TUTl

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Information Systems

Design of a System to Support Open Source
Software License Compliance Checking in
Large Enterprises

Navina Lang

0

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Information Systems

Design of a System to Support Open Source
Software License Compliance Checking in
Large Enterprises

Design eines Systems zur Unterstiitzung von
Open Source Software Lizenz Compliance
Checks in grofien Unternehmen

Author: Navina Lang

Supervisor: Prof. Dr. Florian Matthes
Advisor: Nektarios Machner
Advisor: Dr. Ralf S. Engelschall

Submission Date: 10th September 2020

0

I confirm that this bachelor’s thesis in information systems is my own work and I have
documented all sources and material used.

Munich, 10th September 2020 Navina Lang

Acknowledgments

Many thanks to Prof. Dr. Matthes and my supervisor Nektarios Machner for the support on
the university side.

Special thanks to Dr. Ralf S. Engelschall for the excellent support in all matters, the high
degree of compromise regarding the choice of topics, and the motivating words. These had
helped me, especially in times when things were not going so well. By working together, I
not only learned a lot, but I also enjoyed it a lot. I could not have imagined better support.

Next, I would like to thank the development team: Zoltan Ruzman, Moritz Hiither,
Maximilian Marsch, Simon Bortnik, and Thomas Riexinger. Once again, special thanks go to
Zoltan, who always supported me with questions and explained many things to me
technically.

I would also like to thank Cornelia Seraphin and Pirjo Friedrich for their support regarding
requirements engineering and the creation of the mockups. Many thanks to Erwin Wacha for
introducing me the tool Adobe XD for the creation of mockups. Also, many thanks to Mark
Lubkowitz for providing information about current Open Source Software (OSS) topics and
reports.

Furthermore, I would like to thank my interview partners and the entire XT team for the
pleasant cooperation and moral support.

Also, I would like to thank Sascha Négele for supporting me and helping me to find a
supervisor for the bachelor thesis on the university side.

I also would like to thank Julian Feldmeier for proofreading my bachelor thesis and giving
me advices for improvements.

I am also very thankful to Margaret and Rodolfo Pérez for proofreading my bachelor thesis.

Finally, I would like to thank my mother Marina Lang for always supporting me and making
all my desires possible. Also, thanks for proofreading, although there was no interest in the
topic.

1ii

Abstract

The massive adoption of Open Source Software presents companies with new challenges.
When selecting components, software architects have to consider not only quality but also the
obligations of the license conditions. When using Open Source Software components, many
transitive dependencies arise, which can also cause problems and therefore, must be checked.
This bachelor thesis deals with the challenges of architects and presents a solution approach
for supporting the license compliance process. Therefore a design for an application is
presented, which is adapted to the requirements of the end-users. The approach focuses
primarily on the challenges of large enterprises where defined processes are essential. The
application also helps to facilitate the cooperation of the different disciplines. An architect is
not educated on legal texts and therefore needs help in checking licenses. Therefore he needs
evaluation in a language he understands. A legal expert, on the other hand, is not familiar
with the technical construction of software components and therefore has difficulties in
checking the compliance of the conditions.

Keywords: Open Source Software (OSS), Business Information Systems (BIS), Commercial
Software Industry, Large Enterprises, and Decentralized Organizations.

Contents

Abstract
1 Introduction
1.1 Motivation

1.2 Research Questions
1.3 Research Approach

Foundations

21 Enterprise Terms
2.1.1 LargeEnterprises o
2.1.2 Agile Software Engineering

2.2 Architecture Terms e e
221 Architecture
222 Component e
223 Plug-in
224 Framework e
225 Library
226 Tool e
227 Program
228 Operating System
229 Technology Platform
2210 Technology Stack

2.3 Open Source Software Terms
23.1 OpenSource Software
232 FreeSoftware
2.3.3 Free/Libre and Open Source Software (FOSS/FLOSS)

2.4 Open Source Software License Terms
241 Obligations
242 UseTypes e
243 License e e e e e e e
244 ProseText e e e
245 Copyright
246 Copyleft
247 Contributor e
24.8 Contribution e
249 Propagation e

