

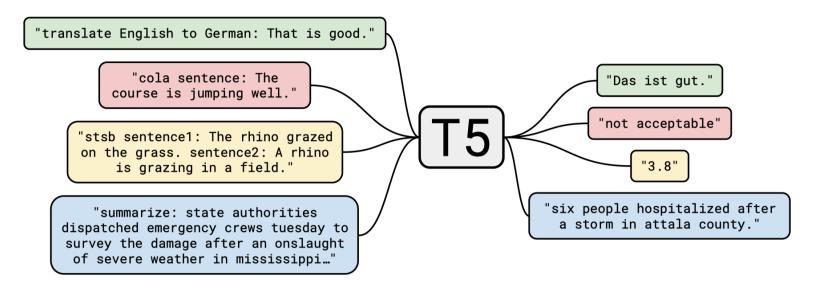
- Motivation and Introduction
- Research Questions
- Model Architecture
- Tasks and Datasets
- Evaluation Metrics
- Results and Discussion
- Conclusion and Future Work
- References

- **Motivation and Introduction**
- Research Questions
- Model Architecture
- Tasks and Datasets
- Evaluation Metrics
- Results and Discussion
- Conclusion and Future Work
- References

Introduction and Motivation

- Software Development in NLP
 - Software code is a language
 - NLU and NLG applications:
 - Analytics Dashboards
 - Chatbot
 - Content Creation
 - Visions of NLP in the Software Development world
 - Better readability of the code
 - Easier to compare and evaluate the code
 - Smoother developing process

Introduction and Motivation


Recent success of Transfer Learning

Text-To-Text Transfer Transformer

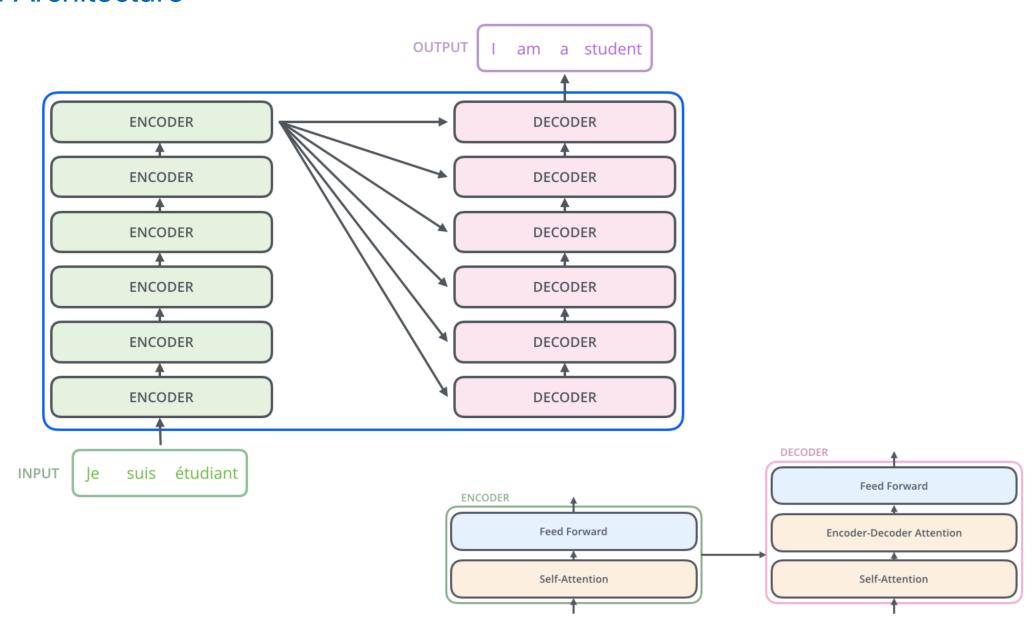
- Advantages of T5
 - same model, loss function, and hyperparameters on any NLP task

- Motivation and Introduction
- Research Questions
- Model Architecture
- Tasks and Datasets
- Evaluation Metrics
- Results and Discussion
- Conclusion and Future Work
- References

Research Questions

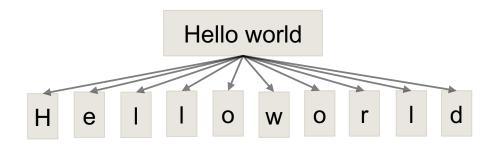
What kind of natural language processing models would work best for tasks in the software development domain?

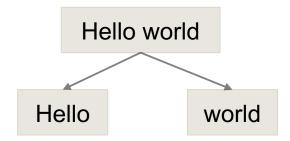
How would transfer learning improve the performance comparing with only training on the labeled data alone?


