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Introduction and Motivation T|.|T|

= Software Development in NLP
= Software code is a language

= NLU and NLG applications:
= Analytics Dashboards
= Chatbot
= Content Creation

= Visions of NLP in the Software Development world
= Better readability of the code
= Easier to compare and evaluate the code
= Smoother developing process
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Introduction and Motivation Tum

= Recent success of Transfer Learning

Pre-Training Fine-Tuning

= Text-To-Text Transfer Transformer GO gl e

= Advantages of T5
= same model, loss function, and hyperparameters on any NLP task

["translate English to German: That is good."

[ "cola sentence: The "Das ist gut."]

course is jumping well."

“not acceptable"]

on the grass. sentence2: A rhino

"stsb sentencel: The rhino grazed
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county."
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Research Questions Tum

’) What kind of natural language processing models would work best for tasks in the

o software development domain?

? How would transfer learning improve the performance comparing with only training
on the labeled data alone?

? Would transfer learning perform better than multi-task learning for the similar tasks?
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Model Architecture
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Model Architecture Tum

« Vocabulary Tokenization

1. Character-Level 2. Word-Level
Hello world Hello world
H e | | o w o r | d Hello world

3. Subword-Level

| 32,000 Tokens,
Hello world Hello world including:

%\ %\ “function”, “String”,

“Var”’ “im Ort”
He llo world H ello world P
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Model Architecture Tum

« Unsupervised objective

Input 1 Output
Thank you for inviting me to your party last week .
Thank you <M> <M> me to your party <M> week . Thank you for inviting me to your party last week .
Thank you <M> <M> me to your party apple week . Thank you for inviting me to your party last week .

V Thank you <X> me to your party <Y> week . <X> for inviting <Y> last <Z>
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Tasks and Datasets

* Fine-tune tasks
1. Code documentation generation

» Code Language: Python, Java, Go, Php, Ruby, Javascript

 Code Source: Github
« Data Example:

Input: Code Function/Method

def parse_query_param(url, param):
try:
return parse.parse_gs(parse.urlparse(url)

.query)[param][0]
except:

return None

Target: Natural Language Documentation Text

Parses the query string of a URL and returns

/

the value of a parameter.

.

/
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Tasks and Datasets

 Fine-tune tasks
2. Source summarization

* Code Language: SQL, CSharp, Python
« Code Source: StackOverflow
« Data Example:

select count ( col0), col1 from col2 group by
col1 order by CODEINTEGER desc limit
CODEINTEGER,;

- /

\ 4

Sql group by with an order by

© sebis
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Tasks and Datasets

* Fine-tune tasks
3. Code comment generation

Code Language: Java
Code Source: Github
Data Example:

-

public boolean isCritical(){
return false;

}

is this a critical command that can only be

\ 4

-

executed when no other command is running?

J

© sebis
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Tasks and Datasets

* Fine-tune tasks
4. Commit message generation

« Code Language: Java
« Code Source: Github
« Data Example:

Input: Diffs from Github

mmm a / CHANGELOG . md

ppp b / CHANGELOG . md

# Changelog
-#2.2.0(16/07/2015) - SNAPSHOT
+#2.1.1(29/02/2016) - SNAPSHOT
- Added AppCompat Styles (
AppCompatTextView will now pickup
textViewStyle etc ) . Thanks @ paul - turner

KFix for Toolbar not inflating * TextView " s

upfront .

