
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics: Data Engineering and Analytics

Exploring the Possibilities of Applying
Transfer Learning Methods for Natural

Language Processing in Software
Development

Wei Ding

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics: Data Engineering and Analytics

Exploring the Possibilities of Applying
Transfer Learning Methods for Natural

Language Processing in Software
Development

Erkundung der Möglichkeiten der
Anwendung von Transfer-Lernmethoden für
die Verarbeitung natürlicher Sprachen in der

Softwareentwicklung

Author: Wei Ding
Supervisor: Prof. Dr. Florian Matthes
Advisor: Ahmed Elnaggar
Submission Date: 05 February 2021

I confirm that this master’s thesis in informatics: data engineering and analytics is my own
work and I have documented all sources and material used.

Munich, 05 February 2021 Wei Ding

Acknowledgments

First of all, I would like to thank Prof. Dr. Florian Matthes for giving me this opportunity to
work on this thesis in the SEBIS chair.

Secondly, I would like to offer my gratitude to my thesis advisor Ahmed Elnaggar for his
guidance during this thesis. He offers his help generously, answers my every question
patiently, and motivates me continuously throughout this thesis. I would not have the chance
to use one of the most advanced hardware resources in the world and work so smoothly on
such an up-to-date research topic if without his help.

This thesis is finished mainly from the year 2020 to 2021. It is an unusual year because of the
Coronavirus SARS-CoV-2. I still remember the first meeting of this thesis in Ahmed’s office.
We chatted a bit about a virus wide-spreading in Asia from Wuhan. We hoped that it would
disappear when the temperature went higher. At that moment, we did not know that this
virus would come to Germany and Europe immediately and influence our study, work, and
life so largely. And that meeting is the only face-to-face meeting for this thesis I had with
Ahmed in his office.

Therefore, I would like to thank my husband, Qunfei, for his support when we have to take
care of and teach our 6-year-old daughter Emilie at home. I want to thank all my friends who
encourage me all the time so that I never feel isolated during the lockdown. I want to thank
for the support from Technische Universität München to allow me to work from home safely.
I also want to thank the medical and nursing staff fighting against this virus on the front line
and the scientists working on the vaccine days and nights to bring our normal life back.

Abstract

Nowadays, we have a growing number of mature applications in the field of natural language
processing (NLP), especially natural language understanding (NLU) and generation (NLG),
like chatbots or auto-generated reports. Such applications relieve users from repeatable
works and assist them in achieving high-demanding yields. We have different programming
languages in the software development domain, which require deep understanding by human
beings. Suppose we can apply methods for natural language processing in the software
development world. In that case, we could help both programmers with good programming
skills and project managers or data scientists, who need to understand code but do not have a
strong programming background, to do their job more convenient, by generating documents
to make the code easier to read and understand, generating code difference descriptions to
compare and evaluate codes quickly, or generating code structure or dependencies to make
programming more manageable.

In recent years, transfer learning is becoming quite successful. This machine learning method
pre-trains a model first on a large amount of unlabeled data with an unsupervised task, then
fine-tunes the same model on smaller labeled datasets. In this thesis, we examined the effect
of transfer learning for tasks in the software development domain. We compared transfer
learning with single-task learning and multi-task learning on thirteen tasks involving nine
programming languages. We used the transformer encoder-decoder architecture to develop
different sizes of models with these training strategies. We call these models CodeTrans. Our
CodeTrans models outperform all the state-of-the-art models for all the tasks.

The pre-trained models generated by transfer learning could be applied to the tasks in the
software development domain. Fine-tuning these models on new tasks would save a lot of
training steps and time. Therefore, we published our CodeTrans pre-trained and fine-tuned
models online so that everyone can use these models to generate text for relevant tasks or to
fine-tune new tasks freely.

iv

Kurzfassung

Heutzutage gibt es immer mehr Anwendungen im Bereich Natural Language Processing
(NLP), insbesondere Natural Language Understanding (NLU) und Generierung (NLG), wie
Chatbots oder automatisch generierte Reports. Solche Anwendungen entlasten den Benutzer
von repetitiven Arbeiten und unterstützen ihn beim lösen anspruchsvoller Probleme. In der
Softwareentwicklung benutzt man zur Problemlösung verschiedene Programmiersprachen,
die ein tiefes Verständnis des Entwicklers erfordern. Hier können wir Methoden des Natural
Language Processing in der Softwareentwicklung anwenden.

Wir können Dokumentationen für Programmier-Funktionen generieren, um den Code leichter
lesbar und verständlich zu machen oder die Unterschiede von verschiedenen Code-Versionen
zusammenfassen, um Code schnell zu vergleichen und zu bewerten. Außerdem kann auch
der Programmcode selbst generiert werden. Auf diese Weise würden wir Programmierern,
Projektmanagern oder Data Scientists bei der Entwicklung neuer Software helfen, egal ob sie
einen ausgeprägten Programmier-Hintergrund haben oder nicht.

In den letzten Jahren hat sich das Transfer-Learning sehr erfolgreich entwickelt. Bei die-
ser Methode des maschinellen Lernens wird ein Modell zunächst auf einer großen Menge
unannotierter Daten mit Hilfe eines unsupervised Tasks erst vor-trainiert, und dann das
gleiche Modell auf kleineren annotierten Datensätzen weiter fine abstimmt. In dieser Mas-
terarbeit untersuchten wir den Effekt des Transfer-Learnings auf Aufgaben im Bereich der
Softwareentwicklung. Wir vergleichen Transfer-Learning mit Single-Task-Learning und Multi-
Task-Learning bei dreizehn Aufgaben mit neun Programmiersprachen. Wir verwendeten
die Transformer-Encoder-Decoder-Architektur, um verschiedene Größen von Modellen mit
diesen Trainingsmethoden zu entwickeln. Wir nennen unsere Modelle CodeTrans. Unsere
CodeTrans-Modelle haben für alle Aufgaben bessere Ergebnisse als State-of-the-Art-Modelle
erzielt.

Die durch Transfer-Learning erstellten vor-trainierten Modelle können auf andere Aufgaben
in der Software-Entwicklungs-Domäne angewendet werden. Die Weiter-Finetuning dieser
Modelle auf neue Aufgaben würde eine Menge Trainingsschritte und Zeit sparen. Daher haben
wir unsere vor-trainierten und fein-abgestimmten CodeTrans-Modelle online veröffentlicht, so
dass jeder diese Modelle kostenlos und frei benutzen kann, um Texte für relevante Aufgaben
zu generieren oder um neue Aufgaben fein-abzustimmen.

v

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1. Introduction 1
1.1. Motivation . 1
1.2. Problem Statement . 2
1.3. Research Questions . 2
1.4. Thesis Contribution . 2
1.5. Research Approach . 3
1.6. Structure of the Thesis . 4

2. Background 5
2.1. Software Engineering and Development . 5
2.2. Natural Language Processing . 6

2.2.1. Deep Learning in Natural Language Processing 6
2.2.2. Transformer Model and Attention Mechanism 10
2.2.3. Transfer Learning . 11
2.2.4. Multitask Learning . 14

2.3. Natural Language Processing in Software Development 16

3. Related Work 21
3.1. Tasks Related Work . 21

3.1.1. Code Documentation Generation . 21
3.1.2. Source Code Summarization . 23
3.1.3. Code Comment Generation . 24
3.1.4. Git Commit Message Generation . 25
3.1.5. API Sequence Recommendation . 27
3.1.6. Program Synthesis . 28

3.2. Model Related Work . 29
3.2.1. Text-to-Text Transfer Transformer . 30

vi

Contents

4. Approach 33
4.1. Datasets . 33

4.1.1. Unsupervised Dataset . 33
4.1.2. Supervised Dataset . 39

4.2. Vocabulary . 45
4.3. Model Architecture . 47
4.4. Evaluation Metrics . 49

4.4.1. BLEU score . 49
4.4.2. ROUGE score . 50
4.4.3. Accuracy . 50

5. Experiment 52
5.1. Experimental Setup . 52

5.1.1. Hardware . 52
5.1.2. Software Usage . 53

5.2. Single-task Learning . 54
5.3. Transfer Learning . 56

5.3.1. Pre-training . 56
5.3.2. Fine-tuning . 57

5.4. Multi-task Learning . 60
5.5. Multi-task Learning with Fine-tuning . 63

6. Evaluation Results and Discussion 65
6.1. Evaluation Results . 65

6.1.1. Code Documentation Generation . 65
6.1.2. Source Code Summarization . 69
6.1.3. Code Comment Generation . 71
6.1.4. Git Commit Message Generation . 71
6.1.5. API Sequence Recommendation . 72
6.1.6. Program Synthesis . 72

6.2. Discussion . 74
6.3. Models Publication . 77

7. Conclusions and Future Work 79
7.1. Conclusions . 79
7.2. Future Work . 80

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set 81
A.1. Single-task Learning . 81

A.1.1. Code Documentation Generation . 81
A.1.2. Source Code Summarization . 86
A.1.3. Code Comment Generation . 88
A.1.4. Git Commit Message Generation . 89

vii

Contents

A.1.5. API Sequence Generation . 90
A.1.6. Program Synthesis . 91

A.2. Transfer Learning . 92
A.3. Multi-task Learning . 97
A.4. Multi-task Learning with Fine-tuning . 100

B. Appendix - Model Output Examples for each Task 105
B.1. Code Documentation Generation . 105

B.1.1. Code Documentation Generation - Python 105
B.1.2. Code Documentation Generation - Java 105
B.1.3. Code Documentation Generation - Go . 106
B.1.4. Code Documentation Generation - Php 106
B.1.5. Code Documentation Generation - Ruby 106
B.1.6. Code Documentation Generation - Javascript 107

B.2. Source Code Summarization . 107
B.2.1. Source Code Summarization - Python . 107
B.2.2. Source Code Summarization - CSharp . 107
B.2.3. Source Code Summarization - SQL . 108

B.3. Code Comment Generation . 108
B.4. Git Commit Message Generation . 108
B.5. API Sequence Generation . 109
B.6. Program Synthesis . 109

List of Figures 110

List of Tables 112

Bibliography 113

viii

1. Introduction

1.1. Motivation

Software development can be considered as a process of designing, implementing, testing,
and maintaining information systems such as applications, frameworks, or other software
components[1]. It plays an inevitable role in today’s society. No matter in which industry,
every global company requires a solid software system to assist their business nowadays.
However, software development is a very complicated and expensive process. These compa-
nies all need teams full of software experts to support and maintain their software systems.
At the same time, experienced specialists in the software development domain try to invent
and use different tools and methods (for example, design patterns, code documentation, unit
tests, version control tools, etc.) to control and improve the software quality and make the
software developing process more effective and convenient.

In software development, works are done by using different programming languages. Pro-
gramming language can be considered a kind of language used to communicate with the
computer systems for achieving the requirements in software development. While looking
into the machine learning domain, we would notice the significant progresses achieved by
natural language processing in recent years. A growing number of mature natural language
processing applications, especially natural language understanding (NLU) and generation
(NLG) applications, are becoming more widespread in the industry world. For example,
chatbots for personalized customer communication, analytical intelligence dashboard, or
auto-generated reports and summarizations for transforming data into insightful text or vice
versa, such applications relieve users from repeatable works and help them concentrate on
more high-demanding tasks.

There is a trend now to apply natural language processing techniques to programming
languages to make the developing tools more helpful and the developing process smoother
for developers. The improved developing tools and methods could also help the non-
developing-experts like project managers or data scientists, who need to understand code
deeply in work but not have a strong programming background, to do their jobs more
efficiently.

Currently, in machine learning, especially the natural language processing world, transfer
learning helps more and more models achieve the best results on benchmarks. Transfer
learning allows the model to be fine-tuned for different kinds of downstream tasks in NLP
with relatively small task-relevant datasets, and makes it much easier and faster to get good

1

1. Introduction

results on personalized tasks with a low computational cost.

Therefore, this master thesis focuses on applying natural language processing techniques in
the software development domain. A large number of experiments are carried out. Different
software development tasks with various datasets are explored using the transfer learning
method in this thesis.

1.2. Problem Statement

We want to examine which deep learning models and training methods would reach the
best results in the software development domain. Single-task training, transfer learning and
multitask learning are involved and mixed during the experiment process. From small size to
large size models are included in the training on a large number of datasets. Consequently,
a lot of computational power will be consumed during the limited thesis working period.
Therefore, to make our experiment more efficient, we use one Nvidia GPU[2] and multiple
Google TPUs[3] for training.

Besides, the datasets involved in the experiment contain software code of different program-
ming languages, which is different from standard natural language text. The different datasets
also vary a lot in terms of size, source, and format. Such differences may also influence the
experiments and the results a bit. Considering this aspect, we used different parsers and
tokenizers for different programming languages to preprocess the data and saved them into
the same format. We observe and compare different model performances based on different
dataset in this thesis.

1.3. Research Questions

This thesis aims to investigate the following three main research questions:

• What kind of natural language processing models would work best for tasks in the
software development domain?

• How would transfer learning improve the performance comparing with only training
on the labeled data alone?

• Would transfer learning perform better than multi-task learning for the same tasks?

1.4. Thesis Contribution

In the course of this thesis, the following four main contributions are made:

Applying of different deep learning technologies on various tasks in the software de-
velopment domain: In this thesis, we used different deep learning methods like

2

1. Introduction

single-task training, transfer learning, and multitask learning. The datasets we used
cover nine programming languages, including Python, Java, Javascript, Php, Go,
Ruby, SQL, Csharp, and Lisp. Our experiment contains in total of thirteen tasks in
six categories.

Achievement of outstanding results on tasks in the software development domain: Our
models outperform the state-of-the-art models for all the tasks by comparing the
evaluation metrics.

Providing the transfer learning models which can be used for fine-tuning other tasks:
Transfer learning is useful because the pre-trained models can be continued to
fine-tune other similar tasks. However, pre-training would take most of the time
and requires extensive data with high-demand hardware. Therefore, we provide
our pre-trained transfer learning models for download. Other users can use it to
fine-tune their tasks on datasets in the software development domain.

Online user interface for all the models: We also created the github repository1 for this
thesis. To allow users to use our models and generate results, we published our
models to the Hugging Face Model Hub2 with the built-in user interface and APIs.
In addition, we chose the form of Google Colab3 notebook to create another user
interface, including preprocessing methods and best models from each training
technology for each task in the github repository.

1.5. Research Approach

The following steps are taken to study the research questions, reach good performances, and
contribute to the natural language processing in the software development domain.

1. Literature Review: In this stage, we reviewed literature about natural language pro-
cessing and its different technologies, software development, and natural language
processing tasks in the software development domain based on the research of Sev-
erini[4].

2. Defining Models: Text-to-Text Transfer Transformer (T5)[5] is the latest transformer
model. This model is very suitable for transfer learning and multitasks learning. It also
outperformed a lot of natural language processing tasks. Therefore, we chose to use T5
to carry out our experiment.

3. Defining Tasks: We adapted tasks from the experiment of Severini[4]. Furthermore, we
added new tasks about natural language processing in software development from the
latest paper we found during the literature review step.

1https://github.com/agemagician/CodeTrans
2https://huggingface.co/SEBIS
3https://colab.research.google.com/notebooks

3

https://github.com/agemagician/CodeTrans
https://huggingface.co/SEBIS
https://colab.research.google.com/notebooks

1. Introduction

4. Pre-processing Dataset: We used different parsers for different programming languages
to parse and tokenize the code if the data is the programming language. For the natural
language, we examined and removed the not English data. Then we pre-processed the
data into the TSV format accepted by our models.

5. Training: We trained the tasks using single-task learning, transfer learning, as well as
multi-task learning and fine-tuning. We used the small, base, and large models to train
the tasks. We stopped training based on the performance of models on the validation
set by early stopping, and selected the best checkpoints.

6. Evaluation: In this step, we evaluated the performance of the best checkpoints on the
test set. We compared the results of different deep learning technologies taking the
model size and dataset size into account.

7. Publishing the Models and Generalization for User Interface: After evaluating the
models and getting the best checkpoints, we uploaded and published the models in
GitHub and Hugging Face Model Hub. We also built the Colab notebooks, including
input, pre-processing, model computation, and output as another user interface. In this
way, everyone can access our models and use them to generate text outputs or fine-tune
similar tasks.

1.6. Structure of the Thesis

This thesis is divided into seven chapters. In addition to the introduction in this chapter,
background knowledge is introduced in Chapter 2, including the definition of software
engineering, the development of natural language processing and deep learning in natural
language processing, the features of different NLP models and technologies, as well as the
current situation of natural language processing in software development. In Chapter 3,
task-related and model-related works are introduced. Chapter 4 explains our experiment’s
approaches, including the dataset details, model architecture, and evaluation metrics. The
experiment set-ups and processes are illustrated in Chapter 5. The evaluation results are
compared and discussed in Section 6. The conclusion of this thesis and future improvements
are drawn in Chapter 7.

4

2. Background

In the following sections, an overview of the background knowledge of this thesis is
given.

2.1. Software Engineering and Development

The term software was being coined in 1958 by the famous statistician John Tukey in his paper
"The Teaching of Concrete Mathematics[6]". Nowadays, there are millions of software pro-
fessionals worldwide working in the software engineering and development field. However,
generating high-quality software is not an easy thing. In the guide to software engineering[7],
IEEE proposed ten knowledge areas for creating a software:

• Software requirements: How to correctly detect and discover users’ requirements and
record them clearly and preciously.

• Software design: How to design and organize the software architecture to meet the
requirements and verify the defined models.

• Software construction: During the life circle of coding, verification, unit testing, inte-
gration testing, and debugging, how to minimize the complexity, anticipate changes,
construct for verification, and apply standards.

• Software testing: How to use different techniques and measures to evaluate product
quality and identifying defects or problems for improvement.

• Software maintenance: How to provide cost-effective post-implementation support to
software.

• Software configuration management: How to identify and control the software configu-
ration, account for the configuration status, audit the configuration, and manage the
software release and delivery.

• Software engineering management: How to plan, coordinate, measure, monitor, control,
and report - ensure that the development and maintenance of software are systematic,
disciplined, and quantified.

• Software engineering process: How to manage the definition, implementation, assess-
ment, measurement, management, change, and improvement of the software life cycle
processes.

5

2. Background

• Software engineering tools and methods: How to choose software development tools or
software engineering methods to support and assist the software life circle processes.

• Software quality: How to achieve software quality using static and dynamic techniques.

All these knowledge areas are highly connected. For example, in every knowledge field (like
design or construction), tools and methods could be very meaningful and improve software
quality. Tasks in this thesis may be more directly relevant to the software construction but
could implicitly influence software maintenance, software engineering tools and methods,
and software quality.

2.2. Natural Language Processing

"Natural Language Processing is a theoretically motivated range of computational techniques
for analyzing and representing naturally occurring texts at one or more levels of linguistic
analysis for the purpose of achieving human-like language processing for a range of tasks or
applications."[8] It aims to let computer systems understand the natural languages and finally
achieve processing language tasks like a human. Knowledge about computational linguistics,
computer science, and cognitive psychology is required in the natural language processing
process.

The first research project in natural language processing can be traced back to the late 1940s
when the earliest machine translation project was launched to break the enemy codes using
computer translation during World War II. Nowadays, NLP’s main applications can be consid-
ered as Information Retrieval, Information Extraction, Question-Answering, Summarization,
Machine Translation, and Dialogue Systems[8].

Moreover, the techniques applied in natural language processing have also frequently de-
veloped. Semantic approaches based on the relationship of concepts in the language, or
rule-based systems assisted by regular expression has dominated this field for a long time in
the beginning. In the 1980’s, statistical approaches, especially TF-IDF[9], gained importance
and was widely applied in NLP. Thanks to the development of the internet and computational
powers, it is very convenient to collect a vast amount of data from the internet. Therefore,
neural networks, especially deep learning, which requires a large amount of data for training
and many computations, have become the center of attention in recent years. Different models
based on deep learning break the records and achieve the highest score in various natural
language processing tasks.

2.2.1. Deep Learning in Natural Language Processing

As stated in the book "Deep Learning in Natural Language Processing", deep neural networks
are capable of learning representations from language data, using a cascade of multiple layers
with nonlinear processing units to extract features[10]. These deep learning architectures

6

2. Background

Figure 2.1.: The architecture of a single-layer feed-forward neural network[11].

can extract both lower-level features and higher-level features, and gain sufficient knowledge
from these features.

A feed-forward neural network is the first and simplest type of artificial neural network[13].
It is composed of one input layer, one output layer, and the hidden layers. When there are
many hidden layers in this neural network, this network is called the deep neural network.
Each layer has a different number of nodes called neurons. Each neuron’s value is computed
by the neuron’s value in the former layer with the weights connecting them and the activation
function. The activation function of the neurons enables the network to learn the non-linear
features. The loss function after the output layer calculated the differences between the
model- and reference-output. The differences are backpropagated to the network to update
the weights and improve the network performance. However, the feed-forward neural
network does not have the ability to extract the features from sequence data like the language.
Therefore, deep learning developed its specific architectures for processing language data in
the natural language processing field.

One important architecture for acquiring the representation of words is the Word2Vec
model[14]. As shown in Figure 2.2, it uses an unsupervised way to gain the meaning of words
from sentences and uses embeddings to display these words with their relationships. The
pre-trained model of Word2Vec shows that the embedding vectors gained from the text can
form the mathematical equation as Vector(”King”)−Vector(”Man”) + Vector(”Woman”) =
Vector(”Queen”)[15]. These embeddings are quite useful for information retrieval or informa-
tion extraction tasks like sentiment classification.

When considering understanding the sentences or paragraphs, we need to take the context
into account as humans. The previous words or the previous sentences could significantly
influence the meaning of the current sentence or paragraph. So it is important that the neural
network could also remember and consider the previous context when dealing with the
natural language processing tasks. For this purpose, the Recurrent Neural Network (RNN)[16]
and the Long Short Term Memory Neural Network (LSTM)[17] are invented. As shown in

7

2. Background

Figure 2.2.: The word2vec models architecture. "The CBOW architecture predicts the current
word based on the context, and the Skip-gram predicts surrounding words given
the current word.[12]" The weight matrix gives the vector presentation of words.

8

2. Background

(a) An unrolled recurrent neural network.

(b) Different functional ingredients in LSTM

Figure 2.3.: The architecture and details of model RNN and LSTM1.

Figure 2.3a, a recurrent neural network loops over each input, extracts representations from
the former input, keeps the information, and passes it to the next cell when processing the
later input. LSTM is a special form of the recurrent neural network which can decide to
remember or forget the long dependencies using different computational gates (Figure 2.3b)
while RNN cannot drop the long redundant dependencies.

Figure 2.4.: The Sequence to Sequence model reads the input "ABC", and produces the output
"WXYZ"[18].

Machine Translation is a kind of task that generates natural language as the final output. It
requires not only the ability to extract the features from the input information but also the
ability to process and interpret the features back to the natural language. Because of the high
requirement of the input and output interpretation, machine translation tasks benefit most
from deep learning.

1https://colah.github.io/posts/2015-08-Understanding-LSTMs/

9

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

2. Background

The Encoder-Decoder Sequence to Sequence model[18] has the most impact on this kind of
tasks. It uses the LSTM[19] to understand the input and obtain a vector representation and
uses the RNN language model[20] to extract the output sequence from that vector (Figure 2.4).
It is also worth mentioning that the neural network language models encode the input
tokens by 1 out of N encoding, where N is the corpus vocabulary size. It estimates output
probabilities based on the whole vocabulary history and produces the normalized output
probability values using a softmax activation function[19].

2.2.2. Transformer Model and Attention Mechanism

The Sequence to Sequence model has some drawbacks. It relies on recurrent layers that have
high computational complexity and hard to be parallelized for computation. The transformer
model gets rid of the recurrent layers completely. It relies entirely on the attention mechanism
to achieve global dependencies between input and output[21].

Figure 2.5.: The encoder-decoder transformer architecture2.

As shown in Figure 2.5, the transformer also has an encoder-decoder structure. The encoder
lies on the left part of the figure and is consist of N=6 identical layers. Each identical layer
contains a multi-head self-attention layer followed by a simple feed-forward network. The
decoder of the right part of the figure also contains six identical layers. However, every
identical layer has two attention layers and one feed-forward layer. The additional attention
layer performs multi-head attention over the output of the encoder part. Figure 2.6 illustrates
the multi-head self-attention layer’s computational steps with the head number of eight.

2http://jalammar.github.io/illustrated-transformer/

10

http://jalammar.github.io/illustrated-transformer/

2. Background

Figure 2.6.: The computational steps of the multi-head self-attention layer3.

Among these parameters, all the weight metrics presented by W are randomly initialized and
updated during the training. Multi-head attention allows the model to focus on different
sentence positions and gains multiple representations for each sentence’s subspace.

Since the transformer is composed of feed-forwarding layers and self-attention layers, the
computation can be parallelized easily. Moreover, computing self-attention layers is also faster
than computing recurrent layers. It has shorter paths for forward and backward signals to
traverse in the network, which improves the ability to learn long-range dependencies in the
network.

2.2.3. Transfer Learning

Training a deep neural network requires a large amount of data. However, data could be
outdated from time to time, and the data distribution may change along with society’s
development. In such a situation, the already-trained model may not perform well anymore.
So it is necessary to recollect the data and retrain the model from scratch, which would be
very costly to prepare the data and train the model with extra computational power, money
and time.

Because it is common for humans to transfer the knowledge they learned from experience
to solve new problems. It is also promising that neural networks can similarly apply the

3http://jalammar.github.io/illustrated-transformer/

11

http://jalammar.github.io/illustrated-transformer/

2. Background

knowledge they have gained from the previous training tasks to the new tasks in a new
domain. Besides, when observing the first few layers of deep neural network gained when
learning the images, the features are not specific to the dataset or task, but very general and
basic like sharps or colors, which could also be used to continue to learn images in other
tasks or domains[22]. Therefore, such a way of transferring knowledge becomes a beneficial
neural network technology called transfer learning.

Transfer learning is divided into three types[23]:

• Inductive transfer learning: The target task is different from the source task. Some data
in the target domain should be labeled. The data in the source domain could be labeled
or not. So the target domain data are required to induce the knowledge learned in the
source task for the target task.

• Transductive transfer learning: The source and target tasks are the same. However, the
source and target domains are different. For example, feature spaces or the distribution
of data in the source and target domains are different. So the knowledge about the
skills dealing such kind of task should be learned.

• Unsupervised transfer learning: The target task is different from the source task.
Nevertheless, no labeled data are available in either source or target domain. So this
type of transfer learning focuses on unsupervised tasks like clustering or dimensional
reduction.

Pan et al.[23] also summarized four ways to carry out the transfer learning:

1. Instance-based transfer learning approach: It assumes part of the source data suggests a
similar or adjustable distribution as the target data. After training the source task, if we
reweigh the source data, we can get the optimal result for the target data in the target
task.

2. Feature-representation-transfer approach: The knowledge learned during pre-training
in the source domain is encoded into the feature representation to the target task’s
input. Using the new feature representation generated by the pre-training model as
input could improve the fine-tuning tasks’ performance.

3. Parameter-transfer approach: Some parameters or features (weights) or prior distri-
butions of the hyperparameters could be shared among the source and target tasks.
Moreover, there are further options to use and freeze the parameters or update them
during fine-tuning. Although the improvement of performance depends on the distance
between the source and target tasks, transferring even the distant tasks can improve the
performance better than the random parameters[22].

4. Relational knowledge-transfer problem: It assumes that the data are not independent
and identically distributed random variables. However, the relationship between the
source data and target data is similar, which can be transferred from source data to
target data.

12

2. Background

Figure 2.7.: Bert model with one additional output layer for fine-tuning tasks. (a) and (b) are
sequence-level tasks, and (c) and (d) are token-level tasks. [24]

At the end of 2018, Jacob Devlin et al. from google AI Language published a bidirectional
transformer with the attention mechanism for language modeling — Bert[24], which obtained
new state-of-the-art results on eleven natural language processing tasks at that time. Bert’s
architecture has a multi-layer bidirectional Transformer encoder based on the Transformer
model[21] we introduced in Section 2.2.2. It used two unsupervised tasks (Masked LM
and Next Sentence Prediction) with BooksCorpus[25] and English Wikipedia dataset for
pre-training the model. An additional output layer is added to the model for fine-tuning
the downstream natural language processing supervised tasks, as shown in Figure 2.7. This
single additional layer also ensures that a minimum number of parameters need to be learned
from scratch again, which reduces the cost during fine-tuning.

Since then, different pre-training language models like ALBERT[26], RoBERTa[27], Distil-
Bert[28] and XLNet[29] have been published in the natural language processing field. The
architectures of these models are based on the Transformer, and they were optimized and

13

2. Background

outperformed Bert. In addition to their good results on the benchmarks, these models can also
be fine-tuned for different kinds of downstream NLP tasks with relatively small task-relevant
datasets as transfer learning. Such models’ good performance and convenience make the
transfer learning a trend in the natural language processing world. With the help of this
technology, it is much easier and faster to get good results on personalized tasks with a low
computational cost.

2.2.4. Multitask Learning

"Multitask learning is an approach to inductive transfer. Inductive transfer can help improve
generalization by using the domain information contained in the training signals of related
tasks as an inductive bias."[30] Similar to inductive transfer learning, they both use inductive
transfer mechanisms to improve generalization performance. However, multitask learning
tries to learn both the source task and the target task simultaneously, while inductive transfer
learning aims to transfer the knowledge learned from the source task to the target task[23].
During multitask learning, the model could gain the essential information shared by several
tasks efficiently. Moreover, multiple tasks’ task-specific knowledge being gathered at the same
time would lead to the inductive bias, which causes the model to try to explain each task
more general and avoid over-fitting.

(a) Hard parameter sharing (b) Soft parameter sharing

Figure 2.8.: Two different multitask learning methods for deep learning[31].

In general, there are two types of multitask learning in deep neural networks: hard and soft
parameter sharing of hidden layers[31]. Figure 2.8a illustrates the hard parameter sharing.
All the tasks share the first several hidden layers and their parameters, while the output layers
are designed separated for different tasks. During the sharing, the model tries to find the
representation capturing all the tasks, avoid being too specific for any single task or data, and
reduce the chance of over-fitting. In the soft parameter sharing, each task has its own hidden
layers and output layers. However, the hidden layers are being connected to each other so
that distance among the hidden layers’ parameters is being regularized. In this way, soft
parameter sharing has a regularization effect on the model’s weights and avoids over-fitting
on each single task.

There are five reasons for the good performance of multitask learning[31]:

14

2. Background

1. Implicit data augmentation: Multitask learning collects several tasks, and implicitly
increases the amount of training data with different noise patterns. This helps the model
learn a general feature representation for all the data and average the noise patterns.

2. Attention focusing: Different tasks will help the model focus on the features that are
important for all the tasks. So when a task dataset is very noisy or limited, or high-
dimensional, other datasets will guide the model to find the meaningful features of that
nonoptimal dataset.

3. Eavesdropping: Some features in one task could be hard to learn, while its representation
in another task is more obvious. When a model learns these two tasks simultaneously,
they could share the information and help each other to discover the very unclear
hidden features.

4. Representation bias: The model will be biased to learn the representations which are
preferred by most of the tasks. This bias also helps the model to learn other tasks more
efficiently if these tasks are similar.

5. Regularization: Different tasks force the model to find the best weights for all the tasks,
avoid the model to learn the feature representation of a single training dataset, and
reduce the risk of over-fitting a single task.

Figure 2.9.: The architecture of Multi-Task Deep Neural Network (MT-DNN) model[32]

In 2019, Liu et al. from Microsoft Research proposed a model called Multi-Task Deep Neural
Network (MT-DNN)[32]. The model is based on the Bert large model[24]. Its architecture

15

2. Background

consists of the transformer encoder with task-specific output layers as shown in Figure 2.9.
The training procedure contains the pre-training stage of Bert and multitask learning. After
using multitask learning and fine-tuning, MT-DNN obtains new state-of-the-art results
on ten Natural Language Understanding tasks. MT-DNN model could be considered as a
combination of transfer learning and multitask learning. Moreover, its better performance than
Bert also proves the effectiveness of multitask learning in natural language processing.

2.3. Natural Language Processing in Software Development

Software engineering, especially software development, is a way to generate applications
or automatic tools with a high complexity. According to the waterfall model, software
engineering has a life circle of 1) system and software requirements, 2) analysis, 3) software
design, 4) coding, 5) testing, and 6) operation. Various processes with tools for assistance
are invented, like version control or type check, to make software engineering phases easier
and keep the code quality high. On the one hand, these processes and tools help make the
software development process much easier to manage and control. On the other hand, they
increase the complexity of software engineering and the workload when requiring filling the
contents manually.

With the development of machine learning techniques, more and more mature machine
learning, especially deep learning applications, are being applied in daily life, like different
recommendation systems or object recognition systems. These applications usually are
trained on large amounts of data. Simultaneously, more and more open- or closed-source
code repositories are available online, which provides the condition to use machine learning
to automate the software engineering tasks.

We use natural language to communicate with each other. We use the programming language
to communicate with computer systems during software development. Natural language
and programming language both share the word language. So natural language processing
techniques are very promising to solve the tasks in the software development domain.

When looking into the history of natural language processing in software development, a
syntactic parser is commonly used to understand the SVO structure of natural language, like
a who-does-what structure or a subject-verb-object structure. After that, semantic patterns of
syntactic correspondences are applied to generate the object-oriented code skeletons. Fur-
thermore, the discovered statements are converted to the programming language statements
under the rule-based settings. Mihalcea et al. used this approach to generate programming
language code based on the programming assignment[33]. Stenmark et al. also produced
code instructions for industrial robots using the semantic and syntactic parser[34].

Deep learning becomes the trend in machine learning since 2010. Both technology and
hardware levels ensure that the training of neural networks with many layers of non-linear
hidden units could be competent and proficient[36]. However, the massive applications or
researches using deep learning in software engineering happen after 2015. Li et al. did

16

2. Background

Figure 2.10.: The numbers of publications about deep learning in software engineering and
development domain per year[35].

Figure 2.11.: Software engineering tasks are categorized into six software engineering steps.
The right lower part with white background listed the tasks participated by
industry practitioners.[35].

a research on publications about deep learning in software engineering from 2000 to the
first quarter of 2018[35]. Figure 2.10 categories these 98 related research papers into the
publication year. This figure shows that a maximum of three papers about deep learning

17

2. Background

in software engineering was published yearly before 2015. Nevertheless, there were already
twelve relevant papers in the first three months of 2018.

The authors also grouped these 98 papers into six software engineering steps as Figure 2.11.
We may notice, most of the software engineering tasks lie in development (with 30 papers),
testing (with 27 papers), and maintenance steps (with 27 papers). They also listed 21 papers in
13 software engineering tasks involving industrial practitioners, including Google, Facebook,
Microsoft, and DeepMind. This indicates that the industry’s interest for deep learning in
software engineering will push the relevant task-study from research to the production
level.

Figure 2.12.: Data type used in software engineering tasks[37]. The y-axis lists different type
of data. The x-axis indicates the number of tasks using each data type. The color
bars illustrates different software engineering tasks.

When analyzing the tasks and the type of data for deep learning in software engineering,
Cody Allen Watson[37] researched 84 related studies with 111 SE tasks from 2009 to 2019,
while it is confirmed that there was little work between 2009 to 2014. From Figure 2.12 we
can observe that the most common type of data being used is source code. Source code is
used in 49 out of 111 tasks from the relevant studies. One reason for the popularity of source
code is the plenty of code repositories in Github, Gitlab, or code snippets in StackOverflow
that can be downloaded freely. Common tasks like program comprehension, code generation,
description or summarization, and source code testing all need to be carried out based on the

18

2. Background

source code. Other primary data types for software engineering tasks are natural language
descriptions, repository metadata, input-output examples, and visual data. All these types
comprised 78.57% of the distribution in the data type.

The most popular task of deep learning in software engineering is Program Synthesis, which is
being researched in 20 papers out of the 84 related studies. It follows by Code Comprehension,
and Source Code Retrieval and Traceability. The author also listed some topics which could
be beneficial but still unexplored or underrepresented. Such topics include refactoring and
program analysis, software systems and mobile testing, software documentation, feature
location, and defect prediction. Because the problem itself is not well defined, or no current
architecture is suitable for such tasks or to process the available data[37].

Figure 2.13.: Deep learning architectures used by software engineering tasks[37]. The y-axis
lists the number of tasks. The x-axis represents the different deep learning
architectures. The color bars illustrates different SE tasks.

Figure 2.13 shows the distribution of deep learning architectures applied in the software
engineering tasks. It is obvious that the recurrent neural network (RNN) is the most widely
used deep learning model architecture in SE. The Encoder-Decoder Sequence to Sequence
model, which generates a latent representation by the encoder from the input, and for the
decoder to understand and decode the representation to target, ranked directly after RNN. As
we have introduced in Section 2.2.1, recurrent neural network and Encoder-Decoder Sequence
to Sequence model have the ability to extract the sequential features of the data, and the
most common data type in SE tasks is source code. Source code has many features that are
embedded in its sequential nature. So RNN and Encoder-Decoder would perform well on
such tasks, which explains this architecture distribution. In addition, when the software

19

2. Background

engineering tasks include image or media data type, like the task image to structured
representation, convolutional neural network (CNN) is being applied. Because CNN has
good performance for extracting features in the images.

The transformer architecture is being applied to only one Program Synthesis task among the
studies researched by Cody Allen Watson[37]. The occasional use of transformer is because
he collected the papers till the year 2019, when transformer architecture is relatively new
at that time. Later, transformer and other transformer based models outperform RNN and
Sequence to Sequence architectures in a variety of natural language processing tasks. It is
worth applying the transformer architecture to more and more different natural language
processing tasks in software engineering.

In 2020, Facebook AI Research published a model called Transcoder for the Program Transla-
tion task[38]. This model translates functions between C++, Java, and Python based on the
transformer architecture. They downloaded the GitHub public repositories having C++, Java,
and Python files and broke down the files into function level code. Then they used three
unsupervised methods of machine translation to train the model: 1) cross-lingual masked
language model pre-training to build the language model using the masked pre-training, 2)
denoising auto-encoding to train the decoder always to generate valid sequences regardless of
the noisy input data, and 3) the back translation to let the model generate target programming
language from the source programming language, and to translate the target language back
to the source language. They evaluated a dataset composed of parallel functions in C++,
Java, and Python from the online platform GeeksforGeeks4. Their model outperformed the
rule-based and commercial baselines5,6 significantly using computational accuracy by evalu-
ating the code functions’ output when given the same input to the reference and generated
code.

Meanwhile, Microsoft Research also proposed their pre-trained models for programming
and natural languages called CodeBert. We go into the details of this publication in Section
3.1.1.

4https://practice.geeksforgeeks.org
5j2py: https://github.com/natural/java2python
6Tangible Software Solutions: https://www.tangiblesoftwaresolutions.com/

20

https://practice.geeksforgeeks.org
https://github.com/natural/java2python
https://www.tangiblesoftwaresolutions.com/

3. Related Work

In this chapter, we introduce the tasks related work and model related work about this
thesis.

3.1. Tasks Related Work

This thesis focuses on natural language processing tasks in software development. We include
six main tasks as follows, containing a total of thirteen subtasks:

• Code Documentation Generation

• Source Code Summarization

• Code Comment Generation

• Git Commit Message Generation

• API Sequence Recommendation

• Program Synthesis

These six main tasks together with the original models to solve these tasks are explained in
this section.