Would transfer learning perform better than multi-task learning for the similar tasks?

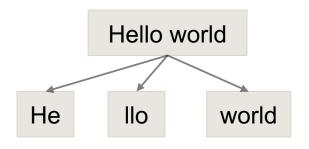
- Motivation and Introduction
- Research Questions
- **Model Architecture**
- Tasks and Datasets
- Evaluation Metrics
- Results and Discussion
- Conclusion and Future Work
- References

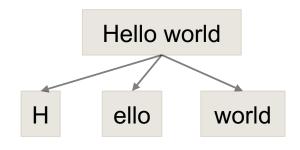
Model Architecture




Model Architecture

- Vocabulary Tokenization
 - 1. Character-Level




2. Word-Level

.

3. Subword-Level

32,000 Tokens, including: "function", "String", "var", "import"

10

Model Architecture

Unsupervised objective

Input

Thank you for inviting

Thank you <M> <M> me to your party <M> week .

Thank you <M> <M> me to your party apple week.

me to your party last week.

Thank you for inviting me to your party last week .

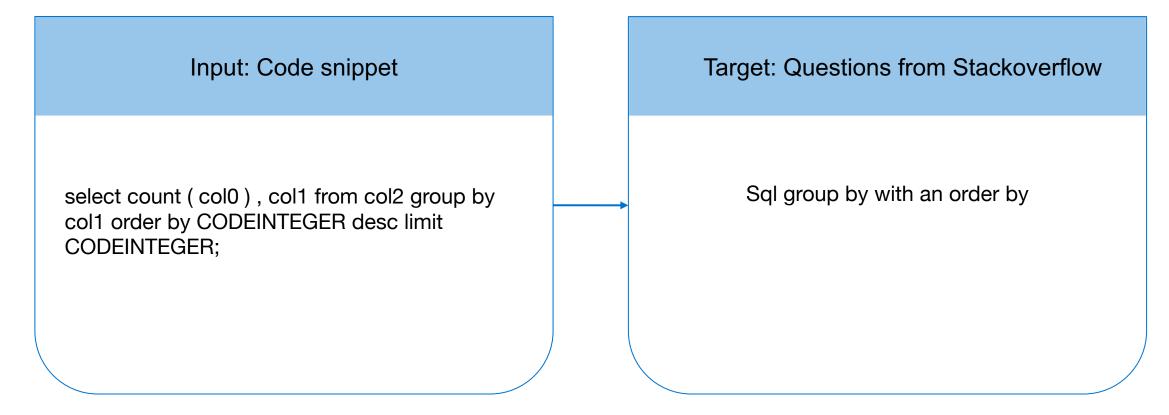
Thank you for inviting me to your party last week .

Thank you <X> me to your party <Y> week . <X> for inviting <Y> last <Z>

- Motivation and Introduction
- Research Questions
- Model Architecture
- Tasks and Datasets
- Evaluation Metrics
- Results and Discussion
- Conclusion and Future Work
- References

- Fine-tune tasks
 - 1. Code documentation generation
 - Code Language: Python, Java, Go, Php, Ruby, Javascript
 - Code Source: Github
 - Data Example:

Input: Code Function/Method


```
def parse_query_param(url, param):
  try:
    return parse.parse_qs(parse.urlparse(url)
            .query)[param][0]
  except:
    return None
```

Target: Natural Language Documentation Text

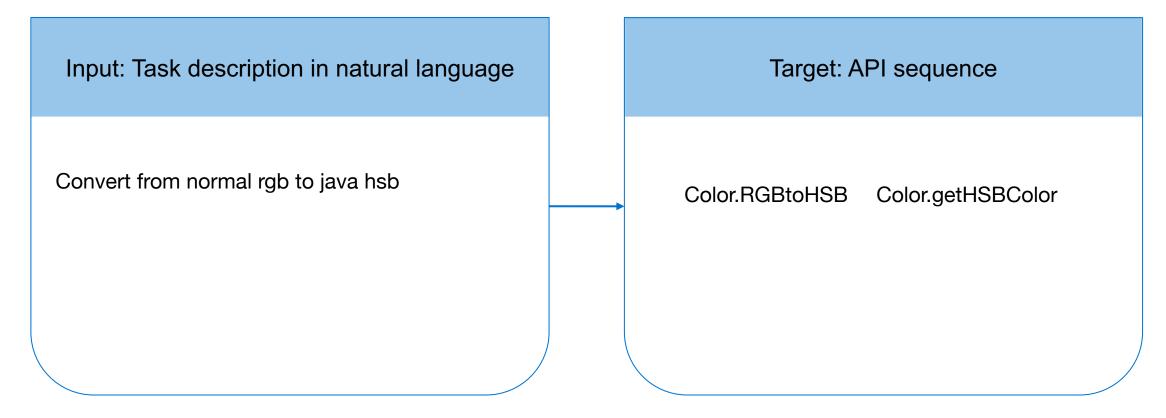
Parses the query string of a URL and returns the value of a parameter.