(o BRNEA N I o) Sie) gie) Rie) lie) Sle) B) Nile) S

vii

Contents

2410 Convey
2411 Covered Software e
2412 Covered work e
2.4.13 Combined Work
2414 Source Form
2.4.15 Executable Form
2416 LargerWork
2.4.17 Unmodified / Original / Pristine
2418 Modifications
2.4.19 Derivative Work e
2420 Program
2421 Disclaimer e
2422 PatentClaims e

3 Classification and Objectives

31 Context e
32 Requirements
3.2.1 General Requirements 0 L
3.2.2 User Requirements from Interviews
33 Related Work
33.1 BlackDuckSuite o oo
332 WhiteSource L
333 Fossa
334 spdx ...
335 thdrLegal
3.3.6 OpenLogic Stack Builder
3.3.7 Nexus Vulnerability Scanner
338 Eclipse SW360
339 FOSSology e
3310 LChecker
3311 Kenen e
3.3.12 Method of License Compliance of OSS Governance
3.3.13 Suggestion for an easy tousetool
3.3.14 Open Source Analysis Database (msg)
4 Concept
41 Introduction
42 Datamodel
43 License Modelling.
431 General.
432 License Analysis
4.3.3 Graduation of use types and obligations
44 Roles

0 0 0 OO o

10
10
10
10
11
14
14
14
14
14
14
15
15
15
15
16
16
16
16
17

viii

Contents

45 Process e e e e e
45.1 Business ProcessModel
452 UserStories o i i e e e e e

4.6 Authorization

5 Implementation

51 Implementation

52 Algorithm

5.3 Visualization e e

54 Mockups e
6 Evaluation

6.1 Iterative Process e

6.2 Interviews e e e e e e e e

7 Conclusion

7.1 Lessonslearned
72 Limitations e e
7.3 Future work o e

8 Appendix
Acronyms

Bibliography

65
65
66
71
76

80
80
81

89
89
89
89

93

94

95

X

1 Introduction

1.1 Motivation

The license compliance process is an interdisciplinary problem. On the one hand, it requires
the know-how of legal experts and, on the other hand, the know-how of architects. However,
these two specialists are not educated on the other discipline, which leads to problems in
practice. Nowadays, the development of information systems is no longer feasible without
the use of Open Source Software (OSS), since otherwise, companies are no longer
competitive. An information system usually contains about 100-1000 components. However,
the architect does not know many of these components as he is not aware of using them. The
components contain many transitive dependencies and are deeply nested. However,
uncertainty does not protect against punishment, and therefore it is necessary to check all
transitive dependencies and comply with their license terms. Creating a blacklist of
components that are not allowed to be used is not an option because the restrictions depend
on the type of use. If, for example, the General Public License (GPL) is blacklisted, Unix
servers are no longer allowed to be used for software development since they are based on a
GNU/Linux-distribution. Both the Linux Kernel and several other tools are licensed under a
GPL license. However, the concrete type of use is a problem, not the license itself. Using a
GPL-licensed tool during software development is legally harmless. However, integrating a
GPL-licensed library into a commercial product as an integral part is almost impossible. [1]

1.2 Research Questions

¢ What are the challenges of using OSS in terms of legal compliance?
¢ How can we improve the OSS license compliance legal process?

¢ What are the benefits and limitations of the proposed solution?

1.3 Research Approach

Design Research is an approach for Information System Research developed by Hevner et. al
in 2004. He refers to two paradigms to characterize research in information systems
discipline: behavioral science and design science.

Behavioral science has its roots in natural science research methods and addresses research
by developing and verifying "theories that explain or predict human or organizational

1 Introduction

behavior"[2]. It is important to understand the problem domain and the solution based on
prior theories and existing design knowledge. The method of this thesis builds on an already
existing method, which needs to be verified and improved to comply with the behavioral
science.[2]

On the other hand, design science has its roots in engineering and addresses research by
extending boundaries of human and organizational capabilities to create new and innovative
artifacts. It is inherently a problem-solving process. Seven principles are derived from the
principle of design science "knowledge and understanding of a design problem and its
solution are acquired in the building and application of an artifact"[2].

Guideline 1: Design of an Artifact

"Design-science research must produce a viable artifact in the form of a construct, a model, a
method, or an instantiation."[2] This thesis provides a method to deal with license
compliance in large enterprises and a UML data model based on this method. Therefore, this
thesis adheres to the first guideline.

