000 350000 360000
BLEU 56.311 61.422 66.306 69.51 71521 71.625 72924 72563 72.618 72919 732 73.068 7318 73226 73.075 73.647 73.115 73.565
ROUGE1 6452 69.02 7372 76.68 78.42 79.01 79.58 79.63 79.8 79.98 80.23 80.17 80.26 80.38 80.49 80.64 80.48 80.52
ROUGE2 53.64 5883 64.15 67.62 69.6 70.39 71.16 71.2 71.43 71.64 71.74 71.7 71.99 72.05 7217 724 72.1 72.26
ROUGELsum 64.5 69  73.69 76.66 78.42 78.99 79.58 79.62 79.77 79.97 80.21 80.16 80.24 80.36 80.49  80.627 80.49 80.5
API Sequence Generation, large model, batch size: 256

Steps 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

BLEU 66.752 70263 71.595 72949 73425 74107 74.061 74278 74379 74.322

ROUGE1 7429 7732 79.11 80.16 80.7 81.1 81.35 81.59 81.67 81.58

ROUGE2 64.83  68.46 70.5 71.74 72.44 72.95 73.25 73.44 73.69 73.53

ROUGELsum 7427 7731 7911 80.16 80.67 81.09 8138 8159 8169 8158

Program Synthesis, small model, batch size: 256

Steps 5000 10000 15000 20000

BLEU 94.657 94.619 94.613 94.639

ROUGE1 99.21 99.2 99.2 99.2

ROUGE2 98.87 98.83  98.82 98.85

ROUGELsum  99.03  99.02  99.03 99.03

Accuracy 92.384 92.301 92.319 92.365

Program Synthesis, base model, batch size: 256

Steps 6000 12000 18000 25000 30000 40000 45000 50000

BLEU 94.62 94.664 94578 94.659 94.653 94.644 94.663 94.652

ROUGE1 99.2  99.21 99.21 99.2  99.21 99.21 99.21 99.2

ROUGE2 98.85 98.89 98.88 98.89 98.87 9886 9891 98.89

ROUGELsum  99.03 99.05 99.05 99.05 99.04 99.03 99.06 99.05

Accuracy 92319 92476 90.147 92476 92.458 92.319  92.55 92.448

Program Synthesis, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000

BLEU 94595 94.641 94.616 94.626 94.635 94.619 94.642 94.627

ROUGE1 99.18 99.2  99.19 99.2 99.2 99.2 99.2 99.2

ROUGE2 98.8 98.86 98.84 9884 98.84 9885 9885 98.85

ROUGELsum  99.02 99.03 99.02 99.03 99.03 99.04 99.03 99.03

Accuracy 91.774 92301 92236 92328 92.328 92301 92.375 92.347

96



A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

A.3. Multi-task Learning

Multi-task Learning, large model, batch size: 4096

Task Steps 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000 240000 260000
BLEU 7.268 719 7136 7.576 7.907 7.417 7.19 7.251 7.534 7.607 7.425 7.749 7.639
Code Documentation ROUGE1 3512 3561 3544 3589 3542 35.65 34.84 34.87 3497 3484 3443 3484 34.63
Generation - Python ROUGE2 1343  14.01 14.03  14.04 13.96 14.01 13.46 134 13.58 13.41 13.36 13.43 13.15
ROUGELsum  32.83 3342 3332 33.6 33 3338 3255 32,5 326 3248 3218 324 3219
BLEU 10.36 11.285 11.942 12286 12.862 12.886 12.871 12519 14.398 13.86 13.136 1412 14.392
Code Documentation ROUGE1 3884 39.09 40.01 39.63 40.13  40.07 3999  39.18 402 40.09 3927  40.26 40.2
Generation - Java ROUGE2 18.68 1958 2035 1887 2019 2035  20.39 19.7 2078 2051  19.97  20.77 20.6
ROUGELsum  36.62 3699 37.96 3742 37.76 37.86 37.78 37.11 38 37.77 37.08 37.99 37.84
BLEU 12.052 13.023 12443 13.662 13.095 13.642 12903 13.128 13.103 13.578 12.724 13.609 13.846
Code Documentation ROUGE1 4737 47.62 4776 4774 47.38 47.93 47.36 47.23 46.58 47.09 46.57 46.89 46.85
Generation - Go ROUGE2 248 2514 25.27 247 24.84 25.26 2492 24.59 23.83 24.48 24.35 24.45 24.39
ROUGELsum 4545  45.69 459 4544 45.32 45.83 45.38 45.23 44.39 44.89 44.59 4481 44.72
BLEU 9.745 10.993 10.445 12318 11.772 12158 11.798 12183 13541 13.111 13438 13277 13.708
Code Documentation ROUGE1 41.63 4213 421 4274 42.69 42.7 42.68 422 42.63 42.62 42.39 42.92 425
Generation - Php ROUGE2 18.09 18.6 18.88 19.21 19.38 19.53 1947 19.08 19.57 19.44 19.29 19.85 19.4
ROUGELsum  39.81 40.25 4036 40.75 40.74  40.82 409 4033  40.62  40.63 4037 41 4047
BLEU 3953 4311 4.051 4.753 4.499 4.424 4.128 4.044 4.418 4.436 4.182 4.443 4.741
Code Documentation ROUGE1 3294 3277 326 3283 3269 3246 31.82 3213 3179 3136 3199 3177 3213