- Fine-tune tasks
 - 2. Source summarization
 - Code Language: SQL, CSharp, Python
 - Code Source: StackOverflow
 - Data Example:

- Fine-tune tasks
 - 3. Code comment generation
 - Code Language: Java
 - Code Source: Github
 - Data Example:

Input: Java Function Target: Comment from the function public boolean isCritical(){ is this a critical command that can only be return false; executed when no other command is running?

- Fine-tune tasks
 - 4. Commit message generation
 - Code Language: Java
 - Code Source: Github
 - Data Example:


Input: Diffs from Github mmm a / CHANGELOG . md ppp b / CHANGELOG . md # Changelog - # 2 . 2 . 0 (16 / 07 / 2015) - SNAPSHOT + # 2 . 1 . 1 (29 / 02 / 2016) - SNAPSHOT - Added AppCompat Styles (AppCompatTextView will now pickup textViewStyle etc) . Thanks @ paul - turner - Fix for Toolbar not inflating `TextView`s upfront.

Target: Commit Message

Fix snapshot version

- Fine-tune tasks
 - 5. Api sequence recommendation
 - Code Language: Java
 - Code Source: Github
 - Data Example:

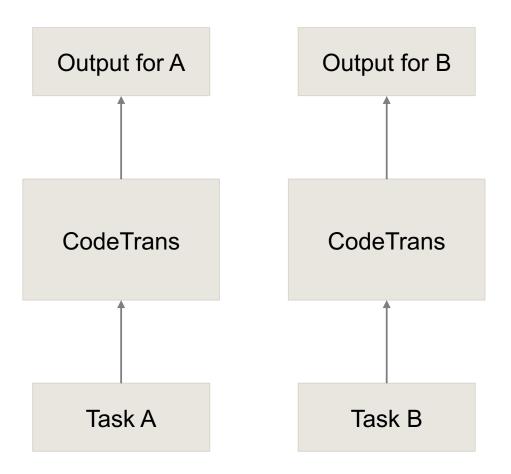
- Fine-tune tasks
 - 6. Programming Language and Synthesis:
 - Code Language: LISP
 - Code Source: Computer Science Student Homework
 - Data Example:

Input: Task description in natural language

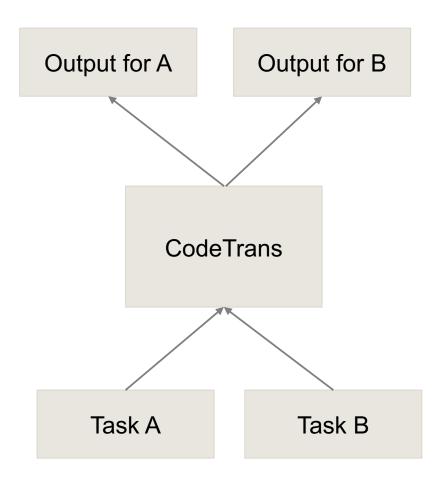
consider an array of numbers a, compute elements of a that are odd

Target: Programming Language Synthesis

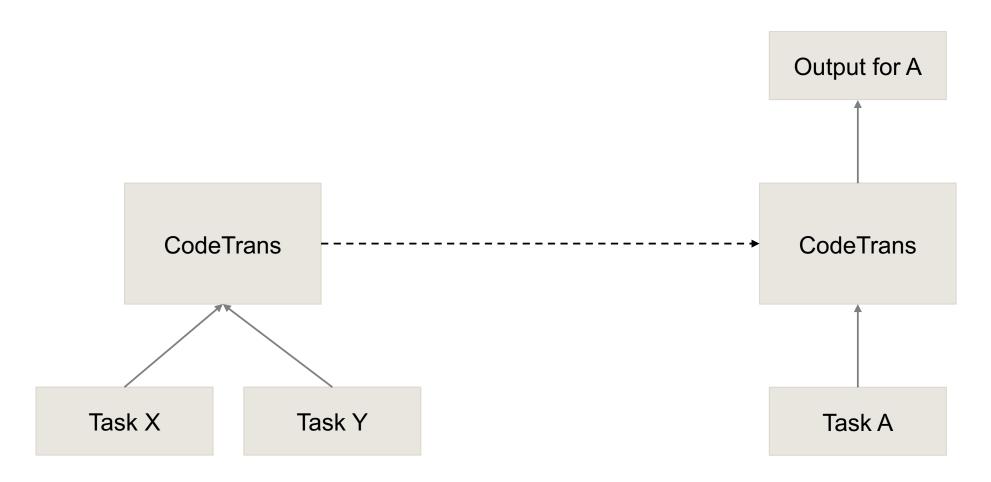
[filter a [lambda1 [== [% arg1 2] 1]]]