Guideline 2: Problem Relevance

"The objective of design-science research is to develop technology-based solutions to
important and relevant business problems."[2] The artifacts solves the challenge architects
have when using OSS components. Therefore, architects must comply with the license
agreement, which is challenging since they are not educated in legal issues.

Guideline 3: Design Evaluation

"The utility, quality, and efficacy of a design artifact must be rigorously demonstrated via
well-executed evaluation methods."[2] Through the industrial support and the evaluation by
the end-users a continuous evaluation is guaranteed.

Guideline 4: Research Contributions

"Effective design-science research must provide clear and verifiable contributions in the areas
of the design artifact, design foundations, and/or design methodologies."[2] The solution is
based on a previously used method, verifying the methodology, and improving the method.

Guideline 5: Research Rigor

"Design-science research relies upon the application of rigorous methods in both the
construction and evaluation of the design artifact."[2] Rigor is applied by building upon an
already tested method that needs improvement and evaluating relevant stakeholders.

1 Introduction

Guideline 6: Design as a Search Process

"The search for an effective artifact requires utilizing available means to reach desired ends
while satisfying laws in the problem environment."[2] The method is improved continuously
through research and license analysis. Furthermore, the data model is continuously
improved through several iterations and new findings.

Guideline 7: Communication of Research

"Design-science research must be presented effectively both to technology-oriented as well as
management-oriented audiences."[2] The method and the resulting data model is technically
realizable and intends to support the architect in the license compliance process. To comply
with the license terms is also in the management’s interest since violation can result in high
costs and damage the company’s reputation.

2 Foundations

2.1 Enterprise Terms

2.1.1 Large Enterprises

Large companies are mainly characterized by the number of employees, which exceeds 500.
Besides, large companies usually have several locations, and the employees are distributed
decentrally. In large companies, defined processes are essential since they are unlikely to
know everybody and talk about the concerns when meeting in the coffee kitchen.

2.1.2 Agile Software Engineering

Scrum is an agile management framework. It defines self-organized, cross-functional teams,
which work decentralized to fulfill requirements. There are no defined compliance processes,
which makes it even more challenging to control the license compliance. Furthermore, it is
challenging to keep the overview.

2.2 Architecture Terms

2.2.1 Architecture

"Inherent static and dynamic structure of a Subject which comprise Elements, the visible
Behaviour of Elements and Relationships between Elements." [3]

2.2.2 Component

"Definition of a Component (of a Larger Whole): a know-how encapsulating, potentially
reusable and substitutable unit of hierarchical composition with explicit context dependencies,
which hides the complexity of its optional behavior and state realization behind small
contractually sepcifed interfaces, defines its added value in terms of provided and consumed
interfaces and optionally belongs to zero or more categories of similar units." [3]

2.2.3 Plug-in

A plug-in is an instrument that actively controls the application by connecting via Service
Provider Interfaces (SPI). [3]

2 Foundations

2.2.4 Framework

A framework is a semi-finished software system consisting of a large number of coordinated
software components from which an adapted software system can be created with relatively
little effort. [4]

2.2.5 Library

A library is a passive, reusable software component that offers functionality to the application
via Application Programming Interfaces (API). [3][5]

2.2.6 Tool

A software tool is defined as "a computer program used in the development, testing, analysis,
or maintenance of a program or its documentation" and as a "software product providing
automatic support for software life-cycle tasks".[6]

2.2.7 Program

A program is a "syntactic unit that conforms to the rules of a particular programming
language and that is composed of declarations and statements or instructions needed for a
certain function, task, or problem solution"[6]. This definition defines the point of view of the
source code. From the user point of view, a program is an executable software unit.

2.2.8 Operating System

An operating system is defined as a "program that acts as an intermediary between a user of
a computer and the computer hardware"[7]. "Operating system goals"[7] are: "Execute user
programs and make solving user problems easier", "Make the computer system convenient to
use"[7] and "Use the computer hardware in an efficient manner"[7].