Generation - Ruby ROUGE2 12.7 1232 1257 1244 12.09 12.33 11.91 11.34 11.49 11.18 11.64 11.35 11.65
ROUGELsum 308 3047 3054 3061 3042 3021 29.62 2976 2954 2928  29.92 294 2949
BLEU 4331 4706 4536 5218 5.554 5.139 5.279 5.109 5.687 5.676 5.535 6.238 5917
Code Documentation ROUGE1 30.07 3056 30.81 30.82 30.51 31 3093 3048 30.7 31.09 30.68 31.08 3077
Generation - Javascript ROUGE2 103 11.05 11.36 10.99 11.02 11.42 11.46 11.17 11.55 11.32 11.41 11.56 11.24
ROUGELsum 2821 2876 29.13 28.88 28.62 29.19 29.08 28.61 28.83 29.16 28.75 28.98 28.79
BLEU 3.89 3.867 3.89 4.08 3.793 4.021 3.89 4.141 4.045 3.833 3.781 4.058 3.741
Source Code ROUGE1 2761 2618 2627 27.63 26.67 27.08 26.22 26.92 26.56 26.06 25.78 26.53 25.55
Summarization - Python ROUGE2 7.86 7.08 6.9 7.88 7.15 7.94 7.08 7.35 7.36 7.08 6.89 7.27 6.72
ROUGELsum 2437 2335 2325 2433 23.6 24.15 23.26 23.6 23.45 22.96 2294 23.35 2257
BLEU 1.717 204 1.869 2128 2016  2.262 207 1926 1993 1.812 2052 1.882 1903
Source Code ROUGE1 19.18 18.84 1843  20.57 19.37 20.21 19.54 19.46 19.27 19.15 19.17 19.47 19.11
Summarization - SQL ROUGE2 3.87 3.88 3.49 4.38 3.85 4.51 4.24 3.93 3.94 3.94 4.16 3.99 3.86
ROUGELsum 1717 17.07 16.61 18.15 17.44 18.19 17.39 17.48 17.48 17.36 17.62 17.54 17.31
BLEU 4009 3771 3757 4315  4.059  4.327 399 4114 4208 4147 3968 4.19 4.19
Source Code ROUGE1 2426 2369 2326 24.92 24.05 247 23.72 2415 2453 23.98 23.21 23.85 23.85
Summarization - CSharp ROUGE2 6.55 6.36 5.64 6.83 6.39 6.91 6.31 6.45 6.62 6.27 591 6.41 6.25
ROUGELsum 2191 21.71 2137 2257 2193 2262 2169 2206 2237 2186 2133 2183 2175
BLEU 19.308 26.184 30.428 33.509 36.096 37.533 38.306 39.342 40.773 41.718 41421 43.14 43.712
Code Comment ROUGE1 4264 4692 4975 51.65 53.09 53.06 53.67  54.68 55 5582 55.6 5641  56.14
Generation ROUGE2 2768 33.17 36.55 38.6 40.32 40.58 4141 4271 42.85 43.81 43.95 44.54 44.39
ROUGELsum  41.32 45.72 486 5047 5191 5192 5258 53.6  53.87 5468 5458 5529  55.01
BLEU 37913 39.705 39.758 40.468 40.124 41.157 41.055 41.181 41.383 41.698 41.895 41.729 41.8
Git Commit Message ROUGE1 4152 4365 4414 4483 4454 4635 4605 4635 4676  46.67 4694  46.88 46.9
Generation ROUGE2 288 3022 3082 31.36 31.28 32.18 32.29 32.49 32.83 33.1 33.35 33.14 32.99
ROUGELsum  41.14 43.15 4375 4434 44.09 45.76 45.54 45.78 46.19 46.1 46.49 46.38 46.37
BLEU 65.764 69.491 71.02 71.754 72225 72.67 73.018 73.076 73.539 73.01 73457 73547 73.548
APT Sequence ROUGE1 3707 7635 77.86 7861 79.15 7954 7978 8021 8048 80.4  80.68 80.8  80.73
Generation ROUGE2 6356 6743 69.09 70.02 7054 7111 7141 7184 7227 7201 7237 7254 7246
ROUGELsum 73.05 7634 77.83 78.6 79.18 79.52 79.78 80.23 80.45 80.42 80.66 80.78 70.72
BLEU 93.891 9441 94.6 94592 9464 64.605 94.627 94.654 94.645 94616 94644 9462 94.609
ROUGE1 98.47  99.02 99.19 99.16 99.2 99.19 99.2 99.2 99.2 99.2 99.21 99.19 99.19
Program Synthesis ROUGE2 9754 9853 98.81 9879 9887 9883 9884 9891  98.87  98.85 989  98.81  98.84
ROUGELsum 9823 98.84 99.01 98.99 99.03 99.02 99.03 99.05 99.03 99.02 99.06 99.01 99.01
Accuracy 8279 90923 9194 91.866 92171 92.079 92171 92.245 92319 92.18 92439 92236 92.227
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A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

A.4. Multi-task Learning with Fine-tuning

Code Documentation Generation - Python, small model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

BLEU 6.298 7.003 6.505 6.851 6.361 6364 6911 6.763 6.639 6.417

ROUGE1 34.08 34.73 3451 343 33.66 3387 3399 33.69 3379 33.33

ROUGE2 1299 13.18 13.15 13.03 12.72 128 1276 1242 1256 12.28

ROUGELsum 32.05 3244 3239 3213 3152 31.82 31.7 3133 3157 31.22

Code Documentation Generation - Python, base model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