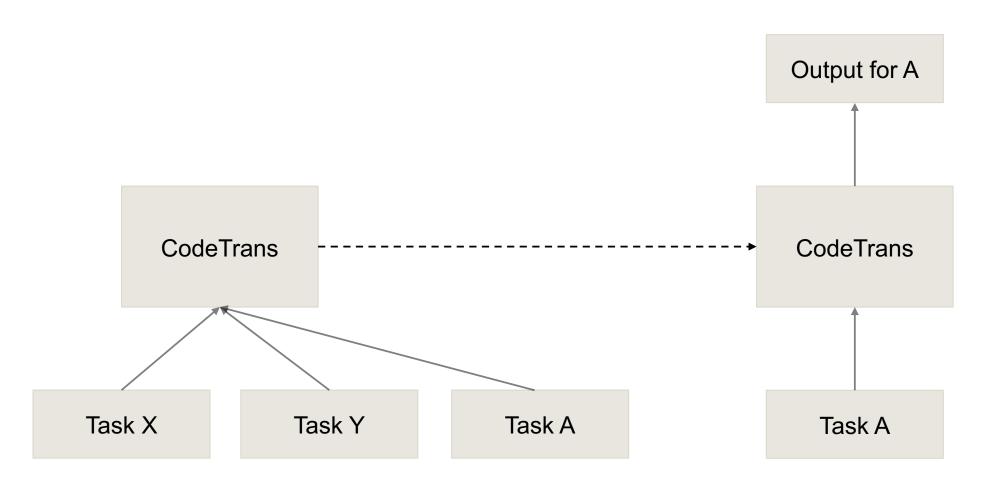
Language	Coo Docume Genera	ntation	Sour Summar		Com Com Gener	ment	Com Mess Genera	age	API Seq Recomme		Langua	amming age and hesis	Unlabeled
	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train
Java	164,923	10,955			468,000	58,638	26,208	3,000	7,475,850	10,000			2,163,807
Python	251,820	14,918	12,004	2,783									1,181,354
JavaScript	58,025	3,291											1,817,579
Go	167,288	8,122											679,985
Ruby	24,927	1,261											154,354
Php	241,241	14,014											767,981
CSharp			52,943	6,629									469,038
SQL			25,671	3,340									133,191
LISP											79,214	9,967	122,602
English													30,913,716


Training Strategies

Single Task Learning

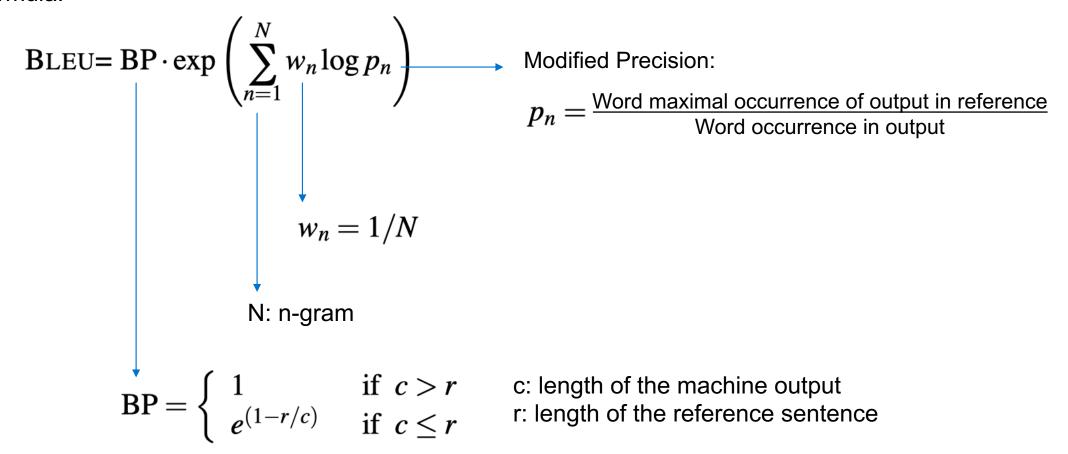

Multi-Task Learning

Training Strategies


Transfer Learning

Training Strategies

Multi-task Learning Fine-tuning



- Motivation and Introduction
- Research Questions
- Model Architecture
- Tasks and Datasets
- Evaluation Metrics
- Results and Discussion
- Conclusion and Future Work
- References

- BLEU
 - Formula:

Bigrams example for calculating modified precision in BLEU:

Machine generated output: the cat the cat on the mat.