3.1.1. Code Documentation Generation

Making documentation for code is very important in software development. On the one
hand, writing documentation costs time and energy of programmers. It also occurs quite
often that documentation is no more up-to-date after changing the code, which may cause
misunderstandings. On the other hand, well-written documentation would help the reader
understand the code’s details quickly. Good documentation could also reduce the cost
of project maintenance and updating processes. So it is necessary if an AI system could
automatically generate the documentation for different programming language codes, save
time, and provide insight into the code.

Feng et al. from Microsoft Research Center Asia published CodeBERT[39] - a pre-trained
model for programming and natural languages, which presents the state-of-the-art perfor-
mance for the Code Documentation Generation task. Their multi-layer bidirectional Trans-

21

3. Related Work

former model followed Bert[24] and used the same model architecture as RoBERTa-base[27]
with 125M total number of model parameters.

They used CodeSearchNet Corpus Collection[40] as their pre-training data. This corpus
is collected from the publicly available open-source non-fork GitHub repositories. All the
selected repositories are used by at least one other project and have the license that permits
the re-distribution of parts of the project. Six programming languages, including Go, Java,
JavaScript, Python, PHP, and Ruby, are involved in the corpus. Part of the corpus has
functions or methods with their documentation, which contains more than three tokens. The
rest data are functions/methods without documentations. These functions are longer than
three lines. These function whose name contain the substring "test" is removed. Furthermore,
the documentations are truncated to the first full paragraph.

Pre-training

They have two unsupervised pre-training tasks, masked language modeling (MLM) and
replaced token detection (RTD). For the masked language modeling, 15% of the tokens from
the natural language and programming language pairs are randomly selected and masked out.
During the pre-training, the model needs to predict the original tokens, which are masked out.
For the replaced token detection task, tokens in some random position of natural language
documentations or programming language codes are replaced by plausible alternatives. In
this case, the model needs to determine whether the token in each position is original or
replaced. So the model learns to solve a binary classification problem.

Fine-tuning for Code Documentation Generation

After pre-training the model, the authors added a transformer[21] with 6 layers, 768-
dimensional hidden states, and 12 attention heads as the decoder for this model to generate
the text. Then they fine-tuned this model on six programming languages of the CodeSearch-
Net Corpus separately to generate the documentation for the programming language code.
The max input code length is set as 256, and the max output text length is 64. They used
Adam optimizer with a learning rate of 5e-5 and the batch size 64. Early stopping is applied
when tuning hyperparameters on the development set.

Evaluation

The authors used a smoothed BLEU score[41] to evaluate the CodeBERT with its decoder for
the Code Documentation Generation task. They compared their encoder model with three
other models, including the RNN-based Sequence to Sequence model[18], the Transformer,
and the RoBERTa. They also compared the CodeBERT model using different pre-training
ways like pre-training on code only, with RTD task only or MLM task only or with both RTD
task and MLM task. As shown in Figure 3.1, CodeBERT pre-trained with RTD and MLM

22

3. Related Work

Figure 3.1.: The evaluation result of codeBERT for Code Documentation Generation tasks[39]

achieved the state-of-the-art performance for the Code Documentation Generation tasks on
CodeSearchNet Corpus.

3.1.2. Source Code Summarization

Unlike Code Documentation Generation, the Source Code Summarization task tries to
summarize the code not only at the function or method level but also at the code snippet
level. Code appearing on the internet like online forums is mostly in the form of code snippet.
Such code snippet is usually the critical part of a function, helping users exchange knowledge
with each other. So it is necessary to gain information from the code at the code snippet level
and summarize the code so that users can search and understand code more efficiently.

Based on the questions and code answers from the popular programming help website
StackOverflow1, Iyre et al. proposed the model CODE-NN[42] to summarize SQL and CSharp
code snippets. The CODE-NN architecture consisted of LSTM guided by a global attention
model[43] to compute a weighted sum of the embeddings of the code snippet tokens based
on the current LSTM state as shown in Figure 3.2a.

(a) The CODE-NN architecture illus-
trates the relationship of LSTM
and the Attention model

(b) Evaluation result on CSharp and SQL human-
annotated development and test dataset. Performance
on the development set is indicated in parentheses.

Figure 3.2.: CODE-NN Architecture and the evaluation result[42].

1http://stackoverflow.com

23

http://stackoverflow.com

3. Related Work

For creating the dataset, they downloaded anonymized versions of posts having tags of SQL
and CSharp, containing a short title, a detailed question, and one or more responses, of
which one can be marked as accepted. Furthermore, they selected only the title and the code
snippet from accepted answers that contain exactly one code snippet. They also removed
the data whose title has no relation to the code snippet, parsed the code, and replaced the
context-specific literals with tokens denoting their types. After splitting the data into training,
validation, and test sets, they asked human annotators to provide two additional titles for
200 randomly chosen code snippets from the validation and test set. As a result, each code
snippet from the human-annotated dataset has three titles as the golden references.

The authors used supervised training with mini-batch stochastic gradient descent and back-
propagation. They also applied dropout and learning rate decay for training. For decoding,
the beam search with the beam size of 10 was chosen. The maximal summary length was set
as 20 words.

METEOR[44] and the smoothed BLEU-4[41] score were used for evaluation. The authors
only evaluated on the human-annotated data set. They also compared their model with
three other models, including an information retrieval baseline, the phrase-based machine
translation system MOSES[45], and the neural attention-based abstractive summarization
model SUM-NN[46]. Figure 3.2b shows the evaluation results on these two metrics. Moreover,
five English native speakers rated the output summarizations in terms of the naturalness.
Additional five human evaluators familiar with SQL and CSharp evaluated the generated
titles for informativeness on a scale between 1 and 5. As a result, CODE-NN outperformed
all the other methods across all the metrics and achieved state-of-art performance.

3.1.3. Code Comment Generation

Similar to Code Documentation Generation, Code Comment Generation also focuses on
automatically generating code comments to help developers save time on understanding the
functionality of programming methods.

Hu et al. published the DeepCom[47] model for this task. They focused on Javadoc comments
extracted by Eclipse’s JDT compiler2 from 9,714 Java open source projects from Github. They
considered the Javadoc description’s first sentence as the comment. Because following the
Javadoc guidance3, the first sentence describes the functionality of Java methods most. They
used a Sequence to Sequence[18] model consisting of an Encoder, an Attention[48], and a
Decoder Component to learn the Java code and generate comments. The encoder and decoder
are both LSTMs[19]. Figure 3.3a illustrates model architecture.

One highlight of their work is how they took advantage of the structured code feature.
Unlike the natural language text, programming languages are formal languages that are
unambiguous, structured, and contains strong logic. They did not input the source code as

2http://www.eclipse.org/jdt/
3http://www.oracle.com/technetwork/articles/java/index-137868.html

24

http://www.eclipse.org/jdt/
http://www.oracle.com/technetwork/articles/java/index- 137868.html

3. Related Work

(a) The DeepCom Sequence-to-Sequence model. (b) Evaluation results on Java methods.

Figure 3.3.: DeepCom Architecture and the evaluation result[47].

plain text directly into the model. Instead, they first used Eclipse’s JDT compiler to convert
the Java methods into Abstract Syntax Tree sequences. They then proposed a Structure-based
Traversal (SBT) method to traverse the AST to generate the final sequence as the model input
to use structure information of source code. Figure 3.4 shows how the Java code AST is
converted to the DeepCom input sequence by SBT. Figure 3.4a lists the original Java code.
The left part of Figure 3.4b is the AST of the code and the right part of that figure is the
converted sequence by SBT.

They used the smoothed BLEU-4[41] score as the evaluation metrics. CODE-NN[42], which
we introduced in Section 3.1.2, was used as the baseline model for this task. Moreover, they
compared DeepCom with a basic Sequence to Sequence model having unprocessed source
code as input, an attention-based Sequence to Sequence model using also the unprocessed
source code, and a DeepCom with a classical pre-order traversal method to process the code
for input. Figure 3.3b shows that DeepCom with the SBT traversal method outperformed the
other four models and methods. This result proved the effectiveness of both the DeepCom
architecture and the SBT preprocessing method.

3.1.4. Git Commit Message Generation

The development-assisted tool Git4 is a version-control system for tracking changes in files
and codes during software development. Each git change contains the differences between
the current and previous versions of attached files and a commit message that summarizes
the change content and describes this change’s purpose. A well-structured code commit helps
to overview the project development and control the code changes and the development
quality.

Jiang et al. developed the Neural Machine Translation (NMT)[49] model to generate commit-
messages from git change diffs automatically. Their model architecture is composed of an

4https://git-scm.com/

25

https://git-scm.com/

3. Related Work

(a) The Java code example.

(b) Converting the Java code AST to input sequence by SBT.

Figure 3.4.: DeepCom SBT method example.

Encoder, an Attention, and a Decoder component[50]. The Encoder had two RNNs[20]: a
forward and a backward RNN. They read the source sequence with less than 100 tokens
in the forward and the reversed order and generated two hidden state sequences. The
Attention component took the concatenation of these two hidden state sequences. Further-
more, the RNN-Decoder computed the hidden state to text sequence with a maximum of 30
tokens.

Based on a dataset with 1000 Java repositories having most Github stars, they extracted more
than 2 million commits from GitHub. They kept only the first sentences from the commit
message since the first sentence typically summarizes the entire commit message. Then they
removed issue ids from the sentences and the commit ids from the diffs. They dropped merge,
and rollback commits since these messages do not contain too much summary information.
They also removed diffs that are larger than 1 MB. Then they implemented the Verb-Direct
Object filter to select sentences having a verb/direct-object pattern. Finally, they trained on
these selected commits with the mini batch-size of 80.

26

3. Related Work

(a) The model evaluation score results on the test set.
NMT1 is the NMT model with V-DO filter. NMT2 is a
model trained without V-DO filter. LenGen is the total
length of the generated messages. LenRe f is the total
length of the reference messages.

(b) One of the evaluation page for participants to score
the similarity. The scala is from 0 to 7.

Figure 3.5.: NMT models evaluation results by metrics and one human evaluation exam-
ple.[49]

The authors evaluated the model using the BLEU[51] score that having the modified n-gram
precision. They used MOSES[45] model as the baseline. To test the Verb-Direct Object filter’s
effectiveness, they also trained NMT on unfiltered data and evaluated results on test data
with and without Verb-Direct Object filter. From the Figure 3.5a, we can observe that NMT
models performed much better than the MOSES baseline. NMT without Verb-Direct Object
filter outperformed the model with Verb-Direct Object filter. This is because the model had
2.5 times more training data when the filter was not being applied.

Moreover, the authors also carried out human evaluation. Unlike the way CODE-NN[42] used
to generate more reference data, they hired 20 participants with programming experience for
30 minutes to evaluate the similarity of the generated message with the original message in
a survey study. Figure 3.5b showed one of the evaluation questions participants needed to
answer.

3.1.5. API Sequence Recommendation

Developers usually learn new libraries or software frameworks through understanding how
to use their APIs. However, it is challenging to obtain the API usage sequence if the usage
patterns are not well documented. So it would be beneficial to suggest developers the API
sequence when searching and asking about the corresponding usages.

Gu et al. proposed the model DeepAPI[52] that generated API usage sequences for a given
natural language query. Their model architecture was an Attention-based Encoder-Decoder
model[53]. The Encoder and Decoder were GRUs[53] with 1000 hidden units. The dimension
of word embedding was 120. They applied their own defined negative log-likelihood as the
cost function. They used minibatch Adadelta[54] with a batch size of 200 to train the model
and applied the Beam Search[55] to generate output.

By creating the dataset, they downloaded Java projects with at least one star from Github.

27

3. Related Work

Figure 3.6.: An example for extracting an API sequence and its query from a Java method.

Then they used the Eclipse JDT compiler to parse the source code files into Abstract Syntax
Trees and split the JavaDoc comments and the code. They extracted the first sentence of
a documentation comment for a method since the first sentence can summarize a method.
After excluding the irregular comments like those starting with "TODO," they considered
these comments as the code query. For getting the API sequences, they traversed the AST of
code and applied several replacements like replacing new C() as the API C.new to the API
sequence. Figure 3.6 showed an example for extracting an API sequence and its query from a
Java method.

They evaluated DeepAPI using the BLEU[51] score and compared it with the other models
with totally different Architecture - Lucene+UP-Miner[56] and SWIM[57]. Besides, they
also compared DeepAPI with a pure RNN architecture and another attention-based encode
decoder without the specifically designed cost function. DeepAPI outperformed all other
models and reached the BLEU score of 54.52%.

3.1.6. Program Synthesis

Program synthesis is the task of synthesizing or generate programming codes based on
the users’ commands. It would be beneficial to reduce the workload of programmers.
However, this task is very challenging because the natural language commands could be very
ambiguous, and the generated programs should meet high requirements and have satisfying
functionality.

28

3. Related Work

Figure 3.7.: The architecture of Seq2Tree encoder-decorder model.

Polosukhin and Skidanov proposed the Seq2Tree[58] model for this task. They used a se-
quence encoder and a tree decoder to synthesize LISP-inspired domain-specific language
(DSL). The encoder used GRU[53] cell. The decoder used a doubly-recurrent neural network
for generating AST tree-structured output. Attention component was also applied to aug-
ment the current step with information from the encoder. Figure 3.7 illustrates the model
architecture. Moreover, they used Tree-Beam search to control the output length and select
the best-generated program.

The authors also built a dataset AlgoLisp[59] focusing on LISP-inspired DSL. They chose
tasks from homework assignments for basic computer science and algorithms courses. Since
the number of tasks is limited, they then modified and combined assignments and the
corresponding code to generate more similar tasks. For example, they generated a new task,
"find all odd elements in an array," based on "find all even elements in an array."

For evaluation, they also implemented ten tests for each task. Since the same problem can be
solved by the programs written differently, they judged a solution as correct if the solution
passed all the tests for the given assignment. In this way, they used accuracy to evaluate the
model output and defined accuracy as:

Acc =
Nc

N

where Nc is the number of tasks passing tests, and N is the number of total tasks. They
compared Seq2Tree with an Attentional Sequence to Sequence model[43] and an IO2Seq[60]
model. They also made a difference among the models with and without Beam Search.
Seq2Tree outperformed all other models and achieved the state-of-the-art for this LISP-
inspired DSL program synthesis task.

3.2. Model Related Work

In this section, we introduce the model we used for this thesis.

29

3. Related Work

3.2.1. Text-to-Text Transfer Transformer

Pre-training a language model and then fine-tuning on the downstream tasks has proven its
effectiveness on natural language processing tasks in recent years. Nowadays, there are many
unlabeled text data on the Internet, which can be used for the unsupervised pre-training. So,
this method is particularly friendly to fine-tune downstream tasks with datasets having only
a small amount of labeled data.

Raffel et al. from Google proposed a model called Text-to-Text Transfer Transformer (T5)[5]
for this scenario. The architecture of T5 is an encoder-decoder Transformer closely following
its originally-proposed form as we introduced in Section 2.2.2[21]. They built an unsupervised
pre-training clean and natural English large dataset "Colossal Clean Crawled Corpus5" based
on the Common Crawl’s web extracted text. Then they applied their model to the various
set of downstream tasks, including machine translation, question answering, abstractive
summarization, and text classification. They also explored a variety of pre-training and fine-
tuning technologies to gain insights and achieve state-of-the-art in many of the tasks.

Figure 3.8.: Different transformer architectures. Dark grey lines means the fully-visible
masking and light grey lines means the causal masking. The left one is used in
the base model.

Their baseline transformer model consists of 12 blocks. Each block comprises self-attention,
optional encoder-decoder attention, and a feed-forward network with a dropout probability of
0.1. This model has about 220 million parameters. They compared their baseline model with
Language model architecture[61], prefix LM architecture[62], and the encoder-decoder with
reduced layers, parameters, and denoising objective. Figure 3.8 illustrated these Transformer
architecture variants. The encoder-decoder model with the denoising objective outperformed
other architectures. The Encoder-decoder with sharing parameters performed similar well as
the former one. This result confirmed that "sharing parameters across Transformer blocks
can be an effective means of lowering the total parameter count without sacrificing much
performance."[26]

5https://www.tensorflow.org/datasets/catalog/c4

30

https://www.tensorflow.org/datasets/catalog/c4

3. Related Work

Figure 3.9.: The different denoising objective examples.

They tried different pre-training denoising methods regarding the unsupervised objectives,
including Prefix language modeling, BERT-style[24], and Deshuffling. They concluded that
BERT-style denoising objectives perform best. Furthermore, they explored different masking
strategies to the BERT-style objective, including masking token-spans, replacing corrupted
token-spans, and dropping corrupted token-spans. Figure 3.9 showed the different denoising
details. It turned out that all the variants perform similarly, and replacing corrupted token-
spans made the target sequence shorter and the training faster. So they further tried different
corruption rates and different span lengths by replacing corrupted token-spans. They found
that a larger corruption rate slowed down the training, so a corruption rate of 15% would
be optimal. Moreover, an average span length of 3 slightly but significantly outperformed
other length options. The flow chart in Figure 3.10 summarized their experiment process on
unsupervised objectives. Based on this evaluation result, we applied the replacing corrupted
token-spans with a corruption rate of 15% and a length of 3 to our pre-training unsupervised
tasks.

Figure 3.10.: Experiment steps on unsupervised objectives and the selected decisions.

Besides, they also tried different per-tained datasets, different fine-tuning parameters, different
multitask training ways, and different model sizes. They concluded that additional pre-
training, increasing the batch size, and the number of training steps could help to get good
results. They also showed that pre-training on a multi-task mixture of unsupervised and
supervised tasks performed similarly to pre-training on the unsupervised task alone. Their

31

3. Related Work

research gave us many inspirations for training our tasks in the software development domain.
Their proposed tensorflow T56 library is very suitable for applying transfer learning and
multitask learning. So we used their Small (around 60 million parameters), Base (about
220 million parameters), and Large (roughly 770 million parameters) model configurations
implemented by the T5 library in our experiments.

6https://github.com/google-research/text-to-text-transfer-transformer

32

https://github.com/google-research/text-to-text-transfer-transformer

4. Approach

In this chapter, we explain our approach used in this thesis. We introduce the datasets we
used, including the unsupervised and supervised datasets, the model architecture, and its
parameters. Also, we describe the vocabulary model and the evaluation metrics for the
experiments.

4.1. Datasets

In this section, we introduce our unsupervised and supervised datasets, their statistics, and
the pre-processing methods on each dataset.

4.1.1. Unsupervised Dataset

We first introduce the unsupervised Datasets we used in this thesis. These datasets involve
different programming languages and the English natural language. These datasets are used
in the transfer learning pre-training steps and the multi-task learning. They are helpful to
build a language model for tasks in the software development domain and make the final
model more generalized against overfitting.

CodeSearchNet Corpus Collection

As we have mentioned in Section 3.1.1, CodeSearchNet Corpus Collection[40] is extracted
from the open-source GitHub repositories. It contains six programming languages’ func-
tions/methods, including Python, Java, Go, Php, Ruby, and Javascript. This dataset can be
divided into two parts - functions with the function documentation and functions without
documentation. The dataset is stored in JSON format and contains already tokenized code
and docstrings. The code is parsed and tokenized by the modified tree-sitter1 library for each
programming language.

Both parts of the dataset are being used for the pre-training. We directly used the parsed and
tokenized functions without the documentation as unsupervised input. In this way, the model
could understand the relationship between code structures, parameters, and statements for
each programming language.

1https://github.com/tree-sitter/tree-sitter-python

33

https://github.com/tree-sitter/tree-sitter-python

4. Approach

When applying the dataset with functions containing documentation for pre-training, we first
used the language detection library langdetect2 to extract documentation having English text.
Then we concatenated each pair of tokenized-function and its tokenized-documentation as
one input sentence sequence:

(f unction, documentation)→ f unction · documentation

In this way, the model could learn the programming languages and their relation to the
English documentation. Since we only used the training data from this dataset, our model
would not see the documentations in the validation and test set and would not corrupt the
evaluation stage.

The Public Git Archive - Java

Four out of six supervised tasks involve the programming language Java. So an unsupervised
dataset for Java would be essential to help the model understand this programming language.
We used the Java code from the Public Git Archive dataset[63] as our unsupervised dataset
for Java. This dataset contains top-rated repositories on GitHub. It has an index file with
files in the Siva format, which is a novel archive format tailored for efficiently storing Git
repositories.

Different from the fact that code from CodeSearchNet Corpus is function-level, the Public Git
Archive has code in the Java file-level containing the import statements, multiple functions,
and comments. This file-level data could help the model understand more information like
API usage and benefit our downstream tasks.

After getting the Java code, we applied the javalang3 Python library to parse and tokenize
the code and consider the file-level tokenized Java code as the input Java data for pre-training.
We replaced the code type of string and number as CODESTRING and CODEINTEGER.

The Public Git Archive - CSharp

Similar to Java unsupervised dataset, we also used the CSharp code extracted from the Public
Git Archive dataset[63]. The CSharp data is the file-level code as well. Each input sequence
contains importing libraries, multiple CSharp functions, and comments to part of the code.
We used the ANTLR (ANother Tool for Language Recognition)4 library to parse and tokenize
the CSharp code before putting it into our pre-training model. We replaced the code type of
string and number as CODESTRING and CODEINTEGER.

2https://pypi.org/project/langdetect/
3https://github.com/c2nes/javalang
4https://github.com/antlr/antlr4

34

https://pypi.org/project/langdetect/
https://github.com/c2nes/javalang
https://github.com/antlr/antlr4

4. Approach

150k Python Dataset

We also have two supervised tasks about Python code. One task involves the function-level
code understanding while the other tries to summarize Python in the code-snippet-level. So
when choosing the unsupervised tasks, in addition to the Python dataset from CodeSearchNet
Corpus Collection, we also included the 150k Python Dataset5[64] from the SRILAB6 (the
Secure, Reliable, and Intelligent Systems Lab) at ETH Zurich.

The Python programs in this dataset are collected from GitHub repositories with permissive
and non-viral licenses by removing duplicate files, forked projects, and obfuscated files.
Raychev et al.[64] also parsed the code using the Python AST parser7 included in Python 2.7
and kept only programs having at most 30,000 nodes in the AST.

We used the file-level Python code as the pre-training input for our model. We applied the
Python tokenize8 library to parse the code and replace the token type of string and number
as CODESTRING and CODEINTEGER. Then we tokenized code and fed the pre-processed
code into our neural network.

StaQC - SQL

Our source code summarization task for SQL uses the code snippets from StackOverflow.
So we chose another SQL Dataset, StaQC9[65], which is also extracted from StackOverflow.
StaQC contained SQL question-code pairs of questions tagged by "sql," "database," or "oracle"
from StackOverflow. The SQL code in StaQC is code-snippet level as well.

We only used the SQL code part of StaQC. We further applied the Python library sqlparse10

to parse the dataset. We cleaned the code and replaced the column and tab names as col or
tab followed by an integer to differentiate different columns and tabs in one code snippet. We
also replaced numbers in the code as CODEINTEGER, CODEFLOAT, or CODEHEX. Then we
tokenized the cleaned SQL code as the input to our model.

LISP Dataset

The supervised program synthesis task used LISP inspired DSL programming language.
However, we did not find any LISP or LISP related dataset on the internet. So we built the
LISP dataset by ourselves.

We selected 20 GitHub repositories having the most stars from the Lisp Topic11 in Github.

5sri.inf.ethz.ch/py150
6https://www.sri.inf.ethz.ch/
7https://docs.python.org/2.7/library/ast.html
8https://docs.python.org/2/library/tokenize.html
9https://github.com/LittleYUYU/StackOverflow-Question-Code-Dataset

10https://pypi.org/project/sqlparse/
11https://github.com/topics/lisp?o=desc&s=stars

35

sri.inf.ethz.ch/py150
https://www.sri.inf.ethz.ch/
https://docs.python.org/2.7/library/ast.html
https://docs.python.org/2/library/tokenize.html
https://github.com/LittleYUYU/StackOverflow-Question-Code-Dataset
https://pypi.org/project/sqlparse/
https://github.com/topics/lisp?o=desc&s=stars

4. Approach

Then we used the GitHub Rest API12 to download these repositories. Moreover, we wrote
a LISP parser to go through each file, selected the function-level LISP code, removed the
comments, and tokenized the code as the input to our pre-training model.

One Billion Word Language Model Benchmark - English

Despite the programming languages, our model would also understand and generate the
natural English language. So we need an unsupervised English dataset to help the model
understand English words, word phrases, and sentences. We chose one Billion Word Language
Model Benchmark corpus13[66] as our unsupervised English dataset.

Text data in one Billion Word Language Model Benchmark corpus is obtained from the
WMT11 website14. Normalization and tokenization are applied to the data. Duplicated
sentences are removed. The vocabulary is constructed by discarding all words with a count
below three. Words outside of the vocabulary are mapped to <UNK> token. Sentence order
is randomized. Finally, the corpus contains almost one billion words of training data.

Since the text data from this corpus is already tokenized, we directly used the sentence from
this corpus as our input to the pre-training models.

Statistics

Before we put the data into the model, we removed the unnecessary empty spaces in the data.
In addition we replaced the token \t as <tab> and the token \n as <newline>. We used the
Python pandas15 library to load the data, carry out the preprocessing, and save the data in
the TSV file format.

Table 4.1 shows the number of samples each dataset used in unsupervised learning. In
total, we have around 40 million samples for this unsupervised pre-training. One Billion
Word Language Model Benchmark corpus has more than 30 million data samples and is
the corpus with the most number of samples. Among the programming language datasets,
CodeSearchNet Corpus is the most extensive corpus. When comparing only the programming
languages, the Java language has the most unsupervised samples with more than two million
inputs. Javascript and Python follow it. Both of them have more than one million samples.
Ruby, SQL, and LISP have the least number of unsupervised inputs. They have only around
150,000 samples or even fewer samples each.

Table 4.2 lists the data attributes of each programming language unsupervised dataset, like
the data source, the code level, and the average length per sample. Most of the unsupervised
programming language data is extracted from GitHub, except the StaQC - SQL dataset, which

12https://docs.github.com/en/free-pro-team@latest/rest/reference/repos#contents
13http://www.statmt.org/lm-benchmark/
14http://statmt.org/wmt11/training-monolingual.tgz
15https://pandas.pydata.org/

36

https://docs.github.com/en/free-pro-team@latest/rest/reference/repos#contents
http://www.statmt.org/lm-benchmark/
http://statmt.org/wmt11/training-monolingual.tgz
https://pandas.pydata.org/

4. Approach

CodeSearchNet 150k Python
Dataset

The Public
Git Archive

StaQC LISP
One Billion

Word Corpus
Total

Language Without Doc With Doc

Python 657,030 375,210 149,114 1,181,354

Java 1,070,271 373,412 720,124 2,163,807

Go 379,103 300,882 679,985

Php 398,058 369,923 767,981

Ruby 110,551 43,803 154,354

Javascript 1,717,933 99,646 1,817,579

CSharp 469,038 469,038

SQL 133,191 133,191

LISP 122,602 122,602

English 30,913,716 30,913,716

Total 5,895,822 149,114 1,189,162 133,191 122,602 30,913,716 38,403,607

Table 4.1.: The number of samples of each unsupervised dataset for different programming
languages and the English natural language. The first column listed the languages.
For programming languages, each sample can be considered as one function or a
programming file, or part of the code, depending on the code level of that dataset.
For the English language, one sample means one sentence.

Dataset Data Source Code Level Average Length per Sample

CodeSearchNet - Without Documentation GitHub Function 178
CodeSearchNet - With Documentation GitHub Function 191
150K Python Dataset GitHub File 1055
The Public Git Archieve - Java GitHub File 770
The Public Git Archieve - CSharp GitHub File 239
StaQC - SQL StackOverflow Code Snippet 55
LISP GitHub Function 101

Table 4.2.: The programming language datasets have different data attributes, including the
data source, code level, and average length per sample in each dataset.

37

4. Approach

contains the SQL queries from StackOverflow. The code level of the StaQC is also code
snippet level. Each sample of the CodeSearchNet and LISP dataset is a code function or code
method. The rest of the corpus contains each sample as a whole code file, including multiple
functions.

We also list here the average length per sample in each dataset. Since we used the Sentence-
Piece16 library to generate the model vocabulary, few single tokens may be split into multiple
components in our vocabulary. Here we calculated the number of vocabulary SentencePiece
components in each sample. We explain the SentencePiece vocabulary in Section 4.2. We
can observe that each code function and each code snippet has less than 200 vocabulary
components averagely. The average of each CSharp file has a length of 239. The average
length of each Java file is 770. Each Python sample has the most vocabulary components
averagely with a length of 1055.

Figure 4.1.: The Boxplot of the unsupervised datasets’ sample-length in average, median,
75-percent-quantile and 90-percent-quantile. The vertical axis shows the number
of SentencePiece tokens in one sample. We call it the length of the sample. We
calculated the average, median, 75-percent-quantile, and 90-percent-quantile of the
sample length in each dataset. We collected statistics for the whole unsupervised
datasets and plotted each value using the boxplot. We can infer from this plot
that 90% of the samples in most datasets have less than 500 tokens.

Furthermore, we calculated the average, median, 75-percent-quantile, and 90-percent-quantile
of each unsupervised data corpus component length and plotted them using the boxplot in
Figure 4.1. We can see that 75 percent of the 90-percent-quantile sample length in each corpus

16https://github.com/google/sentencepiece

38

https://github.com/google/sentencepiece

4. Approach

is less than 500. So we would cover most data information for unsupervised learning if we
choose the input length as 512.

4.1.2. Supervised Dataset

In this section, we introduce the supervised Datasets we used in this thesis. There are six
datasets, with those, we did experiments on six tasks. We have already introduced the original
source of these datasets in Section 3.1. We give more details and examples about the datasets
here.

Code Documentation Generation

We selected CodeSearchNet Corpus Collection[40] for the Code Documentation Generation
supervised task. We used the dataset preprocessed by CodeBERT[39]. This part of the dataset
contains functions with their documentations for six programming languages. Based on
the data downloaded from the CodeSearchNet GitHub repository17, CodeBERT removed
comments in the code, and programming codes that cannot be parsed into an abstract syntax
tree. In addition, they removed documents contain special tokens like "" or "https"
and only kept English documentations with the token size between 3 and 256. The code and
documentations we used are already tokenized.

For the Code Documentation Generation task, we inputted the code function into our model
and trained the model to generate the corresponding documentations. The standard reference
for the model is the documentation from the dataset. Figure 4.2 shows an Python program
example. The left side of the arrow is the Python function and the right side of the arrow is
the desired documentation to generate.

Figure 4.2.: A Python example from CodeSearchNet Corpus Collection. The left side of the
arrow is an example of the Python method as the input to our model. The right
side of the arrow is the expected output from the model.

Source Code Summarization

We used the same datasets as CODE-NN[42] for the Source Code Summarization task. In their
experiments, they only trained and tested CODE-NN on CSharp and SQL code. Nevertheless,
17https://github.com/github/CodeSearchNet

39

https://github.com/github/CodeSearchNet

4. Approach

they also provided Python training and testing datasets in their repository. We downloaded
the CODE-NN GitHub repository18, then we followed their instructions, preprocessed the
dataset, parsed the code, and replaced some tokens with their code types. We tokenized the
natural language summarization using the tokenize package from the Natural Language
Toolkit (NLTK). We inputted the Python, SQL, and CSharp code snippet into our model and
expected the model to generate a summarization for this code snippet. We also chose only the
examples annotated by human-annotators, to evaluate our model output performance.

Figure 4.3 illustrates one SQL example from the dataset. The most above SQL is the original
code snippet from StackOverflow. We preprocessed the original SQL and generated the SQL
in the middle. We also list three golden references for the model output at the bottom of this
Figure. The first of three is the summarization extracted from StackOverflow. The rest two
are human-annotated summarization for this SQL snippet.

Figure 4.3.: A SQL example for the Souce Code Summarization task. The upper row is the
original code snippet from StackOverflow. The middle row is the code snippet
after preprocessing. We list three ground truth summarizations for this code
snippet at the end of the arrow.

Code Comment Generation

We used the same corpus19 as DeepCom[47] for the Code Comment Generation task. Different
from their pre-processing steps, we did not convert the code into AST or SBT. We used
javalang library to parse and tokenized the Java method. We then used the tokenized code to
let the model generate a comment for the code, which described what the code is used. We
tokenized the reference comment using the tokenize package from the Natural Language
Toolkit (NLTK).

Figure 4.4 shows an example for this task. The left side of the arrow is the Java code. The
right side of the arrow is the comment our model need to generate.

18https://github.com/sriniiyer/codenn
19https://github.com/xing-hu/DeepCom

40

https://github.com/sriniiyer/codenn
https://github.com/xing-hu/DeepCom

4. Approach

Figure 4.4.: A Java example for Code Comment Generation task. The left part of the arrow is
an example of the Java method as input to the model. The right part of the arrow
is the desired model output.

Git Commit Message Generation

The task Git Commit Message Generation aims to generate a commit message describing
the git commit changes. We used the dataset20 provided by Jiang et al[49]. We inputted the
Java comment changes into the model and got a commit message as the output. The input
comment changes and output commit messages are all preprocessed and tokenized. Since
the reference commit message only contained one sentence. So the output also should have
one sentence. Figure 4.5 is an example of this task.

Figure 4.5.: An example for the Git Commit Message Generation task. The left side of the
arrow is the git commit diff. "+" means the adding content for this change while
"-" means the removing part during this commit. We put this whole diff in the
model and expected the output as the arrow’s left side to describt this commit
change.

The left side of the arrow is the git commit diffs. The right side of the arrow is the commit
message our model should generate.

20https://sjiang1.github.io/commitgen/

41

https://sjiang1.github.io/commitgen/

4. Approach

API Sequence Recommendation

We aimed to generate the API usage sequence from a short natural language description in
this task. We adopted the dataset21 extracted by Gu et al[52]. for training and evaluating the
DeepAPI model. Figure 4.6 gives an example from the dataset for this task. The sentence
above tells the model to give API suggestions for converting RGB to HSB. We put this sentence
into our model. The expected model output below suggests that we need to use the library
Color, use the RGBtoHSB method from this library to finish the converting process, and use
the getHSBColor method to return the HSB result. The original authors already tokenized the
dataset they have published.

Figure 4.6.: An example for the API Sequence Recommendation task. The upper part of the
arrow is the description for a programming task request, which is also the input
to our model. It expects the recommendation that the Color library needs to
be used and call methods "RGBtoHSB" and "getHSBColor." The model should
suggest this API Sequence Recommendation as the output.

Program Synthesis

We used AlgoLisp22 dataset[59] for the Program Synthesis task. This dataset is extracted from
homework assignments for introductory computer science courses, so each example in this
dataset consists of a question and an answer. We inputted the question into our model and
expected the model to output the correct LISP-inspired DSL answer. The dataset is already
parsed and tokenized as a list format and stored in a JSON file. We concatenated each element
from the list using the space and converted the list to the String. So we have String as the
model input and output as shown in Figure 4.7.

Statistics

Table 4.3 compares the number of samples in training, validation, and testing datasets per
supervised learning tasks. We could observe that the API Sequence Recommendation has
the largest number of samples. It has 600 times more samples than the smallest dataset for
the Source Code Summarization Python task. It is also larger than all the unsupervised
programming language datasets. The second-largest dataset is the Code Comment Generation
dataset. The sample number of the rest datasets is around or less than 250,000. Four out of

21https://github.com/guxd/deepAPI
22https://github.com/nearai/program_synthesis/tree/master/program_synthesis/algolisp

42

https://github.com/guxd/deepAPI
https://github.com/nearai/program_synthesis/tree/master/program_synthesis/algolisp

4. Approach

Figure 4.7.: An example for the Program Synthesis task. Above the arrow is the input for
the model. It describes a question the code should solve. Below the arrow is the
expected output. It is a LISP inspired DSL code.

six tasks have the datasets extracted from GitHub. Furthermore, three out of six tasks used
the function-level datasets.

Moreover, we calculated the SentencePiece token length per input and output sample. It is
evident that programming languages have more tokens than natural languages. Besides, we
calculated the average, median, 75-quantile, and 90-quantile of the input and output sample
SPM lengths. We plot the result using the Boxplots in Figure 4.8. We can see that most of
the samples have a token length of less than 500. So it is also acceptable for the supervised
learning model to have an input size of 512.

43

4. Approach

Ta
sk

La
ng

ua
ge

Tr
ai

n
V

al
id

Te
st

D
at

a
So

ur
ce

D
at

a
Le

ve
l

A
ve

ra
ge

To
ke

n
Le

ng
th

pe
r

In
pu

t
A

ve
ra

ge
To

ke
n

Le
ng

th
pe

r
O

ut
pu

t

C
od

e
D

oc
um

en
ta

ti
on

G
en

er
at

io
n

Py
th

on
25

1,
82

0
13

,9
14

14
,9

18

G
it

H
ub

Fu
nc

ti
on

16
9.

98
21

.0
5

Ja
va

16
4,

92
3

5,
18

3
10

,9
55

G
o

16
7,

28
8

7,
32

5
8,

12
2

Ph
p

24
1,

24
1

12
,9

82
14

,0
14

R
ub

y
24

,9
27

1,
40

0
1,

26
1

Ja
va

sc
ri

pt
58

,0
23

3,
88

5
3,

29
1

So
ur

ce
C

od
e

Su
m

m
ar

iz
at

io
n

Py
th

on
12

,0
04

2,
79

2
2,

78
3

St
ac

kO
ve

rfl
ow

C
od

e
Sn

ip
pe

t
58

.8
4

10
.8

C
sh

ar
p

52
,9

43
6,

60
1

10
8

SQ
L

25
,6

71
3,

32
6

10
0

C
od

e
C

om
m

en
t

G
en

er
at

io
n

Ja
va

47
0,

45
1

58
,8

11
58

,6
38

G
it

H
ub

Fu
nc

ti
on

12
3.

21
21

.6
8

G
it

C
om

m
it

M
es

sa
ge

G
en

er
at

io
n

Ja
va

26
,2

08
3,

00
0

3,
00

0
G

it
H

ub
C

om
m

it
11

6.
24

9.
15

A
PI

Se
qu

en
ce

R
ec

om
m

en
da

ti
on

Ja
va

7,
47

5,
85

0
-

10
,0

00
G

it
H

ub
A

PI
10

.9
5

16
.5

7

Pr
og

ra
m

Sy
nt

he
si

s
D

SL
79

,2
14

10
,8

19
9,

96
7

H
om

ew
or

k
Fu

nc
ti

on
37

.9
7

51
.9

4

Ta
bl

e
4.

3.
:T

he
su

m
m

ar
iz

at
io

n
of

su
p

er
vi

se
d

d
at

as
et

s.
It

in
cl

u
d

es
th

e
nu

m
be

r
of

sa
m

p
le

s
in

tr
ai

ni
ng

,v
al

id
at

io
n

an
d

te
st

in
g

da
ta

se
ts

,d
at

a
so

ur
ce

,p
ro

gr
am

m
in

g
da

ta
le

ve
lf

or
ea

ch
sa

m
pl

e,
an

d
av

er
ag

e
to

ke
n

le
ng

th
pe

r
in

pu
t

an
d

pe
r

ou
tp

ut
sa

m
pl

e
fo

r
ea

ch
su

pe
rv

is
ed

da
ta

se
t.

Ea
ch

sa
m

pl
e

co
ul

d
be

a
co

de
fu

nc
tio

n,
a

co
de

sn
ip

pe
t,

a
co

m
m

it
di

ff
or

a
na

tu
ra

l
la

ng
ua

ge
se

nt
en

ce
,d

ep
en

di
ng

on
th

e
da

ta
le

ve
l.