BLEU 788 7468 6.857 7499 7491 7504 7919 7558 7.836 7.988

ROUGE1 3525 3523 34.62 33.77 34.05 3396 33.86 33.09 33.35 33.1

ROUGE2 13.83 13.72 133 1271 1281 1284 1272 1227 125 1227

ROUGELsum 32.81 3295 3248 31.39 31.67 316 3144 3059 31.04 30.57

Code Documentation Generation - Python, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000

BLEU 7.028 7.768 7.848 8.219 7.878 7.676

ROUGE1 3445 3396 33.84 33.66 33.66 3345

ROUGE2 13.07 1254 12.8 1264 1265 1252

ROUGELsum 321 3148 3142 31.16 312 31.09

Code Documentation Generation - Java, small model, batch size: 256

Steps 2000 4000 8000 10000 14000 18000 22000 26000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000 85000
BLEU 811 7534 791 8348 8274 8.652 8928 8.567 9.16 934 9756 9.327 9252 9957 9.369 9.613 9.765 10.108 9.902 10.026
ROUGE1 37.47 3594 3628 36.52 36.27 36.4 36.39 3533 3519 3577 3482 3528 3468 3492 3472 3557 35.12 35.14 3522 3477
ROUGE2 17.61 1624 164 1626 1615 16.06 16.19 15.3 152 1564 1484 1536 1455 1475 1468 1565 1502 1498 1507 14.81
ROUGELsum 3537 33.99 3417 3417 34.05 3398 33.95 329 3269 3334 3237 3288 3224 3239 3232 3314 3263 3259 3284 3234
Code Documentation Generation - Java, base model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

BLEU 11936 11.959 11.502 11.125 11.778 11.66 12361 11.834 12.072 11.792

ROUGE1 39.59 3873 3779 3755 372 36.66 3721 37.01 3693 36.77

ROUGE2 19.79 1873 176 1739 17.09 16.69 17.02 1679 1683 16.57

ROUGELsum 3739 3626 352 3506 3466 3411 3455 3443 3426 34.03

Code Documentation Generation - Java, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000

BLEU 13.973 14.256 14.141 14.14 13.88 13.728

ROUGE1 39.68 3891 39.13 3954 3896 38.64

ROUGE2 19.95 19.07 19.32 19.81 1893 18.67

ROUGELsum  37.32  36.53 36.6 37.04 364 36.26

Code Documentation Generation - Go, small model, batch size: 256

Steps 2000 4000 6000 8000 10000 20000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000
BLEU 12.794 11901 12.605 13.12 13.192 13.367 13.873 13.65 13.788 13.944 14.382 14.505 14.113 14.967 14.703 14.718
ROUGE1 47.92 4693 4719 47.18 4721 46.61 4613 4589 4561 4558 4563 4527 4552 451 4547 4558
ROUGE2 25.08 2426 2427 2417 2427 2371 2354 2336 2313 2316 2312 23.02 23.03 2284 23.09 2313
ROUGELsum  45.86  45.07 45 449 4482 4428 4385 43.63 4333 4336 4331 4306 4328 4278 4324 4326
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Code Documentation Generation - Go, base model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000
BLEU 13.276 13.499 13.445 14.423 15.058 14.563 15.059 15.243 15.352 15.849 15412 15.358 15.717 15.949 15.8
ROUGE1 46.66 4577 4576 4559 4581 4545 4489 4559 4545 458 4529 4507 4531 4553 45.88
ROUGE2 2457 2405 2401 2374 2386 2347 2331 2383 2367 2405 2353 2349 2358 23.63 24.03
ROUGELsum  44.86 43.85 43.89 4348 43.67 433 4278 4355 43.32 43.61 43.08 4298 43.03 43.31 4373
Code Documentation Generation - Go, large model, batch size: 256
Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BLEU 13.648 13.897 13.825 15.001 15459 16.103 15.506 16.096 16.192 15.895
ROUGE1 46.04 46.25 464 4636 4648 4567 4653 47.05 46.78 47.01
ROUGE2 2366 2358 2414 2406 2384 2334 241 2455 2436 2445
ROUGELsum  43.94 44 4429 4406 4413 433 4431 44.68 4451 44.65
Code Documentation Generation - Php, small model, batch size: 256
Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 10.036 8.886 10.895 9.851 11.514 11.764 12.547 11.825 11.808 11.667
ROUGE1 4143 4055 41.04 4139 4079 4147 411 4135 4079 40.78
ROUGE2 1749 1714 18.18 18.02 1796 1824 1822 1824 1799 18.1
ROUGELsum  39.55 3894 39.17 39.65 3893 39.6 39.13 3948 3893 38.95
Code Documentation Generation - Php, base model, batch size: 256
Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
BLEU 12.758 15.454 16422 16.38 17.299 17578 16961 17.995 17.943 17.32
ROUGE1 4215 4233 4186 4179 41.84 4194 4175 4197 42,06 41.78
ROUGE2 1946 1947 1938 1975 19.82 1986 1992 20.04 2018 19.99
ROUGELsum  40.27 4026 39.67 39.81 39.85 39.76 39.78 39.83 40.02 39.75
Code Documentation Generation - Php, large model, batch size: 256
Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 9000 10000
BLEU 14.343 14.391 15921 16.197 16412 17.044 16.126 17441 16.821 17.502 16.775 17.779 17.652 17.854 17.343 18.325 17.804 18.055
ROUGE1 4232 4277 4249 4283 41.78 42.6 4267 4272 4196 4256 4244 42.77  42.67 426  43.08 421 42.58
ROUGE2 19.49 19.8 19.81 20.14 19.6 2023 2025 2043 1979 2044 2048 2046 20.72 205 2051 2096 20.15 20.61
ROUGELsum  40.13 40.86 40.21 40.8 39.75 4049 4051 40.67 39.88 4057 40.52 404 4076 4056 40.68 41.08 40.02 40.55
Code Documentation Generation - Ruby, small model, batch size: 256
Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 3.794 3.82 3949 4521 4277 446 4.603 4552 4.111 4.284
ROUGE1 29.39 2842 2793 284 28.05 2759 2775 27.67 2771 2749
ROUGE2 9.08 87 853 9.08 8.66 8.75 8.95 8.53 8.65 8.58
ROUGELsum 26.89 26.07 2543 25.81 2539 2542 2536 25.19 25.2 25.1
Code Documentation Generation - Ruby, base model, batch size: 256
Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 4.657 5019 4.845 5216 5.018 5.352 4.755 4.811 5071 5.014
ROUGE1 30.3 30 29.64 2992 29.67 2974 2935 2936 29.85 2945
ROUGE2 1029 994 10.02 10.14 9.86 9.85 9.55 9.48 9.74 9.93
ROUGELsum 27.82 27.65 273 2746 27.28 272 2687 2687 2724 27.04
Code Documentation Generation - Ruby, large model, batch size: 256
Steps 500 1000 1500 2000 2500 3000 3500 4000
BLEU 546 5.159 5509 5.389 5.551 5.359 5.548 5.425
ROUGE1 30.15 2997 302 3029 3049 30.56 30.39 30.38
ROUGE2 10.59 10.58 10.75 10.86 10.62 104 1049 1045
ROUGELsum 27.79 27.58 27.78 27.79 28.04 28.04 2791 27.85
Code Documentation Generation - Javascript, small model, batch size: 256
Steps 2000 4000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000 36000
BLEU 4248 4.669 7.861 8.644 8795 9.089 9252 9365 946 9401 9569 9.663 9.423 9.86 9.483 9.476
ROUGE1 2892 284 2877 2926 29.11 29.12 29.1 28.88 2895 28.8 28.8 2892 2857 29.27 28.69 28.83
ROUGE2 9.86 9.81 11.14 1156 1155 1142 11.84 11.8 11.72 1165 11.62 1194 1147 12.03 11.65 11.69
ROUGELsum 27.17 26.57 26.86 2725 27.02 2696 27.02 2692 2684 2684 2675 2692 2658 2725 2672 26.89
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Code Documentation Generation - Javascript, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
BLEU 10448 10.679 10.61 10.983 11.01 10.612 10.828 11.043 10.901 10.998
ROUGE1 30.85 3119 3084 30.77 30.99 30.7 3118  30.87 30.7  30.67
ROUGE2 13 13.07 131 13.04 1328 1296 13.18 1341 13 13.07