Human reference 1: the cat is on the mat.

Human reference 2: there is a cat on the mat.

Word	Occurrence in machine output	Occurrence in reference 1	Occurrence in reference 2	Maximal occurrence in reference
the cat				
cat the				
cat on				
on the				
the mat				
Total				

Bigrams example for calculating modified precision in BLEU:

Machine generated output: the cat the cat on the mat.

Human reference 1: the cat is on the mat.

Human reference 2: there is a cat on the mat.

Word	Occurrence in machine output	Occurrence in reference 1	Occurrence in reference 2	Maximal occurrence in reference
the cat	2	1	0	1
cat the				
cat on				
on the				
the mat				
Total				

Bigrams example for calculating modified precision in BLEU:

Machine generated output: the cat the cat on the mat.

Human reference 1: the cat is on the mat.

Human reference 2: there is a cat on the mat.

Word	Occurrence in machine output	Occurrence in reference 1		Maximal occurrence in reference
the cat	2	1	0	1
cat the	1	0	0	0
cat on	1	0	1	1
on the	1	1	1	1
the mat	1	1	1	1
Total	6			4

Modified precision is 4/6

BLEU

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
 BP = $\left\{\begin{array}{ll} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \leq r \end{array}\right.$

Accuracy

$$Accuracy = \frac{\text{number of correct predictions}}{\text{total number of predictions}}$$

- Motivation and Introduction
- Research Questions
- Model Architecture
- Tasks and Datasets
- Evaluation Metrics
- Results and Discussion
- Conclusion and Future Work
- References

Code Documentation Generation								
Model \ Programming	g Language		Python	Java	Go	Php	Ruby	Javascript
	Single Task Learning	Small	17.31	16.65	16.89	23.05	9.19	13.70
	Olligic Task Ecarriling	Base	16.86	17.17	17.16	22.98	8.23	13.17
		Small	19.93	19.48	18.88	25.35	13.15	17.23
CodeTrans	Transfer Learning	Base	20.26	20.19	19.50	25.84	14.07	18.25
		Large	20.35	20.06	19.54	26.18	14.94	18.98
	Multi-task Learning	Small	19.64	19.00	19.15	24.68	14.91	15.26
		Base	20.39	21.22	19.43	26.23	15.26	16.11
		Large	20.18	21.87	19.38	26.08	15.00	16.23
		Small	19.77	20.04	19.36	25.55	13.70	17.24
	Multi-task Learning Fine-tuning	Base	19.77	21.12	18.86	25.79	14.24	18.62
	139	Large	18.94	21.42	18.77	26.20	14.19	18.83
CodeBert			19.06	17.65	18.07	25.16	12.16	14.90

Source Code Summarization						
Model \ Programming	Model \ Programming Language					
	Single Task Learning	Small	8.45	17.55	19.74	
	Olligie Task Learning	Base	9.12	15.00	18.65	
		Small	10.06	17.71	20.40	
	Transfer Learning	Base	10.94	17.66	21.12	
		Large	12.41	18.40	21.43	
CodeTrans	Multi-task Learning	Small	13.11	19.15	22.39	
		Base	13.37	19.24	23.20	
		Large	13.24	19.49	23.57	
		Small	12.10	18.25	22.03	
	Multi-task Learning Fine-tuning	Base	10.64	16.91	21.40	
	3	Large	12.14	19.98	21.10	
Code-NN	Code-NN					

Code Comment Generation					
Model \ Programming		Java			
	Single Task Learning	Small	37.98		
	Olligic Task Learning	Base	38.07		
		Small	38.56		
	Transfer Learning	Base	39.06		
		Large	39.50		
CodeTrans	Multi-task Learning	Small	20.15		
		Base	27.44		
		Large	34.69		
		Small	38.37		
	Multi-task Learning Fine-tuning	Base	38.90		
		Large	39.25		
DeepCom			38.17		