/

\ 4

Target: Commit Message

Fix snapshot version

/

© sebis
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Tasks and Datasets

* Fine-tune tasks

5. Api sequence recommendation
« Code Language: Java
» Code Source: Github
« Data Example:

Convert from normal rgb to java hsb

-

\ 4

-

Color.RGBtoHSB  Color.getHSBColor

J
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Tasks and Datasets

Fine-tune tasks
6. Programming Language and Synthesis:
» Code Language: LISP

* Code Source: Computer Science Student Homework
« Data Example:

Input: Task description in natural language

consider an array of numbers a , compute

Target: Programming Language Synthesis

[filtera[lambdal [==[ %0 arg1 2] 1]]]

elements of a that are odd

o /

. /

© sebis
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Tasks and Datasets

TUTI

Code Code Commit Programming
. Source API| Sequence
Language | Documentation . Comment Message : Language and Unlabeled
. Summarization : ; Recommendation .
Generation Generation Generation Synthesis
Train Test Train Test Train Test Train Test Train Test Train Test Train
Java 164,923 | 10,955 468,000 | 58,638 | 26,208 | 3,000 | 7,475,850 10,000 2,163,807
Python 251,820 | 14,918 12,004 2,783 1,181,354
JavaScript 58,025 | 3,291 1,817,579
Go 167,288 8,122 679,985
Ruby 24,927 1,261 154,354
Php 241,241 | 14,014 767,981
CSharp 52,943 6,629 469,038
SQL 25,671 3,340 133,191
LISP 79,214 9,967 122,602
English 30,913,716

© sebis 19




Training Strategies

Single Task Learning
Output for A Output for B
CodeTrans CodeTrans

| |

Task A Task B

Multi-Task Learning

Output for A Output for B

CodeTrans

N

Task A Task B

© sebis
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Training Strategies TUT

Transfer Learning

Output for A

|

CodeTrans ~--—-----=-=--=-=-=--—=-=----"--"—----- >  CodeTrans

N |

Task X Task Y Task A
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Training Strategies TUT

Multi-task Learning Fine-tuning

Output for A

|

CodeTrans ------=---=-=-=-=-=-=-=------------- >  CodeTrans

N — |

Task X Task Y Task A Task A
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Evaluation Metrics T|.|T|

= BLEU
* Formula:
S wylogp )
BLEU= BP-exp 2 wplog py, . Modified Precision:
n=1 / __ Word maximal occurrence of output in reference
Pn= Word occurrence in output

v

wp,=1/N

v

N: n-gram

\ 1 if c>r c: length of the machine output
BP = e(1=7/c)  if ¢ <r r: length of the reference sentence
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Evaluation Metrics T|.|T|

= Bigrams example for calculating modified precision in BLEU:

Machine generated output: the cat the cat on the mat.
Human reference 1: the cat is on the mat.

Human reference 2: there is a cat on the mat.

the cat
cat the
cat on
on the
the mat
Total
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Evaluation Metrics T|.|T|

= Bigrams example for calculating modified precision in BLEU:

Machine generated output: the cat the cat on the mat.

Human reference 1: the cat is on the mat.

Human reference 2: there is a cat on the mat.

the cat 2 1 0 1
cat the

cat on

on the

the mat

Total
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Evaluation Metrics T|.|T|

= Bigrams example for calculating modified precision in BLEU:

Machine generated output: the cat the cat on the mat.
Human reference 1: the cat is on the mat.
Human reference 2: there is a cat on the mat.

the cat
cat the
cat on
on the

= A OO -~
_ A a0 o0

the mat
Total

O) A a2 AamanN
G U O G @ BN

» Modified precision is 4/6
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Evaluation Metrics

= BLEU

N
BLEU= BP-exp z wylog py,
n=1

= Accuracy

number of correct predictions
Accuracy =

total number of predictions

5P {

1
o(1-7/c)

if c>r
if c<r

28
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Results T|.|T|

Code Documentation Generation

Model \ Programming Language Python Java Go Php Ruby Javascript
. . Small 17.31 16.65 16.89 23.05 9.19 13.70
Single Task Learning
Base 16.86 1717 1716 2298 8.23 13.17
Small 19.93 19.48 18.88 2535 13.15 17.23
Transfer Learning Base 20.26 20.19 1950 2584 14.07 18.25
Large 20.35 | 20.06 19.54 26.18 14.94 18.98
CodeTrans Small 19.64 19.00 19.15 24.68 14.91 15.26
Multi-task Learning Base 20.39 21.22 1943 26.23 15.26 16.11
Large 20.18 21.87 19.38 26.08 15.00 16.23
Small 19.77 20.04  19.36 2555 13.70 17.24
Multi-task Learning
Fine-tuning Base 19.77 2112 18.86 2579 14.24 18.62
Large 18.94 2142 1877 2620 14.19 18.83
CodeBert 19.06 1765 18.07 2516 12.16 14.90