ROUGELsum  28.77 29.09 2873 2857 2886 2875 29.03 2874 28.64 28.68

Code Documentation Generation - Javascript, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000
BLEU 8.796 10.036 10.397 10.969 10.78 10.363
ROUGE1 3098 3183 31.76 3143 31.98 30.93
ROUGE2 1183 1337 1334 13.39 13.72 13.19
ROUGELsum 2881 29.86 29.77 29.3  30.02 29

Source Code Summarization - Python, small model, batch size: 256

Steps 600 1200 1800 2400 3000 3600 4200 4800 5000
BLEU 2.891 1.741 1906 2015 1.809 1.863 1596 1943 1.836
ROUGE1 23.94 1925 20.08 19.63 19.85 19.44 1888 19.85 19.55
ROUGE2 564 413 398 399 391 375 358 398 3.86

ROUGELsum 21.16 17.27 17.73 1734 1731 17.08 16.61 1741 17.12

Source Code Summarization - Python, base model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BLEU 194 211 2254 2034 2171 1.855 1968 1.577 1.831 1.694
ROUGE1 19.53 21.07 20.11 19.99 2049 19.51 20.09 1943 2042 19.84
ROUGE2 402 429 431 42 438 39 424 365 418 3.99

ROUGELsum 17.53 18.25 17.82 17.66 18.04 17.16 17.64 1698 1791 17.43

Source Code Summarization - Python, large model, batch size: 256

Steps 100 200 300 400 500 600
BLEU 2.848 2217 1752 1762 2.05 2.536
ROUGE1 23.73 2143 198 20.05 2091 20.75
ROUGE2 594 505 358 3.62 445 445

ROUGELsum 20.95 19.13 1727 1725 18.34 1831

Source Code Summarization - SQL, small model, batch size: 256

Steps 600 1200 1800 2400 3000 3600 4200 4800 5000
BLEU 1.602 1.877 1.688 1406 1.11 0.871 1.013 0.881 0.906
ROUGE1 182 18.79 1792 16.64 1525 1452 1496 1439 143
ROUGE2 36 396 363 3.06 262 22 246 217 208

ROUGELsum 164 16.96 16 15.02 13.81 13.12 1358 1293 1294

Source Code Summarization - SQL, base model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BLEU 1.953 1382 0921 1.105 0.942 0.952 0938 0941 0.896 1.016
ROUGE1 19.42 16.79 1519 1493 15.06 1441 14.88 14.82 14.64 14.83
ROUGE2 3.98 31 222 214 214 208 222 203 203 214