Git Commit Message Generation					
Model \ Programming Language Java					
	Single Task Learning	Small	39.61		
	Olligic Task Learning	Base	38.67		
		Small	44.22		
	Transfer Learning	Base	44.17		
		Large	44.41		
CodeTrans	Multi-task Learning	Small	36.17		
		Base	39.25		
		Large	41.18		
		Small	43.96		
	Multi-task Learning Fine-tuning	Base	44.19		
	J	Large	44.34		
NMT	NMT 32.81				

(Metrics: BLEU-4)

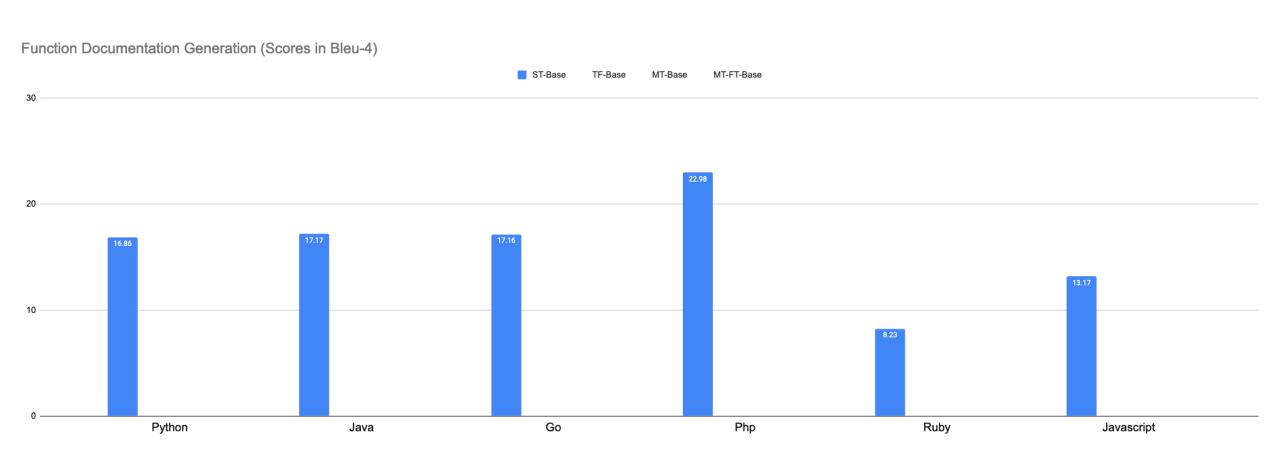
API Sequence Recommendation					
Model \ Programming	Model \ Programming Language				
	Single Task Learning	Small	68.71		
	Origic Task Learning	Base	70.45		
		Small	68.90		
	Transfer Learning	Base	72.11		
		Large	73.26		
CodeTrans	Multi-task Learning	Small	58.43		
		Base	67.97		
		Large	72.29		
		Small	69.29		
	Multi-task Learning Fine-tuning	Base	72.89		
	3	Large	73.39		
DeepAPI			54.42		

Program Synthesis					
Model \ Programming		DSL			
	Single Task Learning	Small	89.43		
	Olingio Taok Learning	Base	89.65		
		Small	90.30		
	Transfer Learning	Base	90.24		
		Large	90.21		
CodeTrans	Multi-task Learning	Small	82.88		
		Base	86.99		
		Large	90.27		
		Small	90.31		
	Multi-task Learning Fine-tuning	Base	90.30		
	J	Large	90.17		
Seq2Tree			85.80		

(Metrics: Accuracy)

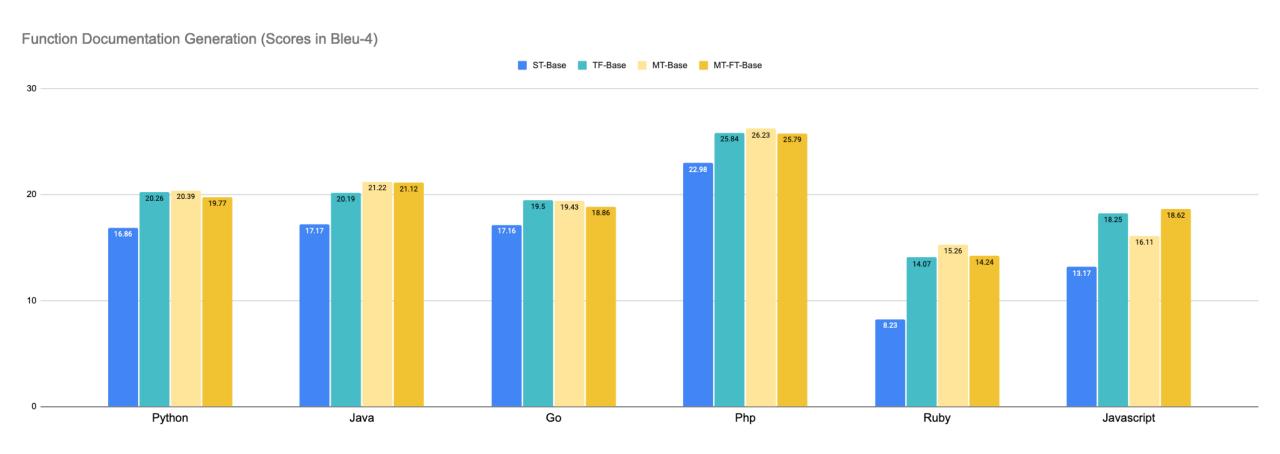
Output examples for the task Code Documentation Generation - Javascript