44

4. Approach

Figure 4.8.: Input and output sample length in boxplot for supervised datasets. The vertical
axis means the number of SentencePiece tokens in each sample as the sample
length. 0 means the input sample, 1 means the output sample. We calculated the
average, median, 75-quantile-percentage, and 90-quantile-percentage of the sam-
ple length for each dataset. Then we collected this statistic for all the supervised
datasets and plotted them using the boxplot. From this Figure, we can infer that
90% of the samples in most datasets have samples with less than 500 tokens.

4.2. Vocabulary

Vocabulary is an essential aspect in natural language processing. Vocabulary itself contains
much information about the corpus, like the corpus domain, formality, tone, and target
audience. Vocabulary is helpful when preprocessing the text corpus. The preprocessing
methods like one-hot-encoding or bag-of-words are based on a fixed size of the vocabulary.
Vocabulary is also the storage to construct the output of the model. The choice of vocabulary
would have a critical impact on model performance and output quality. The token frequency
in the vocabulary also indicates the different importance of the text information.

However, there is one problem when choosing the vocabulary - It is impossible to choose an
unlimited size of the vocabulary. So the chosen vocabulary should contain most of the tokens
from the datasets and could reconstruct the most information from the corpus.

We used the SentencePiece23 library to construct the vocabulary for this thesis. It extracts

23https://github.com/google/sentencepiece

45

https://github.com/google/sentencepiece

4. Approach

the sub-word units from the complete corpus to create the open-vocabulary. It is designed
initially to solve the fixed word vocabulary problem in machine translation. Because limiting
vocabulary size would increase the number of unknown tokens and makes the translation
output inaccurate. Breaking up rare words into subword units is a common way to deal with
this problem.

We used the unigram language model algorithm[67] provided by this library. This algorithm
first uses all characters’ union and the most frequent substrings in the corpus to obtain an
initial vocabulary. In the second step, it optimizes the subword occurrence probabilities based
on the EM algorithm. Then it computes the loss about how likely the input sentences having
lower likelihood if using the current subwords to construct the sentences. Top subwords are
then kept by sorting based on the loss. This second step is performed repeatedly to get the
desired vocabulary size. The final vocabulary can be considered as a probabilistic mixture of
characters, subwords, and word segmentations.

We applied the Python glob24 library to collect all the supervised and unsupervised datasets
used in this thesis by recursively searching TSV files in our corpus folders. Then we connected
all the file names to a string using the comma symbol as the file input for our SentencePiece
training method. We set the id for padding token (<pad>) as 0, EOS token (</s>) as 1,
Unknown token (<unk>) as 2, and BOS token (<s>) as 3. We set the size of the vocabulary
as 32,000. The whole datasets have in total more than 46 million lines (Each line could
be considered as one model input example and one SentencePiece input sentence). It is
tremendous when using the unigram language model algorithm and would cause the training
crash for training on the whole sentences. So we limited the "input sentence size" to 40
million, shuffled the input sentences to get random sentence inputs, and enabled the setting
for training an extremely large corpus. We set the character coverage as 0.9999 because
the corpus may contain not English characters or meaningless symbols. In this way, we
could exclude these noises from the vocabulary. The SentencePiece training code is listed as
follows:

import sentencepiece as spm

spm.SentencePieceTrainer.train(input=spm_input,
pad_id=0, eos_id=1, unk_id=2, bos_id=3,
model_prefix=’code_spm_unigram_40M’,
vocab_size=32000,
input_sentence_size=40000000,
shuffle_input_sentence=True,
character_coverage=0.9999,
model_type=’unigram’,
train_extremely_large_corpus=True)

Listing 4.1: Code example for exacting the vocabulary from the total corpus using Sentence-
Piece library

24https://docs.python.org/3/library/glob.html

46

https://docs.python.org/3/library/glob.html

4. Approach

From the generated vocabulary, we may notice there are quite a lot tokens indicating the
programming languages and processes, including "function," "String," "var," "import," etc.
So this vocabulary is suitable for the natural language processing tasks in the software
development domain.

4.3. Model Architecture

Figure 4.9.: The transformer architecture[21].

We used the Text-to-Text Transfer Transformer (T5) framework to build our model. As
introduced in Section 3.2, T5 is an encoder-decoder Transformer while both the encoder and
decoder part contains attention-layers followed by the feed-forward neural network. Figure
4.9 illustrate these components in the architecture. Five different sizes of T5 are provided -
Small, Base, Large, 3B, and 11B. We used the Small, Base, and Large model in this thesis.

Table 4.4 lists the Small, Base, and Large model’s size and hyperparameters. Each block
consists of self-attention, optional encoder-decoder attention, and a feed-forward network.
The Small, Base and Large model has 6, 12, and 24 blocks in both the encoder and the decoder.
The feed-forward networks in each block contain a dense layer with an output dimensionality

47

4. Approach

Small Base Large

Number of Blocks Each 6 12 24
Dense Layer Output Dimension 2048 3072 4096
Attention Layer Key Value Dimension 64 64 64
Number of Attention Heads 8 12 16
Sub-layers and Embeddings Dimension 512 768 1024
Total Parameters (in Million) 60 220 770

Table 4.4.: Important hyperparameters for the architecture of text-to-text transfer transformer
model in the size of small, base, and large model.

of 2048, 3072, and 4096, followed by a ReLU nonlinearity and another dense layer in the Small,
Base Large models. These three models have the inner dimensionality of 64 for the "key" and
"value" matrices in each attention layer. Nevertheless, the number of attention heads and the
dimensionality of all other sub-layers and embeddings are different. In conclusion, the Base
T5 model has 3.6 times more parameters than the Small model, and the Large model has 3.5
times more parameters than the Base model.

We call our models CodeTrans because these models are based on the Transformer architec-
ture. We set the input and output length of the model as 512. We disabled the method of
reduce_concat_tokens. This method is designed originally to concatenate multiple unrelated
documents to create the exact right length and avoid wasting space on padding. However,
this would also cause the training example to be split into multiple parts and break the
programming codes’ sequences. For the unsupervised objective, we applied the replacing
corrected spans corruption strategies with the corruption rate of 15% and the corrupted span
length of 3. We considered a span of average 3 corrupted tokens as an entirety and used an
unique mask token to replace it. The target sequence consisted of the corrupted spans with
the mask tokens in front of these spans, which were used to replace them in the input.

The T5 framework is very suitable for transfer learning, multi-task learning, and fine-tune the
models. It has the Python Class TaskRegistry and MixtureRegistry. Each task can be built as
one TaskRegistry. One or more TaskRegistries can build one MixtureRegistry. We built 13
TaskRegistries, one MixtureRegistry for unsupervised learning, and another MixtureRegistry
for multi-task learning. We used the mesh_transfomer method to train the model with a
null init checkpoint. We just specified the pre-trained checkpoint as the init checkpoint for
fine-tuning the model and continued to train diverse tasks based on that checkpoint. We
chose the norm decay learning rate for training and fine-tuning. All these can be explicitly
configured using the gin-config25 settings.

25https://github.com/google/gin-config

48

https://github.com/google/gin-config

4. Approach

4.4. Evaluation Metrics

The evaluation of natural language generation tasks measures the quality of the generated
texts. It is not easy to compare the meaning of texts, because different combinations of tokens
would have the same meaning. We used in this thesis mainly the objective human likeness
measures. Such methods compare the model’s output with the golden standard reference
and calculate the overlap between generated outputs and the standard reference. We explain
these metrics in this section.

4.4.1. BLEU score

BLEU score is proposed by Papineni et al. in 2002[51]. It is used initially to compare the
machine translation outputs with several human translation references. It calculates the word
overlap between the model output and the reference to get the model’s precision. The basic
formula of BLEU score is:

BLEU = BP · exp(
N

∑
i=1

Wn log pn) (4.1)

BP =

{
1 c > r

e1− r
c c ≤ r

(4.2)

pn =
Word maximal occurrence of model output in reference

Word occurrence in model output
(4.3)

N means the word n-gram, which considers the continuous sequence of n tokens as a whole
for the calculation. It is normally set as 4. Wn is the weight to n-grams. pn is the modified
precision. c is the length of the model output. r is the length of the golden standard
reference.

The smoothed BLEU score is proposed by Lin and Och[41]. This smoothing technique adds
one count to the n-gram hit and the total n-gram count if n is larger than 1. In this way,
the candidate output with less than n words can still get a positive smoothed BLEU score
from shorter n-gram matches. Moreover, it will not influence the zero result score if nothing
matches.

T5 framework applies the tool ScareBLEU26 to compute the model text output. ScareBLEU
is proposed by Matt Post[68] and aims to solve different reference preprocessing and pa-
rameter settings when computing the BLEU score. It tries to get a unified BLEU score for
different models. ScareBLEU expects detokenized outputs and applies its own metric-internal
preprocessing before calculating the score.

26https://github.com/mjpost/sacrebleu

49

https://github.com/mjpost/sacrebleu

4. Approach

We used the score from the original task papers, which we described in Section 3.1 as
the baseline. We compared our model performance with theirs. So in addition to the T5
ScareBLEU script, it is essential that we apply the same BLEU score scripts with theirs when
evaluating the results to keep consistency.

4.4.2. ROUGE score

ROUGE is called Recall-Oriented Understudy for Gisting Evaluation[69]. The BLEU score is
a precision-related measurement, while the ROUGE score is a recall-related measurement.
BLUE score calculates how much n-grams in the model outputs appear in the reference,
while ROUGE score computes how much n-grams in the references appear in the machine
outputs.

The ROUGE score formular is as follows:

ROUGEn =

∑
S∈{Re f erenceSummaries}

∑
gramn∈S

Countmatch(gramn)

∑
S∈{Re f erenceSummaries}

∑
gramn∈S

Count(gramn)
(4.4)

where n means the length of n-gram. Countmatch(gramn) is the maximum number of the
n-gram co-occurring in the model output and the standard references.

We selected n equals 1 and 2, which refer to the overlap of unigram and bigrams between
the system and reference summaries. Besides, we also applied ROUGE-L standing for the
Longest Common Subsequence. It identifies the longest co-occurring in sequence n-grams
automatically.

The T5 ROUGE score metrics are based on the Python library rouge-score27.

4.4.3. Accuracy

Accuracy is a very common metrics to evaluate machine learning models. It is defined as:

Accuracy =
number of correct predictions

total number of predictions
(4.5)

This metrics is rigorous when computing for a sequence data like a sentence or a programming
function. Only if the complete sequence data is exactly the same as the reference data, it could
be counted as one correct prediction. In the software development domain, if a programming
code function could return the expected result, this code function could also be considered as
correct. Therefore, functional testing can be designed to calculate the code accuracy defined
as follows:

Code_Accuracy =
number of predictions that passed the functional tests

total number of predictions
(4.6)

27https://pypi.org/project/rouge-score/

50

https://pypi.org/project/rouge-score/

4. Approach

The Program Synthesis task applied the Code_Accuracy by Polosukhin and Skidanov[59]
to evaluate their model on the AlgoLisp dataset. Due to the complexity of converting text
strings to a programming code, we applied the absolute accuracy to the same task. Since this
accuracy is more strict than the Code_Accuracy, if a programming function is the same as the
reference, it could definitely also pass the functional tests.

51

5. Experiment

This chapter explains our experiment details, including the hardware information, training
and evaluation settings, and training processes using different training strategies.

5.1. Experimental Setup

In this section, we list the hardware information and software usage for our experiment.

5.1.1. Hardware

Calculation inside one neural network model requires a large number of matrix computations.
Graphics Processing Units (GPUs) and Tensor Processing Units (TPUs) are very suitable
to carry out such large computational tasks. These two kinds of hardware can focus on
multiplication computations, which are exceptionally costly during matrix computation.
According to the research by Wang et al.[70], TPU is well suited for large batch training, while
GPU is a good choice for large datasets.

We used two types of Google TPUs, v2-8, and v3-8. We got access to two TPUs v2-8 through
the Google Colab notebooks1 and multiple TPUs v3-8 using Google Cloud Console. TPUs
v3-8 are mainly used for multi-task learning, transfer learning pre-training, and fine-tuning
models for large datasets, while TPUs v2-8 are applied for single-task training for the base
model and fine-tuning the pre-trained models on relatively small datasets. Table 5.1 lists the
specifications of these two types of TPU.

TPU type TPU cores Total TPU memory

v2-8 8 64 GiB
v3-8 8 128 GiB

Table 5.1.: Specifications of two kinds of Google Cloud TPUs we used in this thesis.

We also used one NVIDIA GPU Quadro RTX 80002. It has 576 NVIDIA Tensor Cores, 72
NVIDIA RT Cores, and 48 GB GDDR6 with ECC GPU memory. This GPU is mainly utilized
for single-task training the T5 small models.

1https://colab.research.google.com/notebooks/intro.ipynb#recent=true
2https://www.nvidia.com/en-us/design-visualization/quadro/rtx-8000/

52

https://colab.research.google.com/notebooks/intro.ipynb#recent=true
https://www.nvidia.com/en-us/design-visualization/quadro/rtx-8000/

5. Experiment

5.1.2. Software Usage

We split the experiment stage into training, fine-tuning, and evaluation. The training stage
for single-task learning uses similar scripts as the pre-training stage for multi-task learning
and transfer learning. We evaluated the models on the validation sets to apply early stopping
and find the best checkpoints. We got the models’ final performance by evaluating them on
the test sets.

Training

As explained in Section 4.3, T5 uses TaskRegistry and MixtureRegistry to assign the experi-
ment tasks. Therefore, we first configured the 13 single-task learning tasks in TaskRegistry.
Then we set two MixtureRegistries: one for multi-task learning tasks and one for transfer
learning tasks. These registries were written in a Python file.

The training script is as follows. We imported the Python file containing the above configured
tasks using the module_import. T5 uses gin-config to set the function parameters. So we set
the MIXTURE_NAME as the name of the task to train. We chose the input token length
as 512, hence the tokens_per_batch is 512 multiple batch size. The model size was set as
"t5.1.0.small/base/large.gin". We set the training steps in train_steps and the init_checkpoint as
none. We also configured the hardware settings like TPU type, TPU zone, model parallelism,
etc. We ran the scripts to train the models.

python -m t5.models.mesh_transformer_main \
--module_import="${MODULE_PYTHON_FILE}" \
--tpu="${TPU_NAME}" \
--gcp_project="${PROJECT}" \
--tpu_zone="${ZONE}" \
--model_dir="${MODEL_DIR}" \
--gin_file="models/t5.1.0.large.gin" \
--gin_file="dataset.gin" \
--gin_file="learning_rate_schedules/rsqrt_no_ramp_down.gin" \
--gin_param="MIXTURE_NAME=’${NAME}’" \
--gin_param="utils.tpu_mesh_shape.model_parallelism=1" \
--gin_param="utils.tpu_mesh_shape.tpu_topology=’v3-8’" \
--gin_param="utils.run.save_checkpoints_steps=15000" \
--gin_param="utils.run.batch_size=(’tokens_per_batch’,2097152)" \
--gin_param="utils.run.train_steps=500000" \
--gin_param="init_checkpoint=None" \
--gin_param="utils.run.iterations_per_loop=5000" \
--gin_param="SentencePieceVocabulary.extra_ids=100" \
--gin_param="run.perplexity_eval_steps=100"

Listing 5.1: Code example for training tasks using T5 library

53

5. Experiment

Fine-tuning

The fine-tuning scripts are almost identical to the training scripts. But fine-tuning is a kind
of training based on the pre-trained checkpoints. So we set the pre-trained checkpoint
address for init_checkpoint in the gin parameter. It worthes to notice that the train_steps
should also take the pre-trained steps into account. So if the pre-training takes 100 steps, and
we want to fint-tune 50 steps, we need to set the train_steps as 150. We changed different
MIXTURE_NAME to fine-tune different tasks.

Evaluation

The evaluation script is listed below. We need to specify the address of operative_config.gin file
of the trained model. We used the beam search to evaluate the model. The beam size is set as
four. This script generates a file containing all the output for the evaluation examples, and
returns the scores for evaluation metrics. These evaluation metrics are also defined in the
Python file imported using the module_import.

python -m t5.models.mesh_transformer_main \
--module_import="${MODULE_PYTHON_FILE}" \
--tpu="${TPU_NAME}" \
--gcp_project="${PROJECT}" \
--tpu_zone="${ZONE}" \
--model_dir="${MODEL_DIR}" \
--gin_file="dataset.gin" \
--gin_file="${MODEL_DIR}/operative_config.gin" \
--gin_file="eval.gin" \
--gin_file="beam_search.gin" \
--gin_param="run.dataset_split=’validation’" \
--gin_param="utils.tpu_mesh_shape.tpu_topology=’v3-8’" \
--gin_param="MIXTURE_NAME=’${NAME}’" \
--gin_param="eval_checkpoint_step=${STEPS}"

Listing 5.2: Code example for evaluating models with tasks using T5 library

5.2. Single-task Learning

For Single-task Learning, we trained the 13 tasks separately using the T5 framework. We
applied the small and base models. So we generate two models for each task and, in total,
26 models. We tuned the batch size using the grid search inside the range of 25 and 210. We
determined the training steps using early stopping concerning the models’ performance on
the validation sets based on the T5 built-in BLEU and ROUGE scores.

Table 5.2 shows the batch-size, hardware, and the training step for the small and base model
with the best performance on each task. We also list here the number of samples in each

54

5. Experiment

Task Language Sample Size Model Size Batch Hardware Steps

Code Documentation Generation

Python 251,820
Small 256 TPU v2-8 20,000
Base 384 TPU v2-8 90,000

Java 164,923
Small 256 TPU v2-8 60,000
Base 256 TPU v3-8 80,000

Go 167,288
Small 256 TPU v2-8 5,000
Base 256 TPU v2-8 80,000

Php 241,241
Small 256 TPU v2-8 200,000
Base 1024 TPU v3-8 30,000

Ruby 24,927
Small 128 GPU 10,000
Base 128 TPU v2-8 8,000

Javascript 58,023
Small 256 TPU v3-8 16,000
Base 256 TPU v3-8 18,000

Source Code Summarization

Python 12,004
Small 233 GPU 5,000
Base 32 GPU 1,000

Csharp 52,943
Small 128 GPU 2,000
Base 32 GPU 500

SQL 25,671
Small 128 GPU 500
Base 32 GPU 500

Code Comment Generation Java 470,451
Small 256 TPU v2-8 520,000
Base 256 TPU v2-8 80,000

Git Commit Message Generation Java 26,208
Small 128 GPU 15,000
Base 512 TPU v3-8 4,000

API Sequence Recommendation Java 7,475,850
Small 256 TPU v2-8 840,000
Base 256 TPU v2-8 145,000

Program Synthesis DSL 79,214
Small 512 TPU v2-8 6,000
Base 256 TPU v2-8 10,000

Table 5.2.: The single-task learning experiment setups for each task. We list here the batch-
size, hardware, and the training step for the small and base model with the best
performance on each task using single-task learning.

dataset for comparison. We used GPUs to train part of the small models and base models
with a small batch size for tasks having a small sample size in the dataset. We could notice
the following points during single task training:

• The number of samples in a dataset has an essential impact on the model size and the
training steps. Task API Sequence Recommendation and Code Comment Generation
have the two most enormous datasets. The small models for these two tasks require
almost seven times more training steps than the base models till the models could
converge.

• Corpus for Source Code Summarization converges extremely fast. For SQL and CSharp
datasets in this corpus, the base model converged already in 500 training steps even the
batch size is only 32, and the model had not seen the complete dataset yet. The scores
on this task’s validation set became worse if we trained the model with more steps. So
it is very easy to overfit the models for the Source Code Summarization task.

55

5. Experiment

• Half of the models achieves the best performance with a batch size of 256. However, it
varies slightly among different tasks, like the Source Code Summarization task requiring
small batch sizes. Nevertheless, large batch sizes do not result in better performance,
no matter the number of samples in the dataset.

We evaluated the models using the BLEU and ROUGE scores (and Accuracy for the Program
Synthesis task additionally) on the test dataset to obtain its final performance and compare
the result with the baseline. We explain these comparisons in Section 6.

5.3. Transfer Learning

Transfer Learning has two steps, pre-training and fine-tuning. We applied the small, base,
and large T5 models for transfer learning.

5.3.1. Pre-training

All the unsupervised tasks are used in the pre-training step. We set the T5 model to mask
the spans of input data by enabling unsupervised parameter gin file. The model needs to
predict what is the masked content and builds an initial language model in this way. Since
our pre-trained models used the datasets containing nine programming languages, these
models are suitable be fine-tuned on other downstream tasks in the software development
domain.

(a) The loss change of T5 small model in trans-
fer learning pre-training steps. The y-axis
shows the loss and the x-axis lists the train-
ing steps.

(b) The learning rate change of T5 small model
in transfer learning pre-training steps. The
y-axis shows the learning rate and the x-axis
lists the training steps.

Figure 5.1.: The development of Loss and learning rate of the T5 small model during pre-
training

We chose the batch size as 4096 and training steps as 500,000 for pre-training the small model.
We utilized the TPU v3.8 in the pre-training. It took around 17 days to pre-train the small T5
model for half a million steps. Figure 5.1 illustrates the loss and learning rate changes during

56

5. Experiment

the pre-training. We obtained these charts using the Tensorboard3. After training more than
50,000 steps, the pre-training loss stayed under 1.0 stably. There existed variations, but the
primary trend of the loss was going down slightly. The learning rate decayed, along with the
increase of training steps. The pre-trained small model’s final loss is 0.926.

(a) The loss change of T5 base model in trans-
fer learning pre-training steps. The y-axis
shows the loss and the x-axis lists the train-
ing steps.

(b) The learning rate change of T5 base model
in transfer learning pre-training steps. The
y-axis shows the learning rate and the x-
axis lists the training steps.

Figure 5.2.: The development of Loss and learning rate of the T5 base model during pre-
training

We chose the batch size as 4096 and training steps as 500,000 for pre-training the base model
utilizing the TPU v3.8. Pre-training the base T5 model for 500,000 steps cost around 53 days.
The changes of the base model’s loss and learning rate during the pre-training are shown
in Figure 5.2. We could see that the training loss went down rapidly during the first 50,000
steps. It increased largely again in the 370,000 steps then continued to decrease. This may
mean that our base model jumped out of its local minimum in that step. The overall trend of
the loss was decreasing. The pre-trained base model’s final loss is 0.586.

We chose the batch size as 4096 and stopped the transfer learning pre-training at 240,000 steps
for the large model because of the time constraint. We used TPU v3-8 during the pre-training.
Pre-training the large T5 model for 240,000 steps cost more than 83 days. The changes of loss
and learning rate during the pre-training are shown in Figure 5.3. We could observe that
the training loss went down rapidly during the first 20,000 steps. The loss achieved 0.5 after
80,000 steps. After that, it continued to decrease slowly. The complete loss change was very
smooth. The pre-trained large model’s final loss is 0.476.

5.3.2. Fine-tuning

After obtaining the pre-training model on the 500,000 training steps for the small and base
models and 240,000 steps for the large model, we fine-tuned the models for the 13 supervised

3https://www.tensorflow.org/tensorboard

57

https://www.tensorflow.org/tensorboard

5. Experiment

(a) The loss change of T5 large model in trans-
fer learning pre-training steps. The y-axis
shows the loss and the x-axis lists the train-
ing steps.

(b) The learning rate change of T5 large
model in transfer learning pre-training
steps. The y-axis shows the learning rate
and the x-axis lists the training steps.

Figure 5.3.: The development of Loss and learning rate of the T5 large model during pre-
training

tasks. We have noticed that half of the single-task learning models reached their best
performance with a batch size of 256. So we chose 256 as the batch size for fine-tuning the
downstream tasks. We applied the early stopping to determine the fine-tuning steps based
on the models’ performance on the validation sets using BLEU and ROUGE scores.

Based on the experience gained from the single-task learning, we started to fine-tune the
small models 5,000 steps for most of the tasks, recorded the validation scores, and continued
to fine-tune 5,000 steps repeatedly until the models’ performance converged on the validation
sets. We also adjusted this step interval concerning the dataset attributes and the model size.
We set this interval as 2,000 for the base models and 500 for the large models. We reduced
this fine-tuning step interval for the Source Code Summarization task to 1,000 for the small
models, 500 for the base models, and 100 for the large models because this corpus is very easy
to overfit the models. For Code Comment Generation and API Sequence Recommendation
tasks, we increased this interval to 50,000 for the small models and 10,000 for the base and
the large models.

Table 5.3 lists the fine-tuning steps for the small, base, and large models to reach the best
performance on each task. Quite a lot tasks reach the best performance already after fine-
tuning the first 500/2,000/5,000 steps iteration. This can prove that fine-tuning downstream
tasks using transfer learning can save the downstream tasks’ training steps. The larger the
model is, the fewer fine-tuning steps the model requires. Nevertheless, tasks with large
datasets like Code Comment Generation and API Sequence Recommendation still require
many fine-tuning steps, especially for the small models.

To make sure that our fine-tuning step interval is small enough to cover the best performance
checkpoint, especially for the Source Code Summarization task, we fine-tuned the SQL task
for 1,000 steps using the interval of 100 steps. Table 5.4 presents the evaluation results on the

58

5. Experiment

Task Language Sample Size Model Size Hardware TF-FT-Steps

Code Documentation Generation

Python 251,820
Small TPU v3-8 5,000
Base TPU v3-8 2,000
Large TPU v2-8 500

Java 164,923
Small TPU v2-8 10,000
Base TPU v3-8 5,000
Large TPU v2-8 500

Go 167,288
Small TPU v2-8 10,000
Base TPU v2-8 5,000
Large TPU v2-8 1,000

Php 241,241
Small TPU v2-8 10,000
Base TPU v2-8 65,000
Large TPU v2-8 18,000

Ruby 24,927
Small TPU v3-8 5,000
Base TPU v3-8 5,000
Large TPU v2-8 1,000

Javascript 58,023
Small TPU v2-8 40,000
Base TPU v3-8 35,000
Large TPU v2-8 4,000

Source Code Summarization

Python 12,004
Small TPU v3-8 5,000
Base TPU v2-8 1,000
Large TPU v2-8 100

Csharp 52,943
Small TPU v2-8 2,000
Base TPU v2-8 500
Large TPU v2-8 200

SQL 25,671
Small TPU v3-8 1,000
Base TPU v2-8 500
Large TPU v2-8 200

Code Comment Generation Java 470,451
Small TPU v3-8 750,000
Base TPU v3-8 80,000
Large TPU v3-8 60,000

Git Commit Message Generation Java 26,208
Small TPU v2-8 5,000
Base TPU v2-8 2,000
Large TPU v2-8 4,500

API Sequence Recommendation Java 7,475,850
Small TPU v2-8 1,400,000
Base TPU v3-8 340,000
Large TPU v3-8 180,000

Program Synthesis DSL 79,214
Small TPU v3-8 5,000
Base TPU v2-8 45,000
Large TPU v2-8 3,500

Table 5.3.: The transfer learning fine-tuning experiment setups for each task. We list here the
hardware, and the fine-tuning step for the small and base model with the best
performance on each task.

59

5. Experiment

Score\Step 100 200 300 400 500 600 700 800 900 1000

Bleu 1.625 1.981 1.973 2.015 2.095 2.068 1.761 1.482 1.225 1.215
Rouge1 17.33 19.04 20 18.15 19.29 18.82 18.73 18.39 16.76 16.7
Rouge2 3.85 4.38 4.41 3.73 4.22 4.07 3.93 3.4 3.19 2.98
RougeLsum 16.11 17.38 18.18 16.45 17.54 17.13 16.83 16.6 15.38 15.22

Table 5.4.: Evalutation on the validation set of the Source Code Summarization SQL task for
fine-tuning 1,000 steps using the interval of 100. We evaluated using the T5 in-built
Bleu and Rouge scores here.

validation set. It shows that our model achieved the best performance exactly after fine-tuning
500 steps. The model has been overfitting afterward, and the scores on the validation set
decreased.

5.4. Multi-task Learning

Multi-task learning trains a single model on a mixture of tasks. We trained 13 supervised
tasks together with all the unsupervised tasks using the T5 framework. The unsupervised
tasks are desired to help the model gain information about the language attributes and build
a language model in the software development domain. Simultaneously, the supervised tasks
assist each other in making the model more generalized for all the tasks and avoid overfitting
on each specific task.

We used examples-proportional mixing to select samples in proportion to the size of each
task’s dataset and concatenated them. We recorded the model checkpoint every 20,000
training steps. The batch size is 4096. Usually, all the tasks should share one same best
performance checkpoint. T5 paper proposed a way to relax this goal and select a different
checkpoint for each task. We also evaluated the model on the validation set and selected the
best checkpoint for each task. So each task could have a different checkpoint from the same
model. We investigated the T5 small, base, and large models. We utilized only TPU v3-8 to
train these models for multi-task learning.

We trained the T5 small model for 500,000 steps and collected 25 checkpoints. The whole
training took more than 17 days. Figure 5.4 illustrates the change of loss in the training set
and the change of the model learning rate. The training loss went down very fast at first
and reached 0.9 at around 150,000 steps. The loss changed slightly around 0.9 during further
training. The final loss is 0.887 after training half a million steps. The multi-task learning
small model’s loss change curve is smoother than the transfer learning small model.

We trained the T5 base model for 500,000 steps and collected 25 checkpoints. The whole
training took more than 52 days. Figure 5.5 illustrates the change of loss in the training set
and the change of the model learning rate. The training loss reached 0.6 at around 100,000
steps. Since then, the loss changed slightly around 0.6 but still had a tiny trend to decay.

60

5. Experiment

(a) The loss change of T5 small model in
multi-task learning pre-training steps.
The y-axis shows the loss and the x-axis
lists the training steps.

(b) The learning rate change of T5 small
model in multi-task learning pre-training
steps. The y-axis shows the learning rate
and the x-axis lists the training steps.

Figure 5.4.: The development of Loss and learning rate of the T5 small model during the
multi-task learning.

(a) The loss change of T5 base model in multi-
task learning pre-training steps. The y-axis
shows the loss and the x-axis lists the train-
ing steps.

(b) The learning rate change of T5 base model
in multi-task learning pre-training steps.
The y-axis shows the learning rate and the
x-axis lists the training steps.

Figure 5.5.: The development of Loss and learning rate of the T5 base model during the
multi-task learning.

The final loss is 0.590 after training 500,000 steps. The multi-task learning base model’s loss
change curve is also smoother than the transfer learning base model.

We trained the T5 large model for 260,000 steps and collected 13 checkpoints because of this
thesis’s time constraint. The whole training took more than 86 days. Figure 5.6 illustrates the
change of loss in the training set and the change of the model learning rate. The training loss
went down very fast at the first 20,000 steps. It reached 0.5 at around 80,000 steps. Since then,
the loss decayed slightly and slowly. It did not have much fluctuation like the small and base
multi-task learning models. The final loss is 0.4707 after training 260,000 steps.

61

5. Experiment

(a) The loss change of T5 large model in
multi-task learning pre-training steps.
The y-axis shows the loss and the x-axis
lists the training steps.

(b) The learning rate change of T5 large
model in multi-task learning pre-training
steps. The y-axis shows the learning rate
and the x-axis lists the training steps.

Figure 5.6.: The development of Loss and learning rate of the T5 large model during the
multi-task learning.

Task Language Sample Size Steps in Small Model Steps in Base Model Steps in Large Model

Code Documentation Generation

Python 251,820 420,000 420,000 80,000
Java 164,923 400,000 480,000 180,000
Go 167,288 340,000 340,000 60,000
Php 241,241 420,000 360,000 240,000
Ruby 24,927 420,000 160,000 80,000
Javascript 58,023 500,000 440,000 120,000

Source Code Summarization
Python 12,004 300,000 260,000 80,000
Csharp 52,943 300,000 160,000 120,000
SQL 25,671 460,000 500,000 120,000

Code Comment Generation Java 470,451 360,000 460,000 260,000

Git Commit Message Generation Java 26,208 280,000 480,000 220,000

API Sequence Recommendation Java 7,475,850 500,000 480,000 240,000

Program Synthesis DSL 79,214 300,000 360,000 220,000

Table 5.5.: The best multi-task learning checkpoints (training steps) for different tasks in the
small and base model.

Table 5.5 lists the best training steps we chose for each task regarding the checkpoint perfor-
mance on the validation sets. For the T5 small model, these checkpoints are collected in the
latter half of the multi-task learning and distributed from 280,000 to 500,000 training steps.
Like the small model, the base model also has its best checkpoints in the last 100,000 training
steps for more than half of the tasks. This could indicate that these two models still improved
in the latter part of the training. However, two of the tasks achieve their best performance
for the base model in 160,000 training steps. So the best checkpoint for each task could vary
a bit. For the large model, most tasks from Code Documentation Generation and Source
Code Summarization achieve the best performance during the first 120,000 steps. Tasks with
a large dataset like Code Comment Generation and API Sequence Recommendation need

62

5. Experiment

more steps to have the best performance. So the best checkpoints for these tasks lie at the end
of pre-training. If we train the large model using multi-task learning with more steps, the
large model could better perform the tasks.

5.5. Multi-task Learning with Fine-tuning

We fine-tuned each supervised task separately based on the multi-task learning checkpoints
of 500,000 steps for the small and base model, and the checkpoint of 260,000 steps for the
large model. Like the transfer learning fine-tuning, we chose the batch size of 256 and applied
the early stopping to determine the fine-tuning steps based on the models’ performance on
the validation sets.

We used the TPU v3-8s mainly for the Code Comment Generation and the API Sequence
Recommendation tasks. These two tasks have enormous datasets and consumed the longest
training time when carrying out the transfer learning fine-tuning. The rest of the tasks were
trained mostly using the TPU v2-8s. For small and base models, We set the fine-tuning step
interval to 2,000 for most of the tasks, while we adjusted this value to 500 for the Source
Code Summarization, and 20,000 for the Code Comment Generation and API Sequence
Recommendation tasks. We reduced this value to 500 for the majority of tasks for the large
models, 100 for the Source Code Summarization, 5,000 for the Code Comment Generation
task, and 10,000 for the API Sequence Recommendation task.

Table 5.6 lists the small, base, and large models’ fine-tuning steps to reach their best perfor-
mance for each task. Most of the tasks reach the best performance directly after fine-tuning
the step interval (e.g., 500 steps or 2,000 steps) once. However, the number of fine-tuning
steps varies significantly among the different sizes of models for tasks with large datasets.
For such tasks with large datasets, the smaller the model is, the more steps fine-tuning
requires. The Code Comment Generation task large model needs 25,000 steps to have the
best performance. The base model requires double the steps (60,000), and the small model
requires 30 times more fine-tuning steps (750,000). This situation also happens in the API
Sequence Recommendation task. In this way, although running one iteration would take
more time for larger models, the less fine-tuning steps would still help a large model reach
the best performance with less time in total.

63

5. Experiment

Task Language Sample Size Model Size Hardware MT-FT-Steps

Code Documentation Generation

Python 251,820
Small TPU v2-8 4,000
Base TPU v2-8 4,000
Large TPU v2-8 500

Java 164,923
Small TPU v2-8 2,000
Base TPU v2-8 2,000
Large TPU v2-8 500

Go 167,288
Small TPU v2-8 2,000
Base TPU v2-8 2,000
Large TPU v2-8 4,500

Php 241,241
Small TPU v2-8 2,000
Base TPU v3-8 5,000
Large TPU v2-8 8,000

Ruby 24,927
Small TPU v2-8 2,000
Base TPU v2-8 12,000
Large TPU v2-8 2,000

Javascript 58,023
Small TPU v2-8 32,000
Base TPU v3-8 10,000
Large TPU v2-8 2,500

Source Code Summarization

Python 12,004
Small TPU v2-8 600
Base TPU v2-8 1,000
Large TPU v3-8 100

Csharp 52,943
Small TPU v2-8 1,200
Base TPU v2-8 500
Large TPU v3-8 100

SQL 25,671
Small TPU v2-8 1,200
Base TPU v2-8 500
Large TPU v3-8 100

Code Comment Generation Java 470,451
Small TPU v3-8 750,000
Base TPU v3-8 60,000
Large TPU v3-8 25,000

Git Commit Message Generation Java 26,208
Small TPU v2-8 8,000
Base TPU v2-8 16,000
Large TPU v2-8 3,000

API Sequence Recommendation Java 7,475,850
Small TPU v3-8 1,150,000
Base TPU v3-8 320,000
Large TPU v3-8 130,000

Program Synthesis DSL 79,214
Small TPU v2-8 16,000
Base TPU v2-8 30,000
Large TPU v2-8 2,000

Table 5.6.: The multi-task learning fine-tuning experiment setups for each task. We listed here
the hardware, and the fine-tuning steps for the best performance of the small, base
and large models for each task.

64

6. Evaluation Results and Discussion

This chapter presents our experiment results for all the tasks using single-task learning,
transfer learning, multi-task learning, and fine-tuning. We call our model CodeTrans because
the model is based on the Transformer architecture. We compare our CodeTrans results with
the baseline and discuss the reasons impacting the results.

6.1. Evaluation Results

In this section, we list the evaluation results of all the CodeTrans models for each task. The
models’ performance on the validation set can be found in Appendix A. We choose the
models we explained in Section 3.2 as our baseline. The performance of most of these models
can be considered as the state-of-the-art performance for that specific task. We estimated our
models’ final performance on the test set. We use the same metric script for evaluation as
the baseline models to compare the model performances. Additionally, we also apply the T5
built-in BLEU and ROUGE metrics to get more insights into the results.

6.1.1. Code Documentation Generation

We present the results of six Code Documentation Generation tasks separately.

Table 6.1 compares different model performances on the Code Documentation Generation
- Python task. We can see that most of our transfer learning, multi-task learning, and
multi-task learning fine-tuning models outperform the state-of-the-art model CodeBERT in
this task. Among them, the CodeTrans base model with the multi-task learning strategy
achieves the best result and has more than one percent higher Smoothed BLEU score than
CodeBERT.

Table 6.2 lists evaluation results of the Code Documentation Generation - Java task. Our
CodeTrans models with transfer learning, multi-task learning, and multi-task learning with
fine-tuning all outperform the baseline CodeBert model. Among them, CodeTrans multi-task
learning large model performs best and outperforms CodeBERT by more than four percent
in Smoothed BLEU. CodeTrans multi-task learning fine-tuning large model has the highest
score in T5 built-in BLEU metric. Nevertheless, the multi-task learning base and large models’
performances are very similar to the performances of the multi-task learning fine-tuning base
and large models on all the scores.

65

6. Evaluation Results and Discussion

Model Model Size Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L

CodeTrans
Single-Task Learning

Small 17.31 5.92 30.91 10.60 28.80
Base 16.86 6.97 29.51 9.89 27.31

CodeTrans
Transfer Learning

Small 19.93 7.38 35.96 14.09 33.71
Base 20.26 7.83 36.44 14.66 34.15
Large 20.35 7.41 36.33 14.59 34.16

CodeTrans
Multi-task Learning

Small 19.64 7.12 35.45 13.71 33.2
Base 20.39 7.99 36.82 14.82 34.34
Large 20.18 7.94 36.72 14.53 34.25

CodeTrans
Multi-task Learning Fine-tuning

Small 19.77 7.58 35.74 13.91 33.37
Base 19.77 7.83 35.81 14.04 33.39
Large 18.94 7.30 35.22 13.42 32.75

CodeBERT 19.06 - - - -

Table 6.1.: The evaluation results for the task Code Documentation Generation - Python. We
compare the CodeTrans performance using different training strategies with the
state-of-the-art CodeBERT.

Table 6.3 shows evaluation results of the Code Documentation Generation - Go task. The
CodeTrans transfer learning large model works best and outperforms CodeBERT by more
than one percent. The CodeTrans multi-task learning fine-tuning model has the highest score
on the T5 built-in BLEU metric. Regarding the ROUGE-L, the large model of multi-task
learning performs best. The difference among the different sizes of CodeTrans models is
minimal for this task.