ROUGELsum 17.57 1536 13.82 1354 13.53 1298 13.36 1327 13.13 13.26

Source Code Summarization - SQL, large model, batch size: 256

Steps 100 200 300 400 500 600
BLEU 1.965 1.693 1443 1.103 0.947 0.819
ROUGE1 1748 18.77 178 1531 15.07 14.57
ROUGE2 4.03 3.67 3.4 25 235 195

ROUGELsum 1626 16.96 15.82 13.77 13.53 13.07
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Source Code Summarization - CSharp, small model, batch size: 256

Steps 600 1200 1800 2400 3000 3600 4200 4800 5000 5000

BLEU 3406 3.601 3.472 3.328 3.123 3.051 2579 2677 2675 1.016

ROUGE1 2218 22,67 2234 2201 21.68 2095 19.69 20.06 20.17 14.83

ROUGE2 549 593 5.68 55 535 496 445 474 463 214

ROUGELsum 20.47 20.84 205 2022 1992 19.13 18.12 1841 18.37 13.26

Source Code Summarization - CSharp, base model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

BLEU 4199 3.818 3.683 3.414 255 2405 2771 2701 2712 2.699

ROUGE1 2433 23.18 2225 21.77 1925 18.65 20.69 20.14 20.02 20.15

ROUGE2 6.56 595 547 523 396 378 4.66 433 429 447

ROUGELsum 22,18 21.15 20.17 19.69 1729 16.77 18.86 18.12 18.08 18.21

Source Code Summarization - CSharp, large model, batch size: 256

Steps 100 200 300 400 500 600

BLEU 3.68 3.544 3287 3.035 2.602 3.482

ROUGE1 22.84 22.63 22 20.81 19.25 22.05

ROUGE2 5.65 55 571 472 422 55

ROUGELsum 20.67 20.62 20.21 1879 1749 20.06

Code Comment Generation, small model, batch size: 256

Steps 50000 100000 200000 300000 400000 500000 550000 600000 650000 700000 750000 800000 850000 900000
BLEU 33415 39.303 45.094 47435 50.037 51.048 51.27 51.339 51.518 51.448 51.605 51.471 51532 51.574
ROUGE1 51.85 54.59 56.65 57.44 58.27 58.49 58.35 58.53 58.38 58.36 58.45 58.3 58.49 58.39
ROUGE2 39.12 42.68 45.42 46.64 47.42 47.68 47.59 47.76 47.66 47.7 47.75 47.63 47.75 47.77
ROUGELsum  50.76 53.53 55.53 56.42 57.18 57.36 57.28 57.45 57.29 57.32 57.36 57.21 57.41 57.32
Code Comment Generation, base model, batch size: 256

Steps 10000 30000 40000 50000 60000 70000 80000 90000 100000

BLEU 36.02 47477 50.61 51.888 52.108 52413 52.362 52.653 52.255

ROUGE1 5295 5775 59.03 5954 59.62 59.51 59.58 59.43 59.58

ROUGE2 4033 46.66 4796 4854 4878 48.63 48.79  48.65 48.73

ROUGELsum 51.83 56.65 57.89 5842 5849 58.38 5847 58.3 58.43

Code Comment Generation, large model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000

BLEU 50.474 52.189 52.653 52.642 52.826 52.781

ROUGE1 59.01 59.84 59.79 60.11 59.89 59.48

ROUGE2 47.77 489 4892 49.01 49.09 489

ROUGELsum 5792 5875 58.68 59.01 5876 5838

Git Commit Message Generation, small model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000
BLEU 43.262 4447 44432 4459 44505 44426 44478 44591 44411 44.593 44.165 4487 44507 44.304 44301
ROUGE1 4752 4773 47.68 4812 4771 47.51 47.63 4776 47.83 47.83 47.18 478 4772 4759  47.68
ROUGE2 34.83 3537 35.67 3565 3561 3535 35.68 35.6 3557 3571 3521 35.66 3571 3544 3556
ROUGELsum  47.08 47.06 47.15 47.56 47.12 4695 47.07 4732 4732 4727 4674 4729 4731 47.09 4725
Git Commit Message Generation, base model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

BLEU 44584 44.851 44.777 44.798 44507 44.673 44539 44.813 44.448 44.747

ROUGE1 48.61 4834 4841 4854 4811 4828 4831 48.75 4849 4859

ROUGE2 3589 3545 3576 36.01 3577 3553 3533 3581 3554 35.9

ROUGELsum  48.06 47.75 4791 48.03 4755 47.83 4773 4813 4799 48.05

Git Commit Message Generation, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000

BLEU 44525 44.864 44.793 44433 44.61 44.858 44.779 44.783

ROUGE1 48.62 4895 48.84 48.83 48.84  49.06 48.6  48.89

ROUGE2 3548 3588 3585 3622 3633 3635 3598 36.36

ROUGELsum 4794 4834 4811 482 482 48,53 48.05 4831
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API Sequence Generation, small model, batch size: 256

Steps 50000 100000 200000 300000 400000 500000 600000 700000 800000 900000 950000 1000000 1050000 1100000 1150000 1200000 1250000
BLEU 63.276 65.28 67.277 68.616 69.079 69.566 69.738 70.125 70.544 70.424 70.921 70.766 71.045 70.876 71.312 71.09 71.23
ROUGE1 70.66 72.59 74.55 75.49 76.18 76.62 76.77 77.13 77.38 77.31 77.68 77.63 77.87 77.81 78.05 77.95 77.91
ROUGE2 60.81 63.02 65.06 66.35 66.95 67.59 67.72 68.22 68.45 68.35 68.7 68.55 69.02 69 69.24 69.12 69.16
ROUGELsum  70.63 72.58 74.57 75.48 76.18 76.6 76.78 77.11 77.33 77.31 77.66 77.61 779 77.79 78.01 77.95 77.89
API Sequence Generation, base model, batch size: 256