Model	Size	Model Output
CodeTrans Single-Task Learning	Small Base	Returns true if the browser is a native element . Returns whether the givenEnv should be focused .
CodeTrans Transfer Learning	Small Base Large	Checks if the current browser is on a standard browser environment . Check if browser environment is a standard browser environment Check if the environment is standard browser .
CodeTrans Multi-task Learning	Small Base Large	Returns true if the browser environment is a standard browser environment . Checks if the current browser environment is a standard browser environment . Determines if the current environment is a standard browser environment
CodeTrans Multi-task Learning Fine-tuning	Small Base Large	Standard browser environment has a notion of what React Native does not support it . Check if the browserEnv is standard . Checks if the browser is in a standard environment .
Code Snippet as Input		function isStandardBrowserEnv () { if (typeof navigator !== 'undefined' && (navigator . product === 'ReactNative' navigator . product === 'NativeScript' navigator . product === 'NS')) { return false ; } return (typeof window !== 'undefined' && typeof document !== 'undefined') ; }
Golden Reference		Determine if we re running in a standard browser environment

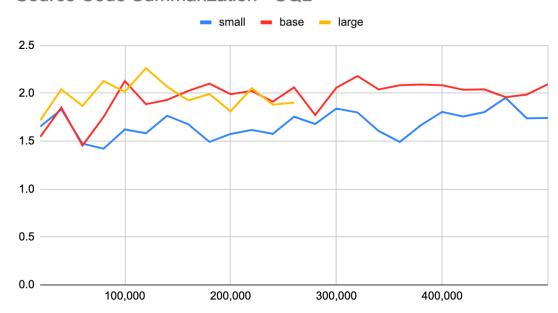

Model Size:

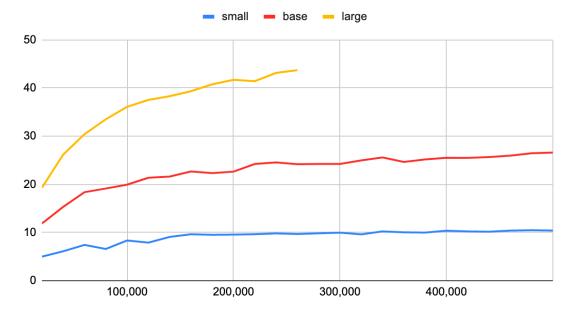
			Small	Base	Large
	Model Parameter (in Million)		60	220	770
	Training Steps	Transfer Learning	500,000	500,000	240,000
		Multi-task Learning	500,000	500,000	260,000
	Final Loss	Transfer Learning	0.926	0.586	0.476
		Multi-task Learning	0.887	0.590	0.4707
	Time Cost	Transfer Learning	17 days	53 days	82 days
		Multi-task Learning	17 days	53 days	87 days

(Batch Size: 4096)



Single Task Learning vs other training strategies


Single Task Learning vs other training strategies


Multi-Task Learning: performance depends on the dataset attributes

Source Code Summarization - SQL

Small dataset: 22,492 samples

Code Comment Generation

Large dataset: 470,486 samples

Outline

- Motivation and Introduction
- Research Questions
- Model Architecture
- Tasks and Datasets
- Evaluation Metrics
- Results and Discussion
- Conclusion and Future Work
- References

What kind of natural language processing models would work best for tasks in the software development domain?

What kind of natural language processing models would work best for tasks in the software development domain?

What kind of natural language processing models would work best for tasks in the software development domain?

How would transfer learning improve the performance comparing with only training on the labeled data alone?

What kind of natural language processing models would work best for tasks in the software development domain?

How would transfer learning improve the performance comparing with only training on the labeled data alone?

What kind of natural language processing models would work best for tasks in the software development domain?

How would transfer learning improve the performance comparing with only training on the labeled data alone?

Would transfer learning perform better than multi-task learning for the similar tasks?