The evaluation results of the Code Documentation Generation - Php task are shown in
Table 6.4. The CodeTrans multi-task learning base model works best and outperforms
CodeBERT by more than one percent on the Smoothed BLEU score. Regarding the T5 built-in
BLEU score, the multi-task learning fine-tuning large model performs best. The multi-task
learning base model works better than the large model. However, if we could train the
multi-task large model longer, we may achieve a better result.

The Code Documentation Generation - Ruby task’s evaluation results are listed in Table 6.5.
The CodeTrans transfer learning, multi-task learning, and multi-task learning fine-tuning
models all outperform the CodeBERT. The multi-task learning base model also performs
best on four metrics and has a three percent better score than the CodeBert model. The
transfer-learning large model has the best performance on the T5 built-in BLEU metric.

Table 6.6 presents evaluation results of the Code Documentation Generation - Javascript task.
The CodeTrans transfer learning large model outperforms the CodeBERT by more than four
percent on the smoothed BLEU score. The multi-task learning fine-tuning large model shows
a similar performance and achieves the best score on ROUGE-1 and ROUGE-L. Moreover, the
multi-task learning fine-tuning base model has the best performance on the T5 built-in BLEU
metric. However, the three multi-task learning models have extremely low scores using the

66

6. Evaluation Results and Discussion

Model Model Size Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L

CodeTrans
Single-Task Learning

Small 16.65 8.60 31.22 12.21 28.95
Base 17.17 8.92 30.90 12.24 28.74

CodeTrans
Transfer Learning

Small 19.48 8.39 36.33 15.91 34.02
Base 20.19 8.44 36.36 16.43 34.17
Large 20.06 7.92 36.79 16.51 34.54

CodeTrans
Multi-task Learning

Small 19.00 7.20 35.73 15.25 33.51
Base 21.22 9.93 37.98 17.99 35.80
Large 21.87 12.04 38.60 18.75 36.29

CodeTrans
Multi-task Learning Fine-tuning

Small 20.04 7.90 36.37 16.30 34.28
Base 21.12 9.99 37.86 17.81 35.67
Large 21.42 12.46 38.44 18.49 35.99

CodeBERT 17.65 - - - -

Table 6.2.: The evaluation results for the task Code Documentation Generation - Java. We
compare the CodeTrans performance using different training strategies with the
state-of-the-art CodeBERT.

Model Model Size Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans
Single-Task Learning

Small 16.89 5.98 37.14 14.27 35.58
Base 17.16 9.41 37.41 14.49 35.43

CodeTrans
Transfer Learning

Small 18.88 8.60 41.29 17.29 39.23
Base 19.50 9.52 42.09 18.07 39.86
Large 19.54 9.89 42.43 18.51 40.29

CodeTrans
Multi-task Learning

Small 19.15 7.83 41.90 17.83 39.69
Base 19.43 9.06 41.94 18.24 39.98
Large 19.38 8.41 42.20 18.50 40.33

CodeTrans
Multi-task Learning Fine-tuning

Small 19.36 8.19 41.99 18.32 39.99
Base 18.86 8.00 41.31 17.52 39.42
Large 18.77 10.81 41.04 16.90 38.73

CodeBERT 18.07 - - - -

Table 6.3.: The evaluation results for the task Code Documentation Generation - Go. We
compare the CodeTrans performance using different training strategies with the
state-of-the-art CodeBERT.

67

6. Evaluation Results and Discussion

Model Model Size Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans
Single-Task Learning

Small 23.05 12.23 37.10 15.23 35.02
Base 22.98 12.27 36.60 14.98 34.64

CodeTrans
Transfer Learning

Small 25.35 10.45 42.04 17.77 39.96
Base 25.84 14.51 41.61 18.64 39.37
Large 26.18 14.06 42.29 18.92 40.21

CodeTrans
Multi-task Learning

Small 24.68 9.23 41.11 17.06 39.08
Base 26.23 10.85 43.07 19.18 41.00
Large 26.08 11.50 42.63 18.69 40.53

CodeTrans
Multi-task Learning Fine-tuning

Small 25.55 9.20 42.19 17.62 40.24
Base 25.79 10.83 41.65 18.07 39.65
Large 26.20 15.11 42.44 19.39 40.17

CodeBERT 25.16 - - - -

Table 6.4.: The evaluation results for the task Code Documentation Generation - Php. We
compare the CodeTrans performance using different training strategies with the
state-of-the-art CodeBERT.

Model Model Size Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans
Single-Task Learning

Small 9.19 2.12 15.54 3.00 14.47
Base 8.23 2.08 13.16 2.39 12.23

CodeTrans
Transfer Learning

Small 13.15 3.78 26.09 8.07 23.99
Base 14.07 4.70 28.12 9.35 25.73
Large 14.94 5.52 29.10 10.68 26.90

CodeTrans
Multi-task Learning

Small 14.91 3.62 29.00 10.04 27.04
Base 15.26 4.48 30.28 11.26 28.21
Large 15.00 4.15 29.81 10.74 27.64

CodeTrans
Multi-task Learning Fine-tuning

Small 13.70 3.84 26.81 8.42 24.65
Base 14.24 5.25 28.33 9.37 25.85
Large 14.19 5.35 28.03 9.77 25.89

CodeBERT 12.16 - - - -

Table 6.5.: The evaluation results for the task Code Documentation Generation - Ruby. We
compare the CodeTrans performance using different training strategies with the
state-of-the-art CodeBERT.

68

6. Evaluation Results and Discussion

Model Model Size Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans
Single-Task Learning

Small 13.70 9.43 20.94 7.31 19.50
Base 13.17 10.13 18.82 7.19 17.75

CodeTrans
Transfer Learning

Small 17.23 12.60 28.52 11.44 26.48
Base 18.25 14.39 30.34 13.21 28.23
Large 18.98 14.08 31.58 13.75 29.26

CodeTrans
Multi-task Learning

Small 15.26 3.00 27.63 9.13 25.88
Base 16.11 3.52 29.34 10.29 27.53
Large 16.23 4.36 30.05 10.94 28.11

CodeTrans
Multi-task Learning Fine-tuning

Small 17.24 12.94 28.55 11.78 26.54
Base 18.62 14.58 30.97 13.61 28.96
Large 18.83 14.56 31.82 13.71 29.52

CodeBERT 14.90 - - - -

Table 6.6.: The evaluation results for the task Code Documentation Generation - Javascript.
We compare the CodeTrans performance using different training strategies with
the state-of-the-art CodeBERT.

T5 built-in BLEU metric. Factors like the output length could influence this evaluation metric.
So it is worthwhile to have multiple metrics when comparing results.

6.1.2. Source Code Summarization

We present the results of three Source Code Summarization tasks separately.

Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans
Single-Task Learning

Small 8.45 1.05 15.23 2.55 13.63
Base 9.12 1.62 16.58 3.80 15.08

CodeTrans
Transfer Learning

Small 10.06 1.53 18.97 3.72 16.77
Base 10.94 2.22 21.44 4.33 18.71
Large 12.41 2.17 23.54 5.32 20.71

CodeTrans
Multi-task Learning

Small 13.11 3.60 26.85 7.46 23.70
Base 13.37 4.48 27.81 8.05 24.64
Large 13.24 4.16 27.57 7.88 24.30

CodeTrans
Multi-task Learning Fine-tuning

Small 12.10 2.89 23.92 5.65 21.17
Base 10.64 2.11 21.07 4.29 18.25
Large 12.14 2.85 23.73 5.94 20.95

Table 6.7.: The evaluation results for the task Source Code Summarization - Python. We
compare the CodeTrans performance among different training strategies.

Table 6.7 shows the results for Source Code Summarization - Python. Because the CODE-NN
did not provide the evaluation on this Python task, so we compare the results among different
CodeTrans training strategies. From the table, we can observe that the small, base and large
CodeTrans multi-task learning models perform better than the rest of the CodeTrans models.
The multi-task learning base model achieves better results than the small and the large
models over all the metrics.

69

6. Evaluation Results and Discussion

Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans
Single-Task Learning

Small 19.74 2.80 20.02 4.61 18.29
Base 18.65 2.69 20.55 4.69 18.69

CodeTrans
Transfer Learning

Small 20.40 3.60 22.88 5.93 20.98
Base 21.12 3.84 23.27 6.18 21.36
Large 21.43 4.02 23.68 6.40 21.89

CodeTrans
Multi-task Learning

Small 22.39 3.74 23.43 6.16 21.34
Base 23.20 4.23 24.71 6.65 22.50
Large 23.57 4.39 24.71 6.90 22.62

CodeTrans
Multi-task Learning Fine-tuning

Small 22.03 3.60 22.67 5.93 20.84
Base 21.40 4.20 24.33 6.56 22.18
Large 21.10 3.68 22.84 5.65 20.67

CODE-NN 20.50 - - - -

Table 6.8.: The evaluation results for the task Source Code Summarization - CSharp. We
compare the CodeTrans performance using different training strategies with the
state-of-the-art CODE-NN.

Table 6.8 presents the evaluation results for the Source Code Summarization - Csharp task.
We compare the CodeTrans performances with the CODE-NN as our baseline. CodeTrans
multi-task learning large model outperforms the CODE-NN by more than three percent
on this task. It also outperforms other CodeTrans models. The multi-task learning base
model has similar good performance and achieves the same highest scores on the ROUGE-1
metric.

Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans
Single-Task Learning

Small 17.55 1.54 18.10 3.57 16.36
Base 15.00 1.28 16.27 2.86 14.51

CodeTrans
Transfer Learning

Small 17.71 1.75 18.69 3.86 17.06
Base 17.66 2.25 19.94 4.41 17.97
Large 18.40 2.17 20.37 4.27 18.20

CodeTrans
Multi-task Learning

Small 19.15 1.95 19.05 4.20 17.03
Base 19.24 2.10 19.53 4.10 17.65
Large 19.49 2.29 20.34 4.49 18.21

CodeTrans
Multi-task Learning Fine-tuning

Small 18.25 1.88 18.77 3.97 16.97
Base 16.91 1.95 19.42 3.98 17.57
Large 19.98 1.97 17.48 4.03 16.26

CODE-NN 18.40 - - - -

Table 6.9.: The evaluation results for the task Source Code Summarization - SQL. We compare
the CodeTrans performance using different training strategies with the state-of-the-
art CODE-NN.

Table 6.9 shows the models’ performance on the Source Code Summarization - SQL task. For
this task, the multi-task learning fine-tuning large model performs best on the smoothed
BLEU score and has more than 1.5 percent than the baseline CODE-NN. The multi-task
learning large model has the second-highest score on the smoothed BLEU and outperforms

70

6. Evaluation Results and Discussion

all other models on the T5 built-in BLEU, ROUGE-2, and ROUGE-l metrics. The CodeTrans
large transfer-learning model has the highest score on ROUGE-1. Since the smoothed BLEU
only took 100 samples from the test dataset, the other metrics consider the whole test
dataset, so the CodeTrans multi-task learning large model’s performance should be better in
general.

6.1.3. Code Comment Generation

The evaluation results of the Code Comment Generation task are presented in Table 6.10. We
compare the CodeTrans with the DeepCom model as our baseline. In total, the CodeTrans
transfer learning large model achieves the best 39.50 smoothed BLEU score among all the
models, which is also higher than the state-of-the-art DeepCom by more than one percent.
The multi-task learning fine-tuning large model achieves a similar manner of performance
and has the highest score for the T5 built-in BLEU metric. For this task, the small, base, and
large multi-task learning models perform even worse than those that only applied single-task
learning. But the improvement is huge for the multi-task learning when the model size
increases.

Smoothed BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans
Single-Task Learning

Small 37.98 36.05 46.61 34.83 45.47
Base 38.07 36.79 46.77 35.06 45.62

CodeTrans
Transfer Learning

Small 38.56 36.31 47.93 35.56 46.71
Base 39.06 37.38 48.95 36.34 47.66
Large 39.50 37.86 49.68 37.07 48.37

CodeTrans
Multi-task Learning

Small 20.15 11.97 34.23 17.38 32.78
Base 27.44 19.96 40.61 25.25 39.21
Large 34.69 30.74 46.21 32.53 44.83

CodeTrans
Multi-task Learning Fine-tuning

Small 38.37 36.81 47.79 35.59 46.58
Base 38.90 37.60 48.95 36.38 47.57
Large 39.25 38.54 49.21 36.76 47.91

DeepCom 38.17 - - - -

Table 6.10.: The evaluation results for the task Code Comment Generation. We compare the
CodeTrans performance using different training strategies with the state-of-the-art
DeepCom.

6.1.4. Git Commit Message Generation

Table 6.11 shows the evaluation results for the task Git Commit Message Generation. We did
not apply the smoothed BLEU score for this task because the baseline NMT model was only
evaluated using the BLEU metric. All our CodeTrans models outperform the baseline model.
The performance of models used transfer learning and multi-task learning fine-tuning are
quite similar. The CodeTrans transfer learning large model achieves the best BLEU score as

71

6. Evaluation Results and Discussion

44.41. The CodeTrans multi-task learning fine-tuning large model has the best performance
on the ROUGE-2 score.

BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans
Single-Task Learning

Small 39.61 37.91 28.89 37.69
Base 38.67 37.77 28.30 37.59

CodeTrans
Transfer Learning

Small 44.22 47.05 34.74 46.57
Base 44.17 47.41 35.14 46.84
Large 44.41 48.36 35.66 47.76

CodeTrans
Multi-task Learning

Small 36.17 38.15 25.38 37.84
Base 39.25 43.71 29.90 43.32
Large 41.18 46.36 32.42 45.86

CodeTrans
Multi-task Learning Fine-tuning

Small 43.96 47.39 35.00 46.94
Base 44.19 47.96 35.61 47.43
Large 44.34 48.08 35.75 47.52

NMT 32.81 - - -

Table 6.11.: The evaluation results for the task Git Commit Message Generation. We compare
the CodeTrans performance using different training strategies with the state-of-
the-art NMT.

6.1.5. API Sequence Recommendation

Table 6.12 presents the evaluation results of the task API Sequence Recommendation. We
compare our results with the DeepAPI model as our baseline. We applied the same BLEU
metric script as the DeepAPI used, in addition to the T5 built-in BLEU and ROUGE scripts.
All the CodeTrans models outperform the DeepAPI model. Among the CodeTrans models,
those trained using only multi-task learning perform worst. The CodeTrans large model with
multi-task learning fine-tuning has the highest scores across all the models. The CodeTrans
transfer learning large model also has a similarly good performance.

6.1.6. Program Synthesis

Table 6.13 presents the evaluation results. We evaluated our models using the absolute
Accuracy and comparing them with the code Accuracy of the baseline model Seq2Tree. If
the absolute Accuracy is high, then the model could definitely achieve a high code Accuracy.
Nine out of Ten CodeTrans models outperform the Seq2Tree model. The CodeTrans multi-
task learning fine-tuning small model achieves the best score on Accuracy. The CodeTrans
transfer learning small model performs best on T5 built-in BLEU and ROUGE scores. For
these two training strategies, smaller models perform better. For multi-task learning, the
performance increases along with the model size. This task’s scores are very high, which
means that this is an easy task with very similar validation and test sets, and bigger models
may easy to be overfitted.

72

6. Evaluation Results and Discussion

DeepAPI BLEU BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans
Single-Task Learning

Small 68.71 70.92 77.40 68.72 77.37
Base 70.45 72.32 79.11 70.55 79.09

CodeTrans
Transfer Learning

Small 68.90 70.85 77.80 68.91 77.76
Base 72.11 73.65 80.64 72.43 80.65
Large 73.26 74.38 81.67 73.69 81.69

CodeTrans
Multi-task Learning

Small 58.43 59.69 67.22 56.97 67.19
Base 67.97 69.82 76.72 67.66 76.70
Large 72.29 73.55 80.82 72.50 80.76

CodeTrans
Multi-task Learning Fine-tuning

Small 69.29 71.31 78.01 69.18 78.02
Base 72.89 74.16 81.32 73.20 81.33
Large 73.39 74.53 81.80 73.81 81.78

DeepAPI 54.42 - - - -

Table 6.12.: The evaluation results for the task API Sequence Recommendation. We compare
the CodeTrans performance using different training strategies with the state-of-
the-art DeepAPI.

Accuracy BLEU ROUGE-1 ROUGE-2 ROUGE-L
CodeTrans
Single-Task Learning

Small 89.43 94.62 98.93 98.21 98.60
Base 89.65 94.64 99.04 98.43 98.72

CodeTrans
Transfer Learning

Small 90.30 94.73 99.30 98.62 98.84
Base 90.24 94.72 99.13 98.59 98.82
Large 90.21 94.72 99.13 98.61 98.50

CodeTrans
Multi-task Learning

Small 82.88 94.03 98.58 97.57 98.25
Base 86.99 94.52 98.97 98.25 98.68
Large 90.27 94.71 99.12 98.62 98.83

CodeTrans
Multi-task Learning Fine-tuning

Small 90.31 94.72 99.12 98.60 98.82
Base 90.30 94.72 99.12 98.61 98.83
Large 90.17 94.70 99.12 98.56 98.81

Seq2Tree 85.80 - - - -

Table 6.13.: The evaluation results for the task Program Synthesis. We compare the CodeTrans
performance using different training strategies with the state-of-the-art Seq2Tree.

73

6. Evaluation Results and Discussion

6.2. Discussion

Our CodeTrans models with the encoder-decoder transformer architecture outperform the
baseline models in all the thirteen tasks. This proves the effectiveness of the transformer
encoder-decoder architecture for these tasks in the software development domain. Table 6.14
shows one example of the outputs from all CodeTrans models with the input javascript code
and the golden reference. From this table, we can see all the models give readable outputs
and these outputs are highly similar to the golden reference. The examples for other tasks are
listed in the Appendix B.

Model Size Model Output

CodeTrans
Single-Task Learning

Small Returns true if the browser is a native element .
Base Returns whether the givenEnv should be focused .

CodeTrans
Transfer Learning

Small Checks if the current browser is on a standard browser environment .
Base Check if browser environment is a standard browser environment
Large Check if the environment is standard browser .

CodeTrans
Multi-task Learning

Small Returns true if the browser environment is a standard browser environment .
Base Checks if the current browser environment is a standard browser environment .
Large Determines if the current environment is a standard browser environment

CodeTrans
Multi-task Learning Fine-tuning

Small Standard browser environment has a notion of what React Native does not support it .
Base Check if the browserEnv is standard .
Large Checks if the browser is in a standard environment .

Code Snippet as Input
function isStandardBrowserEnv () { if (typeof navigator !== ’undefined’ && (navigator . product
=== ’ReactNative’ || navigator . product === ’NativeScript’ || navigator . product === ’NS’))
{ return false ; } return (typeof window !== ’undefined’ && typeof document !== ’undefined’) ; }

Golden Reference Determine if we re running in a standard browser environment

Table 6.14.: The models’ output for an example of the task Code Documentation Generation -
Javascript.

Nevertheless, the models’ performance varies a bit when using different training strategies
for different sizes of models on different datasets.

We have noticed that the model size plays an essential role in the model’s performance. For
single-task learning, the larger the dataset is, the fewer training steps a bigger model requires.
A bigger model reaches a lower loss under the same batch size and the same evaluation steps
when applying the multi-task learning or transfer learning strategy. Although the pre-training
may cost more time for bigger models, they need fewer iteration steps during fine-tuning for
each task than the small models. As a result, for most of the tasks, the bigger the model is,
the better evaluation scores the model could achieve with even less fine-tuning time.

The evaluation results also prove that transfer learning and multi-task learning with fine-
tuning strategies outperform the models that only used single task learning on all the tasks.
The performance of models using transfer learning is very similar to those using multi-task
learning fine-tuning. It is hard to say which one is better. However, transfer learning does
not require the task dataset to be involved in the pre-training steps. For a new task, the
dataset only needs to be trained for relatively few fine-tuning steps, while multi-task learning
with fine-tuning needs the new task dataset during pre-training. We can say that transfer

74

6. Evaluation Results and Discussion

learning would save many training steps and times for a new task when only fine-tuning on
a pre-trained model checkpoint.

(a) The Code Comment Generation task’s training
dataset has 470,486 samples.

(b) The Source Code Summarization - SQL task’s
training dataset has 22,492 samples.

Figure 6.1.: The evaluation of multi-task learning checkpoints on the validation set for two
tasks. The x-axis lists the training steps. The y-axis is the T5 built-in BLEU score.
Different colors indicate different sizes of models.

The performance of multi-task learning depends highly on the data size and attributes
of the task itself. Figure 6.1 illustrates the small, base, and large models’ performance on
the validation sets for two different kinds of datasets during the multi-task learning. For
large datasets like the dataset for the task Code Comment Generation and API Sequence
Recommendation, multi-task learning models are even worse than the models that only
applied single-task learning. Figure 6.1a shows that the model’s performance improves a
lot when we increase the model size for the Code Comment Generation task with a large
dataset. Half a million multi-task training steps are not enough for this task, even using the
large model. When the dataset is tiny and easy to be overfitted, multi-task learning could
achieve the best result, and a bigger model does not lead to a certain better performance. In
Figure 6.1b, we can see that the base model performs overall better than the small model for
the source code summarization - SQL task, but the large model has several overlaps with the
base model. The large model has a sign of overfitting after 120,000 training steps, and the
model performance decreases since then.

Table 6.15 lists the outputs of each CodeTrans models comparing with the golden reference
extracted from the StackOverflow. The input for the models is "select time (col0) from tab0".
We can observe that all the models’ outputs are readable sentences. The majority of them have
a question format. Because the dataset contains questions and answers from StackOverflow,
the models have learned how to ask a question. Outputs from the models with only single-
task learning did not make much sense. The other outputs all notice this code is about time.
All the multi-task learning models also specify the mysql database system. The CodeTrans
multi-task learning large model mentions the keyword datetime, which also appears in the
golden reference. Besides, the transfer learning and multi-task learning fine-tuning base
models have reasonable outputs as well. The CodeTrans transfer learning and multi-task

75

6. Evaluation Results and Discussion

Model Size Model Output

CodeTrans
Single-Task Learning

Small mysql : how to get the difference of a column in a table ?
Base how do i get the average of a date range in sql server 2005 ?

CodeTrans
Transfer Learning

Small how to get the time in milliseconds since the start time of the transaction was taken ?
Base how to get current date time in sql server ?
Large mysql time () function

CodeTrans
Multi-task Learning

Small how to get the time in mysql ?
Base how can i get the time of a date in mysql ?
Large how to convert datetime to time in mysql ?

CodeTrans
Multi-task Learning Fine-tuning

Small how to get the correct time from mysql database ?
Base how to convert date to time in mysql ?
Large select time from mysql table

Code Snippet as Input select time (col0) from tab0

Golden Reference datetime implementation in php mysql

Table 6.15.: The models’ output for an example of the task Source Code Summarization. We
compare different CodeTrans model outputs and the golden reference for the
input SQL code "select time (col0) from tab0". The golden reference is the one
extracted from the StackOverflow.

learning fine-tuning models focus more on the code function and structure to summarize this
code snippet. In total, our judge for the models’ performances matches the ranking of our
evaluation metrics.

Moreover, most of the Code Documentation Generation tasks achieve the best evaluation
performance when using the multi-task learning strategy. It could be that we have two more
unsupervised tasks from the same CodeSearchNet corpus during the multi-task learning.
These give more similar samples for the supervised Code Documentation Generation tasks,
so the model would focus on training these tasks more. Moreover, using different types of
tasks during multi-task learning also avoids overfitting efficiently.

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

BLEU 11.94 11.96 11.50 11.13 11.78 11.66 12.36 11.83 12.07 11.79
ROUGE-1 39.59 38.73 37.79 37.55 37.2 36.66 37.21 37.01 36.93 36.77
ROUGE-2 19.79 18.73 17.6 17.39 17.09 16.69 17.02 16.79 16.83 16.57
ROUGE-L 37.39 36.26 35.2 35.06 34.66 34.11 34.55 34.43 34.26 34.03

Table 6.16.: The evaluation of the task Code Documentation Generation - Java on the validation
set when fine-tuning the multi-task base model. The first row listed the fine-
tuning steps. The rest of the rows are the scores on each step regarding different
evaluation metrics.

It is worth mentioning that we chose the best checkpoint based on different metrics from
the models’ performance on validation sets. BLEU score and ROUGE scores may point
to different best checkpoints. Table 6.16 shows the model performance on the validation
set regarding different evaluation metrics when we fine-tuned the Code Documentation

76

6. Evaluation Results and Discussion

Generation - Java task. The ROUGE scores indicate that the model has the best performance
on 2,000 fine-tuning steps, while the BLEU metric achieves the highest score on 14,000 steps.
We tested the model using both 2,000 and 14,000 fine-tuning checkpoints. It turns out that
checkpoint 2,000 also gives higher BLEU and ROUGE scores on the test set. So it is helpful to
decide the best model considering different metrics.

6.3. Models Publication

Figure 6.2.: The multi-task learning fine-tuning base model page for the task Code Documen-
tation Generation - Java from the Hugging Face Model Hub.

We trained the transformer architecture models for tasks in the software development domain
in this thesis. These tasks are useful during the software development life cycle, and the
performance of the models is very satisfying. We converted the best checkpoints and published
all our models on the Hugging Face Model Hub1, which is a platform containing the largest
collection of models, datasets, and metrics about advance AI and NLP. The models are listed
under the organization Software Engineering for Business Information Systems (sebis)2. Users
across the world can use these models freely on their demand.

Figure 6.2 presents the website page of the multi-task learning fine-tuning base model for the
task Code Documentation Generation - Java from the Hugging Face Model Hub. On the left
side of the page is the model card. It describes the background information and the usage of

1https://huggingface.co/
2https://huggingface.co/SEBIS

77

https://huggingface.co/
https://huggingface.co/SEBIS

6. Evaluation Results and Discussion

this model. The right side of the page is the user input-output interface. By giving the code
to summarize the documentation in the text box on the right side and clicking the button
"Compute," the documentation generated by our model would show under the button in
few seconds. These models can also be downloaded and compute batches of codes using the
Python package transformers3 following the description in the model card.

Besides, our transfer learning pre-trained checkpoints are suitable for fine-tuning new tasks
in the software development domain, especially those involving Python, Java, Php, Javascript,
Ruby, and Go, SQL, CSharp, and Lisp programming languages. Our pre-trained multi-task
learning checkpoints are more fit for Code Documentation Generation tasks since more
relevant tasks are involved during pre-training. Fine-tuning based on these checkpoints may
save users a lot of time and improves task performance. We published these pre-trained
checkpoints in our GitHub Repository4 together with all our training datasets and the training
scripts. We also built the Colab Notebooks about preprocessing the datasets and running the
models for each task to guide the users using these models.

3https://huggingface.co/transformers/
4https://github.com/agemagician/CodeTrans

78

https://huggingface.co/transformers/
https://github.com/agemagician/CodeTrans

7. Conclusions and Future Work

In this chapter, we come to the conclusions for this master thesis, and point out the directions
for the future work.

7.1. Conclusions

This thesis explores the CodeTrans models with Transformer Encoder-Decoder architecture on
six main tasks and, in total, thirteen subtasks in the software development domain covering
nine programming languages. We carried out experiments with different training strategies,
including single-task learning, transfer learning, multi-task learning, and multi-task learning
fine-tuning. We utilized different sizes of the models based on the Google Tensorflow Text-
To-Text Transfer Transformer framework by applying the Nvidia GPU and Google Cloud
TPUs.

Our CodeTrans models outperform all the baseline models and achieve the state-of-the-art
over all the tasks. Our experiments on various tasks have provided us many insights about
training a neural network model on software development relevant tasks. We find that,
first of all, larger models may bring a better model performance. Secondly, models with
transfer learning perform as well as models with multi-task learning fine-tuning, and the
pre-training models can be fine-tuned on the new downstream tasks efficiently while saving
a lot of training time. Moreover, multi-task learning is very beneficial for the small dataset on
which the model will overfit easily. Finally, we also examine the effect of different metrics
for the natural language generation tasks, and considering several metrics would be helpful
for finding the best model checkpoint. It is also promising that these experiences can be
generalized for training natural language processing tasks on different domains.

In addition to these findings, we have published our models on the internet with a friendly
user interface and sufficient documentation so that everyone can access our models and use
them for their purposes. We also provide the online downloading links to the pre-trained
checkpoints generated from our CodeTrans transfer learning pre-training. These checkpoints
are suitable for fine-tuning other tasks in the software development domain if the task’s
programming language is covered in this thesis.

In conclusion, during this thesis work, we gain valuable experiences in training neural
network models for natural language processing, give contributions to solve the software
development domain tasks, and achieve our research goals.

79

7. Conclusions and Future Work

7.2. Future Work

We involved small, base, and large models in this thesis. However, we only trained the large
model for around 250,000 steps due to lack of time, because every 20,000 steps cost almost
one week for a large model. It worths continuing to train the large model and obverse the
model converge and the model performance in the further iteration steps.

When working on the Code Documentation Generation tasks, we have noticed that a program-
ming language function has two aspects influencing the model performance: the function
names/parameter names and the code structure. A well-named function would lower the
difficulty for the model to generate the documentation. Further researches about functions
with disguised parameter names or function names would be valuable. We considered a
function as a sentence during our thesis work. From this aspect, we did not fully make use of
the code structure. So how to present the code is also a good research point. Experiments
about finding the best way to present the features of code structure can be carried out.

We preprocessed the datasets by parsing and tokenizing the programming codes using
different Python libraries for each programming language. So when using our models,
applying the same preprocessing way would draw the best results. Nevertheless, not every
user is a programming expert, and the preprocessing increases the complexity for users to get
the best model performance. It would be meaningful to examine the effect of preprocessing
for the software development tasks and train models with good performance but without
preprocessing like parsing and tokenizing.

For measuring the performance of models, we only applied the objective human likeness
measures of BLEU and ROUGE scores in this thesis. For examining the generated natural
languages, subjective human judgments could also be applied. Human annotators could be
invited to evaluate the model output and to examine the model performance considering
aspects like grammaticality, correctness, or human-likeness.

Moreover, more tasks can be explored using transformer encoder-decoder architecture. It
would be interesting to examine our models’ performance on the unseen programming
languages. Evaluation could be run directly on similar tasks with an unseen programming
language using the multi-task learning CodeTrans models. The pre-trained models can
also be fine-tuned on tasks with unseen programming languages and examine the model
outputs.

Finally, the performance of our CodeTrans models can be the baseline for tasks introduced
in this thesis. They can be used to comparing the effectiveness of new natural language
processing model architectures in the future.

80

A. Appendix - Hyperparameter Turning and
Evaluation on Validation Set

A.1. Single-task Learning

A.1.1. Code Documentation Generation

Python, small model, batch size: 256

Steps 20000 40000 60000 80000 100000
BLEU 5.646 5.852 6.261 6.256 6.242
ROUGE1 30.14 29.45 29.41 29.12 28.82
ROUGE2 10.08 9.62 9.61 9.57 9.37
ROUGELsum 28.02 27.38 27.22 27.07 26.72

Python, small model, batch size: 512

Steps 10000 20000 30000 40000 50000 60000 70000
BLEU 4.645 5.899 6.009 6.329 6.379 6.15 6.289
ROUGE1 28.67 29.03 29.13 28.8 28.86 28.59 28.79
ROUGE2 9.45 9.59 9.37 9.52 9.56 9.31 9.55
ROUGELsum 27.02 27.01 26.99 26.71 26.77 26.54 26.76

Python, small model, batch size: 1024

Steps 10000 20000 30000
BLEU 5.372 5.831 5.842
ROUGE1 28.44 28.46 28.3
ROUGE2 9.15 9.28 9.2
ROUGELsum 26.46 26.49 26.33

Python, base model, batch size: 384

Steps 7500 15000 22500 30000 37500 45000 50000 55000 60000 65000 70000 75000 80000 85000 90000 95000 100000
BLEU 3.361 5.213 5.594 5.929 5.856 5.949 6.0009 6.025 6.056 6.24 6.303 6.218 6.334 6.153 6.495 6.491 6.435
ROUGE1 27.16 27.8 27.45 28.13 27.73 27.77 28.87 28.43 27.83 27.93 28.03 27.95 28.69 27.97 28.52 28.25 28.18
ROUGE2 7.87 8.38 8.39 8.81 8.64 8.72 8.89 8.98 8.8 9.03 8.95 8.94 9.18 8.89 9.24 9.11 9.16
ROUGELsum 25.41 25.67 25.5 26.1 25.6 25.64 25.85 26.29 25.76 25.82 25.89 25.9 26.55 25.88 26.33 26.12 26.13

Python, base model, batch size: 512

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000
BLEU 3.405 4.366 5.202 5.334 5.561 5.641 5.879 5.76 5.935 6.246 5.97 6.019
ROUGE1 25.71 26.03 26.89 27.59 27.39 27.51 27.49 27.59 27.64 27.93 27.83 27.89
ROUGE2 6.99 7.45 7.96 8.34 8.3 8.58 8.61 8.59 8.63 8.88 8.74 8.8
ROUGELsum 23.95 24.24 24.91 25.55 25.27 25.55 25.47 25.52 25.54 25.83 25.79 25.77

81

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

Python, base model, batch size: 1024

Steps 5000 8000 11000 14000 19000 24000
BLEU 4.493 4.75 4.833 5.379 5.112 5.541
ROUGE1 26.43 26.01 25.98 25.92 26.254 26.87
ROUGE2 7.34 7.66 7.48 7.57 7.671 7.95
ROUGELsum 24.39 24.26 24.22 24.06 24.292 24.76

Java, small model, batch size: 256

Steps 20000 40000 60000 80000 100000
BLEU 6.846 8.071 8.667 8.465 8.476
ROUGE1 31.57 31.78 32.01 31.76 31.72
ROUGE2 12.05 12.31 12.58 12.52 12.54
ROUGELsum 29.4 29.46 29.69 29.46 29.5

Java, small model, batch size: 512

Steps 10000 20000 30000 40000 50000
BLEU 6.049 7.45 7.909 8.484 7.984
ROUGE1 29.49 29.04 30.65 30.44 30.19
ROUGE2 10.3 10.71 11.52 11.39 11.3
ROUGELsum 27.39 27.1 28.6 28.1 28

Java, small model, batch size: 1024

Steps 10000 20000 30000
BLEU 6.842 8.792 8.161
ROUGE1 29.93 31.08 30.48
ROUGE2 11.21 11.76 11.74
ROUGELsum 28.14 28.69 28.46

Java, base model, batch size: 128

Steps 8000 16000 32000 48000 56000 64000 72000 80000 88000 96000 104000
BLEU 3.49 5.052 6.522 6.798 7.003 7.912 7.808 7.482 7.547 7.117 7.852
ROUGE1 26.64 27.56 28.69 29.73 29.33 29.7 29.98 29.91 29.64 29.33 30.32
ROUGE2 8.19 8.58 10.04 10.6 10.34 10.52 11.03 10.93 10.65 10.46 11.16
ROUGELsum 24.98 25.49 26.6 27.61 27.25 27.52 27.79 27.85 27.55 27.21 28.11

Java, base model, batch size: 256

Steps 24000 32000 40000 48000 56000 64000 72000 80000
BLEU 8.051 8.259 8.959 8.744 8.676 8.647 8.675 8.793
ROUGE1 30.92 30.2 31.14 30.72 31 30.98 30.8 30.87
ROUGE2 11.9 11.37 11.93 11.73 11.83 12.13 11.88 12.02
ROUGELsum 28.83 28.03 28.85 28.49 28.74 28.75 28.68 28.68

Java, base model, batch size: 512

Steps 5000 10000 15000 20000 25000 30000 35000 40000
BLEU 5.949 7.116 8.126 8.555 8.349 8.874 8.74 8.822
ROUGE1 28.33 28.1 29.78 30.18 30.43 30.27 30.36 30.71
ROUGE2 9.78 9.83 10.95 11.18 11.36 11.25 11.24 11.52
ROUGELsum 26.43 26.22 27.82 28.01 28.2 27.99 28.13 28.44

Java, base model, batch size: 1024

Steps 3000 6000 9000 11000 13000 15000 17000 19000 23000 27000
BLEU 4.706 7.282 7.248 7.868 8.047 6.819 8.443 7.759 8.213 8.414
ROUGE1 27.99 29.09 27.64 28.77 29.17 28.1 29.31 29.34 29.55 29.09
ROUGE2 9.24 10.49 9.38 9.92 10.37 9.89 10.41 10.32 10.66 10.31
ROUGELsum 26.21 27.19 25.73 26.65 27 26.21 27.09 27.22 27.36 26.9

82

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

Go, small model, batch size: 256

Steps 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
BLEU 5.413 7.792 9.598 9.254 10.757 9.363 6.345 10.051 9.63 10.457
ROUGE1 33.11 38.48 40.3 40.46 41.74 41.75 36.86 41.58 41.12 41.67
ROUGE2 14.65 17.89 19.22 19.3 20.39 20.2 16.38 20.11 19.63 20.36
ROUGELsum 32.04 36.94 38.7 39.02 40.02 40.14 35.41 39.96 39.4 40.18

Go, base model, batch size: 128

Steps 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
BLEU 10.985 10.387 11.596 12.155 12.512 12.764 12.676 12.845 12.805 12.751
ROUGE1 41.59 41.58 41.64 41.82 42.11 42.65 42.5 42.67 42.19 42.38
ROUGE2 20.15 20.09 20.44 20.55 20.64 21.14 20.97 21.18 20.9 20.95
ROUGELsum 39.92 39.82 39.85 40 40.23 40.7 40.64 40.7 40.35 40.48

Go, base model, batch size: 256

Steps 5000 10000 15000 20000 15000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000
BLEU 10.779 11.681 11.534 12.812 12.628 12.826 12.843 12.659 13.238 12.812 12.946 12.912 13.556 12.996 13.46 13.267
ROUGE1 41.05 41.21 41.62 42.19 42.23 42.48 42.22 42.2 42.59 42.2 42.53 42.33 42.66 42.2 42.59 42.81
ROUGE2 20.17 20.13 20.39 20.79 20.81 21.14 20.89 20.98 21.33 20.83 21.13 20.98 21.34 20.88 21.17 21.35
ROUGELsum 39.59 39.46 39.92 40.3 40.28 40.56 40.3 40.26 40.78 40.26 40.55 40.4 40.67 40.29 40.72 40.84

Go, base model, batch size: 384

Steps 6000 12000 18000 24000 30000 36000 42000 48000 50000 56000 62000 68000 74000 80000 86000 92000 98000 100000
BLEU 8.822 11.621 11.328 11.706 11.47 12.03 11.833 12.063 12.474 12.018 12.315 12.009 12.171 12.526 12.215 12.05 12.048 12.315
ROUGE1 40.51 42.05 41.5 41.81 41.76 42.19 41.93 42.09 41.85 41.92 42.13 42.18 41.96 42.15 41.91 41.75 41.9 42.07
ROUGE2 19.55 20.37 20.09 20.41 20.25 20.61 20.38 20.72 20.54 20.53 20.82 20.56 20.63 20.79 20.57 20.33 20.44 20.6
ROUGELsum 38.95 40.25 39.64 40 39.83 40.31 40.06 40.19 39.9 39.97 40.29 40.18 40.18 40.21 40.04 39.81 39.95 40.25