Steps 20000 40000 100000 120000 140000 160000 180000 200000 220000 240000 260000 280000 300000 310000 320000 330000 340000 350000
BLEU 69.933 70.643 72.153 72.245 72412 73.036 73.351 73.563 73457 73476 7351 74.057 74239 74.256 74156 74.003 74.065 74.237
ROUGE1 76.92 77.7 79.01 79.24 79.59 79.93 80.01 80.43 80.67 80.68 80.84 80.99 81.3 81.31 81.32 81.32 81.39 81.41
ROUGE2 67.89  68.76 70.43 70.72 71.02 71.49 71.62 72.12 72.32 72.5 72.6 72.79 73.1 73.09 73.2 73.17 73.19 73.13
ROUGELsum 7692  77.69 78.98 79.22 79.55 79.95 79.99 80.43 80.65 80.69 80.82 81 81.26 81.294 81.33 81.29 81.4 81.4
API Sequence Generation, large model, batch size: 256

Steps 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000

BLEU 72371 73372 74109 73.643 74.036 74268 74164 74.324 74354 74.628 74.567 74543 74528 74.231

ROUGE1 79.6 8045 80.83 80.74 81.18 8136 8141 8145 8145 81.73 81.67 81.75 81.8 81.61

ROUGE2 7115 7208 72.67 7246 73 733 7334 734 7345 73.74 73.63 73.71 73.81 73.41

ROUGELsum 79.6 8043 80.81 80.77 81.18 8133 8139 8146 8146 81.72 81.64 81.72 81.78 81.6

Program Synthesis, small model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

BLEU 94599 94.628 94.622 94.625 94.627 94.638 94.651 94.662 94.652 94.641

ROUGE1 99.17  99.16 99.2 99.2 99.2 99.2  99.21 99.2  99.21 99.2

ROUGE2 98.82 98.8 98.85 98.82 9885 9886 98.88 98.88 98.87 98.86

ROUGELsum  99.01 99  99.04 99.02 99.03 99.04 99.05 99.04 99.04 99.05

Accuracy 91.811 92245 92402 92273 92338 92.439 92.458 92.439 92.402 92.439

Program Synthesis, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

BLEU 94.671 94.634 94.635 94.66 94.646 94.669 94.65 94.637 94.652 94.647

ROUGE1 99.21 99.2 9921  99.21 99.2 9921  99.21 99.2  99.21 99.2

ROUGE2 98.91 9886 9888 9821 98.89 9892 98.89 9886 9889 98.88

ROUGELsum  99.05 99.04 99.05 99.06 99.05 99.06 99.05 99.03 99.05 99.05

Accuracy 92541 9243 92448 92513 92541 92.606 92513 9243 9255 92.495

Program Synthesis, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000

BLEU 94596 94.646 94.639 94.641 94.628 94.615

ROUGE1 99.13 99.2  99.21 99.2 99.2 99.2

ROUGE2 98.77 9884 98.86 98.85 98.84 98.84

ROUGELsum 9897  99.02 99.04 99.05 99.03 99.04

Accuracy 9219 92.393 92439 92.467 92.393 92402
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each Task

B.1. Code Documentation Generation

B.1.1. Code Documentation Generation - Python

Model Size  Model Output
CodeTrans Small Prints an error and exits with an optional exit code .
Single-Task Learning Base  Prints thee.
Small Prints a message and exits with the specified exit code .
CodeTrans . .
. Base  Prints an error message and exits .
Transfer Learning . .
Large Print an error message and exit .
Small Prints a message and exits if exit_code is not None .
CodeTrans . . . . .
. . Base  Prints an error message and exits with the given exit code .
Multi-task Learning . .
Large Print an error message and exit .
Small Print a message and exit .
CodeTrans . . . . .
Base  Prints a message to the log and exits with an optional exit code .

Multi-task Learning Fine-tuning Large

Print error message and exit .

Code Snippet as Input

def e ( message , exit_code = None ) : print_log ( message , YELLOW , BOLD )
if exit_code is not None : sys . exit ( exit_code )

Golden Reference

Print an error log message .

B.1.2. Code Documentation Generation - Java

Model Size  Model Output
CodeTrans Small Casts a Cast to another type
Single-Task Learning Base  Casts a value into a function that returns the same type as the supplied parameter .
Small Casts the given class to a function .
CodeTrans -
. Base  Casts a function to a class
Transfer Learning .
Large Cast a value to the given target type .
CodeTrans Small Casts the given ‘class to the given tfirget class . .
. . Base  Returns a function that casts the given value to the given type .
Multi-task Learning . .
Large Creates a function that performs a cast to the given class .
CodeTrans Small Creates a function that casts the given object to the target type .
. . . . Base  Returns a function that casts the given object to the given class .
Multi-task Learning Fine-tuning . s
Large Returns a function that casts its input type to the target type .