2.2.9 Technology Platform

A Technology Platform consists of a language, an optional run-time environment, and a
standard library. [3]

2.2.10 Technology Stack
A Technology Stack extends a Technology Platform by frameworks and libraries. [3]

2 Foundations

2.3 Open Source Software Terms

2.3.1 Open Source Software

Open Source Software is software that is licensed under an Open Source License. All Open
Source Licenses comply with the Open Source Definition, which states, i.e., that the software
may be further distributed and modified in source code and, in particular, that there may be
no discrimination of persons, groups, or purposes. [3]

2.3.2 Free Software

"Free software’ means software that respects users” freedom and community. Roughly, it
means that the users have the freedom to run, copy, distribute, study, change and improve
the software. Thus, 'free software’ is a matter of liberty, not price. To understand the concept,
you should think of “free” as in "free speech,” not as in "free beer’. We sometimes call it 'libre
software’, borrowing the French or Spanish word for "free” as in freedom, to show we do not
mean the software is gratis."[8]

2.3.3 Free/Libre and Open Source Software (FOSS/FLOSS)

Free/Libre and Open Source Software is software that can be defined by Open Source
Software as well as Free Software.

2.4 Open Source Software License Terms

2.4.1 Obligations

Obligations indicate conditions that must be fulfilled according to the license agreement.

2.4.2 Use Types

A Use Type indicates how the architect / developer uses a component.

2.4.3 License

Each OSS component is under a specific license. A license usually is a US-American for-
mulated text that restricts the use of the component or imposes certain conditions. These
conditions can be completely harmless, but they can also be an absolute rejection criterion for
use with commercial software.

2.4.4 Prose Text

The prose text represents the text excerpts of respective licenses that contain relevant informa-
tion regarding the obligations.

2 Foundations

2.4.5 Copyright

To understand most OSS licenses, it is helpful to look at some key differences between the
Anglo-American "Copyright" and the continental European, here before all German,
"copyright" before eyes:

German copyright law is designed as personal copyright (see §§ 12 ff. UrhG). It consists of a
personal and property right component. Both components are inseparably connected
according to German understanding. In contrast, the "copyright" gives the author rights to
reproduce or distribute, the mainly exploitation-related rights, which are protected under
German copyright law, and all in §§ 15 ff. UrhG are regulated.

This has the consequence that the German copyright law, as such, in contrast to the
"Copyright", cannot be transferred in principle (§ 29 para. 1 UrhG). Instead, simple or
exclusive rights of use are granted, which can go so far that the author himself is excluded
from using his work. These rights of use can be also be granted as transferable rights under
German law. Therefore only rights of use of the work, but not the copyright as such. Such
rights of use are generally granted or transferred by means of a license agreement.

The "copyright", therefore, does not fully correspond to the German "Urheberrecht". If in OSS
licenses, the majority are based on US-American license rights, and thus the "copyright" idea
from the "transfer of the Copyright", is defined under German law as the granting transfer of
rights of use. [9]!

2.4.6 Copyleft

"Copyleft is a general method for making a program free software and requiring all modified
and extended versions of the program to be free software as well. The simplest way to make
a program free is to put it in the public domain, uncopyrighted. This allows people to share
the program and their improvements, if they are so minded. But it also allows uncooperative
people to convert the program into proprietary software. They can make changes, many or
few, and distribute the result as a proprietary product. People who receive the program in that
modified form do not have the freedom that the original author gave them; the middleman
has stripped it away."[10]

2.4.7 Contributor

A contributor represents "each individual or entity that creates or contributes to the creation
of Modifications"[11].[12]

2.4.8 Contribution

The contribution represents either the "initial code and documentation under this Agreement"
or the program’s changes and additions. "Contributions do not include additions to the

1Section "6.4.1 Abgrenzung zum anglo-amerikanischen Copyright"[9] translated by the translation tool DeepL.

2 Foundations

Program which: (i) are separate modules of software distributed in conjunction with the
Program under their own license agreement, and (ii) are not derivative works of the Program."
[13][14]

2.4.9 Propagation

"To "propagate” a work means to do anything with it that, without permission, would make
you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the public, and in some
countries other activities as well." [15] [16]

2.4.10 Convey

"To "convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer of
a copy, is not conveying." [15] [16]

2.4.11 Covered Software

Covered Software "means Source Code Form to which the initial Contributor has attached
the notice in Exhibit A, the Executable Form of such Source Code Form, and Modifications of
such Source Code Form, in each case including portions thereof." [12]

2.4.12 Covered work

Covered work represents original software, modified software, or a combination of both.
[11][15][16]

2.4.13 Combined Work

"A "Combined Work” is a work produced by combining or linking an Application with the
Library. The particular version of the Library with which the Combined Work was made is
also called the "Linked Version’." [17]

2.4.14 Source Form

The source form is a "common form of computer software code in which modifications are
made"[11]. [12][15][16]

2.4.15 Executable Form

The executable form represents "any form other than source"[12][11]. Further commonly used
terms are "object code"[15][16] or "non-source form"[15][16].