(Metrics: Smoothed BLEU-4)

© sebis 30



Results

Source Code Summarization

Model \ Programming Language

Single Task Learning

Transfer Learning

CodeTrans
Multi-task Learning
Multi-task Learning
Fine-tuning
Code-NN

(Metrics: Smoothed BLEU-4)

Small
Base
Small
Base
Large
Small
Base
Large
Small
Base

Large

Python

8.45

9.12

10.06
10.94
12.41
13.11
13.37
13.24
12.10
10.64
12.14

SQL CSharp
17.55 19.74
15.00 18.65
17.71 = 20.40
1766 21.12
18.40 @ 21.43
19.15 22.39
19.24  23.20
19.49 23.57
18.25 @ 22.03
16.91 21.40
19.98 21.10
18.40 20.50
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Results

Code Comment Generation

Model \ Programming Language

Single Task Learning

Transfer Learning

CodeTrans
Multi-task Learning
Multi-task Learning
Fine-tuning
DeepCom

(Metrics: Smoothed BLEU-4)

Small
Base
Small
Base
Large
Small
Base
Large
Small
Base

Large

Java
37.98
38.07
38.56
39.06
39.50
20.15
27 .44
34.69
38.37
38.90
39.25
38.17
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Results

Git Commit Message Generation

Model \ Programming Language

Single Task Learning

Transfer Learning

CodeTrans

Multi-task Learning

Multi-task Learning

Fine-tuning

NMT

(Metrics: BLEU-4)

Small
Base
Small
Base
Large
Small
Base
Large
Small
Base

Large

Java
39.61
38.67
44.22
44 17
44.41
36.17
39.25
41.18
43.96
44 .19
44.34
32.81

© sebis

33



Results

APl Sequence Recommendation

Model \ Programming Language

Single Task Learning

Transfer Learning

CodeTrans
Multi-task Learning
Multi-task Learning
Fine-tuning
DeepAPI

(Metrics: Smoothed BLEU-4)

Small
Base
Small
Base
Large
Small
Base
Large
Small
Base

Large

Java
68.71
70.45
68.90
72.11
73.26
58.43
67.97
72.29
69.29
72.89
73.39
54.42

© sebis
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Results

Program Synthesis

Model \ Programming Language

CodeTrans

Seqg2Tree

(Metrics: Accuracy)

Single Task Learning

Transfer Learning

Multi-task Learning

Multi-task Learning
Fine-tuning

Small
Base
Small
Base
Large
Small
Base
Large
Small
Base

Large

DSL
89.43
89.65
90.30
90.24
90.21
82.88
86.99
90.27
90.31
90.30
90.17
85.80
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Results

= Qutput examples for the task Code Documentation Generation - Javascript

Model Size  Model Output
CodeTrans Small Returns true if the browser is a native element .
Single-Task Learning Base  Returns whether the givenEnv should be focused .
Small Checks if the current browser is on a standard browser environment .
CodeTrans i ) ] .
) Base Check if browser environment is a standard browser environment
Transfer Learning . . .
Large Check if the environment is standard browser .
Small Returns true if the browser environment is a standard browser environment .
CodeTrans ) ) ] )
i . Base  Checks if the current browser environment is a standard browser environment .
Multi-task Learning o . . :
Large Determines if the current environment is a standard browser environment
Small Standard browser environment has a notion of what React Native does not support it .
CodeTrans : )
Multi-task Learnine Fine-tunin Base  Check if the browserEnv is standard .
& & Large Checks if the browser is in a standard environment .