Code Snippet as Input

public static < T, U > Function < T, U > castFunction ( Class < U > target )
{ return new CastToClass < T , U > ( target ) ; }

Golden Reference

Returns a function that cast the incoming values via a Class object .
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B.1.3. Code Documentation Generation - Go

Model Size  Model Output
CodeTrans Small needSnapshotAbort returns true if we need to roll a snapshot .
Single-Task Learning Base  needSnapshotAbort returns true if we need to call snapshot and false otherwise .
Small needSnapshotAbort returns true if the Progress . Match field of ProgressState == ProgressStateSnapshot and pr . Match < pr . PendingSnapshot .
CodeTrans . L .
. Base  needSnapshotAbort returns true if the progress is in a snapshot and the match exceeds the pending snapshot .
Transfer Learning .
Large needsnapshotabort returns true if we need to abort a snapshot .
Small needSnapshotAbort returns true if the current state is a snapshot .
CodeTrans .
. . Base  needSnapshotAbort returns true if we need to abort the snapshot .
Multi-task Learning .
Large needsnapshotabort returns true if we need to abort a snapshot .
Small needSnapshotAbort returns true if the progress needs to be aborted .
CodeTrans :
. . ) . Base  needSnapshotAbort returns true if we need to abort the snapshot
Multi-task Learning Fine-tuning .
Large needsnapshotabort returns true if we need to abort the snapshot .

Code Snippet as Input

func ( pr * Progress ) needSnapshotAbort () bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }

Golden Reference

needSnapshotAbort returns true if snapshot progress s Match is equal or higher than the pendingSnapshot .

B.1.4. Code Documentation Generation - Php

Model Size  Model Output
CodeTrans Small Update table with specific data
Single-Task Learning Base  Call when table is constructed
Small Updates a table .
CodeTrans . Base  Calls the updateTable method to update a table .
Transfer Learning
Large Updates a table .
CodeTrans Small Update a table .
Multi-task Learnin Base  Updates a table .
s Large updates a database table .
CodeTrans Small Update a table .
Multi-task Learning Fine-tunin, Base  Updates a table .
ke 5 tine 5 Large updates a database table .

Code Snippet as Input

public static function update ( $ table ) { if (! is_array ($ table ) )

{ $ table = json_decode ( $ table, true ) ; } if (! SchemaManager :: tableExists ( $ table [ ‘oldName’ | ) ) { throw SchemaException ::

tableDoesNotExist ( $ table [ ‘oldName’ ] ) ; } $ updater = new self ( $ table ) ; $ updater -> updateTable () ; } }

Golden Reference

Update the table .

B.1.5. Code Documentation Generation - Ruby

Model Size  Model Output
CodeTrans Small Log a message at the given level if the logger is present
Single-Task Learning Base  Writes a log message if the current log level is at or below the supplied severity .
Small Create an IO object at the given level with the given block . This method will not be called directly if the IO object at that level .
CodeTrans R . .
. Base  Writes a message of the given severity to the log .
Transfer Learning . .
Large Writes a message to the log device .
CodeTrans Small Add a message to the log .
. . Base  Add a message to the logger .
Multi-task Learning
Large Add a message to the log .
CodeTrans Small Writes a message to the log with a given severity .
R . - . Base  We need to overload the add method . Basibally it is the same as the original one but we add our own log format to it .
Multi-task Learning Fine-tuning . . I . .
Large Writes a message if the severity is high enough . This method is executed asynchronously .

Code Snippet as Input

def add ( severity , progname , & block ) return true if io . nil? | | severity < level message =
format_message ( severity , progname , yield ) MUTEX . synchronize { io . write ( message ) } true end

Golden Reference

Add a message to the logger with the given severity and progname .
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B.1.6. Code Documentation Generation - Javascript

Model Size  Model Output
CodeTrans Small Returns true if the browser is a native element .
Single-Task Learning Base  Returns whether the givenEnv should be focused .
Small  Checks if the current browser is on a standard browser environment .
CodeTrans

Base  Check if browser environment is a standard browser environment

Transfer Learni
ranster Learning Large Check if the environment is standard browser .

Small Returns true if the browser environment is a standard browser environment .
CodeTrans

R . Base  Checks if the current browser environment is a standard browser environment .
Multi-task Learning

Large Determines if the current environment is a standard browser environment

Small Standard browser environment has a notion of what React Native does not support it .
Base  Check if the browserEnv is standard .
Large Checks if the browser is in a standard environment .

CodeTrans
Multi-task Learning Fine-tuning

function isStandardBrowserEnv () { if ( typeof navigator !== "undefined” && ( navigator . product ’ReactNative’ | | navigator . product

Code Snippet as Input ==="NativeScript’ | | navigator . product === "NS’ ) ) { return false ; } return ( typeof window !== "undefined’ && typeof document !== "undefined" ) ; }

Golden Reference Determine if we re running in a standard browser environment

B.2. Source Code Summarization

B.2.1. Source Code Summarization - Python

Model Size  Model Output
CodeTrans Small Python : Compare files containing a folder
Single-Task Learning Base  How to copy a text file into a variable ?

Small includes within a line ” with python 2.7
Base  Python : Include specific lines in a file
Large Changing a line in a text file

CodeTrans
Transfer Learning

Small How to write a string to a file in Python ?
Base = How to write a text file to a text file in Python ?
Large How to remove a line from a file in python ?

CodeTrans
Multi-task Learning

Small How to include text in a file using Python ?
Base  Python : ‘Include this text in a file ’
Large How to remove empty string in python

with open ( CODE_STRING , CODE_STRING ) as in_file : buf = in_file . readlines () with open ( CODE_STRING , CODE_STRING )
as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write ( line )’

CodeTrans
Multi-task Learning Fine-tuning

Code Snippet as Input

Golden Reference Adding lines after specific line

B.2.2. Source Code Summarization - CSharp

Model Size  Model Output
CodeTrans Small How to convert C # DateTime to C #
Single-Task Learning Base  How to convert DateTime to DateTime format in C # ?