Go, base model, batch size: 512

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 53000 56000
BLEU 10.813 13.151 13.138 12.951 13.448 13.305 13.334 13.577 13.316 13.603 13.579 12.7
ROUGE1 41.1 41.82 42.03 42.24 42.59 42.1 42.38 42.38 42.37 42.49 42.56 42.31
ROUGE2 20.24 20.72 20.89 21.01 21.31 21.1 21.08 21.2 21.09 21.36 21.31 21.02
ROUGELsum 39.57 39.99 40.28 40.51 40.69 40.41 40.47 40.6 40.43 40.67 40.66 40.52

Php, small model, batch size: 256

Steps 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000 240000
BLEU 9.979 12.826 13.479 13.752 14.047 13.546 14.213 14.624 14.022 14.832 14.586 14.139
ROUGE1 36.73 37.4 37.08 37.01 37.07 37.34 37.93 37.8 37.83 37.69 37.78 37.49
ROUGE2 14.97 15.61 15.73 15.88 16.11 16.06 16.42 16.43 16.55 16.36 16.49 16.29
ROUGELsum 35.04 35.56 35.28 35.21 35.25 35.61 36.01 35.89 36.06 35.73 35.95 35.74

Php, small model, batch size: 512

Steps 10000 20000 30000 40000 50000 60000 70000 80000
BLEU 9.532 12.729 13.153 13.33 14.032 13.591 14.441 13.913
ROUGE1 35.63 36.95 36.41 36.48 37.09 37.01 36.99 37.07
ROUGE2 13.89 15.08 15.3 15.48 15.99 15.9 15.86 15.93
ROUGELsum 33.94 35.18 34.64 34.74 35.29 35.34 35.17 35.36

Php, small model, batch size: 1024

Steps 10000 20000 30000
BLEU 11.748 12.324 13.38
ROUGE1 35.85 35.61 36.2
ROUGE2 14.05 14.56 15.08
ROUGELsum 34 33.94 34.49

Php, base model, batch size: 256

Steps 8000 32000 40000 48000 56000 64000 72000
BLEU 5.783 12.895 14.169 13.517 13.765 13.918 14.152
ROUGE1 33.97 35.59 36.76 36.02 36.02 36.42 37.14
ROUGE2 11.78 14.63 15.56 15.09 15.13 15.43 15.89
ROUGELsum 32.52 33.92 34.98 34.18 34.26 34.66 35.39

83

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

Php, base model, batch size: 512

Steps 5000 10000 15000 20000 25000 30000 35000 40000
BLEU 10.369 12.198 13.528 14.041 14.075 13.949 14.786 14.598
ROUGE1 34.15 34.94 35.43 35.3 35.79 35.81 35.97 36.05
ROUGE2 12.97 13.95 14.36 14.72 14.93 15.02 15.32 15.16
ROUGELsum 32.13 33.16 33.55 33.43 33.99 34.1 34.22 34.19

Php, base model, batch size: 1024

Steps 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000
BLEU 9.035 13.999 14.177 14.055 14.484 14.855 14.986 15 14.89 14.626
ROUGE1 34.76 36.53 36.5 36.18 36.4 36.61 36.59 36.69 36.7 36.84
ROUGE2 13.19 15.42 15.38 15.69 15.65 15.82 15.94 16.04 15.9 16.06
ROUGELsum 33.05 34.7 34.72 34.43 34.63 34.86 34.82 34.96 34.99 35.05

Ruby, small model, batch size: 128

Steps 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
BLEU 0.857 1.508 1.828 2.098 2.065 1.982 2.226 1.976 2.067 2.384
ROUGE1 16.22 15.89 16.71 16.9 16.35 16.09 16.98 16.49 15.98 16.93
ROUGE2 2.7 2.59 3.02 3.5 3.13 2.97 3.15 2.96 2.85 3.56
ROUGELsum 14.93 14.58 15.51 15.81 15.08 14.87 15.67 15.24 14.79 15.81

Ruby, small model, batch size: 256

Steps 1000 2000 3000 4000 5000
BLEU 0.958 1.756 1.879 2.216 2.085
ROUGE1 13.11 13.83 14.47 14.41 14.36
ROUGE2 1.81 2.25 2.36 2.65 2.42
ROUGELsum 12.37 12.91 13.27 13.21 13.23

Ruby, base model, batch size: 32

Steps 1000 2000 3000 4000 5000
BLEU 0.315 0.739 0.776 0.746 0.932
ROUGE1 10.64 14.06 12.85 13.24 11.55
ROUGE2 0.8 1.66 1.96 1.92 1.38
ROUGELsum 10.05 12.84 11.9 12.22 10.64

Ruby, base model, batch size: 128

Steps 2000 4000 6000 8000 10000
BLEU 1.1 1.726 1.87 1.897 1.853
ROUGE1 13.62 13.1 12.97 13.57 12.91
ROUGE2 2.24 2.23 2.13 2.41 2.06
ROUGELsum 12.56 12.21 11.82 12.41 11.87

Javascript, small model, batch size: 128

Steps 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000
BLEU 2.756 5.274 5.416 6.946 6.645 7.079 6.778 6.757 7.256 7.043
ROUGE1 18.68 19.82 19.3 20.94 20.69 20.99 20.44 20.91 20.91 20.48
ROUGE2 4.5 6.15 6.15 7.33 6.97 7.31 7.13 7.09 7.38 7.08
ROUGELsum 17.43 18.74 18.17 19.62 19.37 19.71 19.25 19.63 19.62 19.29

Javascript, small model, batch size: 256

Steps 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000 20000
BLEU 1.18 1.633 2.26 4.036 5.358 5.255 5.849 6.249 6.589 6.686 6.731 7.345 7.49 7.468 7.29
ROUGE1 18.06 16.88 17.87 19.52 19.82 19.65 18.81 19.39 20.55 20.82 20.39 20.71 21.04 20.54 20.84
ROUGE2 3.79 3.55 4.15 5.76 6.53 6.29 6.29 6.45 7 7.01 6.86 7.37 7.34 7.29 7.44
ROUGELsum 17.04 15.8 16.92 18.42 18.81 18.49 17.74 18.19 19.33 19.53 19.27 19.43 19.88 19.29 19.61

84

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

Javascript, small model, batch size: 512

Steps 1000 2000 3000 4000 5000
BLEU 1.849 2.736 4.623 5.982 6.021
ROUGE1 18.64 18.32 18.25 19.65 19.75
ROUGE2 3.8 4.42 5.33 6.56 6.36
ROUGELsum 17.48 17.27 17.12 18.58 18.53

Javascript, base model, batch size: 32

Steps 1000 2000 5000 6000 7000 8000 9000 10000
BLEU 0.643 0.568 0.92 1.536 1.258 0.941 1.616 1.528
ROUGE1 12.59 11.59 14.55 15.54 14.33 13.74 15.07 14.77
ROUGE2 1.52 1.79 2.45 3.01 2.6 2.39 2.85 2.51
ROUGELsum 11.72 11.16 13.74 14.61 13.54 12.95 14.09 13.78

Javascript, base model, batch size: 128

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 24000 28000 32000 36000 40000
BLEU 1.083 2.67 4.149 5.339 5.685 5.619 5.784 6.051 5.905 5.481 6.52 6.155 6.241 6.714 6.206
ROUGE1 15.84 14.87 16.15 17.38 17.14 17.59 17.34 17.85 17.86 17.39 18.34 18.08 18.15 18.49 17.79
ROUGE2 2.95 3.47 4.59 5.33 5.67 5.76 5.46 5.9 5.78 5.3 6.19 5.98 5.94 6.44 5.77
ROUGELsum 15.03 14.04 15.2 16.39 16.2 16.62 16.25 16.82 16.94 16.28 17.16 17.02 16.95 17.47 16.8

Javascript, base model, batch size: 256

Steps 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 6.312 6.326 6.618 6.555 6.65 7.053 7.169 7.499 7.143
ROUGE1 18.31 17.97 18.17 17.99 18.74 18.84 18.53 18.91 18.95
ROUGE2 5.92 6.34 6.44 6.25 6.61 6.65 6.65 6.84 6.62
ROUGELsum 17.14 16.94 17.14 16.97 17.76 17.78 17.51 17.79 17.78

85

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

A.1.2. Source Code Summarization

Python, small model, batch size: 233

Steps 3000 4000 5000 6000 7000 8000 9000 10000 11000
BLEU 0.689 0.628 1.046 0.894 0.823 0.785 0.732 0.936 0.884
ROUGE1 15.02 13.65 15.23 15.04 15.36 14.48 14.67 15.31 15.04
ROUGE2 2.49 1.86 2.55 2.43 2.35 2.14 2.25 2.49 2.32
ROUGELsum 13.39 12.17 13.63 13.39 13.53 12.94 13.02 13.51 13.42

Python, small model, batch size: 384

Steps 3000 9000 15000 20000 23000 29000 32000 38000 44000 53000 59000 65000 68000 70000
BLEU 0.689 0.755 0.717 0.744 0.814 0.95 0.813 0.846 0.686 0.869 0.8 0.72 0.698 0.758
ROUGE1 15.02 14.5 14.76 15.03 14.7 15.12 14.91 14.98 14.71 14.64 14.4 14.64 15.35 14.5
ROUGE2 2.49 2.14 2.34 2.32 2.31 2.37 2.37 2.43 2.34 2.32 2.23 2.28 2.48 2.14
ROUGELsum 13.39 12.8 13.13 13.28 13.07 13.36 13.01 13.36 12.94 12.97 12.77 12.97 13.56 12.85

Python, base model, batch size: 32

Steps 1000 2000 3000 4000 5000
BLEU 1.615 0.59 0.737 0.631 0.672
ROUGE1 16.58 13.64 13.51 14.01 13.47
ROUGE2 3.8 1.95 1.8 2 1.97
ROUGELsum 15.08 12.17 12.02 12.51 11.97

Python, base model, batch size: 384

Steps 4000 8000 12000 16000 20000 24000 28000 32000 36000 40000 44000 48000 50000
BLEU 0.67 0.673 0.691 0.633 0.687 0.74 0.724 0.729 0.697 0.714 0.658 0.685 0.669
ROUGE1 14.19 13.71 13.46 13.94 13.65 13.68 14.03 13.82 13.81 14.05 14.07 14.01 14.16
ROUGE2 2.16 1.95 1.82 1.98 1.86 1.94 1.94 1.97 1.97 2.03 2.05 2.06 2.08
ROUGELsum 12.44 12.13 11.81 12.24 12.1 12.17 12.33 12.13 12.15 12.43 12.47 12.31 12.43

SQL, small model, batch size: 64

Steps 500 1000 1500 2000 2500 3000
BLEU 1.54 1.685 1.506 1.028 1.071 0.874
ROUGE1 18.1 15.89 16.6 13.97 14.96 14.21
ROUGE2 3.57 3.15 3.24 2.19 2.32 2.22
ROUGELsum 16.36 14.55 15.16 12.73 13.54 12.81

SQL, small model, batch size: 128

Steps 500 1000 1500 2000 2500 3000
BLEU 1.706 1.172 1.114 0.859 0.724 0.671
ROUGE1 17.71 15.9 14.92 14.11 13.29 12.94
ROUGE2 3.99 2.77 2.59 2.06 1.73 1.69
ROUGELsum 16.09 14.45 13.72 12.67 12.02 11.65

SQL, small model, batch size: 384

Steps 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000 33000 36000 39000 42000 45000 48000 50000
BLEU 0.636 0.647 0.787 0.792 0.69 0.738 0.741 0.7 0.664 0.607 0.679 0.658 0.791 0.589 0.647 0.735 0.645
ROUGE1 13.3 13.14 13.22 13.44 13.23 13.29 13.21 13.27 13.22 13.13 13.1 13.29 13.41 13.2 12.89 12.99 13.26
ROUGE2 1.71 1.7 1.75 1.78 1.67 1.7 1.74 1.71 1.64 1.62 1.7 1.6 1.78 1.71 1.63 1.68 1.7
ROUGELsum 11.97 11.72 11.87 12.04 11.87 11.96 11.9 11.89 11.79 11.79 11.75 11.86 12.01 11.86 11.58 11.7 11.86

86

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

SQL, base model, batch size: 32

Steps 500 1000 1500 2000 2500 3000
BLEU 1.281 1.138 1.209 1.164 0.828 0.696
ROUGE1 16.27 16.12 15 14.44 14.05 12.31
ROUGE2 2.86 2.8 2.59 2.36 2.21 1.42
ROUGELsum 14.51 14.76 13.7 13.14 12.77 11.25

SQL, base model, batch size: 4000

Steps 1100 2200 3300 4400 5000 3000
BLEU 0.715 0.752 0.653 0.586 0.568 0.696
ROUGE1 11.96 12.36 12.44 12.3 12.21 12.31
ROUGE2 1.5 1.58 1.54 1.56 1.56 1.42
ROUGELsum 10.78 11.18 11.16 11.02 10.97 11.25

CSharp, small model, batch size: 32

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 2.423 2.439 2.094 1.955 1.719 1.687 1.619 1.75 1.491 1.508
ROUGE1 20.01 18.07 17.46 16.52 15.54 15.91 16.19 15.61 15.58 15.28
ROUGE2 4.53 4.16 3.54 3.31 2.83 2.92 3.08 2.82 2.76 2.69
ROUGELsum 18.4 16.7 15.98 15.24 14.17 14.53 14.71 14.18 14.17 13.89

CSharp, small model, batch size: 64

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 2.401 2.12 1.787 1.683 1.648 1.541 1.48 1.649 1.504 1.558
ROUGE1 18.9 17.69 16.14 16.64 15.99 15.48 15.59 15.75 15.52 15.56
ROUGE2 4.44 3.73 3.05 3.22 2.92 2.91 2.77 2.92 2.77 2.87
ROUGELsum 17.39 16.24 14.73 15.17 14.55 14.13 14.19 14.29 14.04 14.15

CSharp, small model, batch size: 128

Steps 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
BLEU 2.099 2.799 1.975 2.043 1.697 1.631 1.843 1.804 1.638 1.457
ROUGE1 18.17 20.02 16.59 17.22 16.03 16.16 16.37 16.01 15.34 14.87
ROUGE2 3.77 4.61 3.27 3.52 2.96 2.98 3.22 3 2.74 2.47
ROUGELsum 16.86 18.29 15.06 15.72 14.61 14.71 14.95 14.64 13.98 13.54

CSharp, small model, batch size: 384

Steps 2000 4000 6000 8000 10000
BLEU 1.441 1.652 1.67 1.409 1.505
ROUGE1 15.54 15.81 15.97 15.17 15.66
ROUGE2 2.93 2.9 2.98 2.58 2.77
ROUGELsum 14.27 14.37 14.49 13.83 14.2

CSharp, base model, batch size: 32

Steps 500 1000 1500 2000 2500 3000
BLEU 2.686 1.998 1.857 2.117 2.361 2.105
ROUGE1 20.55 17.75 17.67 17.42 19.38 17.61
ROUGE2 4.69 3.8 3.49 3.28 4.22 3.9
ROUGELsum 18.69 16.76 16.62 16.15 17.6 16.22

87

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

A.1.3. Code Comment Generation

Java, small model, batch size: 128

Steps 1000 5000 15000 40000
BLEU 2.825 14.111 21.437 30.7
ROUGE1 27.34 37.69 43.87 49.17
ROUGE2 12.24 22.27 29.63 36.09
ROUGELsum 26.53 36.55 42.79 48.14

Java, small model, batch size: 256

Steps 100000 200000 230000 260000 290000 320000 350000 380000 410000 440000 460000 480000 500000 520000 540000
BLEU 43.365 48.313 49.246 49.895 50.041 50.382 50.386 50.827 50.731 50.864 50.872 50.881 50.934 50.843 50.871
ROUGE1 55.27 56.94 57.19 57.13 57.52 57.44 57.56 57.48 57.68 57.48 57.62 57.64 57.58 57.64 57.59
ROUGE2 43.9 45.98 46.19 46.37 46.64 46.67 46.76 46.8 46.86 46.77 46.84 46.86 46.85 46.93 46.87
ROUGELsum 54.31 45.98 56.26 56.15 56.55 56.51 56.63 56.54 56.72 56.54 56.66 56.69 56.62 56.66 56.64

Java, small model, batch size: 512

Steps 5000 10000 20000 30000 40000 50000
BLEU 18.881 26.729 33.301 40.004 39.888 42.135
ROUGE1 43.07 46.64 50.28 52.44 53.09 54.3
ROUGE2 28.84 33.33 38.12 40.55 41.96 43.19
ROUGELsum 42.07 45.61 49.35 51.39 52.18 53.37

Java, small model, batch size: 1024

Steps 10000 20000 30000
BLEU 32.075 40.29 41.86
ROUGE1 48.85 52.71 54.32
ROUGE2 36.28 41.04 43.23
ROUGELsum 47.82 51.73 53.43

Java, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000
BLEU 21.372 30.134 38.078 42.894 47.233 48.788 49.601 50.379 50.566 50.976 51.108 51.362 51.534 51.516 51.382 51.561
ROUGE1 43.1 48.4 51.83 54.11 55.88 56.58 56.87 57.23 57.41 57.58 57.64 57.5 57.78 57.59 57.57 57.63
ROUGE2 29 35.59 39.89 43.01 45.03 46.01 46.51 46.8 47.02 47.16 47.18 47.16 47.38 47.23 47.26 47.28
ROUGELsum 42.1 47.41 50.85 53.18 54.91 55.72 56 56.29 56.51 56.65 56.72 56.54 56.84 56.69 56.65 56.71

Java, base model, batch size: 512

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
BLEU 20.967 29.166 45.99 49.678 50.088 50.914 51.022 50.919 51.314 51.12
ROUGE1 45.64 52.02 54.47 55.55 55.98 56.54 56.8 56.46 56.53 56.55
ROUGE2 33.14 40.44 44.01 45.17 45.89 46.26 46.42 46.41 46.55 46.49
ROUGELsum 44.78 51.11 53.65 54.61 55.06 55.64 55.9 55.58 55.62 55.65

Java, base model, batch size: 1024

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 22.398 24.244 40.488 45.714 48.146 49.783 49.136 50.803 51.14 51.408
ROUGE1 41.393 47.27 51.7 54.244 55.49 56.3 56.43 56.41 56.6 56.87
ROUGE2 26.997 35.307 40.42 43.722 45.1 45.86 46.15 46.23 46.46 46.72
ROUGELsum 40.211 46.352 50.71 53.329 54.62 55.4 55.65 55.54 55.66 55.92

88

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

A.1.4. Git Commit Message Generation

Java, small model, batch size: 128

Steps 5000 10000 15000 20000
BLEU 40.073 40.242 40.196 39.866
ROUGE1 38.96 39.13 39.22 38.76
ROUGE2 29.26 29.6 29.68 29.53
ROUGELsum 38.77 38.88 39.03 38.54

Java, small model, batch size: 256

Steps 2000 4000 6000 8000 10000
BLEU 40.018 40.222 39.934 40.002 39.819
ROUGE1 38.87 38.89 39.04 39.11 39.18
ROUGE2 29.3 29.52 29.49 29.66 29.56
ROUGELsum 38.7 38.63 38.81 38.95 38.88

Java, small model, batch size: 512

Steps 1000 2000 3000 4000 5000
BLEU 39.725 40.106 40 40.123 40.05
ROUGE1 38.79 39.31 39.16 39.48 39.14
ROUGE2 28.87 29.37 29.54 29.95 29.82
ROUGELsum 38.6 39.05 38.88 39.25 38.96

Java, base model, batch size: 32

Steps 2000 4000 6000 8000 10000
BLEU 32.854 35.213 36.872 37.247 37.635
ROUGE1 32.78 34.29 35.57 36.97 36.725
ROUGE2 22.55 24.92 26.68 27.43 27.993
ROUGELsum 32.69 34.07 35.29 36.76 36.479

Java, base model, batch size: 128

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000
BLEU 39.021 38.92 39.205 39.325 39.29 39.331 39.343 39.372 39.402 39.667 39.465
ROUGE1 38.25 38.36 38.58 38.6 38.71 39.04 39.08 38.72 38.76 38.83 38.91
ROUGE2 28.82 29.01 29.1 29.29 29.29 29.46 29.41 29.24 29.32 29.48 29.42
ROUGELsum 38.05 38.12 38.39 38.31 38.43 38.82 38.84 38.45 38.49 38.64 38.77

Java, base model, batch size: 256

Steps 2000 4000 6000 8000 10000
BLEU 38.603 39.184 36.825 39.623 39.433
ROUGE1 37.9 38.79 38.12 38.82 38.56
ROUGE2 28.69 29.35 29 29.52 29.42
ROUGELsum 37.74 38.48 37.92 38.64 38.4

Java, base model, batch size: 512

Steps 2000 4000 6000 8000 10000 12000 14000
BLEU 39.251 39.206 39.359 39.368 39.774 39.716 39.261
ROUGE1 38.76 38.87 38.56 38.81 39.11 39.05 38.75
ROUGE2 29.56 29.54 29.52 29.66 29.98 29.87 29.51
ROUGELsum 38.47 38.6 38.28 38.56 38.88 38.8 38.5

89

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

A.1.5. API Sequence Generation

Java, small model, batch size: 256

Steps 200000 400000 440000 480000 520000 560000 600000 640000 680000 720000 760000 800000 840000 880000 920000
BLEU 67.539 69.224 69.581 69.768 69.89 69.949 70.235 70.446 70.568 70.733 70.493 70.567 70.916 70.536 70.845
ROUGE1 74.82 76.02 76.3 76.5 76.49 76.69 76.78 76.94 76.98 77.16 77.01 77.23 77.4 77.24 77.38
ROUGE2 65.55 67.07 67.42 67.62 67.61 67.81 67.96 68.18 68.3 68.38 68.31 68.43 68.72 68.49 68.73
ROUGELsum 74.79 76.01 76.27 76.5 76.46 76.68 76.77 76.95 76.98 77.15 76.99 77.21 77.37 77.24 77.39

Java, small model, batch size: 512

Steps 10000 20000 30000 40000 50000 60000 70000 80000 140000 150000
BLEU 55.962 60.503 62.922 64.331 64.945 65.994 66.116 66.336 68.402 68.489
ROUGE1 64.2 68 70.08 71.38 72.26 73.02 73.4 73.66 75.19 75.38
ROUGE2 53.68 57.82 60.27 61.76 62.66 63.51 63.99 64.34 66.08 66.28
ROUGELsum 64.16 67.96 70.08 71.34 72.24 72.98 73.38 73.64 75.15 75.38

Java, small model, batch size: 1024

Steps 10000 20000 30000
BLEU 59.444 62.912 65.27
ROUGE1 66.62 70.15 72.09
ROUGE2 56.47 60.47 62.62
ROUGELsum 66.58 70.15 72.18

Java, base model, batch size: 256

Steps 20000 40000 60000 80000 85000 90000 95000 100000 105000 110000 115000 120000 125000 130000 135000 140000 145000 150000
BLEU 62.376 66.938 68.656 69.559 70.483 70.399 70.425 70.937 71.128 71.366 71.495 71.696 71.719 72.155 71.811 71.989 72.316 72.242
ROUGE1 69.59 73.81 75.584 76.76 77.24 77.31 77.57 77.75 78.15 78.16 78.32 78.41 78.5 78.88 78.82 78.73 79.11 78.96
ROUGE2 59.55 64.52 66.582 68.11 68.5 68.5 68.88 69.09 69.39 69.56 69.75 69.74 69.99 70.32 70.29 70.3 70.55 70.51
ROUGELsum 69.56 73.78 75.604 76.79 77.21 77.3 77.55 77.71 78.11 78.17 78.33 78.42 78.48 78.83 78.8 78.72 79.09 78.93

Java, base model, batch size: 512

Steps 8000 10000 12000 14000 16000 18000 20000 24000 26000 28000 30000
BLEU 59.443 60.519 62.519 63.552 64.827 64.855 66.192 67.324 67.583 67.771 68.177
ROUGE1 67.61 68.44 69.92 70.98 72.02 72.39 73.14 74.32 74.68 75 75.29
ROUGE2 57.09 58.33 60.09 61.09 62.41 62.86 63.8 64.86 65.37 65.73 66.05
ROUGELsum 67.56 68.4 69.89 70.94 71.99 72.4 73.13 74.32 74.64 75 75.26

Java, base model, batch size: 1024

Steps 6000 8000 10000
BLEU 33.84 62.4 64.631
ROUGE1 68.62 70.7 71.82
ROUGE2 58.67 60.62 62.29
ROUGELsum 68.6 70.72 71.8

90

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

A.1.6. Program Synthesis

DSL, small model, batch size: 128

Steps 4000 8000 12000 16000 20000
BLEU 93.925 94.327 94.478 94.48 94.361
ROUGE1 94.25 98.9 97.37 97.1 94.28
ROUGE2 92.87 98.42 96.68 96.33 93.06
ROUGELsum 93.97 98.7 97.18 96.9 94.09
Accuracy 78.131 80.137 84.869 87.125 80.331

DSL, small model, batch size: 256

Steps 2000 4000
BLEU 93.688 93.983
ROUGE1 94.68 94.05
ROUGE2 93.16 92.72
ROUGELsum 94.33 93.82
Accuracy 75.183 75.183

DSL, small model, batch size: 512

Steps 2000 4000 6000
BLEU 94.213 93.335 94.401
ROUGE1 99.02 93.68 95.94
ROUGE2 98.47 92.23 94.93
ROUGELsum 98.77 93.44 95.73
Accuracy 78.917 77.641 79.638

DSL, base model, batch size: 32

Steps 1000 2000
BLEU 75.733 75.54
ROUGE1 87.76 91.49
ROUGE2 72.83 78.12
ROUGELsum 81.71 85.69
Accuracy 13.929 39.967

DSL, base model, batch size: 128

Steps 4000 8000 12000 16000 20000
BLEU 93.605 94.503 94.333 94.133 94.344
ROUGE1 98.51 99.11 98.77 94.1 94.26
ROUGE2 97.68 98.62 98.27 92.85 93.03
ROUGELsum 98.18 98.89 98.55 93.92 94.08
Accuracy 86.246 91.635 88.372 80.1 80.59

DSL, base model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000
BLEU 93.293 94.353 94.187 94.446 94.438 94.236 93.543 94.525
ROUGE1 98.4 99 98.9 99.04 99.16 98.79 98.81 97.73
ROUGE2 97.04 98.45 98.28 98.43 98.73 98.22 98.37 97.11
ROUGELsum 97.79 98.76 98.67 98.77 98.93 98.56 98.63 97.55
Accuracy 85.452 90.692 77.909 91.081 80.118 79.582 79.185 85.156

91

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

A.2. Transfer Learning

Code Documentation Generation - Python, small model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
BLEU 6.724 6.923 6.607 6.284 6.751 6.962 7.023 6.853 6.568 6.754
ROUGE1 34.95 34.57 33.9 33.51 33.41 33.06 33.12 32.71 32.3 32.49
ROUGE2 13.21 12.93 12.59 12.39 12.3 12.09 12.05 11.84 11.62 11.72
ROUGELsum 32.67 32.23 31.66 31.39 31.2 30.8 30.85 30.42 30.08 30.21

Code Documentation Generation - Python, base model, batch size: 256

Steps 2000 4000 6000 8000 10000 14000 18000 20000 24000 28000 30000 35000 40000 45000 50000 55000 60000 65000 70000
BLEU 7.247 7.494 7.262 7.569 7.367 7.318 6.982 7.544 7.917 8.099 8.05 8.009 7.957 8.045 8.123 8.338 8.041 8.235 8.237
ROUGE1 35.57 35.54 35.22 34.35 34.31 33.85 32.98 33.22 33.02 32.38 32.95 32.85 32.55 32.72 32.92 33.1 32.45 32.86 32.88
ROUGE2 14.02 13.99 13.63 13.01 12.9 12.74 12.09 12.29 12.12 11.82 12.1 12.11 12.03 12.02 12.24 12.38 11.95 12.16 12.28
ROUGELsum 33.39 33.22 32.94 31.95 31.99 31.54 30.77 30.87 30.63 29.81 30.46 30.36 30.16 30.26 30.54 30.64 30.04 30.37 30.48

Code Documentation Generation - Python, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000
BLEU 6.95 7.2 7.137 7.098 7.618 7.501
ROUGE1 35.58 35.49 35.19 35 35.17 35.14
ROUGE2 14.07 14.03 13.75 13.67 13.65 13.51
ROUGELsum 33.49 33.26 33.02 32.83 32.68 32.73

Code Documentation Generation - Java, small model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000
BLEU 6.959 8.464 7.379 7.642 8.115 8.543 8.91 8.81 8.969 9.217 9.178 9.934 9.922 9.518
ROUGE1 36.07 36.93 35.39 35.32 35.63 35.11 35.25 35.49 35.04 35.25 35.23 35.12 34.95 34.4
ROUGE2 16.32 16.51 15.08 14.97 15.22 14.81 15.16 15.3 15.05 15.25 15.09 14.99 14.83 14.41
ROUGELsum 34.12 34.53 33.17 33.03 33.3 32.8 32.87 33.17 32.73 32.97 32.93 32.77 32.59 32.07

Code Documentation Generation - Java, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000
BLEU 8.099 9.247 9.662 10.84 10.803 10.872 11.491 11.242 11.278 11.22 11.677 11.807 11.456 11.703
ROUGE1 36.82 36.55 35.99 36.06 36.02 35.97 36.23 36.61 36.02 36.31 36.75 36.3 36.5 36.44
ROUGE2 16.88 16.09 15.39 15.84 15.7 15.72 15.99 16.27 15.74 16.21 16.53 16.1 16.24 16.07
ROUGELsum 34.64 34.09 33.44 33.6 33.41 33.39 33.69 34 33.4 33.86 34.19 33.74 33.93 33.81

Code Documentation Generation - Java, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BLEU 8.432 7.479 9.068 9.23 9.012 10.723 10.013 9.285 11.351 10.985
ROUGE1 37.75 36.77 37.95 38.22 37.17 37.97 37.15 36.39 37.17 37.68
ROUGE2 18.11 17.02 17.88 17.98 16.86 17.47 16.93 16.37 16.96 17.47
ROUGELsum 35.68 34.83 35.7 35.94 34.78 35.39 34.66 34.13 34.7 35.03

Code Documentation Generation - Go, small model, batch size: 256

Steps 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000 150000 160000
BLEU 13.145 13.364 13.718 14.243 13.639 13.824 14.201 14.468 14.275 14.473 14.582 14.679 14.529 14.702 14.508 14.543
ROUGE1 46.69 46.26 45.5 45.08 45.2 45.48 45.03 44.94 44.76 44.4 44.83 44.7 44.76 44.6 44.39 44.57
ROUGE2 24.01 23.67 23.19 22.77 22.92 22.82 22.58 22.58 22.65 22.33 22.47 22.52 22.63 22.6 22.38 22.7
ROUGELsum 44.68 44.11 43.31 42.81 43 43.18 42.71 42.66 42.53 42.23 42.55 42.43 42.49 42.37 42.13 42.4

92

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

Code Documentation Generation - Go, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000
BLEU 13.68 13.789 15.06 15.066 15.225 15.381 15.045 15.34 15.339 15.624 15.416 15.371 15.527 15.57
ROUGE1 47.66 46.35 46.34 46.08 46.09 46.08 46.15 45.93 46.08 45.84 46.07 45.99 46.08 46.05
ROUGE2 24.8 23.95 23.79 23.53 23.72 23.74 23.72 23.62 23.78 23.63 23.72 23.66 23.85 23.86
ROUGELsum 45.45 44.22 44.04 43.86 43.86 43.88 43.92 43.83 43.93 43.62 43.87 43.76 43.95 43.84

Code Documentation Generation - Go, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000
BLEU 14.02 14.114 12.862 13.532 14.38 13.955
ROUGE1 48.03 48.24 47.24 47.06 46.74 46.41
ROUGE2 25.2 25.41 24.88 24.7 24.23 24.05
ROUGELsum 46.05 46.07 45.38 45.05 44.57 44.35

Code Documentation Generation - Php, small model, batch size: 256

Steps 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000
BLEU 11.494 11.241 12.979 13.289 12.899 14.837 14.923 15.43 14.621 15.79 15.758 15.294
ROUGE1 41.34 40.98 40.7 40.47 40.13 40.36 40.22 40.49 40.23 40.15 40.02 40.48
ROUGE2 17.96 18.04 17.78 17.72 17.79 18.13 18.13 18.23 18.23 18.14 18.26 18.55
ROUGELsum 39.45 39.11 38.66 38.55 38.28 38.29 38.25 38.44 38.38 38.03 38.04 38.6

Code Documentation Generation - Php, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000 85000
BLEU 11.697 14.216 15.171 15.996 17.248 17.133 16.876 16.92 17.973 17.979 17.416 18.098 17.872 17.327 18.401 18.302 17.65
ROUGE1 41.9 42.13 42.45 42.14 41.76 41.81 41.96 42.1 42.12 42.35 42.46 41.84 42.66 41.95 42.19 42.46 42.43
ROUGE2 19.08 19.42 19.78 19.92 19.6 19.71 20.07 19.92 20.07 20.33 20.4 20.25 20.57 20.25 20.36 20.51 20.51
ROUGELsum 40.18 40.19 40.5 40.17 39.66 39.77 40.06 40.11 40.06 40.26 40.49 39.76 40.64 40.08 40.13 40.39 40.5

Code Documentation Generation - Php, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000
BLEU 8.594 12.038 13.279 12.934 13.799 14.038 14.474 15.143 15.723 15.373 16.62 17.309 17.533 17.805 17.742 17.701 17.782 17.719 17.847 18.266 17.426 18.515 18.404
ROUGE1 40.74 42.36 42.61 43.06 42 42.18 42.21 42.13 41.93 42.66 42.56 42.84 42.68 42.9 42.73 42.49 42.64 42.54 42.58 42.84 43.05 42.41 42.27
ROUGE2 17.74 19.12 19.92 19.67 19.57 19.67 19.44 19.66 19.74 20.33 20.42 20.49 20.61 20.67 20.68 20.47 20.57 20.77 20.67 20.87 21.06 20.63 20.65
ROUGELsum 39.06 40.48 40.66 41.01 40.01 40.14 40.1 40 39.89 40.68 40.58 40.76 40.63 40.86 40.64 40.5 40.6 40.59 40.47 40.8 41.12 40.2 40.21

Code Documentation Generation - Ruby, small model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
BLEU 4.144 4.141 4.277 4.398 4.469 4.663 4.469 4.329 4.421 4.226
ROUGE1 28 27.82 27.94 27.6 27.24 27.75 27.38 27.62 27.41 27.3
ROUGE2 8.69 8.33 8.38 8.33 8.08 8.43 8.41 8.3 8.11 8.31
ROUGELsum 25.85 25.49 25.54 25.5 25.06 25.58 25.22 25.29 25.14 25.04

Code Documentation Generation - Ruby, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
BLEU 5.309 4.881 5.294 4.939 5.194 5.148 5.039 5.097 4.603 5.106
ROUGE1 30.04 29.68 30.23 29.93 29.92 29.87 29.26 29.41 29.22 29.69
ROUGE2 10.29 10.06 10.18 9.95 10.1 10.42 9.75 9.79 9.36 9.78
ROUGELsum 27.77 27.19 27.64 27.46 27.54 27.52 26.76 26.86 26.69 27.38

Code Documentation Generation - Ruby, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
BLEU 4.889 5.39 5.339 5.001 5.09 5.427 5.197 5.426 5.419 5.481 5.487 5.104
ROUGE1 29.91 30.99 30.57 29.88 30.99 30.02 29.7 30.22 30.43 30.18 30.25 30.18
ROUGE2 10.83 11.19 10.82 10.43 10.98 10.27 10.49 10.5 10.88 10.53 10.39 10.21
ROUGELsum 27.79 28.52 28.04 27.34 28.31 27.5 27.4 27.81 28.04 27.85 27.83 27.71

Code Documentation Generation - Javascript, small model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000
BLEU 4.859 6.926 7.983 8.736 8.855 9.017 9.201 9.2 9.191 9.323 9.44 9.413
ROUGE1 28.18 28.5 28.28 28.57 28.76 28.5 28.64 28.82 28.69 28.53 28.33 28.1
ROUGE2 9.74 10.65 10.82 11.2 11.31 11.31 11.29 11.32 11.22 11.27 11.22 11.18
ROUGELsum 26.39 26.69 26.23 26.61 26.84 26.57 26.63 26.89 26.57 26.49 26.31 26.17

93

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

Code Documentation Generation - Javascript, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000 650000
BLEU 9.1 10.246 10.674 10.773 10.712 10.592 10.948 10.723 10.604 10.533 10.644 10.661 10.621
ROUGE1 30.59 31.04 30.71 30.68 31.14 30.51 30.72 30.77 30.58 30.3 30.33 30.36 30.45
ROUGE2 12.39 12.94 12.97 12.84 13.15 13.07 13.25 13.07 12.97 12.91 12.88 12.78 12.99
ROUGELsum 28.4 28.92 28.66 28.47 28.97 28.52 28.6 28.73 28.53 28.19 28.2 28.26 28.28

Code Documentation Generation - Javascript, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BLEU 5.156 6.577 8.745 10.372 10.543 10.465 10.975 10.551 10.78 10.863
ROUGE1 30.14 30.77 30.7 31.73 31.75 31.16 31.22 31.68 31.48 31.29
ROUGE2 11.14 11.89 12.64 13.35 13.44 13.04 13.3 13.64 13.42 13.56
ROUGELsum 28.4 28.86 28.87 29.55 29.66 29.03 29.06 29.54 29.32 29.29

Source Code Summarization - Python, small model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000
BLEU 1.532 1.681 1.66 1.796 1.579 1.464 1.657
ROUGE1 18.97 18.86 19 18.91 18.72 18.28 18.85
ROUGE2 3.72 3.7 3.66 3.67 3.63 3.32 3.45
ROUGELsum 16.77 16.63 16.7 16.57 16.39 16.02 16.43

Source Code Summarization - Python, base model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 6000 7000 8000 9000 10000
BLEU 2.084 2.223 2.148 1.973 2.208 2.137 2.161 2.054 1.871 2.001 0.796 1.95 1.898 2.029 1.968
ROUGE1 18.38 21.44 20.27 20.78 19.7 20.54 20.45 20.18 19.49 19.95 8.89 19.72 19.6 19.76 19.69
ROUGE2 3.92 4.33 4.11 4.23 3.97 4.24 4.22 4.26 3.79 3.95 1.69 3.97 4 4.05 3.94
ROUGELsum 16.63 18.71 17.82 18.23 17.38 17.89 17.92 17.77 17.06 17.55 8.11 17.35 17.24 17.49 17.33

Source Code Summarization - Python, large model, batch size: 256

Steps 100 200 300 400 500 600 700 800 900 1000
BLEU 2.165 1.439 1.658 2.073 1.869 2.221 2.173 2.188 2.136 2.127
ROUGE1 23.54 19.02 20.05 19.86 20.6 21.03 20.25 20.56 20.48 21.05
ROUGE2 5.32 3.18 3.61 3.96 4.11 4.42 4.11 4.39 4.12 4.57
ROUGELsum 20.71 16.68 17.24 17.36 18.09 18.35 17.9 18.15 17.98 18.51

Source Code Summarization - SQL, small model, batch size: 256

Steps 1000 2000 5000 10000 15000 20000
BLEU 1.751 1.513 0.919 1.108 1.1027 0.946
ROUGE1 18.69 17.22 14.91 14.34 14.46 13.98
ROUGE2 3.86 3.05 2.17 2.14 2.18 2.06
ROUGELsum 17.06 15.54 13.43 12.99 13.02 12.66