Code Snippet as Input

function isStandardBrowserEnv () { if ( typeof navigator !== "undefined” && ( navigator . product
=== "ReactNative’ | | navigator . product === "NativeScript’ | | navigator . product === 'NS") )
{ return false ; } return ( typeof window !== "undefined” && typeof document !== "undefined” ) ; }

Golden Reference

Determine if we re running in a standard browser environment

© sebis 36



Discussion

= Model Size:

Model Parameter (in Million)

o Transfer Learning
Training Steps _ _
Multi-task Learning

_ Transfer Learning
Final Loss _ _
Multi-task Learnina

Transfer Learning

Time Cost _ _
Multi-task Learning

(Batch Size: 4096)

60
500,000
500,000

0.926
0.887
17 days
17 days

220
500,000
500,000

0.586
0.590
53 days
93 days

770
240,000
260,000

0.476
0.4707
82 days
87 days

© sebis
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Discussion T|.|T|

= Single Task Learning vs other training strategies

Function Documentation Generation (Scores in Bleu-4)
B ST-Base TF-Base MT-Base MT-FT-Base

30

20
16.86 1747 17.16
13.17
10
0
Go Php

Python Java Ruby Javascript
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Discussion T|.|T|

= Single Task Learning vs other training strategies

Function Documentation Generation (Scores in Bleu-4)

B ST-Base [ TF-Base MT-Base | MT-FT-Base

16.11
15.26

30

21.22

20 20.39

1717

10

0

Python Java Php Ruby Javascript
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Discussion

= Multi-Task Learning: performance depends on the dataset attributes

Source Code Summarization - SQL

== small == base large
25
1.5
1.0
0.5
0.0
100,000 200,000 300,000 400,000

Small dataset: 22,492 samples

Code Comment Generation

== small == base large
50
40
30
20
0
100,000 200,000 300,000 400,000

Large dataset: 470,486 samples
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Conclusion TLTI

V What kind of natural language processing models would work best for tasks in the
software development domain?

V How would transfer learning improve the performance comparing with only training
on the labeled data alone?

V Would transfer learning perform better than multi-task learning for the similar tasks?



Conclusion

= Uploaded 146 models in the Hugging Face Model Hub

\ 4

The Al community
building the future.

Build, train and deploy state of the art models powered by

the reference open source in natural language processing.

48



Future Work TLTI

« Train 250,000 steps more for the large model
« More tasks / languages in the software development domain

« Try other masking techniques

171103 Matthes English Master Slide Deck (wide) © sebis 49
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Model Architecture

OUTPUT | | am a student]
(7 g | )
ENCODER > DECODER
\ \ J
4 4
( [ N
ENCODER DECODER
L \ J
4 [
s r )
ENCODER DECODER
3 4
( { )
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. \ J
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L L J
4 4
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( Feed Fo
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4

( Self-Attention
A
T

Small Base Large
Number of Blocks Each 6 12 24
Dense Layer Output Dimension 2048 3072 4096
Attention Layer Key Value Dimension 64 64 64
Number of Attention Heads 8 12 16
Sub-layers and Embeddings Dimension 512 768 1024
Total Parameters (in Million) 60 220 770

t

Feed Forward

4

Encoder-Decoder Attention ]

4

C X ([ )

Self-Attention

t
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Discussion

Model Size

= Single Task Learning vs Transfer Learning vs Multi-Task Learning Fine-tuning

Multi-Task Learning
Evaluation Metrics:

Steps 2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

BLEU 11.94
ROUGE-1 39.59
ROUGE-2 19.79
ROUGE-L 37.39

11.96
38.73
18.73
36.26

11.50
37.79
17.6
35.2

11.13
37.55
17.39
35.06

11.78

37.2
17.09
34.66

11.66
36.66
16.69
34.11

12.36
37.21
17.02
34.55

11.83
37.01
16.79
34.43

12.07
36.93
16.83
34.26

11.79
36.77
16.57
34.03

(Code Documentation Generation — Java Task on validation set after fine-
tuning the multi-task learning base model.)
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