Small How to convert double to DateTime in C # ?
Base  Convert double to DateTime
Large How to convert double to datetime ?

CodeTrans
Transfer Learning

Small How to convert unix timestamp to local time in C # ?
Base  How to convert a double to a DateTime in C # ?
Large How to convert double to datetime in C # ?

CodeTrans
Multi-task Learning

Small How to convert double to DateTime in C # ?
Base  How to convert double to DateTime in C # ?
Large Convert double to datetime in C #

public static DateTime ParseUnixDateTime ( double unixTime ) { var dt = new DateTime ( CODE_INTEGER

Code Snippet as Input CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER,
System . DateTimeKind . Utc ) ; dt = dt . AddSeconds ( unixTimeStamp ) . ToLocalTime () ; return dt ; }

CodeTrans
Multi-task Learning Fine-tuning

Golden Reference C # Display compare timestamp to current month
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B.2.3. Source Code Summarization - SQL

Model Size  Model Output
CodeTrans Small mysql : how to get the difference of a column in a table ?
Single-Task Learning Base  how do i get the average of a date range in sql server 2005 ?
Small how to get the time in milliseconds since the start time of the transaction was taken ?
CodeTrans L
. Base  how to get current date time in sql server ?
Transfer Learning . .
Large mysql time () function
ime i ?
CodeTrans Small how to gét the tlm? in mysql ? ‘
. . Base  how can i get the time of a date in mysql ?
Multi-task Learning . S
Large how to convert datetime to time in mysql ?
i ?
CodeTrans Small how to get the correct tlme f'rorn mysql database ?
. . . . Base  how to convert date to time in mysql ?
Multi-task Learning Fine-tuning .
Large select time from mysql table

Code Snippet as Input

select time ( col0 ) from tab0

Golden Reference

datetime implementation in php mysql

B.3. Code Comment Generation

Model

Size  Model Output

CodeTrans
Single-Task Learning

Small Renders the URI into its textual representation .
Base  Renders the URI .

CodeTrans
Transfer Learning

Small Renders the given URI into a string . Override this if you want to do something special to convert the URI into ASCII .
Base  Render a URI
Large Renders the given URI using the encoding scheme in ISO-8859-1 .

CodeTrans
Multi-task Learning

Small Renders a URI .
Base  Renders the given URI into a string .
Large Renders the URI as an ASCII string .

CodeTrans
Multi-task Learning Fine-tuning

Small Render the URI as ASCII string .
Base  Renders a URI as a string , escaping special characters .
Large Render the given URI .

Code Snippet as Input

protected String renderUri ( URI uri ) return uri . toASCIIString () ;

Golden Reference

Render the URI as a string

B.4. Git Commit Message Generation

Model Size  Model Output
CodeTrans Small  Added missing Jungtaeks to log4j . jar
Single-Task Learning Base  Added missing jar file
Small Adding missing joscar jar
CodeTrans . Base  Added joscar . jar to the lib directory of the Gateway project
Transfer Learning Lo .
Large added missing joscar jar
CodeTrans Small add joscar jar
Multi-task Learnin, Base  Add joscar jar
8 Large Add joscar
CodeTrans Small Addmg. missing jar file
. . - . Base  Added joscar jar
Multi-task Learning Fine-tuning . . . . .
Large Started work on the icq / aim protocol provider implementation

Code Snippet as Input

new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar

. jar differ

Golden Reference

Added joscar JAR
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B. Appendix - Model Output Examples for each Task

B.5. API Sequence Generation

Model Size  Model Output
CodeTrans Small Color . getRed Color . getGreen Color . getBlue
Single-Task Learning Base  Color . getRed Color . getGreen Color . getBlue

Small Color . getRed Color . getGreen Color . getBlue
Base  Math . max Math . min
Large Math . max Math . min

CodeTrans
Transfer Learning

Small Math . min Math . max
Base  Color . getRed Color . getGreen Color . getBlue
Large Renders Math . round Math . max Math . round Math . max Math . round

CodeTrans
Multi-task Learning

Small Color . getRed Color . getGreen Color . getBlue

CodeTrans

Multi-task Learning Fine-tunin Base  Color . getRed Color . getGreen Color . getBlue
& & Large Color . getRed Color . getGreen Color . getBlue

Code Snippet as Input Convert from normal rgb to java hsb

Golden Reference Color.RGBtoHSB Color.getHSBColor

B.6. Program Synthesis

Model Size  Model Output
CodeTrans Small [ map a [ partiall b -
Single-Task Learning Base map a [ partiall b -
CodeTrans Small [mapa [ part?all b-
Base map a [ partiall b -

Transfer Learning

Large [map a [ partiallb -

CodeTrans

[ 11
[ 11
[ 11
[ 11
[ 11
Small [mapa [ partiall b-]]
[ 11
[ 11
[ 11
[ 11
[ 11

Multi-task Learning E:;e E:g Z { g:ﬁz:ﬁ E :

Soul Lmap et

Multi-task Learning Fine-tuning Large [map a[ partiall b -

Code Snippet as Input you are given an array of numbers a and a number b , compute the difference of elements in a and b
Golden Reference [ map a [ partiall b -] ]
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