2 Foundations

2.4.16 Larger Work

Larger work represents work that combines covered software or parts thereof with other work
not governed by the terms of this software. [12][11]

2.4.17 Unmodified / Original / Pristine

"Original Software means the Source Code and Executable form of computer software code
that is originally released under this License." [11]

2.4.18 Modifications

To "modify" a work means to add, delete or modify something of the original. It can also be
a new file that contains parts of the original software.[12][11] "The resulting work is called
a ‘'modified version’ of the earlier work or a work ‘based on’ the earlier work." [15][16] An
example for modifying is fixing a bugfix.

2.4.19 Derivative Work

A derivative work represents a substantial, more significant change in comparison to the
modification. An example would be the release of a new version with new features.

2.4.20 Program
A program defines the distributed work licensed under this license. [11][13][15][16]

2.4.21 Disclaimer

License agreements may contain disclaimers regarding liability and warranty. These texts are
usually consistent.

2.4.22 Patent Claims

Patent claims "means any patent claim(s), now owned or hereafter acquired, including without
limitation, method, process, and apparatus claims, in any patent Licensable by grantor."[11]

3 Classification and Objectives

3.1 Context

This thesis can be assigned to the subject field of business information systems. When
planning the Walking Skeleton of a software product, the main focus is defining and then
integrating the Technology Stack. It extends the Technology Platform, which consists of a
programming language, an optional run-time environment, and a standard library, with
frameworks and libraries[3]. The platform has to be selected, specified once, and never
changes. The four most popular platforms in practice are Java, JavaScript, .NET, and SAP.
From .NET and SAP, the problem concerns the provider and not the user, so using the
associated libraries and frameworks does not usually cause problems. On the other hand,
considering Java and JavaScript, there are a large number of frameworks and libraries that
may be used in combination. The responsibility for compliance with the license terms and
conditions is with the users themselves.

A characteristic of software is the unlimited nesting and reuse of components. Nesting has
increased in recent years due to the massive reusing of OSS components. To develop a
software product without the use of OSS software is almost impossible nowadays. We are in
a new software era, in which it is no longer possible to achieve the required time to market
without the use of OSS components and, therefore, can no longer be competitive. The strong
nesting of OSS components by the many transitive dependencies increase the complexity
significantly.

Each of these components has one or several licenses, specifying the terms of use of the
respective component. Thus, the thesis can also be assigned to the field of licensing law.

In small companies (50-100 employees, single location), these challenges can still be tackled
by personal communication. However, as the number of employees and distributed locations
increases, the tackling of these challenges becomes more and more complicated. Therefore, a
central enterprise information base is advised for supporting the resolution of the mentioned
challenges in practice.

3.2 Requirements

3.2.1 General Requirements

Architects need help with the selection of OSS components. For this purpose, they need a
meaningful basis for decision making that indicates whether the use of a particular

10

3 Classification and Objectives

component is legally permitted. Since software components are highly nested and contain
many transitive dependencies, the goal is to create a common database. Therefore the
manual effort is reduced, as components only have to be configured once and can be reused
several times.

Additionally, the database contains licenses, which also have to be configured once and can
be reused repeatedly. Since the data is sensitive and correctness must be ensured, the users
are assigned to different roles to prevent the data’s manipulations. Besides, the evaluation
should also consider the usage of the components, which can influence the license terms that
must be fulfilled. For example, internal use is often harmless and does not require any
conditions, while a distribution implies many restrictions. This bachelor thesis only provides
a basis for the design and does not cover the integration into the application build process.