Source Code Summarization - SQL, base model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BLEU 2.253 1.512 1.226 1.23 0.885 0.931 0.817 0.86 0.977 1.15
ROUGE1 19.94 16.43 15.6 15.98 14.83 14.63 15.04 14.62 14.8 14.52
ROUGE2 4.41 3.39 2.69 2.76 2.35 2.21 2.32 2.19 2.34 2.27
ROUGELsum 17.97 15.08 14.06 14.33 13.3 13.15 13.48 13.13 13.28 13.04

Source Code Summarization - SQL, large model, batch size: 256

Steps 100 200 300 400 500 600
BLEU 2.025 2.172 1.33 1.068 0.819 1.129
ROUGE1 19.2 20.37 18.37 14.43 15.56 15.3
ROUGE2 4.5 4.27 3.43 2.5 2.25 2.77
ROUGELsum 17.1 18.2 16.68 13.41 14.13 13.97

94

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

Source Code Summarization - CSharp, small model, batch size: 256

Steps 1000 2000 3000 4000 5000 10000 15000 20000
BLEU 3.291 3.599 2.985 3.001 2.949 2.382 2.499 2.325
ROUGE1 22.26 22.88 21 20.9 20.86 19.02 18.73 18.28
ROUGE2 5.63 5.93 4.98 5.08 4.9 4.03 3.86 3.69
ROUGELsum 20.57 20.98 19.19 19.2 18.97 17.25 16.92 16.53

Source Code Summarization - CSharp, base model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BLEU 3.835 3.704 3.729 2.714 2.401 2.48 2.955 2.957 2.464 2.745
ROUGE1 23.27 22.94 23.41 20.72 19.47 20.36 21.02 21.21 19.7 19.68
ROUGE2 6.18 5.91 6.17 4.8 4.14 4.68 4.87 4.95 4.31 4.37
ROUGELsum 21.36 20.89 21.36 18.9 17.61 18.55 19.01 19.18 17.81 17.85

Source Code Summarization - CSharp, large model, batch size: 256

Steps 100 200 300 400 500 600
BLEU 3.379 4.024 3.933 3.304 3.503 3.07
ROUGE1 22.72 23.68 23.4 21.64 22.67 20.94
ROUGE2 6.07 6.4 6.34 5.59 5.89 4.86
ROUGELsum 21.18 21.89 21.59 19.93 20.68 18.96

Code Comment Generation, small model, batch size: 256

Steps 50000 150000 250000 350000 450000 500000 550000 600000 650000 700000 750000 800000 850000 900000 950000 1000000
BLEU 32.449 41.859 45.569 48.47 50.036 50.566 50.948 51.233 51.289 51.475 51.263 51.454 51.569 51.502 51.697 51.49
ROUGE1 51.63 55.46 56.76 57.56 58.15 58.15 58.16 58.24 58.3 58.51 58.71 58.66 58.51 58.46 58.57 58.58
ROUGE2 38.52 43.82 45.67 46.77 47.36 47.48 47.56 47.62 47.71 47.85 47.95 47.89 47.88 47.83 47.85 47.78
ROUGELsum 50.41 54.36 55.67 56.47 57.08 57.11 57.1 57.16 57.23 57.42 57.66 57.57 57.43 57.41 57.48 57.52

Code Comment Generation, base model, batch size: 256

Steps 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
BLEU 26.74 36.605 42.734 47.416 50.696 51.565 52.024 52.41 52.163 52.351
ROUGE1 49.95 54.11 56.37 57.91 58.85 59.42 49.57 59.73 59.59 59.54
ROUGE2 36.35 41.36 44.49 46.46 47.6 48.25 48.53 48.57 48.52 48.38
ROUGELsum 48.71 52.84 55.21 56.64 57.66 58.27 58.37 58.5 58.43 58.31

Code Comment Generation, large model, batch size: 256

Steps 5000 20000 30000 40000 50000 60000 70000 80000 90000 100000
BLEU 23.148 51.905 52.491 52.566 52.507 52.604 52.837 52.551 52.415 52.632
ROUGE1 43.14 59.92 60.25 60.2 59.95 60.35 60.23 59.94 60.04 60.1
ROUGE2 28.88 48.79 49.98 49.17 48.93 49.25 49.23 48.82 48.95 48.94
ROUGELsum 41.85 58.82 59 59.16 58.86 59.25 59.12 58.87 58.97 59.01

Git Commit Message Generation, small model, batch size: 256

Steps 5000 10000 15000 20000 25000
BLEU 44.762 44.698 44.178 44.37 44.201
ROUGE1 47.92 47.85 47.13 47.76 47.38
ROUGE2 35.57 35.83 35.23 35.49 35.34
ROUGELsum 47.45 47.26 46.54 47.2 46.79

Git Commit Message Generation, base model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 44.8 44.893 44.549 44.719 44.536 44.732 44.897 45.004 44.689 44.613
ROUGE1 48.76 48.62 48.66 48.72 48.31 48.71 48.65 48.47 48.48 48.25
ROUGE2 36.14 35.89 35.91 35.74 35.56 36.02 36.05 35.76 35.72 35.62
ROUGELsum 48.18 47.96 48.13 48.17 47.74 48.15 48.01 47.07 47.95 47.73

Git Commit Message Generation, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BLEU 44.283 44.953 44.867 44.889 44.963 45.061 44.885 44.989 45.366 44.953
ROUGE1 48.57 49.04 48.84 48.94 49.3 48.99 48.7 49.25 49.41 49.1
ROUGE2 35.37 36.16 35.81 36.18 36.52 36.09 36.18 36.42 36.4 36.39
ROUGELsum 47.95 48.37 48.2 48.24 48.63 48.48 48.12 48.56 48.83 48.52

95

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

API Sequence Generation, small model, batch size: 256

Steps 50000 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000 1050000 1100000 1150000 1200000 1250000 1300000 1350000 1400000 1450000
BLEU 60.411 63.813 66.706 67.882 68.315 68.952 69.375 69.367 69.971 70.275 70.275 70.52 70.563 70.662 70.464 70.706 70.495 70.925 70.849 70.752
ROUGE1 68.24 71.26 73.62 74.69 75.47 75.88 76.24 76.36 76.91 77.23 77.41 77.3 77.35 77.4 77.34 77.6 77.59 77.74 77.77 77.72
ROUGE2 57.84 61.43 64.17 65.27 66.21 66.73 67.1 67.24 67.8 68.23 68.41 68.33 68.41 68.49 68.51 68.69 68.7 68.86 68.92 68.82
ROUGELsum 68.22 71.24 73.6 74.64 75.45 75.86 76.23 76.34 76.88 77.21 77.41 77.29 77.32 77.38 77.3 77.57 77.56 77.73 77.75 77.7

API Sequence Generation, base model, batch size: 256

Steps 10000 20000 50000 100000 150000 200000 250000 260000 270000 280000 290000 300000 310000 320000 330000 340000 350000 360000
BLEU 56.311 61.422 66.306 69.51 71.521 71.625 72.924 72.563 72.618 72.919 73.2 73.068 73.18 73.226 73.075 73.647 73.115 73.565
ROUGE1 64.52 69.02 73.72 76.68 78.42 79.01 79.58 79.63 79.8 79.98 80.23 80.17 80.26 80.38 80.49 80.64 80.48 80.52
ROUGE2 53.64 58.83 64.15 67.62 69.6 70.39 71.16 71.2 71.43 71.64 71.74 71.7 71.99 72.05 72.17 72.4 72.1 72.26
ROUGELsum 64.5 69 73.69 76.66 78.42 78.99 79.58 79.62 79.77 79.97 80.21 80.16 80.24 80.36 80.49 80.627 80.49 80.5

API Sequence Generation, large model, batch size: 256

Steps 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
BLEU 66.752 70.263 71.595 72.949 73.425 74.107 74.061 74.278 74.379 74.322
ROUGE1 74.29 77.32 79.11 80.16 80.7 81.1 81.35 81.59 81.67 81.58
ROUGE2 64.83 68.46 70.5 71.74 72.44 72.95 73.25 73.44 73.69 73.53
ROUGELsum 74.27 77.31 79.11 80.16 80.67 81.09 81.38 81.59 81.69 81.58

Program Synthesis, small model, batch size: 256

Steps 5000 10000 15000 20000
BLEU 94.657 94.619 94.613 94.639
ROUGE1 99.21 99.2 99.2 99.2
ROUGE2 98.87 98.83 98.82 98.85
ROUGELsum 99.03 99.02 99.03 99.03
Accuracy 92.384 92.301 92.319 92.365

Program Synthesis, base model, batch size: 256

Steps 6000 12000 18000 25000 30000 40000 45000 50000
BLEU 94.62 94.664 94.578 94.659 94.653 94.644 94.663 94.652
ROUGE1 99.2 99.21 99.21 99.2 99.21 99.21 99.21 99.2
ROUGE2 98.85 98.89 98.88 98.89 98.87 98.86 98.91 98.89
ROUGELsum 99.03 99.05 99.05 99.05 99.04 99.03 99.06 99.05
Accuracy 92.319 92.476 90.147 92.476 92.458 92.319 92.55 92.448

Program Synthesis, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000
BLEU 94.595 94.641 94.616 94.626 94.635 94.619 94.642 94.627
ROUGE1 99.18 99.2 99.19 99.2 99.2 99.2 99.2 99.2
ROUGE2 98.8 98.86 98.84 98.84 98.84 98.85 98.85 98.85
ROUGELsum 99.02 99.03 99.02 99.03 99.03 99.04 99.03 99.03
Accuracy 91.774 92.301 92.236 92.328 92.328 92.301 92.375 92.347

96

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

A.3. Multi-task Learning

Multi-task Learning, large model, batch size: 4096

Task Steps 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000 240000 260000

Code Documentation
Generation - Python

BLEU 7.268 7.19 7.136 7.576 7.907 7.417 7.19 7.251 7.534 7.607 7.425 7.749 7.639
ROUGE1 35.12 35.61 35.44 35.89 35.42 35.65 34.84 34.87 34.97 34.84 34.43 34.84 34.63
ROUGE2 13.43 14.01 14.03 14.04 13.96 14.01 13.46 13.4 13.58 13.41 13.36 13.43 13.15
ROUGELsum 32.83 33.42 33.32 33.6 33 33.38 32.55 32.5 32.6 32.48 32.18 32.4 32.19

Code Documentation
Generation - Java

BLEU 10.36 11.285 11.942 12.286 12.862 12.886 12.871 12.519 14.398 13.86 13.136 14.12 14.392
ROUGE1 38.84 39.09 40.01 39.63 40.13 40.07 39.99 39.18 40.2 40.09 39.27 40.26 40.2
ROUGE2 18.68 19.58 20.35 18.87 20.19 20.35 20.39 19.7 20.78 20.51 19.97 20.77 20.6
ROUGELsum 36.62 36.99 37.96 37.42 37.76 37.86 37.78 37.11 38 37.77 37.08 37.99 37.84

Code Documentation
Generation - Go

BLEU 12.052 13.023 12.443 13.662 13.095 13.642 12.903 13.128 13.103 13.578 12.724 13.609 13.846
ROUGE1 47.37 47.62 47.76 47.74 47.38 47.93 47.36 47.23 46.58 47.09 46.57 46.89 46.85
ROUGE2 24.8 25.14 25.27 24.7 24.84 25.26 24.92 24.59 23.83 24.48 24.35 24.45 24.39
ROUGELsum 45.45 45.69 45.9 45.44 45.32 45.83 45.38 45.23 44.39 44.89 44.59 44.81 44.72

Code Documentation
Generation - Php

BLEU 9.745 10.993 10.445 12.318 11.772 12.158 11.798 12.183 13.541 13.111 13.438 13.277 13.708
ROUGE1 41.63 42.13 42.1 42.74 42.69 42.7 42.68 42.2 42.63 42.62 42.39 42.92 42.5
ROUGE2 18.09 18.6 18.88 19.21 19.38 19.53 19.47 19.08 19.57 19.44 19.29 19.85 19.4
ROUGELsum 39.81 40.25 40.36 40.75 40.74 40.82 40.9 40.33 40.62 40.63 40.37 41 40.47

Code Documentation
Generation - Ruby

BLEU 3.953 4.311 4.051 4.753 4.499 4.424 4.128 4.044 4.418 4.436 4.182 4.443 4.741
ROUGE1 32.94 32.77 32.6 32.83 32.69 32.46 31.82 32.13 31.79 31.36 31.99 31.77 32.13
ROUGE2 12.7 12.32 12.57 12.44 12.09 12.33 11.91 11.34 11.49 11.18 11.64 11.35 11.65
ROUGELsum 30.8 30.47 30.54 30.61 30.42 30.21 29.62 29.76 29.54 29.28 29.92 29.4 29.49

Code Documentation
Generation - Javascript

BLEU 4.331 4.706 4.536 5.218 5.554 5.139 5.279 5.109 5.687 5.676 5.535 6.238 5.917
ROUGE1 30.07 30.56 30.81 30.82 30.51 31 30.93 30.48 30.7 31.09 30.68 31.08 30.77
ROUGE2 10.3 11.05 11.36 10.99 11.02 11.42 11.46 11.17 11.55 11.32 11.41 11.56 11.24
ROUGELsum 28.21 28.76 29.13 28.88 28.62 29.19 29.08 28.61 28.83 29.16 28.75 28.98 28.79

Source Code
Summarization - Python

BLEU 3.89 3.867 3.89 4.08 3.793 4.021 3.89 4.141 4.045 3.833 3.781 4.058 3.741
ROUGE1 27.61 26.18 26.27 27.63 26.67 27.08 26.22 26.92 26.56 26.06 25.78 26.53 25.55
ROUGE2 7.86 7.08 6.9 7.88 7.15 7.94 7.08 7.35 7.36 7.08 6.89 7.27 6.72
ROUGELsum 24.37 23.35 23.25 24.33 23.6 24.15 23.26 23.6 23.45 22.96 22.94 23.35 22.57

Source Code
Summarization - SQL

BLEU 1.717 2.04 1.869 2.128 2.016 2.262 2.07 1.926 1.993 1.812 2.052 1.882 1.903
ROUGE1 19.18 18.84 18.43 20.57 19.37 20.21 19.54 19.46 19.27 19.15 19.17 19.47 19.11
ROUGE2 3.87 3.88 3.49 4.38 3.85 4.51 4.24 3.93 3.94 3.94 4.16 3.99 3.86
ROUGELsum 17.17 17.07 16.61 18.15 17.44 18.19 17.39 17.48 17.48 17.36 17.62 17.54 17.31

Source Code
Summarization - CSharp

BLEU 4.009 3.771 3.757 4.315 4.059 4.327 3.99 4.114 4.208 4.147 3.968 4.19 4.19
ROUGE1 24.26 23.69 23.26 24.92 24.05 24.7 23.72 24.15 24.53 23.98 23.21 23.85 23.85
ROUGE2 6.55 6.36 5.64 6.83 6.39 6.91 6.31 6.45 6.62 6.27 5.91 6.41 6.25
ROUGELsum 21.91 21.71 21.37 22.57 21.93 22.62 21.69 22.06 22.37 21.86 21.33 21.83 21.75

Code Comment
Generation

BLEU 19.308 26.184 30.428 33.509 36.096 37.533 38.306 39.342 40.773 41.718 41.421 43.14 43.712
ROUGE1 42.64 46.92 49.75 51.65 53.09 53.06 53.67 54.68 55 55.82 55.6 56.41 56.14
ROUGE2 27.68 33.17 36.55 38.6 40.32 40.58 41.41 42.71 42.85 43.81 43.95 44.54 44.39
ROUGELsum 41.32 45.72 48.6 50.47 51.91 51.92 52.58 53.6 53.87 54.68 54.58 55.29 55.01

Git Commit Message
Generation

BLEU 37.913 39.705 39.758 40.468 40.124 41.157 41.055 41.181 41.383 41.698 41.895 41.729 41.8
ROUGE1 41.52 43.65 44.14 44.83 44.54 46.35 46.05 46.35 46.76 46.67 46.94 46.88 46.9
ROUGE2 28.8 30.22 30.82 31.36 31.28 32.18 32.29 32.49 32.83 33.1 33.35 33.14 32.99
ROUGELsum 41.14 43.15 43.75 44.34 44.09 45.76 45.54 45.78 46.19 46.1 46.49 46.38 46.37

API Sequence
Generation

BLEU 65.764 69.491 71.02 71.754 72.225 72.67 73.018 73.076 73.539 73.01 73.457 73.547 73.548
ROUGE1 37.07 76.35 77.86 78.61 79.15 79.54 79.78 80.21 80.48 80.4 80.68 80.8 80.73
ROUGE2 63.56 67.43 69.09 70.02 70.54 71.11 71.41 71.84 72.27 72.01 72.37 72.54 72.46
ROUGELsum 73.05 76.34 77.83 78.6 79.18 79.52 79.78 80.23 80.45 80.42 80.66 80.78 70.72

Program Synthesis

BLEU 93.891 94.41 94.6 94.592 94.64 64.605 94.627 94.654 94.645 94.616 94.644 94.62 94.609
ROUGE1 98.47 99.02 99.19 99.16 99.2 99.19 99.2 99.2 99.2 99.2 99.21 99.19 99.19
ROUGE2 97.54 98.53 98.81 98.79 98.87 98.83 98.84 98.91 98.87 98.85 98.9 98.81 98.84
ROUGELsum 98.23 98.84 99.01 98.99 99.03 99.02 99.03 99.05 99.03 99.02 99.06 99.01 99.01
Accuracy 82.79 90.923 91.94 91.866 92.171 92.079 92.171 92.245 92.319 92.18 92.439 92.236 92.227

97

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

M
ul

ti
-t

as
k

Le
ar

ni
ng

,s
m

al
lm

od
el

,b
at

ch
si

ze
:4

09
6

Ta
sk

St
ep

s
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00
14

00
00

16
00

00
18

00
00

20
00

00
22

00
00

24
00

00
26

00
00

28
00

00
30

00
00

32
00

00
34

00
00

36
00

00
38

00
00

40
00

00
42

00
00

44
00

00
46

00
00

48
00

00
50

00
00

C
od

e
D

oc
um

en
ta

ti
on

G
en

er
at

io
n

-
Py

th
on

BL
EU

5.
93

2
4.

78
3

5.
68

2
5.

17
8

6.
23

2
5.

62
4

6.
06

7
6.

33
3

6.
34

5
6.

48
1

6.
08

9
6.

48
6

6.
09

8
6.

21
9

6.
13

6
6.

11
4

6.
27

7
6.

17
8

6.
13

4
6.

17
6.

61
4

6.
22

5
6.

39
7

6.
09

1
6.

08
9

R
O

U
G

E1
32

.9
6

32
.2

8
33

.0
5

32
.7

5
33

.9
2

33
.1

3
33

.2
9

33
.8

7
34

.2
1

34
.4

8
34

.0
2

34
.3

3
34

.1
6

33
.7

6
34

.1
7

33
.8

1
33

.7
3

34
.2

6
34

.1
6

34
.2

4
34

.5
2

34
.4

6
34

.3
1

34
.1

2
34

.2
R

O
U

G
E2

11
.7

6
11

.5
5

12
.2

5
12

.0
2

12
.6

2
12

.4
1

12
.3

8
12

.7
8

12
.9

3
12

.9
6

12
.7

13
.0

3
12

.8
8

12
.7

6
12

.8
9

12
.7

8
12

.6
9

12
.9

5
12

.9
8

13
.0

1
13

.1
13

.0
3

13
.0

2
13

.0
1

12
.9

9
R

O
U

G
EL

su
m

30
.8

4
30

.6
5

31
.1

5
30

.9
9

31
.8

1
31

.2
7

31
.2

8
31

.8
32

.1
6

32
.3

2
32

32
.1

6
32

.1
7

31
.6

9
32

.1
3

31
.7

8
31

.7
32

.2
32

.1
7

32
.2

2
32

.3
4

32
.3

6
32

.2
32

.1
7

32
.1

9

C
od

e
D

oc
um

en
ta

ti
on

G
en

er
at

io
n

-
Ja

va

BL
EU

6.
97

5
5.

47
9

7.
34

6
6.

85
2

8.
42

2
7.

43
8.

37
2

8.
70

9
8.

60
7

8.
41

6
8.

58
3

8.
66

5
8.

29
3

8.
63

4
8.

60
5

8.
34

9
8.

67
9

8.
68

5
8.

27
2

8.
67

5
8.

82
9

8.
39

5
8.

72
3

8.
45

8
8.

47
1

R
O

U
G

E1
36

.1
34

.0
2

35
.9

8
35

.6
3

36
.8

5
36

.3
1

36
.9

3
37

.3
5

37
.2

5
37

.5
37

.1
4

37
.3

4
37

.0
1

37
.0

1
37

.1
6

37
.0

4
37

.2
5

37
.6

4
37

.1
7

37
.6

5
37

.3
2

37
.0

2
37

.6
37

.3
3

37
.3

1
R

O
U

G
E2

15
.9

7
14

.7
4

16
.5

2
16

.3
6

16
.9

8
17

.0
6

17
.0

2
17

.8
17

.3
4

17
.4

3
17

.4
4

17
.4

9
17

.5
1

17
.2

17
.6

2
17

.3
7

17
.6

17
.7

3
17

.3
3

17
.7

1
17

.4
6

17
.3

17
.6

1
17

.5
6

17
.5

8
R

O
U

G
EL

su
m

34
.0

4
32

.3
8

34
.1

8
33

.8
6

34
.8

6
34

.5
6

34
.9

4
35

.4
3

35
.1

6
35

.3
6

35
.1

35
.3

35
.0

8
34

.9
3

35
.2

3
35

.1
5

35
.2

6
35

.6
3

35
.1

8
35

.6
5

35
.2

7
35

.1
1

35
.5

2
35

.3
5

35
.3

6

C
od

e
D

oc
um

en
ta

ti
on

G
en

er
at

io
n

-
G

o

BL
EU

8.
22

6
11

.5
03

11
.6

41
11

.6
82

9.
38

3
11

.6
83

12
.3

68
12

.0
5

13
.1

73
12

.6
26

12
.1

34
12

.2
92

12
.5

52
11

.8
45

12
.4

05
12

.2
02

12
.4

84
12

.1
04

11
.9

42
12

.0
8

12
.4

86
12

.0
79

11
.5

36
12

.3
21

12
.0

53
R

O
U

G
E1

43
.9

3
46

.1
1

46
.8

2
46

.4
7

45
.4

3
46

.8
4

47
.2

2
46

.8
2

46
.9

6
46

.5
8

47
.5

3
47

.0
9

47
.1

5
46

.6
9

47
.2

7
47

.2
1

47
.6

7
46

.8
46

.1
4

47
.1

7
47

.4
47

.3
7

47
.3

5
46

.2
9

47
.2

7
R

O
U

G
E2

21
.5

6
24

.3
4

24
.8

4
24

.5
6

23
24

.8
4

24
.7

8
24

.7
5

24
.9

9
24

.1
7

25
.3

2
24

.9
1

25
.0

7
24

.8
25

25
.0

7
25

.3
6

24
.6

24
.0

3
24

.8
9

24
.9

4
25

.0
2

24
.9

2
24

.2
25

.0
4

R
O

U
G

EL
su

m
42

.1
8

44
.4

9
45

.1
6

44
.9

43
.6

9
45

.1
2

45
.3

3
45

.1
45

.0
2

44
.6

9
45

.7
5

45
.3

3
45

.4
5

44
.9

4
45

.5
3

45
.4

7
45

.8
9

45
44

.4
9

45
.4

6
45

.5
5

45
.6

45
.6

4
44

.5
5

45
.4

6

C
od

e
D

oc
um

en
ta

ti
on

G
en

er
at

io
n

-
Ph

p

BL
EU

7.
33

1
6.

18
7

8.
24

3
6.

81
9

8.
89

1
7.

09
3

8.
49

3
8.

92
9

8.
28

8.
42

8.
61

6
9.

46
8.

75
8.

91
4

8.
01

9.
20

6
8.

47
5

8.
44

9
7.

83
1

8.
84

9
9.

72
5

8.
28

8
8.

76
3

7.
86

1
9.

01
9

R
O

U
G

E1
38

.2
2

37
.9

3
38

.7
2

37
.9

1
39

.5
2

38
.2

6
38

.2
4

39
.2

4
39

.5
3

39
.6

1
39

.7
5

39
.6

6
39

.5
9

38
.8

9
39

.5
38

.7
3

39
.0

3
39

.6
1

39
.4

2
39

.8
6

40
.0

5
39

.7
2

39
.9

39
.8

2
40

.1
5

R
O

U
G

E2
15

.0
7

14
.4

15
.8

3
15

.0
2

15
.9

8
15

.5
7

15
.7

16
.5

8
16

.1
16

.2
8

16
.2

8
16

.3
8

16
.4

4
16

.1
3

16
.2

5
16

.3
16

.3
7

16
.5

6
16

.2
5

16
.5

5
16

.6
8

16
.4

6
16

.5
6

16
.3

16
.7

6
R

O
U

G
EL

su
m

36
.5

7
36

.5
2

37
.0

9
36

.5
1

37
.7

3
36

.7
2

36
.5

8
37

.4
9

37
.8

1
37

.9
4

38
.0

3
37

.7
9

37
.9

3
37

.1
3

37
.8

4
37

.0
2

37
.3

7
37

.9
37

.8
8

38
.1

7
38

.1
6

38
.0

6
38

.1
38

.2
1

38
.4

4

C
od

e
D

oc
um

en
ta

ti
on

G
en

er
at

io
n

-
R

ub
y

BL
EU

2.
94

2
2.

29
6

3.
28

5
2.

45
9

3.
35

1
2.

81
8

3.
23

5
3.

62
9

3.
58

3
3.

39
3.

47
1

3.
67

1
3.

40
6

3.
07

7
3.

36
2

3.
37

8
3.

30
4

3.
27

6
3.

02
7

3.
21

2
3.

89
4

3.
05

5
3.

21
8

3.
00

9
3.

24
8

R
O

U
G

E1
30

.4
1

28
.5

9
29

.8
1

29
.0

9
30

.6
3

29
.4

1
30

.1
9

30
.2

2
30

.7
1

30
.6

6
31

.0
1

30
.7

30
.7

6
30

.2
1

30
.3

5
30

.6
30

.4
9

30
.6

9
30

.7
8

30
.7

1
31

.3
1

30
.6

2
31

.1
9

30
.8

2
30

.4
9

R
O

U
G

E2
9.

94
9.

32
10

.2
1

10
.0

5
10

.7
9

10
.0

3
10

.6
8

10
.7

11
.1

10
.8

6
11

.0
9

11
10

.8
4

10
.7

5
10

.9
4

10
.5

8
10

.7
3

11
.1

9
11

.0
9

11
.0

6
11

.5
10

.9
9

11
.7

11
.2

4
11

.2
1

R
O

U
G

EL
su

m
28

.2
5

26
.9

7
27

.9
2

27
.4

8
28

.5
1

27
.6

3
28

.4
28

.3
3

28
.6

9
28

.7
29

.0
2

28
.7

5
28

.8
7

28
.2

8
28

.5
3

28
.7

4
28

.5
2

28
.8

7
28

.9
6

28
.9

4
29

.2
4

28
.7

29
.3

5
29

.0
5

28
.6

3

C
od

e
D

oc
um

en
ta

ti
on

G
en

er
at

io
n

-
Ja

va
sc

ri
pt

BL
EU

3.
51

2.
38

5
3.

43
5

2.
53

7
3.

60
2

3.
14

2
3.

50
9

3.
86

7
3.

61
4

3.
71

3.
45

9
4.

01
3

3.
63

3
3.

41
3

3.
59

9
3.

88
8

3.
78

4
3.

35
9

3.
29

5
3.

18
1

3.
95

9
3.

13
3

3.
06

1
3.

11
9

3.
52

2
R

O
U

G
E1

27
.7

3
26

.7
9

27
.6

2
27

.2
1

28
.6

3
27

.9
6

28
.2

7
28

.7
6

28
.8

9
29

.0
8

28
.8

4
29

.0
7

28
.7

6
28

.5
7

28
.7

4
28

.6
6

28
.8

28
.9

3
28

.8
5

28
.7

6
29

.0
8

28
.8

5
28

.9
28

.6
29

.0
1

R
O

U
G

E2
8.

8
8.

53
9.

04
8.

91
9.

52
9.

31
9.

54
9.

65
9.

74
9.

9
9.

77
9.

96
9.

75
9.

61
9.

71
9.

72
9.

77
9.

71
9.

73
9.

7
9.

73
9.

86
9.

69
9.

45
9.

89
R

O
U

G
EL

su
m

26
.0

4
25

.4
5

26
.0

8
25

.9
3

26
.9

4
26

.5
26

.6
9

27
.0

7
27

.1
2

27
.3

4
27

.1
3

27
.3

6
27

.2
2

26
.8

9
27

.1
6

26
.9

1
27

.1
3

27
.2

3
27

.2
1

27
.1

2
27

.2
9

27
.2

8
27

.2
8

27
.1

4
27

.4
1

So
ur

ce
C

od
e

Su
m

m
ar

iz
at

io
n

-
Py

th
on

BL
EU

3.
38

8
3.

05
4

3.
18

3.
21

6
3.

70
9

3.
25

4
3.

51
1

3.
67

8
3.

61
9

3.
43

7
3.

56
3.

47
9

3.
60

2
3.

37
7

3.
59

5
3.

71
2

3.
52

7
3.

47
4

3.
48

1
3.

40
7

3.
57

1
3.

48
9

3.
63

5
3.

53
1

3.
49

2
R

O
U

G
E1

25
.7

2
24

.0
9

24
.6

2
24

.9
4

26
.5

4
24

.4
6

25
.8

9
26

.0
7

25
.6

8
25

.8
4

25
.5

3
26

.2
8

26
.4

2
24

.5
2

26
.8

5
26

.2
5

25
.2

7
25

.5
2

25
.7

7
25

.6
3

25
.9

6
26

.1
3

26
.0

2
24

.8
4

25
.6

7
R

O
U

G
E2

7
6.

33
6.

28
6.

71
7.

28
6.

37
7.

02
7.

01
7.

09
6.

87
6.

85
7.

24
7.

2
6.

4
7.

46
7.

31
6.

87
6.

88
7.

14
7.

1
7.

12
7.

02
7.

26
6.

65
6.

74
R

O
U

G
EL

su
m

22
.9

1
21

.7
6

22
22

.4
4

23
.4

9
22

.0
1

22
.9

3
22

.9
3

22
.8

1
22

.8
4

22
.6

6
23

.3
4

23
.3

1
21

.8
4

23
.7

23
.3

6
22

.5
22

.7
2

12
.9

9
23

.0
7

23
.0

8
23

.1
1

23
.2

3
22

.3
6

22
.7

6

So
ur

ce
C

od
e

Su
m

m
ar

iz
at

io
n

-
SQ

L

BL
EU

1.
65

3
1.

83
1

1.
47

4
1.

42
2

1.
62

3
1.

58
3

1.
76

6
1.

67
7

1.
49

3
1.

57
6

1.
61

8
1.

57
7

1.
75

6
1.

68
1.

84
1

1.
8

1.
60

6
1.

49
3

1.
66

8
1.

80
6

1.
75

8
1.

80
4

1.
95

3
1.

73
9

1.
74

2
R

O
U

G
E1

18
.4

6
17

.8
17

.3
2

17
.3

2
17

.8
9

17
.6

5
18

.5
6

18
.8

4
18

.0
8

17
.7

8
17

.9
2

18
.1

2
18

.9
1

17
.7

9
18

.6
18

.9
1

18
.1

5
17

.9
18

.2
4

18
.6

18
.5

7
18

.2
7

19
.0

5
18

.0
8

18
.4

R
O

U
G

E2
3.

66
3.

61
3.

02
3.

08
3.

74
3.

38
3.

83
3.

86
3.

46
3.

45
3.

32
3.

3
3.

8
3.

4
3.

84
4.

08
3.

44
3.

29
3.

55
3.

85
3.

6
3.

77
4.

2
3.

79
3.

74
R

O
U

G
EL

su
m

16
.3

2
15

.8
9

15
.4

4
15

.6
5

16
.1

6
16

.0
3

16
.5

3
16

.6
7

16
.0

5
15

.8
7

16
.1

6
16

.2
4

16
.8

4
15

.9
1

16
.6

6
16

.8
16

.1
6

16
.1

16
.3

4
16

.6
7

16
.6

7
16

.4
8

17
.0

3
16

.3
7

16
.4

6

So
ur

ce
C

od
e

Su
m

m
ar

iz
at

io
n

-
C

Sh
ar

p

BL
EU

3.
03

8
2.

94
2

3.
23

3
3.

06
6

3.
26

3
3.

18
3

3.
34

7
3.

46
7

3.
50

2
3.

34
8

3.
29

3.
65

4
3.

68
2

3.
08

2
3.

74
2

3.
59

6
3.

53
3

3.
50

3
3.

46
9

3.
31

9
3.

57
3.

59
9

3.
74

1
3.

28
6

3.
53

9
R

O
U

G
E1

21
.8

2
21

.1
21

.7
7

21
.6

3
22

.6
6

21
.9

4
22

.4
8

23
.1

3
22

.8
8

22
.6

4
22

.5
6

23
.4

23
.2

4
21

.5
1

23
.4

3
22

.8
4

22
.6

3
22

.6
9

22
.8

6
22

.6
2

23
.2

5
22

.9
5

23
.5

5
22

.0
5

22
.3

4
R

O
U

G
E2

5.
42

5.
11

5.
06

5.
22

5.
71

5.
39

5.
63

5.
8

5.
84

5.
65

5.
55

6.
03

6.
02

4.
89

6.
16

5.
82

5.
59

5.
73

5.
87

5.
57

5.
94

5.
85

6.
27

5.
46

5.
35

R
O

U
G

EL
su

m
19

.9
8

19
.5

1
19

.8
5

19
.9

3
20

.7
5

20
.1

1
20

.4
3

20
.9

5
20

.7
9

20
.6

1
20

.5
6

21
.2

5
21

.1
2

19
.7

3
21

.3
4

20
.8

7
20

.6
20

.7
5

20
.8

8
20

.6
21

.1
8

20
.9

1
21

.4
6

20
.2

3
20

.3
5

C
od

e
C

om
m

en
t

G
en

er
at

io
n

BL
EU

4.
99

6.
10

3
7.

42
6

6.
58

2
8.

34
3

7.
89

9
9.

08
3

9.
63

8
9.

52
3

9.
56

5
9.

64
3

9.
81

2
9.

68
4

9.
82

9
9.

96
8

9.
61

4
10

.2
31

10
.0

41
9.

98
5

10
.3

73
10

.2
28

10
.1

67
10

.3
95

10
.4

75
10

.4
04

R
O

U
G

E1
34

.1
1

34
.1

9
36

.1
6

36
.4

6
37

.2
1

37
.0

7
37

.8
37

.8
9

37
.9

5
38

.5
3

38
.3

7
38

.3
5

38
.4

8
38

.1
3

38
.6

38
.7

4
38

.8
6

38
.9

5
38

.8
38

.9
1

38
.8

38
.5

9
38

.8
1

38
.8

7
38

.9
1

R
O

U
G

E2
17

.2
17

.9
4

19
.4

3
19

.7
5

20
.3

3
20

.4
20

.9
3

20
.9

7
21

.2
1

21
.5

1
21

.4
8

21
.5

9
21

.6
6

21
.6

2
21

.7
2

22
.0

5
21

.8
8

22
.1

1
21

.9
8

22
.1

4
21

.9
9

21
.9

7
22

.2
5

22
.2

6
22

.3
7

R
O

U
G

EL
su

m
32

.7
9

33
.0

6
34

.8
8

35
.3

1
35

.9
3

35
.9

36
.4

6
36

.5
5

36
.6

4
37

.2
1

37
.0

7
37

.0
1

37
.2

3
36

.8
9

37
.3

3
37

.4
7

37
.5

5
37

.6
8

37
.5

3
37

.5
9

37
.5

2
37

.3
5

37
.5

3
37

.6
1

37
.6

6

G
it

C
om

m
it

M
es

sa
ge

G
en

er
at

io
n

BL
EU

25
.4

58
36

.4
99

36
.4

29
36

.3
89

37
.0

52
36

.9
09

36
.9

07
36

.7
77

37
.2

73
37

.0
9

37
.2

33
37

.1
92

37
.2

52
37

.2
46

37
.1

61
37

.2
19

37
.2

25
37

.0
92

37
.2

56
37

.2
99

37
.0

61
37

.0
25

37
.4

08
37

.1
83

37
.1

35
R

O
U

G
E1

35
.3

6
37

.6
1

37
.7

6
37

.5
37

.8
8

38
.4

38
.6

5
38

.8
38

.6
2

38
.6

38
.9

1
38

.6
9

38
.8

9
39

.6
38

.7
8

38
.6

7
39

.2
5

38
.9

8
38

.4
3

39
.2

8
39

.2
4

39
.0

5
39

.3
6

38
.9

7
38

.8
3

R
O

U
G

E2
23

.6
8

25
.2

25
.5

5
25

.7
5

25
.8

4
25

.6
5

26
.0

9
26

.3
6

26
.2

7
26

.3
26

.1
6

26
.0

3
26

.3
9

26
.8

9
26

.3
2

26
.0

7
26

.4
9

26
.6

5
26

.1
4

26
.6

1
26

.2
4

26
.3

8
26

.7
7

26
.7

8
26

.2
8

R
O

U
G

EL
su

m
35

.1
5

37
.2

5
37

.4
3

37
.2

9
37

.5
7

38
.1

4
38

.2
4

38
.4

6
38

.2
5

38
.2

4
38

.5
9

38
.5

1
38

.6
9

39
.3

3
38

.5
1

38
.3

5
38

.9
7

38
.7

38
.1

4
38

.9
6

38
.8

9
38

.7
6

39
.0

8
38

.7
1

38
.6

A
PI

Se
qu

en
ce

G
en

er
at

io
n

BL
EU

50
.5

08
54

.1
41

55
.8

74
55

.6
75

57
.1

86
57

.0
01

57
.3

04
58

.2
04

58
.5

93
58

.3
07

58
.5

53
58

.6
22

58
.7

72
58

.8
78

58
.9

93
58

.9
83

59
.2

99
59

.4
36

59
.2

42
59

.4
96

59
.7

14
59

.4
45

59
.7

08
59

.8
07

59
.6

87
R

O
U

G
E1

58
.3

61
.6

3
63

.1
7

63
.8

1
64

.6
64

.5
2

65
.2

6
65

.4
6

65
.8

2
65

.7
2

65
.8

5
66

.1
66

.3
1

66
.4

6
66

.3
7

66
.6

5
66

.8
3

66
.9

1
66

.8
4

66
.9

6
67

.0
1

66
.9

6
67

.1
5

67
.0

9
67

.2
2

R
O

U
G

E2
46

.8
8

50
.8

6
52

.6
6

53
.3

3
54

.0
7

54
.1

8
54

.7
2

54
.9

2
55

.3
9

55
.3

5
55

.5
1

55
.8

4
55

.9
4

55
.9

6
56

.0
5

56
.2

9
56

.6
5

56
.5

9
56

.4
8

56
.6

6
56

.7
5

56
.7

4
56

.9
5

56
.7

3
56

.9
9

R
O

U
G

EL
su

m
58

.2
5

61
.6

2
63

.1
5

63
.8

64
.5

7
64

.4
8

65
.2

8
65

.4
4

65
.7

7
65

.6
9

65
.8

1
66

.0
8

66
.3

1
66

.4
1

66
.3

4
66

.6
2

66
.8

1
66

.8
9

66
.8

66
.9

1
67

.0
1

66
.9

4
67

.1
3

67
.0

6
67

.1
9

Pr
og

ra
m

Sy
nt

he
si

s

BL
EU

91
.1

09
92

.3
38

93
.2

03
93

.3
13

93
.5

91
93

.7
8

93
.6

89
93

.7
85

93
.7

95
93

.8
43

93
.9

12
93

.8
46

93
.9

03
93

.9
25

93
.9

45
93

.9
36

93
.9

06
93

.9
71

93
.9

37
93

.7
07

93
.9

17
93

.9
86

93
.9

11
93

.9
42

93
.9

85
R

O
U

G
E1

96
.8

4
97

.8
2

97
.9

4
98

.3
2

98
.1

6
98

.2
4

98
.2

1
98

.5
5

98
.5

1
98

.5
2

98
.2

8
98

.6
7

98
.6

4
98

.6
4

98
.7

98
.2

5
98

.5
3

98
.2

3
98

.4
2

98
.6

6
98

.5
6

98
.6

98
.4

8
98

.5
3

98
.5

5
R

O
U

G
E2

94
.9

8
96

.4
5

96
.8

7
97

.2
5

97
.1

97
.2

5
97

.1
8

97
.5

9
97

.5
5

97
.5

5
97

.3
2

97
.7

5
97

.7
2

97
.7

5
97

.7
8

97
.3

1
97

.6
97

.2
5

97
.4

6
97

.7
3

97
.6

97
.6

9
97

.5
4

97
.5

8
97

.6
R

O
U

G
EL

su
m

96
.4

3
97

.5
2

97
.7

98
.0

7
97

.8
9

98
.0

2
97

.9
7

98
.3

3
98

.2
7

98
.2

9
98

.0
6

98
.4

5
98

.4
3

98
.4

4
98

.4
8

98
.0

4
98

.3
1

97
.9

9
98

.1
9

98
.4

5
98

.3
3

98
.3

9
98

.2
6

98
.3

1
98

.3
2

A
cc

ur
ac

y
61

.2
72

78
.5

47
76

.8
19

82
.2

53
82

.0
96

82
.1

43
79

.2
03

82
.9

1
82

.5
58

83
.1

78
82

.8
36

83
.7

6
84

.7
03

84
.9

43
85

.3
96

83
.5

84
84

.9
03

83
.2

89
83

.6
58

83
.4

83
83

.8
16

84
.6

75
83

.2
33

83
.1

32
84

.6
84

98

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

M
ul

ti
-t

as
k

Le
ar

ni
ng

,b
as

e
m

od
el

,b
at

ch
si

ze
:4

09
6

Ta
sk

St
ep

s
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00
14

00
00

16
00

00
18

00
00

20
00

00
22

00
00

24
00

00
26

00
00

28
00

00
30

00
00

32
00

00
34

00
00

36
00

00
38

00
00

40
00

00
42

00
00

44
00

00
46

00
00

48
00

00
50

00
00

C
od

e
D

oc
um

en
ta

ti
on

G
en

er
at

io
n

-
Py

th
on

BL
EU

6.
63

2
6.