What kind of natural language processing models would work best for tasks in the software development domain?

How would transfer learning improve the performance comparing with only training on the labeled data alone?

Would transfer learning perform better than multi-task learning for the similar tasks?

Uploaded 146 models in the Hugging Face Model Hub

The Al community building the future.

Build, train and deploy state of the art models powered by the reference open source in natural language processing.

Future Work

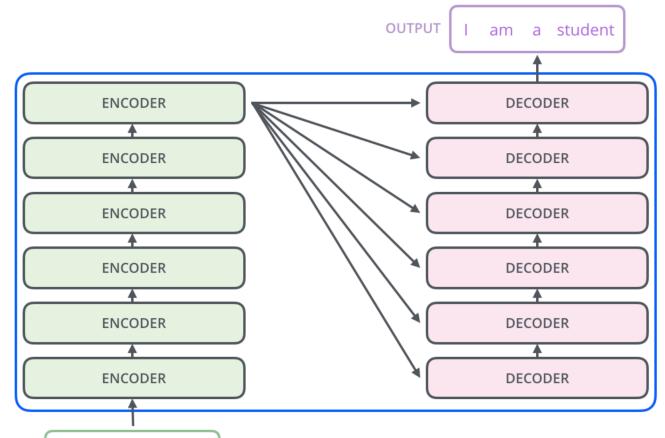
- Train 250,000 steps more for the large model
- More tasks / languages in the software development domain
- Try other masking techniques

Outline

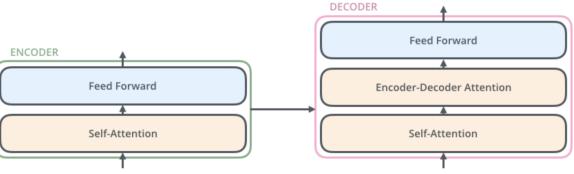
- Motivation and Introduction
- Research Questions
- Model Architecture
- Tasks and Datasets
- Evaluation Metrics
- Results and Discussion
- Conclusion and Future Work
- References

References

- SEVERINI, SILVIA. "Multi-task Deep Learning in the Software Development domain." (2019)
- Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." arXiv preprint arXiv:1910.10683 (2019)
- Feng, Zhangyin, et al. "Codebert: A pre-trained model for programming and natural languages." arXiv preprint arXiv:2002.08155 (2020)
- Husain, Hamel, et al. "Codesearchnet challenge: Evaluating the state of semantic code search." arXiv preprint arXiv:1909.09436 (2019)
- Hu, Xing, et al. "Deep code comment generation." 2018 IEEE/ACM 26th International Conference on Program Comprehension (ICPC). IEEE, 2018
- Jiang, Siyuan, and Collin McMillan. "Towards automatic generation of short summaries of commits." 2017 IEEE/ACM 25th International Conference on Program Comprehension (ICPC). IEEE, 2017
- Gu, Xiaodong, et al. "Deep API learning." *Proceedings of the 2016 24th ACM SIGSOFT International* Symposium on Foundations of Software Engineering. 2016
- Polosukhin, Illia, and Alexander Skidanov. "Neural program search: Solving programming tasks from description and examples." arXiv preprint arXiv:1802.04335 (2018)
- lyer, Srinivasan, et al. "Summarizing source code using a neural attention model." *Proceedings of the 54th* Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2016
- http://jalammar.github.io/illustrated-transformer/



Model Architecture


suis étudiant

INPUT

	Small	Base	Large
Number of Blocks Each	6	12	24
Dense Layer Output Dimension	2048	3072	4096
Attention Layer Key Value Dimension	64	64	64
Number of Attention Heads	8	12	16
Sub-layers and Embeddings Dimension	512	768	1024
Total Parameters (in Million)	60	220	770

53

- Model Size
- Single Task Learning vs Transfer Learning vs Multi-Task Learning Fine-tuning
- Multi-Task Learning
- **Evaluation Metrics:**

Steps	2000	4000	6000	8000	10000	12000	14000	16000	18000	20000
BLEU	11.94	11.96	11.50	11.13	11.78	11.66	12.36	11.83	12.07	11.79
ROUGE-1	39.59	38.73	37.79	37.55	37.2	36.66	37.21	37.01	36.93	36.77
ROUGE-2	19.79	18.73	17.6	17.39	17.09	16.69	17.02	16.79	16.83	16.57
ROUGE-L	37.39	36.26	35.2	35.06	34.66	34.11	34.55	34.43	34.26	34.03

(Code Documentation Generation – Java Task on validation set after finetuning the multi-task learning base model.)