39
4

6.
90

8
7.

09
2

6.
97

8
6.

99
2

7.
07

9
7.

57
6.

82
6

6.
64

7.
02

4
7.

45
8

7.
36

2
7.

35
6

6.
89

7
7.

12
2

7.
22

7
7.

36
8

7.
26

3
7.

34
5

7.
49

3
7.

01
2

7.
15

4
7.

27
5

7.
44

8
R

O
U

G
E1

34
.2

5
34

.7
2

35
.4

1
35

.3
5

35
.0

9
35

.3
7

35
.4

2
35

.8
4

35
.3

6
35

.4
4

35
.6

4
35

.8
36

.1
3

35
.9

6
35

.8
9

35
.6

8
36

36
.1

2
35

.8
36

.0
1

36
.1

7
35

.8
9

35
.7

5
36

.0
3

36
.1

3
R

O
U

G
E2

12
.9

2
13

.3
7

13
.8

9
13

.8
4

13
.8

2
13

.9
2

14
.0

8
14

.1
5

14
.0

7
14

.0
3

14
.0

8
14

.1
8

14
.3

4
14

.2
2

14
.3

4
14

.2
6

14
.3

6
14

.4
3

14
.3

9
14

.4
5

14
.5

14
.3

1
14

.2
5

14
.4

6
14

.4
3

R
O

U
G

EL
su

m
32

.0
3

32
.7

2
33

.2
5

33
.1

2
32

.9
3

33
.1

3
33

.3
33

.5
1

33
.2

6
33

.4
1

33
.5

33
.5

5
33

.8
6

33
.7

2
33

.8
1

33
.5

5
33

.8
1

33
.9

33
.6

2
33

.8
4

33
.9

1
33

.7
4

33
.5

7
33

.8
5

33
.8

8

C
od

e
D

oc
um

en
ta

ti
on

G
en

er
at

io
n

-
Ja

va

BL
EU

8.
66

8.
91

3
9.

91
4

10
.8

37
11

.3
15

11
.0

01
11

.4
39

12
.0

8
12

.1
19

11
.1

18
12

.3
39

12
.3

63
12

.4
14

12
.2

96
11

.6
66

12
.1

7
12

.2
47

12
.3

4
12

.7
12

.4
85

12
.3

47
12

.2
44

12
.3

96
12

.8
73

12
.7

35
R

O
U

G
E1

37
.6

1
37

.3
6

38
.3

4
38

.8
9

38
.8

7
39

.0
9

39
.0

5
39

.4
1

39
.6

38
.9

9
39

.5
8

39
.8

8
39

.8
8

39
.7

2
39

.2
5

39
.6

3
39

.5
9

39
.7

6
40

.1
3

39
.9

39
.8

8
39

.7
7

39
.9

2
40

.2
7

40
.0

7
R

O
U

G
E2

17
.4

1
17

.6
5

18
.4

7
19

.0
7

19
.0

2
19

.5
3

19
.6

2
19

.7
7

19
.9

8
19

.7
5

19
.7

8
20

.1
7

20
.2

7
20

.2
5

19
.7

7
20

.0
1

20
.1

4
20

.1
6

20
.5

9
20

.4
1

20
.2

3
20

.2
6

20
.4

8
20

.8
1

20
.4

9
R

O
U

G
EL

su
m

35
.4

5
35

.3
4

36
.2

3
36

.7
6

36
.6

9
36

.9
7

37
.0

5
37

.2
6

37
.4

7
37

.0
7

37
.3

6
37

.6
5

37
.7

2
37

.6
6

37
.1

7
37

.4
7

37
.4

5
37

.6
1

37
.9

7
37

.7
1

37
.6

7
37

.6
9

37
.8

5
38

.1
2

37
.8

2

C
od

e
D

oc
um

en
ta

ti
on

G
en

er
at

io
n

-
G

o

BL
EU

9.
11

7
11

.2
83

12
.6

46
13

.1
58

12
.0

98
12

.3
08

12
.6

13
13

.1
71

13
.0

79
12

.2
01

12
.9

49
12

.5
34

13
.1

87
13

.0
07

12
.6

79
11

.8
99

13
.7

33
12

.7
54

13
.2

32
13

.0
57

12
.8

99
12

.8
68

12
.8

68
13

.6
19

13
.3

19
R

O
U

G
E1

45
.3

46
.4

3
47

.5
2

47
.2

7
47

.1
6

47
.8

8
47

.7
4

47
.1

7
48

.0
4

47
.7

2
47

.8
7

47
.6

1
47

.2
7

47
.8

3
47

.9
7

47
.2

2
47

.6
3

48
.0

4
47

.6
9

48
.0

4
48

.0
1

48
.1

1
47

.8
9

47
.2

8
47

.6
1

R
O

U
G

E2
23

.1
6

24
.3

2
24

.9
8

24
.6

8
24

.7
9

25
.4

25
.1

1
24

.6
9

25
.5

9
25

.4
1

25
.5

5
25

.0
7

24
.7

4
25

.4
7

25
.5

5
24

.8
2

25
.3

5
25

.7
25

.5
8

25
.8

8
25

.6
2

25
.6

4
25

.5
2

25
.1

25
.3

3
R

O
U

G
EL

su
m

43
.5

9
44

.6
5

45
.5

6
45

.3
4

45
.3

9
45

.9
7

45
.8

1
45

.2
3

46
.1

7
45

.9
3

46
.0

5
45

.8
5

45
.4

45
.9

8
46

.1
1

45
.4

7
45

.7
7

46
.2

5
45

.9
46

.2
7

46
.2

46
.2

8
46

.1
2

45
.4

4
45

.7
9

C
od

e
D

oc
um

en
ta

ti
on

G
en

er
at

io
n

-
Ph

p

BL
EU

7.
32

5
8.

75
3

11
.2

56
10

.4
38

11
.1

82
9.

61
8

10
.7

32
10

.8
68

10
.6

99
9.

65
3

11
.5

87
11

.7
97

11
.2

13
10

.6
25

9.
92

4
11

.3
98

10
.8

92
11

.8
95

10
.5

24
10

.6
41

10
.6

58
10

.6
22

11
.6

69
11

.4
05

12
.0

1
R

O
U

G
E1

39
.4

6
40

.3
7

41
.6

7
41

.1
4

41
.2

3
41

.2
41

.5
8

41
.7

6
41

.9
5

41
.4

3
42

.3
2

42
.0

1
42

.1
9

41
.8

5
41

.7
2

41
.8

6
42

.1
42

.5
7

42
.1

2
42

.0
4

42
.3

1
42

.2
7

41
.8

5
42

.1
7

42
.5

2
R

O
U

G
E2

16
.1

6
16

.7
4

18
.4

18
.2

5
18

.2
6

18
.2

6
18

.4
5

18
.7

9
18

.9
6

18
.3

7
19

.1
6

19
.2

4
19

.1
4

18
.8

6
18

.6
4

18
.9

8
19

.0
7

19
.3

5
19

.2
19

.0
2

19
.1

2
18

.9
4

19
.0

5
19

.1
6

19
.2

7
R

O
U

G
EL

su
m

37
.9

4
38

.7
8

39
.7

6
39

.4
1

39
.3

2
39

.4
7

39
.7

8
39

.9
3

40
.1

9
39

.8
2

40
.4

9
40

.0
8

40
.3

4
40

.1
6

40
.0

7
40

40
.3

9
40

.6
3

40
.3

3
40

.3
5

40
.6

40
.5

5
40

.0
2

40
.3

6
40

.5
4

C
od

e
D

oc
um

en
ta

ti
on

G
en

er
at

io
n

-
R

ub
y

BL
EU

3.
30

7
3.

32
4

4.
12

5
4.

18
5

4.
07

4
3.

72
1

3.
93

3
4.

90
5

3.
49

3
3.

91
4.

35
6

4.
46

8
4.

46
4

4.
45

5
3.

97
6

4.
40

8
4.

14
3

3.
93

4
4.

04
3

4.
35

1
4.

25
9

4.
01

2
4.

35
7

4.
37

3
4.

30
1

R
O

U
G

E1
30

.8
4

30
.9

32
.4

5
32

.3
3

32
.1

1
32

.3
6

31
.8

7
33

.2
2

31
.9

6
31

.6
5

32
.4

6
32

.4
8

32
.0

2
32

.6
6

31
.9

7
32

.7
4

32
.1

32
.3

1
32

.5
6

32
.8

8
32

.5
6

32
.5

5
32

.5
5

32
.3

32
.7

5
R

O
U

G
E2

11
.6

11
.3

2
12

.3
7

12
.5

7
12

.3
9

12
.5

12
.1

1
12

.6
1

12
.0

4
11

.9
8

12
.3

2
12

.2
8

12
.0

1
12

.4
3

12
.1

4
12

.5
5

12
.1

1
11

.8
9

12
.4

2
12

.4
5

12
.6

1
12

.4
2

12
.3

12
.3

1
12

.5
9

R
O

U
G

EL
su

m
29

.1
4

29
.0

6
30

.3
9

30
.3

7
30

.1
7

30
.4

1
29

.8
5

30
.9

2
29

.9
6

29
.6

8
30

.3
30

.3
2

29
.8

4
30

.5
1

29
.8

9
30

.3
4

29
.9

8
30

.0
4

30
.4

5
30

.6
3

30
.3

2
30

.2
7

30
.2

5
30

.1
2

30
.6

C
od

e
D

oc
um

en
ta

ti
on

G
en

er
at

io
n

-
Ja

va
sc

ri
pt

BL
EU

3.
41

9
3.

73
9

4.
57

2
4.

20
5

4.
54

3
4.

28
9

4.
47

5
5.

15
6

4.
30

5
4

4.
86

2
5.

06
9

4.
70

2
4.

94
5

4.
12

1
4.

77
4

4.
52

3
4.

51
2

4.
51

6
4.

87
5

4.
73

2
4.

29
1

4.
89

6
4.

51
7

4.
84

R
O

U
G

E1
28

.7
9

29
.1

9
29

.8
30

.0
2

30
.0

2
30

.2
30

.2
9

30
.8

30
.4

4
30

.1
6

30
.6

7
30

.9
9

30
.6

1
30

.9
2

30
.4

1
30

.5
9

30
.6

9
30

.9
5

30
.7

1
30

.9
3

30
.7

9
30

.9
5

30
.8

3
30

.6
9

30
.7

8
R

O
U

G
E2

9.
61

10
.3

5
10

.8
2

10
.6

7
10

.8
10

.9
5

10
.9

2
11

.0
8

10
.9

2
11

.0
1

11
.0

1
11

.3
2

11
.0

8
11

.4
6

10
.9

6
11

.2
7

11
.1

4
11

.2
5

11
.1

8
11

.1
9

11
.0

9
11

.2
9

11
.1

9
11

.0
3

11
.1

8
R

O
U

G
EL

su
m

27
.0

2
27

.6
5

28
.0

9
28

.1
7

28
.2

3
28

.5
5

28
.5

2
28

.8
6

28
.7

4
28

.5
2

28
.8

7
29

.0
8

28
.7

6
29

.0
5

28
.6

5
28

.7
9

28
.8

8
29

.1
1

29
.0

1
29

.1
28

.8
9

29
.1

2
28

.9
8

28
.8

1
28

.8
6

So
ur

ce
C

od
e

Su
m

m
ar

iz
at

io
n

-
Py

th
on

BL
EU

3.
62

2
4.

07
1

3.
56

7
3.

82
3

3.
86

5
3.

92
4

4.
07

2
3.

77
7

3.
99

4
3.

70
4

3.
99

1
4.

02
5

4.
48

3.
69

6
3.

88
4

4.
10

8
3.

76
6

3.
82

4
3.

92
8

3.
89

6
3.

85
3.

94
3.

70
6

4.
02

4
3.

79
R

O
U

G
E1

25
.5

8
26

.3
5

25
.1

2
26

.3
5

27
.4

1
26

.5
8

27
.0

5
26

.9
8

27
.3

4
25

.8
7

26
.6

7
26

.6
1

27
.8

1
26

.0
6

26
.5

4
26

.8
3

26
.1

6
26

.3
7

26
.4

8
25

.9
26

.1
26

.4
25

.9
3

26
.6

7
26

.4
3

R
O

U
G

E2
6.

85
7.

41
6.

66
7.

38
7.

76
7.

6
7.

66
7.

55
7.

64
7.

04
7.

2
7.

47
8.

05
7.

08
7.

42
7.

6
7.

18
7.

11
7.

37
7.

08
7.

23
7.

42
6.

98
7.

51
7.

35
R

O
U

G
EL

su
m

22
.8

6
23

.4
1

22
.4

23
.4

4
24

.1
8

23
.6

7
23

.9
8

23
.8

8
24

.1
2

23
.0

2
23

.5
3

23
.6

9
24

.6
4

23
.1

5
23

.5
6

23
.8

3
23

.1
4

23
.3

9
23

.4
6

22
.9

7
23

.1
4

23
.5

4
23

.0
9

23
.6

4
23

.3
6

So
ur

ce
C

od
e

Su
m

m
ar

iz
at

io
n

-
SQ

L

BL
EU

1.
54

5
1.

85
1

1.
45

5
1.

75
4

2.
12

8
1.

88
6

1.
93

1
2.

02
6

2.
10

1
1.

99
1

2.
02

5
1.

91
3

2.
06

2
1.

77
4

2.
05

8
2.

18
2.

04
2.

08
4

2.
09

2
2.

08
4

2.
03

7
2.

04
1

1.
96

1.
98

7
2.

09
5

R
O

U
G

E1
17

.1
4

17
.5

8
16

.9
6

18
.0

7
19

.1
9

18
.9

8
18

.8
3

19
.1

5
19

.0
9

18
.3

4
18

.7
5

18
.7

3
19

.0
9

18
.6

5
18

.6
6

19
.0

9
19

.2
3

19
.1

8
19

.2
8

19
.3

2
19

.1
5

19
.1

3
18

.3
9

18
.9

9
19

.5
3

R
O

U
G

E2
2.

84
3.

6
3.

1
3.

6
4.

35
4.

12
3.

97
4.

04
4

3.
55

3.
96

3.
8

4.
14

3.
54

3.
86

4.
04

3.
95

4.
39

4.
12

4.
13

3.
92

3.
88

3.
74

3.
8

4.
1

R
O

U
G

EL
su

m
15

.3
6

16
15

.2
9

16
.3

9
17

.2
9

17
.0

6
16

.9
9

17
.2

4
17

.0
8

16
.6

16
.8

5
16

.9
4

17
.3

1
16

.6
5

16
.8

6
17

.2
8

17
.4

1
17

.3
6

17
.3

9
17

.4
9

17
.1

5
17

.2
1

16
.6

3
17

.1
9

17
.6

5

So
ur

ce
C

od
e

Su
m

m
ar

iz
at

io
n

-
C

Sh
ar

p

BL
EU

3.
36

3
3.

64
6

3.
50

6
3.

78
2

4.
02

5
3.

98
9

3.
96

2
4.

22
5

4.
08

8
3.

63
3

3.
81

1
3.

82
3.

95
3

3.
56

1
3.

75
9

3.
87

2
3.

75
2

3.
76

3.
78

3.
69

1
3.

65
8

3.
93

9
3.

63
6

3.
91

9
3.

87
3

R
O

U
G

E1
22

.2
1

23
.0

2
23

.0
8

23
.8

8
24

.3
7

24
.4

2
23

.7
9

24
.7

1
24

.4
2

23
.4

5
24

.1
1

23
.8

4
24

.8
2

23
.5

7
24

.1
8

24
.3

1
24

.1
4

23
.7

7
23

.9
3

23
.7

2
24

.0
4

23
.9

4
23

.5
2

24
.1

2
24

.4
4

R
O

U
G

E2
5.

38
6.

25
5.

51
6.

07
6.

62
6.

41
6.

21
6.

65
6.

29
5.

8
6.

13
6.

2
6.

68
5.

94
6.

15
6.

36
6.

28
5.

98
6.

13
5.

99
6.

12
6.

16
5.

73
6.

2
6.

28
R

O
U

G
EL

su
m

20
.3

3
21

.0
4

21
.1

21
.8

1
22

.3
3

22
.2

4
21

.7
3

22
.5

22
.2

2
21

.4
8

21
.9

4
21

.7
6

22
.6

8
21

.5
22

.0
4

22
.1

4
21

.9
6

21
.7

6
21

.8
4

21
.6

6
21

.9
1

21
.9

4
21

.4
4

22
.0

1
22

.2
3

C
od

e
C

om
m

en
t

G
en

er
at

io
n

BL
EU

11
.8

75
15

.3
36

18
.3

79
19

.1
35

19
.9

43
21

.3
59

21
.6

13
22

.6
67

22
.3

36
22

.6
41

24
.2

3
24

.5
42

24
.1

85
24

.2
37

24
.2

33
24

.9
65

25
.5

91
24

.6
55

25
.1

72
25

.5
18

25
.5

04
25

.6
74

25
.9

58
26

.4
48

26
.6

01
R

O
U

G
E1

38
.8

5
42

.1
4

43
.3

9
44

.4
7

45
.0

1
45

.2
5

45
.6

9
45

.9
3

46
.3

8
46

.5
7

46
.9

2
47

.2
4

47
.1

47
.6

5
47

.5
9

47
.6

6
47

.8
3

47
.6

9
47

.9
6

48
.2

3
48

.1
7

48
.0

3
48

.5
1

48
.4

48
.3

9
R

O
U

G
E2

22
.7

4
26

.5
4

27
.7

28
.9

4
29

.7
7

30
.0

5
30

.4
2

30
.8

6
31

.2
31

.4
8

31
.8

6
32

.3
2

32
.2

6
32

.8
3

32
.9

1
32

.9
5

32
.9

9
32

.9
9

33
.3

1
33

.7
33

.5
9

33
.6

4
33

.9
5

33
.8

4
34

.0
7

R
O

U
G

EL
su

m
37

.5
1

40
.9

42
.1

43
.2

1
43

.8
1

44
.0

3
44

.4
8

44
.7

45
.2

2
45

.4
4

45
.7

3
46

.0
3

45
.9

2
46

.4
4

46
.4

2
46

.4
9

46
.6

8
46

.5
9

46
.8

2
47

.0
2

46
.9

8
46

.9
1

47
.3

8
47

.2
5

47
.2

4

G
it

C
om

m
it

M
es

sa
ge

G
en

er
at

io
n

BL
EU

36
.7

71
38

.1
59

38
.4

62
38

.6
09

38
.9

7
39

.0
13

38
.8

51
38

.8
76

39
.4

76
38

.8
8

39
.6

21
39

.5
17

39
.4

65
39

.2
67

39
.7

81
39

.8
41

39
.8

94
39

.8
61

39
.7

26
39

.5
52

39
.7

92
39

.8
15

39
.7

56
39

.7
29

39
.7

43
R

O
U

G
E1

39
.8

8
41

.0
2

41
.8

3
42

.5
9

42
.9

6
42

.9
7

42
.7

9
43

.0
4

43
.5

7
43

.3
6

43
.4

2
43

.9
8

43
.8

7
43

.6
4

44
.1

44
.0

1
44

.1
44

.2
44

.2
6

44
.1

8
44

.1
1

44
.1

5
44

.5
2

44
.5

7
44

.2
7

R
O

U
G

E2
26

.6
4

28
.1

9
28

.6
3

29
.1

5
29

.6
9

29
.6

2
29

.6
4

29
.7

6
30

.1
6

29
.9

4
30

.1
1

30
.3

3
30

.3
6

30
.0

5
30

.5
3

30
.4

2
30

.5
6

30
.9

7
30

.5
9

30
.3

5
30

.6
9

30
.6

30
.8

6
31

.1
3

30
.7

8
R

O
U

G
EL

su
m

39
.4

6
40

.6
9

41
.4

6
42

.2
42

.5
6

42
.5

1
42

.4
1

42
.5

6
43

.0
6

42
.8

9
43

43
.4

8
43

.2
4

43
.1

1
43

.5
8

43
.5

43
.6

4
43

.7
3

43
.8

5
43

.6
7

43
.6

5
43

.6
7

44
44

.1
3

43
.7

8

A
PI

Se
qu

en
ce

G
en

er
at

io
n

BL
EU

59
.9

71
63

.7
24

65
.4

48
65

.8
4

66
.2

62
66

.8
59

67
.3

83
68

.1
4

68
.1

18
68

.4
53

68
.1

81
68

.8
68

68
.8

26
68

.9
95

68
.9

45
69

.2
57

69
.0

86
68

.7
94

69
.1

56
69

.3
47

69
.5

69
.4

29
69

.4
5

69
.8

21
69

.8
43

R
O

U
G

E1
68

.0
5

70
.8

7
72

.6
9

73
.1

6
73

.7
3

74
.2

3
74

.5
5

75
.0

6
75

.2
7

75
.5

1
75

.3
75

.9
1

75
.7

4
75

.9
8

75
.9

4
76

.3
7

76
.1

8
76

.1
2

76
.2

2
76

.3
5

76
.5

2
76

.4
7

76
.5

8
76

.7
1

76
.6

3
R

O
U

G
E2

57
.7

3
61

.1
3

63
.2

4
63

.7
8

64
.3

3
64

.7
6

65
.1

9
65

.8
4

65
.9

3
66

.1
8

65
.9

9
66

.6
3

66
.6

3
66

.8
8

66
.7

7
67

.1
7

66
.9

5
67

.0
2

67
.1

5
67

.2
67

.4
4

67
.3

5
67

.5
6

67
.7

67
.6

R
O

U
G

EL
su

m
68

.0
3

70
.8

7
72

.6
6

73
.1

8
73

.6
9

74
.2

74
.5

5
75

.0
7

75
.2

5
75

.4
9

75
.2

6
75

.9
75

.7
3

75
.9

7
75

.9
6

76
.3

5
76

.1
3

76
.1

4
76

.2
3

76
.3

4
76

.5
2

76
.4

4
76

.5
4

76
.6

9
76

.6
1

Pr
og

ra
m

Sy
nt

he
si

s

BL
EU

93
.2

67
94

.0
01

94
.1

15
94

.2
02

94
.2

5
94

.2
05

94
.2

53
94

.2
91

94
.2

63
94

.2
94

94
.2

42
94

.2
21

94
.2

74
94

.2
35

94
.3

04
94

.1
95

94
.2

78
94

.3
61

94
.3

32
94

.3
23

94
.2

56
94

.2
33

94
.2

66
94

.3
42

94
.3

24
R

O
U

G
E1

98
.4

2
98

.7
2

98
.7

8
98

.9
1

98
.8

9
98

.9
3

98
.9

2
98

.9
2

98
.9

1
98

.9
3

98
.9

3
98

.9
2

98
.9

2
98

.9
6

98
.9

6
98

.9
4

98
.9

5
98

.9
6

98
.9

4
98

.9
5

98
.9

4
98

.9
6

98
.9

6
98

.9
6

98
.9

5
R

O
U

G
E2

97
.2

3
97

.7
8

97
.9

4
98

.1
5

98
.1

2
98

.1
8

98
.1

7
98

.1
9

98
.2

98
.2

3
98

.2
98

.1
6

98
.2

2
98

.2
3

98
.2

5
98

.2
2

98
.2

6
98

.2
8

98
.2

5
98

.2
5

98
.2

4
98

.2
7

98
.2

8
98

.2
6

98
.2

8
R

O
U

G
EL

su
m

98
.1

5
98

.4
9

98
.5

7
98

.7
98

.6
9

98
.7

5
98

.7
2

98
.7

4
98

.7
3

98
.7

5
98

.7
4

98
.7

3
98

.7
3

98
.7

6
98

.7
7

98
.7

6
98

.7
7

98
.7

9
98

.7
7

98
.7

7
98

.7
7

98
.7

8
98

.7
8

98
.7

7
98

.7
8

A
cc

ur
ac

y
83

.1
13

85
.3

04
81

.7
82

87
.7

72
87

.3
46

88
.0

4
88

.1
32

88
.2

43
88

.3
08

87
.8

45
87

.7
07

88
.1

14
88

.1
87

88
.0

58
88

.5
48

88
.3

45
86

.6
81

88
.7

61
88

.5
39

88
.6

59
87

.8
73

80
.9

41
88

.6
68

88
.5

48
88

.7
24

99

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

A.4. Multi-task Learning with Fine-tuning

Code Documentation Generation - Python, small model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 6.298 7.003 6.505 6.851 6.361 6.364 6.911 6.763 6.639 6.417
ROUGE1 34.08 34.73 34.51 34.3 33.66 33.87 33.99 33.69 33.79 33.33
ROUGE2 12.99 13.18 13.15 13.03 12.72 12.8 12.76 12.42 12.56 12.28
ROUGELsum 32.05 32.44 32.39 32.13 31.52 31.82 31.7 31.33 31.57 31.22

Code Documentation Generation - Python, base model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 7.88 7.468 6.857 7.499 7.491 7.504 7.919 7.558 7.836 7.988
ROUGE1 35.25 35.23 34.62 33.77 34.05 33.96 33.86 33.09 33.35 33.1
ROUGE2 13.83 13.72 13.3 12.71 12.81 12.84 12.72 12.27 12.5 12.27
ROUGELsum 32.81 32.95 32.48 31.39 31.67 31.6 31.44 30.59 31.04 30.57

Code Documentation Generation - Python, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000
BLEU 7.028 7.768 7.848 8.219 7.878 7.676
ROUGE1 34.45 33.96 33.84 33.66 33.66 33.45
ROUGE2 13.07 12.54 12.8 12.64 12.65 12.52
ROUGELsum 32.1 31.48 31.42 31.16 31.2 31.09

Code Documentation Generation - Java, small model, batch size: 256

Steps 2000 4000 8000 10000 14000 18000 22000 26000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000 80000 85000
BLEU 8.11 7.534 7.91 8.348 8.274 8.652 8.928 8.567 9.16 9.34 9.756 9.327 9.252 9.957 9.369 9.613 9.765 10.108 9.902 10.026
ROUGE1 37.47 35.94 36.28 36.52 36.27 36.4 36.39 35.33 35.19 35.77 34.82 35.28 34.68 34.92 34.72 35.57 35.12 35.14 35.22 34.77
ROUGE2 17.61 16.24 16.4 16.26 16.15 16.06 16.19 15.3 15.2 15.64 14.84 15.36 14.55 14.75 14.68 15.65 15.02 14.98 15.07 14.81
ROUGELsum 35.37 33.99 34.17 34.17 34.05 33.98 33.95 32.9 32.69 33.34 32.37 32.88 32.24 32.39 32.32 33.14 32.63 32.59 32.84 32.34

Code Documentation Generation - Java, base model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 11.936 11.959 11.502 11.125 11.778 11.66 12.361 11.834 12.072 11.792
ROUGE1 39.59 38.73 37.79 37.55 37.2 36.66 37.21 37.01 36.93 36.77
ROUGE2 19.79 18.73 17.6 17.39 17.09 16.69 17.02 16.79 16.83 16.57
ROUGELsum 37.39 36.26 35.2 35.06 34.66 34.11 34.55 34.43 34.26 34.03

Code Documentation Generation - Java, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000
BLEU 13.973 14.256 14.141 14.14 13.88 13.728
ROUGE1 39.68 38.91 39.13 39.54 38.96 38.64
ROUGE2 19.95 19.07 19.32 19.81 18.93 18.67
ROUGELsum 37.32 36.53 36.6 37.04 36.4 36.26

Code Documentation Generation - Go, small model, batch size: 256

Steps 2000 4000 6000 8000 10000 20000 30000 35000 40000 45000 50000 55000 60000 65000 70000 75000
BLEU 12.794 11.901 12.605 13.12 13.192 13.367 13.873 13.65 13.788 13.944 14.382 14.505 14.113 14.967 14.703 14.718
ROUGE1 47.92 46.93 47.19 47.18 47.21 46.61 46.13 45.89 45.61 45.58 45.63 45.27 45.52 45.1 45.47 45.58
ROUGE2 25.08 24.26 24.27 24.17 24.27 23.71 23.54 23.36 23.13 23.16 23.12 23.02 23.03 22.84 23.09 23.13
ROUGELsum 45.86 45.07 45 44.9 44.82 44.28 43.85 43.63 43.33 43.36 43.31 43.06 43.28 42.78 43.24 43.26

100

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

Code Documentation Generation - Go, base model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000
BLEU 13.276 13.499 13.445 14.423 15.058 14.563 15.059 15.243 15.352 15.849 15.412 15.358 15.717 15.949 15.8
ROUGE1 46.66 45.77 45.76 45.59 45.81 45.45 44.89 45.59 45.45 45.8 45.29 45.07 45.31 45.53 45.88
ROUGE2 24.57 24.05 24.01 23.74 23.86 23.47 23.31 23.83 23.67 24.05 23.53 23.49 23.58 23.63 24.03
ROUGELsum 44.86 43.85 43.89 43.48 43.67 43.3 42.78 43.55 43.32 43.61 43.08 42.98 43.03 43.31 43.73

Code Documentation Generation - Go, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BLEU 13.648 13.897 13.825 15.001 15.459 16.103 15.506 16.096 16.192 15.895
ROUGE1 46.04 46.25 46.4 46.36 46.48 45.67 46.53 47.05 46.78 47.01
ROUGE2 23.66 23.58 24.14 24.06 23.84 23.34 24.1 24.55 24.36 24.45
ROUGELsum 43.94 44 44.29 44.06 44.13 43.3 44.31 44.68 44.51 44.65

Code Documentation Generation - Php, small model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 10.036 8.886 10.895 9.851 11.514 11.764 12.547 11.825 11.808 11.667
ROUGE1 41.43 40.55 41.04 41.39 40.79 41.47 41.1 41.35 40.79 40.78
ROUGE2 17.49 17.14 18.18 18.02 17.96 18.24 18.22 18.24 17.99 18.1
ROUGELsum 39.55 38.94 39.17 39.65 38.93 39.6 39.13 39.48 38.93 38.95

Code Documentation Generation - Php, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
BLEU 12.758 15.454 16.422 16.38 17.299 17.578 16.961 17.995 17.943 17.32
ROUGE1 42.15 42.33 41.86 41.79 41.84 41.94 41.75 41.97 42.06 41.78
ROUGE2 19.46 19.47 19.38 19.75 19.82 19.86 19.92 20.04 20.18 19.99
ROUGELsum 40.27 40.26 39.67 39.81 39.85 39.76 39.78 39.83 40.02 39.75

Code Documentation Generation - Php, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 9000 10000
BLEU 14.343 14.391 15.921 16.197 16.412 17.044 16.126 17.441 16.821 17.502 16.775 17.779 17.652 17.854 17.343 18.325 17.804 18.055
ROUGE1 42.32 42.77 42.49 42.83 41.78 42.6 42.67 42.72 41.96 42.56 42.44 42.77 42.67 42.6 43.08 42.1 42.58
ROUGE2 19.49 19.8 19.81 20.14 19.6 20.23 20.25 20.43 19.79 20.44 20.48 20.46 20.72 20.5 20.51 20.96 20.15 20.61
ROUGELsum 40.13 40.86 40.21 40.8 39.75 40.49 40.51 40.67 39.88 40.57 40.52 40.4 40.76 40.56 40.68 41.08 40.02 40.55

Code Documentation Generation - Ruby, small model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 3.794 3.82 3.949 4.521 4.277 4.46 4.603 4.552 4.111 4.284
ROUGE1 29.39 28.42 27.93 28.4 28.05 27.59 27.75 27.67 27.71 27.49
ROUGE2 9.08 8.7 8.53 9.08 8.66 8.75 8.95 8.53 8.65 8.58
ROUGELsum 26.89 26.07 25.43 25.81 25.39 25.42 25.36 25.19 25.2 25.1

Code Documentation Generation - Ruby, base model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 4.657 5.019 4.845 5.216 5.018 5.352 4.755 4.811 5.071 5.014
ROUGE1 30.3 30 29.64 29.92 29.67 29.74 29.35 29.36 29.85 29.45
ROUGE2 10.29 9.94 10.02 10.14 9.86 9.85 9.55 9.48 9.74 9.93
ROUGELsum 27.82 27.65 27.3 27.46 27.28 27.2 26.87 26.87 27.24 27.04

Code Documentation Generation - Ruby, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000
BLEU 5.46 5.159 5.509 5.389 5.551 5.359 5.548 5.425
ROUGE1 30.15 29.97 30.2 30.29 30.49 30.56 30.39 30.38
ROUGE2 10.59 10.58 10.75 10.86 10.62 10.4 10.49 10.45
ROUGELsum 27.79 27.58 27.78 27.79 28.04 28.04 27.91 27.85

Code Documentation Generation - Javascript, small model, batch size: 256

Steps 2000 4000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000 34000 36000
BLEU 4.248 4.669 7.861 8.644 8.795 9.089 9.252 9.365 9.46 9.401 9.569 9.663 9.423 9.86 9.483 9.476
ROUGE1 28.92 28.4 28.77 29.26 29.11 29.12 29.1 28.88 28.95 28.8 28.8 28.92 28.57 29.27 28.69 28.83
ROUGE2 9.86 9.81 11.14 11.56 11.55 11.42 11.84 11.8 11.72 11.65 11.62 11.94 11.47 12.03 11.65 11.69
ROUGELsum 27.17 26.57 26.86 27.25 27.02 26.96 27.02 26.92 26.84 26.84 26.75 26.92 26.58 27.25 26.72 26.89

101

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

Code Documentation Generation - Javascript, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
BLEU 10.448 10.679 10.61 10.983 11.01 10.612 10.828 11.043 10.901 10.998
ROUGE1 30.85 31.19 30.84 30.77 30.99 30.7 31.18 30.87 30.7 30.67
ROUGE2 13 13.07 13.1 13.04 13.28 12.96 13.18 13.41 13 13.07
ROUGELsum 28.77 29.09 28.73 28.57 28.86 28.75 29.03 28.74 28.64 28.68

Code Documentation Generation - Javascript, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000
BLEU 8.796 10.036 10.397 10.969 10.78 10.363
ROUGE1 30.98 31.83 31.76 31.43 31.98 30.93
ROUGE2 11.83 13.37 13.34 13.39 13.72 13.19
ROUGELsum 28.81 29.86 29.77 29.3 30.02 29

Source Code Summarization - Python, small model, batch size: 256

Steps 600 1200 1800 2400 3000 3600 4200 4800 5000
BLEU 2.891 1.741 1.906 2.015 1.809 1.863 1.596 1.943 1.836
ROUGE1 23.94 19.25 20.08 19.63 19.85 19.44 18.88 19.85 19.55
ROUGE2 5.64 4.13 3.98 3.99 3.91 3.75 3.58 3.98 3.86
ROUGELsum 21.16 17.27 17.73 17.34 17.31 17.08 16.61 17.41 17.12

Source Code Summarization - Python, base model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BLEU 1.94 2.11 2.254 2.034 2.171 1.855 1.968 1.577 1.831 1.694
ROUGE1 19.53 21.07 20.11 19.99 20.49 19.51 20.09 19.43 20.42 19.84
ROUGE2 4.02 4.29 4.31 4.2 4.38 3.9 4.24 3.65 4.18 3.99
ROUGELsum 17.53 18.25 17.82 17.66 18.04 17.16 17.64 16.98 17.91 17.43

Source Code Summarization - Python, large model, batch size: 256

Steps 100 200 300 400 500 600
BLEU 2.848 2.217 1.752 1.762 2.05 2.536
ROUGE1 23.73 21.43 19.8 20.05 20.91 20.75
ROUGE2 5.94 5.05 3.58 3.62 4.45 4.45
ROUGELsum 20.95 19.13 17.27 17.25 18.34 18.31

Source Code Summarization - SQL, small model, batch size: 256

Steps 600 1200 1800 2400 3000 3600 4200 4800 5000
BLEU 1.602 1.877 1.688 1.406 1.11 0.871 1.013 0.881 0.906
ROUGE1 18.2 18.79 17.92 16.64 15.25 14.52 14.96 14.39 14.3
ROUGE2 3.6 3.96 3.63 3.06 2.62 2.2 2.46 2.17 2.08
ROUGELsum 16.4 16.96 16 15.02 13.81 13.12 13.58 12.93 12.94

Source Code Summarization - SQL, base model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BLEU 1.953 1.382 0.921 1.105 0.942 0.952 0.938 0.941 0.896 1.016
ROUGE1 19.42 16.79 15.19 14.93 15.06 14.41 14.88 14.82 14.64 14.83
ROUGE2 3.98 3.1 2.22 2.14 2.14 2.08 2.22 2.03 2.03 2.14
ROUGELsum 17.57 15.36 13.82 13.54 13.53 12.98 13.36 13.27 13.13 13.26

Source Code Summarization - SQL, large model, batch size: 256

Steps 100 200 300 400 500 600
BLEU 1.965 1.693 1.443 1.103 0.947 0.819
ROUGE1 17.48 18.77 17.8 15.31 15.07 14.57
ROUGE2 4.03 3.67 3.4 2.5 2.35 1.95
ROUGELsum 16.26 16.96 15.82 13.77 13.53 13.07

102

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

Source Code Summarization - CSharp, small model, batch size: 256

Steps 600 1200 1800 2400 3000 3600 4200 4800 5000 5000
BLEU 3.406 3.601 3.472 3.328 3.123 3.051 2.579 2.677 2.675 1.016
ROUGE1 22.18 22.67 22.34 22.01 21.68 20.95 19.69 20.06 20.17 14.83
ROUGE2 5.49 5.93 5.68 5.5 5.35 4.96 4.45 4.74 4.63 2.14
ROUGELsum 20.47 20.84 20.5 20.22 19.92 19.13 18.12 18.41 18.37 13.26

Source Code Summarization - CSharp, base model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
BLEU 4.199 3.818 3.683 3.414 2.55 2.405 2.771 2.701 2.712 2.699
ROUGE1 24.33 23.18 22.25 21.77 19.25 18.65 20.69 20.14 20.02 20.15
ROUGE2 6.56 5.95 5.47 5.23 3.96 3.78 4.66 4.33 4.29 4.47
ROUGELsum 22.18 21.15 20.17 19.69 17.29 16.77 18.86 18.12 18.08 18.21

Source Code Summarization - CSharp, large model, batch size: 256

Steps 100 200 300 400 500 600
BLEU 3.68 3.544 3.287 3.035 2.602 3.482
ROUGE1 22.84 22.63 22 20.81 19.25 22.05
ROUGE2 5.65 5.5 5.71 4.72 4.22 5.5
ROUGELsum 20.67 20.62 20.21 18.79 17.49 20.06

Code Comment Generation, small model, batch size: 256

Steps 50000 100000 200000 300000 400000 500000 550000 600000 650000 700000 750000 800000 850000 900000
BLEU 33.415 39.303 45.094 47.435 50.037 51.048 51.27 51.339 51.518 51.448 51.605 51.471 51.532 51.574
ROUGE1 51.85 54.59 56.65 57.44 58.27 58.49 58.35 58.53 58.38 58.36 58.45 58.3 58.49 58.39
ROUGE2 39.12 42.68 45.42 46.64 47.42 47.68 47.59 47.76 47.66 47.7 47.75 47.63 47.75 47.77
ROUGELsum 50.76 53.53 55.53 56.42 57.18 57.36 57.28 57.45 57.29 57.32 57.36 57.21 57.41 57.32

Code Comment Generation, base model, batch size: 256

Steps 10000 30000 40000 50000 60000 70000 80000 90000 100000
BLEU 36.02 47.477 50.61 51.888 52.108 52.413 52.362 52.653 52.255
ROUGE1 52.95 57.75 59.03 59.54 59.62 59.51 59.58 59.43 59.58
ROUGE2 40.33 46.66 47.96 48.54 48.78 48.63 48.79 48.65 48.73
ROUGELsum 51.83 56.65 57.89 58.42 58.49 58.38 58.47 58.3 58.43

Code Comment Generation, large model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000
BLEU 50.474 52.189 52.653 52.642 52.826 52.781
ROUGE1 59.01 59.84 59.79 60.11 59.89 59.48
ROUGE2 47.77 48.9 48.92 49.01 49.09 48.9
ROUGELsum 57.92 58.75 58.68 59.01 58.76 58.38

Git Commit Message Generation, small model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000
BLEU 43.262 44.47 44.432 44.59 44.505 44.426 44.478 44.591 44.411 44.593 44.165 4.487 44.507 44.304 44.301
ROUGE1 47.52 47.73 47.68 48.12 47.71 47.51 47.63 47.76 47.83 47.83 47.18 47.8 47.72 47.59 47.68
ROUGE2 34.83 35.37 35.67 35.65 35.61 35.35 35.68 35.6 35.57 35.71 35.21 35.66 35.71 35.44 35.56
ROUGELsum 47.08 47.06 47.15 47.56 47.12 46.95 47.07 47.32 47.32 47.27 46.74 47.29 47.31 47.09 47.25

Git Commit Message Generation, base model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 44.584 44.851 44.777 44.798 44.507 44.673 44.539 44.813 44.448 44.747
ROUGE1 48.61 48.34 48.41 48.54 48.11 48.28 48.31 48.75 48.49 48.59
ROUGE2 35.89 35.45 35.76 36.01 35.77 35.53 35.33 35.81 35.54 35.9
ROUGELsum 48.06 47.75 47.91 48.03 47.55 47.83 47.73 48.13 47.99 48.05

Git Commit Message Generation, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000 3500 4000
BLEU 44.525 44.864 44.793 44.433 44.61 44.858 44.779 44.783
ROUGE1 48.62 48.95 48.84 48.83 48.84 49.06 48.6 48.89
ROUGE2 35.48 35.88 35.85 36.22 36.33 36.35 35.98 36.36
ROUGELsum 47.94 48.34 48.11 48.2 48.2 48.53 48.05 48.31

103

A. Appendix - Hyperparameter Turning and Evaluation on Validation Set

API Sequence Generation, small model, batch size: 256

Steps 50000 100000 200000 300000 400000 500000 600000 700000 800000 900000 950000 1000000 1050000 1100000 1150000 1200000 1250000
BLEU 63.276 65.28 67.277 68.616 69.079 69.566 69.738 70.125 70.544 70.424 70.921 70.766 71.045 70.876 71.312 71.09 71.23
ROUGE1 70.66 72.59 74.55 75.49 76.18 76.62 76.77 77.13 77.38 77.31 77.68 77.63 77.87 77.81 78.05 77.95 77.91
ROUGE2 60.81 63.02 65.06 66.35 66.95 67.59 67.72 68.22 68.45 68.35 68.7 68.55 69.02 69 69.24 69.12 69.16
ROUGELsum 70.63 72.58 74.57 75.48 76.18 76.6 76.78 77.11 77.33 77.31 77.66 77.61 77.9 77.79 78.01 77.95 77.89

API Sequence Generation, base model, batch size: 256

Steps 20000 40000 100000 120000 140000 160000 180000 200000 220000 240000 260000 280000 300000 310000 320000 330000 340000 350000
BLEU 69.933 70.643 72.153 72.245 72.412 73.036 73.351 73.563 73.457 73.476 73.51 74.057 74.239 74.256 74.156 74.003 74.065 74.237
ROUGE1 76.92 77.7 79.01 79.24 79.59 79.93 80.01 80.43 80.67 80.68 80.84 80.99 81.3 81.31 81.32 81.32 81.39 81.41
ROUGE2 67.89 68.76 70.43 70.72 71.02 71.49 71.62 72.12 72.32 72.5 72.6 72.79 73.1 73.09 73.2 73.17 73.19 73.13
ROUGELsum 76.92 77.69 78.98 79.22 79.55 79.95 79.99 80.43 80.65 80.69 80.82 81 81.26 81.294 81.33 81.29 81.4 81.4

API Sequence Generation, large model, batch size: 256

Steps 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000
BLEU 72.371 73.372 74.109 73.643 74.036 74.268 74.164 74.324 74.354 74.628 74.567 74.543 74.528 74.231
ROUGE1 79.6 80.45 80.83 80.74 81.18 81.36 81.41 81.45 81.45 81.73 81.67 81.75 81.8 81.61
ROUGE2 71.15 72.08 72.67 72.46 73 73.3 73.34 73.4 73.45 73.74 73.63 73.71 73.81 73.41
ROUGELsum 79.6 80.43 80.81 80.77 81.18 81.33 81.39 81.46 81.46 81.72 81.64 81.72 81.78 81.6

Program Synthesis, small model, batch size: 256

Steps 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
BLEU 94.599 94.628 94.622 94.625 94.627 94.638 94.651 94.662 94.652 94.641
ROUGE1 99.17 99.16 99.2 99.2 99.2 99.2 99.21 99.2 99.21 99.2
ROUGE2 98.82 98.8 98.85 98.82 98.85 98.86 98.88 98.88 98.87 98.86
ROUGELsum 99.01 99 99.04 99.02 99.03 99.04 99.05 99.04 99.04 99.05
Accuracy 91.811 92.245 92.402 92.273 92.338 92.439 92.458 92.439 92.402 92.439

Program Synthesis, base model, batch size: 256

Steps 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
BLEU 94.671 94.634 94.635 94.66 94.646 94.669 94.65 94.637 94.652 94.647
ROUGE1 99.21 99.2 99.21 99.21 99.2 99.21 99.21 99.2 99.21 99.2
ROUGE2 98.91 98.86 98.88 98.21 98.89 98.92 98.89 98.86 98.89 98.88
ROUGELsum 99.05 99.04 99.05 99.06 99.05 99.06 99.05 99.03 99.05 99.05
Accuracy 92.541 92.43 92.448 92.513 92.541 92.606 92.513 92.43 92.55 92.495

Program Synthesis, large model, batch size: 256

Steps 500 1000 1500 2000 2500 3000
BLEU 94.596 94.646 94.639 94.641 94.628 94.615
ROUGE1 99.13 99.2 99.21 99.2 99.2 99.2
ROUGE2 98.77 98.84 98.86 98.85 98.84 98.84
ROUGELsum 98.97 99.02 99.04 99.05 99.03 99.04
Accuracy 92.19 92.393 92.439 92.467 92.393 92.402

104

B. Appendix - Model Output Examples for
each Task

B.1. Code Documentation Generation

B.1.1. Code Documentation Generation - Python

Model Size Model Output

CodeTrans
Single-Task Learning

Small Prints an error and exits with an optional exit code .
Base Prints the e .

CodeTrans
Transfer Learning

Small Prints a message and exits with the specified exit code .
Base Prints an error message and exits .
Large Print an error message and exit .

CodeTrans
Multi-task Learning

Small Prints a message and exits if exit_code is not None .
Base Prints an error message and exits with the given exit code .
Large Print an error message and exit .

CodeTrans
Multi-task Learning Fine-tuning

Small Print a message and exit .
Base Prints a message to the log and exits with an optional exit code .
Large Print error message and exit .

Code Snippet as Input
def e (message , exit_code = None) : print_log (message , YELLOW , BOLD)
if exit_code is not None : sys . exit (exit_code)

Golden Reference Print an error log message .

B.1.2. Code Documentation Generation - Java

Model Size Model Output

CodeTrans
Single-Task Learning

Small Casts a Cast to another type
Base Casts a value into a function that returns the same type as the supplied parameter .

CodeTrans
Transfer Learning

Small Casts the given class to a function .
Base Casts a function to a class
Large Cast a value to the given target type .

CodeTrans
Multi-task Learning

Small Casts the given class to the given target class .
Base Returns a function that casts the given value to the given type .
Large Creates a function that performs a cast to the given class .

CodeTrans
Multi-task Learning Fine-tuning

Small Creates a function that casts the given object to the target type .
Base Returns a function that casts the given object to the given class .
Large Returns a function that casts its input type to the target type .

Code Snippet as Input
public static < T , U > Function < T , U > castFunction (Class < U > target)
{ return new CastToClass < T , U > (target) ; }

Golden Reference Returns a function that cast the incoming values via a Class object .

105

B. Appendix - Model Output Examples for each Task

B.1.3. Code Documentation Generation - Go

Model Size Model Output

CodeTrans
Single-Task Learning

Small needSnapshotAbort returns true if we need to roll a snapshot .
Base needSnapshotAbort returns true if we need to call snapshot and false otherwise .

CodeTrans
Transfer Learning

Small needSnapshotAbort returns true if the Progress . Match field of ProgressState == ProgressStateSnapshot and pr . Match < pr . PendingSnapshot .
Base needSnapshotAbort returns true if the progress is in a snapshot and the match exceeds the pending snapshot .
Large needsnapshotabort returns true if we need to abort a snapshot .

CodeTrans
Multi-task Learning

Small needSnapshotAbort returns true if the current state is a snapshot .
Base needSnapshotAbort returns true if we need to abort the snapshot .
Large needsnapshotabort returns true if we need to abort a snapshot .

CodeTrans
Multi-task Learning Fine-tuning

Small needSnapshotAbort returns true if the progress needs to be aborted .
Base needSnapshotAbort returns true if we need to abort the snapshot
Large needsnapshotabort returns true if we need to abort the snapshot .

Code Snippet as Input func (pr * Progress) needSnapshotAbort () bool { return pr . State == ProgressStateSnapshot && pr . Match >= pr . PendingSnapshot }

Golden Reference needSnapshotAbort returns true if snapshot progress s Match is equal or higher than the pendingSnapshot .

B.1.4. Code Documentation Generation - Php

Model Size Model Output

CodeTrans
Single-Task Learning

Small Update table with specific data
Base Call when table is constructed

CodeTrans
Transfer Learning

Small Updates a table .
Base Calls the updateTable method to update a table .
Large Updates a table .

CodeTrans
Multi-task Learning

Small Update a table .
Base Updates a table .
Large updates a database table .

CodeTrans
Multi-task Learning Fine-tuning

Small Update a table .
Base Updates a table .
Large updates a database table .

Code Snippet as Input
public static function update ($ table) { if (! is_array ($ table))
{ $ table = json_decode ($ table , true) ; } if (! SchemaManager :: tableExists ($ table [’oldName’])) { throw SchemaException ::
tableDoesNotExist ($ table [’oldName’]) ; } $ updater = new self ($ table) ; $ updater -> updateTable () ; } }

Golden Reference Update the table .

B.1.5. Code Documentation Generation - Ruby

Model Size Model Output

CodeTrans
Single-Task Learning

Small Log a message at the given level if the logger is present
Base Writes a log message if the current log level is at or below the supplied severity .

CodeTrans
Transfer Learning

Small Create an IO object at the given level with the given block . This method will not be called directly if the IO object at that level .
Base Writes a message of the given severity to the log .
Large Writes a message to the log device .

CodeTrans
Multi-task Learning

Small Add a message to the log .
Base Add a message to the logger .
Large Add a message to the log .

CodeTrans
Multi-task Learning Fine-tuning

Small Writes a message to the log with a given severity .
Base We need to overload the add method . Basibally it is the same as the original one but we add our own log format to it .
Large Writes a message if the severity is high enough . This method is executed asynchronously .

Code Snippet as Input
def add (severity , progname , & block) return true if io . nil? || severity < level message =
format_message (severity , progname , yield) MUTEX . synchronize { io . write (message) } true end

Golden Reference Add a message to the logger with the given severity and progname .

106

B. Appendix - Model Output Examples for each Task

B.1.6. Code Documentation Generation - Javascript

Model Size Model Output

CodeTrans
Single-Task Learning

Small Returns true if the browser is a native element .
Base Returns whether the givenEnv should be focused .

CodeTrans
Transfer Learning

Small Checks if the current browser is on a standard browser environment .
Base Check if browser environment is a standard browser environment
Large Check if the environment is standard browser .

CodeTrans
Multi-task Learning

Small Returns true if the browser environment is a standard browser environment .
Base Checks if the current browser environment is a standard browser environment .
Large Determines if the current environment is a standard browser environment

CodeTrans
Multi-task Learning Fine-tuning

Small Standard browser environment has a notion of what React Native does not support it .
Base Check if the browserEnv is standard .
Large Checks if the browser is in a standard environment .

Code Snippet as Input
function isStandardBrowserEnv () { if (typeof navigator !== ’undefined’ && (navigator . product === ’ReactNative’ || navigator . product
=== ’NativeScript’ || navigator . product === ’NS’)) { return false ; } return (typeof window !== ’undefined’ && typeof document !== ’undefined’) ; }

Golden Reference Determine if we re running in a standard browser environment

B.2. Source Code Summarization

B.2.1. Source Code Summarization - Python

Model Size Model Output

CodeTrans
Single-Task Learning

Small Python : Compare files containing a folder
Base How to copy a text file into a variable ?

CodeTrans
Transfer Learning

Small includes within a line ’ with python 2.7
Base Python : Include specific lines in a file
Large Changing a line in a text file

CodeTrans
Multi-task Learning

Small How to write a string to a file in Python ?
Base How to write a text file to a text file in Python ?
Large How to remove a line from a file in python ?

CodeTrans
Multi-task Learning Fine-tuning

Small How to include text in a file using Python ?
Base Python : ’Include this text in a file ’
Large How to remove empty string in python

Code Snippet as Input
with open (CODE_STRING , CODE_STRING) as in_file : buf = in_file . readlines () with open (CODE_STRING , CODE_STRING)
as out_file : for line in buf : if line == " ; Include this text " : line = line + " Include below " out_file . write (line) ’

Golden Reference Adding lines after specific line

B.2.2. Source Code Summarization - CSharp

Model Size Model Output

CodeTrans
Single-Task Learning

Small How to convert C # DateTime to C #
Base How to convert DateTime to DateTime format in C # ?

CodeTrans
Transfer Learning

Small How to convert double to DateTime in C # ?
Base Convert double to DateTime
Large How to convert double to datetime ?

CodeTrans
Multi-task Learning

Small How to convert unix timestamp to local time in C # ?
Base How to convert a double to a DateTime in C # ?
Large How to convert double to datetime in C # ?

CodeTrans
Multi-task Learning Fine-tuning

Small How to convert double to DateTime in C # ?
Base How to convert double to DateTime in C # ?
Large Convert double to datetime in C #

Code Snippet as Input
public static DateTime ParseUnixDateTime (double unixTime) { var dt = new DateTime (CODE_INTEGER
CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER , CODE_INTEGER ,
System . DateTimeKind . Utc) ; dt = dt . AddSeconds (unixTimeStamp) . ToLocalTime () ; return dt ; }

Golden Reference C # Display compare timestamp to current month

107

B. Appendix - Model Output Examples for each Task

B.2.3. Source Code Summarization - SQL

Model Size Model Output

CodeTrans
Single-Task Learning

Small mysql : how to get the difference of a column in a table ?
Base how do i get the average of a date range in sql server 2005 ?

CodeTrans
Transfer Learning

Small how to get the time in milliseconds since the start time of the transaction was taken ?
Base how to get current date time in sql server ?
Large mysql time () function

CodeTrans
Multi-task Learning

Small how to get the time in mysql ?
Base how can i get the time of a date in mysql ?
Large how to convert datetime to time in mysql ?

CodeTrans
Multi-task Learning Fine-tuning

Small how to get the correct time from mysql database ?
Base how to convert date to time in mysql ?
Large select time from mysql table

Code Snippet as Input select time (col0) from tab0

Golden Reference datetime implementation in php mysql

B.3. Code Comment Generation

Model Size Model Output

CodeTrans
Single-Task Learning

Small Renders the URI into its textual representation .
Base Renders the URI .

CodeTrans
Transfer Learning

Small Renders the given URI into a string . Override this if you want to do something special to convert the URI into ASCII .
Base Render a URI
Large Renders the given URI using the encoding scheme in ISO-8859-1 .

CodeTrans
Multi-task Learning

Small Renders a URI .
Base Renders the given URI into a string .
Large Renders the URI as an ASCII string .

CodeTrans
Multi-task Learning Fine-tuning

Small Render the URI as ASCII string .
Base Renders a URI as a string , escaping special characters .
Large Render the given URI .

Code Snippet as Input protected String renderUri (URI uri) return uri . toASCIIString () ;

Golden Reference Render the URI as a string

B.4. Git Commit Message Generation

Model Size Model Output

CodeTrans
Single-Task Learning

Small Added missing Jungtaeks to log4j . jar
Base Added missing jar file

CodeTrans
Transfer Learning

Small Adding missing joscar jar
Base Added joscar . jar to the lib directory of the Gateway project
Large added missing joscar jar

CodeTrans
Multi-task Learning

Small add joscar jar
Base Add joscar jar
Large Add joscar

CodeTrans
Multi-task Learning Fine-tuning

Small Adding missing jar file
Base Added joscar jar
Large Started work on the icq / aim protocol provider implementation

Code Snippet as Input new file mode 100644 index 000000000 . . 892fda21b Binary files / dev / null and b / src / plugins / gateway / lib / joscar . jar differ

Golden Reference Added joscar JAR

108

B. Appendix - Model Output Examples for each Task

B.5. API Sequence Generation

Model Size Model Output

CodeTrans
Single-Task Learning

Small Color . getRed Color . getGreen Color . getBlue
Base Color . getRed Color . getGreen Color . getBlue

CodeTrans
Transfer Learning

Small Color . getRed Color . getGreen Color . getBlue
Base Math . max Math . min
Large Math . max Math . min

CodeTrans
Multi-task Learning

Small Math . min Math . max
Base Color . getRed Color . getGreen Color . getBlue
Large Renders Math . round Math . max Math . round Math . max Math . round

CodeTrans
Multi-task Learning Fine-tuning

Small Color . getRed Color . getGreen Color . getBlue
Base Color . getRed Color . getGreen Color . getBlue
Large Color . getRed Color . getGreen Color . getBlue

Code Snippet as Input Convert from normal rgb to java hsb

Golden Reference Color.RGBtoHSB Color.getHSBColor

B.6. Program Synthesis

Model Size Model Output

CodeTrans
Single-Task Learning

Small [map a [partial1 b -]]
Base [map a [partial1 b -]]

CodeTrans
Transfer Learning

Small [map a [partial1 b -]]
Base [map a [partial1 b -]]
Large [map a [partial1 b -]]

CodeTrans
Multi-task Learning

Small [map a [partial1 b -]]
Base [map a [partial1 b -]]
Large [map a [partial1 b -]]

CodeTrans
Multi-task Learning Fine-tuning

Small [map a [partial1 b -]]
Base [map a [partial1 b -]]
Large [map a [partial1 b -]]

Code Snippet as Input you are given an array of numbers a and a number b , compute the difference of elements in a and b

Golden Reference [map a [partial1 b -]]

109

List of Figures

2.1. The architecture of a single-layer feed-forward neural network. 7
2.2. The word2vec models architecture. 8
2.3. The architecture and details of model RNN and LSTM. 9
2.4. An example of the Sequence to Sequence model. 9
2.5. The transformer architecture. 10
2.6. The computational steps of the multi-head self-attention layer. 11
2.7. Bert model with one additional output layer for fine-tuning tasks. 13
2.8. Two different multitask learning methods for deep learning. 14
2.9. The architecture of Multi-Task Deep Neural Network (MT-DNN) model. . . . 15
2.10. The numbers of publications about deep learning in software engineering and

development domain per year. 17
2.11. Software engineering tasks are categorized into six software engineering steps. 17
2.12. Data type used in software engineering tasks. 18
2.13. Deep learning architectures used by software engineering tasks. 19

3.1. The evaluation result of CodeBERT for Code Documentation Generation tasks. 23
3.2. CODE-NN Architecture and the evaluation result. 23
3.3. DeepCom Architecture and the evaluation result. 25
3.4. DeepCom SBT method example. 26
3.5. NMT models evaluation results by metrics and one human evaluation example. 27
3.6. An example for extracting an API sequence and its query from a Java method. 28
3.7. The architecture of Seq2Tree encoder-decorder model. 29
3.8. Different transformer architectures. 30
3.9. The different denoising objective examples. 31
3.10. Experiment steps on unsupervised objectives and the selected decisions. . . . 31

4.1. The Boxplot of the sample length in unsupervised data corpus 38
4.2. A Python example with code and documentation from CodeSearchNet Corpus

Collection. 39
4.3. A SQL example with the original code snippet, the code snippet after prepro-

cessing and the three related summarizations. 40
4.4. A Java example for Code Comment Generation task. 41
4.5. An example for the Git Commit Message Generation task. 41
4.6. An example for the API Sequence Recommendation task. 42
4.7. An example for the Program Synthesis task. 43

110

List of Figures

4.8. Input and output sample length in Boxplot for supervised datasets. 45
4.9. The transformer architecture. 47

5.1. The Tensorboard of the T5 small model during the transfer learning pre-training. 56
5.2. The Tensorboard of the T5 base model during the transfer learning pre-training. 57
5.3. The Tensorboard of the T5 large model during the transfer learning pre-training. 58
5.4. The Tensorboard of the T5 small model during the multi-task learning. 61
5.5. The Tensorboard of the T5 base model during the multi-task learning. 61
5.6. The Tensorboard of the T5 large model during the multi-task learning. 62

6.1. The evaluation of multi-task learning checkpoints on the validation set for two
tasks. 75

6.2. The multi-task learning fine-tuning base model page for the task Code Docu-
mentation Generation - Java from the Hugging Face Model Hub. 77

111

List of Tables

4.1. Statistics of the unsupervised datasets . 37
4.2. Unsupervised programming language datasets attributes 37
4.3. The summarization of supervised datasets. 44
4.4. Important hyperparameters for the architecture of T5 models 48

5.1. Specifications of two kinds of Google Cloud TPUs we used in this thesis. . . . 52
5.2. The single-task learning experiment setups for each task 55
5.3. The transfer learning fine-tuning experiment setups for each task. 59
5.4. Evalutation on the validation set of the Source Code Summarization SQL task

for fine-tuning 1,000 steps using the interval of 100. 60
5.5. The best multi-task learning checkpoints (training steps) for different tasks in

the small and base model. 62
5.6. The multi-task learning fine-tuning experiment setups for each task. 64

6.1. The evaluation results for the task Code Documentation Generation - Python. 66
6.2. The evaluation results for the task Code Documentation Generation - Java. . . 67
6.3. The evaluation results for the task Code Documentation Generation - Go. . . . 67
6.4. The evaluation results for the task Code Documentation Generation - Php. . . 68
6.5. The evaluation results for the task Code Documentation Generation - Ruby. . . 68
6.6. The evaluation results for the task Code Documentation Generation - Javascript. 69
6.7. The evaluation results for the task Source Code Summarization - Python. . . . 69
6.8. The evaluation results for the task Source Code Summarization - CSharp. . . . 70
6.9. The evaluation results for the task Source Code Summarization - SQL. 70
6.10. The evaluation results for the task Code Comment Generation. 71
6.11. The evaluation results for the task Git Commit Message Generation. 72
6.12. The evaluation results for the task API Sequence Recommendation. 73
6.13. The evaluation results for the task Program Synthesis. 73
6.14. The models’ output for an example of the task Code Documentation Generation

- Javascript. 74
6.15. The models’ output for an example of the task Source Code Summarization. . 76
6.16. The evaluation of the task Code Documentation Generation - Java on the

validation set when fine-tuning the multi-task base model. 76

112

Bibliography

[1] W. W. Royce. “Managing the development of large software systems: concepts and
techniques”. In: Proceedings of the 9th international conference on Software Engineering. 1987,
pp. 328–338.

[2] R. Raina, A. Madhavan, and A. Y. Ng. “Large-scale deep unsupervised learning using
graphics processors”. In: Proceedings of the 26th annual international conference on machine
learning. 2009, pp. 873–880.

[3] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, et al. “In-datacenter performance analysis of a tensor processing
unit”. In: Proceedings of the 44th annual international symposium on computer architecture.
2017, pp. 1–12.

[4] S. SEVERINI. “Multi-task Deep Learning in the Software Development domain”. In:
(2019).

[5] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu. “Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer”. In: Journal of Machine Learning Research 21.140 (2020), pp. 1–67. url:
http://jmlr.org/papers/v21/20-074.html.

[6] J. W. Tukey. “The teaching of concrete mathematics”. In: The American Mathematical
Monthly 65.1 (1958), pp. 1–9.

[7] P. Bourque, R. E. Fairley, et al. Guide to the software engineering body of knowledge (SWEBOK
(R)): Version 3.0. IEEE Computer Society Press, 2014.

[8] E. D. Liddy. “Natural language processing”. In: (2001).
[9] K. S. Jones. “A statistical interpretation of term specificity and its application in re-

trieval”. In: Journal of documentation (1972).
[10] L. Deng and Y. Liu. Deep learning in natural language processing. Springer, 2018.
[11] R. Quiza and J. Davim. “Computational Methods and Optimization”. In: Jan. 2011,

pp. 177–208. isbn: 978-1-84996-449-4. doi: 10.1007/978-1-84996-450-0.
[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient estimation of word representa-

tions in vector space”. In: arXiv preprint arXiv:1301.3781 (2013).
[13] J. Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural networks

61 (2015), pp. 85–117.
[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. “Distributed repre-

sentations of words and phrases and their compositionality”. In: Advances in neural
information processing systems. 2013, pp. 3111–3119.

113

http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1007/978-1-84996-450-0

Bibliography

[15] T. Mikolov, W.-t. Yih, and G. Zweig. “Linguistic regularities in continuous space word
representations”. In: Proceedings of the 2013 conference of the north american chapter of the
association for computational linguistics: Human language technologies. 2013, pp. 746–751.

[16] T. Mikolov, S. Kombrink, L. Burget, J. Černock, and S. Khudanpur. “Extensions of
recurrent neural network language model”. In: 2011 IEEE international conference on
acoustics, speech and signal processing (ICASSP). IEEE. 2011, pp. 5528–5531.

[17] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural computation
9.8 (1997), pp. 1735–1780.

[18] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to sequence learning with neural
networks”. In: Advances in neural information processing systems. 2014, pp. 3104–3112.

[19] M. Sundermeyer, R. Schlüter, and H. Ney. “LSTM neural networks for language model-
ing”. In: Thirteenth annual conference of the international speech communication association.
2012.

[20] S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget. “Recurrent neural network based
language modeling in meeting recognition”. In: Twelfth annual conference of the interna-
tional speech communication association. 2011.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. “Attention is all you need”. In: Advances in neural information processing
systems. 2017, pp. 5998–6008.

[22] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. “How transferable are features in deep
neural networks?” In: Advances in neural information processing systems. 2014, pp. 3320–
3328.

[23] S. J. Pan and Q. Yang. “A survey on transfer learning”. In: IEEE Transactions on knowledge
and data engineering 22.10 (2009), pp. 1345–1359.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of deep bidirec-
tional transformers for language understanding”. In: arXiv preprint arXiv:1810.04805
(2018).

[25] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler.
“Aligning books and movies: Towards story-like visual explanations by watching movies
and reading books”. In: Proceedings of the IEEE international conference on computer vision.
2015, pp. 19–27.

[26] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. “Albert: A
lite bert for self-supervised learning of language representations”. In: arXiv preprint
arXiv:1909.11942 (2019).

[27] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. “Roberta: A robustly optimized bert pretraining approach”. In: arXiv
preprint arXiv:1907.11692 (2019).

[28] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. “DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter”. In: arXiv preprint arXiv:1910.01108 (2019).

[29] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le. “Xlnet:
Generalized autoregressive pretraining for language understanding”. In: Advances in
neural information processing systems. 2019, pp. 5753–5763.

114

Bibliography

[30] R. Caruana. “Multitask learning”. In: Machine learning 28.1 (1997), pp. 41–75.
[31] S. Ruder. “An overview of multi-task learning in deep neural networks”. In: arXiv

preprint arXiv:1706.05098 (2017).
[32] X. Liu, P. He, W. Chen, and J. Gao. “Multi-task deep neural networks for natural

language understanding”. In: arXiv preprint arXiv:1901.11504 (2019).
[33] R. Mihalcea, H. Liu, and H. Lieberman. “NLP (natural language processing) for NLP

(natural language programming)”. In: International Conference on Intelligent Text Processing
and Computational Linguistics. Springer. 2006, pp. 319–330.

[34] M. Stenmark and P. Nugues. “Natural language programming of industrial robots”. In:
IEEE ISR 2013. IEEE. 2013, pp. 1–5.

[35] X. Li, H. Jiang, Z. Ren, G. Li, and J. Zhang. “Deep learning in software engineering”. In:
arXiv preprint arXiv:1805.04825 (2018).

[36] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, et al. “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups”. In: IEEE Signal processing
magazine 29.6 (2012), pp. 82–97.

[37] C. A. Watson. “Deep Learning in Software Engineering”. PhD thesis. The College of
William and Mary, 2020.

[38] M.-A. Lachaux, B. Roziere, L. Chanussot, and G. Lample. “Unsupervised Translation of
Programming Languages”. In: arXiv preprint arXiv:2006.03511 (2020).

[39] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang,
et al. “Codebert: A pre-trained model for programming and natural languages”. In:
arXiv preprint arXiv:2002.08155 (2020).

[40] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt. “Codesearchnet
challenge: Evaluating the state of semantic code search”. In: arXiv preprint arXiv:1909.09436
(2019).

[41] C.-Y. Lin and F. J. Och. “Orange: a method for evaluating automatic evaluation metrics
for machine translation”. In: COLING 2004: Proceedings of the 20th International Conference
on Computational Linguistics. 2004, pp. 501–507.

[42] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer. “Summarizing source code using a
neural attention model”. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 2016, pp. 2073–2083.

[43] M.-T. Luong, H. Pham, and C. D. Manning. “Effective approaches to attention-based
neural machine translation”. In: arXiv preprint arXiv:1508.04025 (2015).

[44] S. Banerjee and A. Lavie. “METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments”. In: Proceedings of the acl workshop on
intrinsic and extrinsic evaluation measures for machine translation and/or summarization. 2005,
pp. 65–72.

[45] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan,
W. Shen, C. Moran, R. Zens, et al. “Moses: Open source toolkit for statistical machine
translation”. In: Proceedings of the 45th annual meeting of the ACL on interactive poster and
demonstration sessions. Association for Computational Linguistics. 2007, pp. 177–180.

115

Bibliography

[46] A. M. Rush, S. Chopra, and J. Weston. “A neural attention model for abstractive sentence
summarization”. In: arXiv preprint arXiv:1509.00685 (2015).

[47] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin. “Deep code comment generation”. In: 2018
IEEE/ACM 26th International Conference on Program Comprehension (ICPC). IEEE. 2018,
pp. 200–20010.

[48] D. Bahdanau, K. Cho, and Y. Bengio. “Neural machine translation by jointly learning to
align and translate”. In: arXiv preprint arXiv:1409.0473 (2014).

[49] S. Jiang, A. Armaly, and C. McMillan. “Automatically generating commit messages
from diffs using neural machine translation”. In: 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE. 2017, pp. 135–146.

[50] R. Sennrich, O. Firat, K. Cho, A. Birch, B. Haddow, J. Hitschler, M. Junczys-Dowmunt,
S. Läubli, A. V. M. Barone, J. Mokry, et al. “Nematus: a toolkit for neural machine
translation”. In: arXiv preprint arXiv:1703.04357 (2017).

[51] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. “BLEU: a method for automatic
evaluation of machine translation”. In: Proceedings of the 40th annual meeting of the
Association for Computational Linguistics. 2002, pp. 311–318.

[52] X. Gu, H. Zhang, D. Zhang, and S. Kim. “Deep API learning”. In: Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. 2016,
pp. 631–642.

[53] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. “Learning phrase representations using RNN encoder-decoder for statistical
machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

[54] M. D. Zeiler. “Adadelta: an adaptive learning rate method”. In: arXiv preprint arXiv:1212.5701
(2012).

[55] P. Koehn. “Pharaoh: a beam search decoder for phrase-based statistical machine trans-
lation models”. In: Conference of the Association for Machine Translation in the Americas.
Springer. 2004, pp. 115–124.

[56] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. “Mining succinct and
high-coverage API usage patterns from source code”. In: 2013 10th Working Conference
on Mining Software Repositories (MSR). IEEE. 2013, pp. 319–328.

[57] M. Raghothaman, Y. Wei, and Y. Hamadi. “Swim: Synthesizing what i mean-code search
and idiomatic snippet synthesis”. In: 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE). IEEE. 2016, pp. 357–367.

[58] D. Alvarez-Melis and T. S. Jaakkola. “Tree-structured decoding with doubly-recurrent
neural networks”. In: (2016).

[59] I. Polosukhin and A. Skidanov. “Neural program search: Solving programming tasks
from description and examples”. In: arXiv preprint arXiv:1802.04335 (2018).

[60] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A.-r. Mohamed, and P. Kohli. “Robustfill:
Neural program learning under noisy i/o”. In: arXiv preprint arXiv:1703.07469 (2017).

[61] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language under-
standing by generative pre-training. 2018.

116

Bibliography

[62] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and N. Shazeer. “Generating
wikipedia by summarizing long sequences”. In: arXiv preprint arXiv:1801.10198 (2018).

[63] V. Markovtsev and W. Long. “Public Git archive: A big code dataset for all”. In:
Proceedings of the 15th International Conference on Mining Software Repositories. 2018,
pp. 34–37.

[64] V. Raychev, P. Bielik, and M. Vechev. “Probabilistic model for code with decision trees”.
In: ACM SIGPLAN Notices 51.10 (2016), pp. 731–747.

[65] Z. Yao, D. S. Weld, W.-P. Chen, and H. Sun. “StaQC: A Systematically Mined Question-
Code Dataset from Stack Overflow”. In: Proceedings of the 2018 World Wide Web Conference
on World Wide Web. International World Wide Web Conferences Steering Committee.
2018, pp. 1693–1703.

[66] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robinson. “One
billion word benchmark for measuring progress in statistical language modeling”. In:
arXiv preprint arXiv:1312.3005 (2013).

[67] T. Kudo. “Subword regularization: Improving neural network translation models with
multiple subword candidates”. In: arXiv preprint arXiv:1804.10959 (2018).

[68] M. Post. “A call for clarity in reporting BLEU scores”. In: arXiv preprint arXiv:1804.08771
(2018).

[69] C.-Y. Lin. “Rouge: A package for automatic evaluation of summaries”. In: Text summa-
rization branches out. 2004, pp. 74–81.

[70] Y. E. Wang, G.-Y. Wei, and D. Brooks. “Benchmarking tpu, gpu, and cpu platforms for
deep learning”. In: arXiv preprint arXiv:1907.10701 (2019).

117

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Thesis Contribution
	Research Approach
	Structure of the Thesis

	Background
	Software Engineering and Development
	Natural Language Processing
	Deep Learning in Natural Language Processing
	Transformer Model and Attention Mechanism
	Transfer Learning
	Multitask Learning

	Natural Language Processing in Software Development

	Related Work
	Tasks Related Work
	Code Documentation Generation
	Source Code Summarization
	Code Comment Generation
	Git Commit Message Generation
	API Sequence Recommendation
	Program Synthesis

	Model Related Work
	Text-to-Text Transfer Transformer

	Approach
	Datasets
	Unsupervised Dataset
	Supervised Dataset

	Vocabulary
	Model Architecture
	Evaluation Metrics
	BLEU score
	ROUGE score
	Accuracy

	Experiment
	Experimental Setup
	Hardware
	Software Usage

	Single-task Learning
	Transfer Learning
	Pre-training
	Fine-tuning

	Multi-task Learning
	Multi-task Learning with Fine-tuning

	Evaluation Results and Discussion
	Evaluation Results
	Code Documentation Generation
	Source Code Summarization
	Code Comment Generation
	Git Commit Message Generation
	API Sequence Recommendation
	Program Synthesis

	Discussion
	Models Publication

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix - Hyperparameter Turning and Evaluation on Validation Set
	Single-task Learning
	Code Documentation Generation
	Source Code Summarization
	Code Comment Generation
	Git Commit Message Generation
	API Sequence Generation
	Program Synthesis

	Transfer Learning
	Multi-task Learning
	Multi-task Learning with Fine-tuning

	Appendix - Model Output Examples for each Task
	Code Documentation Generation
	Code Documentation Generation - Python
	Code Documentation Generation - Java
	Code Documentation Generation - Go
	Code Documentation Generation - Php
	Code Documentation Generation - Ruby
	Code Documentation Generation - Javascript

	Source Code Summarization
	Source Code Summarization - Python
	Source Code Summarization - CSharp
	Source Code Summarization - SQL

	Code Comment Generation
	Git Commit Message Generation
	API Sequence Generation
	Program Synthesis

	List of Figures
	List of Tables
	Bibliography