Furthermore, there should be the possibility to request legal assistance. Certain cases require
additional manual evaluation, which requires cooperation between architects and legal
experts. Even legal experts often have difficulties reading the license texts since they are
usually based on American law and written by architects. Furthermore, they contain specific
information about the architectural design of components, which an architect understands
better. Additionally, the tool should provide legal experts with a structured overview of the
licenses to use this data as a basis for the evaluation.

3.2.2 User Requirements from Interviews

In order to identify the users” pain points and requirements, nine interviews were conducted
with four architects, an OSS expert (OE), a product owner (PO), a product manager, and two
legal experts (LE) from the legal department of msg !.

Questions

The following questions were prepared before the survey. However, the survey also
considered the respondents’ interests, and based on their answers, further questions were
asked. Some of the interviewees gave an insight into the current processes.

1. What is your role in projects?

2. How educated are you on OSS?

How high is the percentage of open source components in the project?
Who decides which OSS components are used? How do you choose them?

When do you deal with Open Source Compliance?

AL

What problems have you experienced regarding OSS?

Imsg is an independent, internationally active group of autonomous companies with more than 8,000 employees.
The core competency: intelligent IT and industry solutions.[18]

11

3 Classification and Objectives

7. Did you use the current solution from msg (msg OSS analysis database)? What are the
advantages and disadvantages?

8. What would you expect to find in the OSS portal? Why?
9. Do you understand the UseType Descriptions?
10. Do you understand the Obligation Descriptions?

11. Is the display of the result as a five-color traffic light system useful? How can it be
improved?

12. Do you have any further questions or comments?

Results

The users are grouped into personas to keep the answers anonymous. Requirements of the
architects, who mainly develop standard software solutions, were different from those who
establish individual software, which is why they are grouped into two roles: Architect-Product
(AP) and Architect-Individual (AI).

Requirement AP AI OE LE PO

Overview of used Components
Summary of license information
Notifications for security issues
Notifications for component updates
Automatic generation of reports
Automatic evaluation of transitive dependencies
Build-process integration

NN NN
NN NN
X N X X X X X%
x X X X X N X
CUx NS X

Table 3.1: Overview of requirements

¢ Architect of individual software solutions (Al)

An architect who mainly develops individual software solutions does not usually deal
with the verification of licenses because the customer usually provides a white list, a list
of allowed OSS components. He focuses on the quality of the components and is not
concerned with license texts, and he does not even know if he is responsible for
checking the licenses since there is no defined process. Furthermore, his impression is
that it is time-consuming, and he finds it difficult to check the licenses as he is not
familiar with that particular discipline. His expectations from a tool would be that the
process is fast and easy. A summary of a license that says what is allowed and what is
not would help him a lot. Ideally, the process should fit into the usual development
environment, i.e., the build process. Furthermore, notifications that warn about security
issues and components updates would be helpful.

12

3 Classification and Objectives

o Architect of standard software solutions (AP)

An architect who mainly develops standard software solutions considers himself
responsible for selecting licenses and the license compliance check, even if the license
compliance process is not his passion. In addition to good quality components, it is also
essential to deliver software to the clients that comply with the license terms. He is
familiar with licenses and assists others with this task if requested. However, he does
not check all transitive dependencies, as this is very time-consuming. Furthermore, he
desires an easy and fast process, and prefers the integration into the build pipeline and
importing the Maven pom.xml to automate the process.

¢ OSS Expert (OE)

His work includes answering questions about OSS and collecting information about the
components of OSS with their licenses. Therefore an automatically generated report
which contains all used components with their respective licenses would be beneficial.
Furthermore, he desires a tool that supports the process and the support, since others’
support takes much time.

¢ Legal Expert (LE)

A legal expert deals with OSS issues in addition to several other legal aspects and
provides support in this process on request. Understanding license texts are also
challenging for legal experts, as they are based on American law and written by
architects. The desire is an attractive tool that includes a license checker, which
automatically extracts all rights, obligations, and prohibitions from the license texts.
Furthermore, the tool should contain a note that clearly states that this check does not
replace legal advice.

¢ Product Owner (PO)

The Product Owner is interested in delivering a high-quality product to the customer,
so ensuring that the architects comply with the license regulations is essential. They
would require the tool to have a product overview with all components and licenses
and to receive notifications on security issues and component updates.

* Product Manager

The Product Manager has no interest in using such a tool and therefore has no
requirements.

13

3 Classification and Objectives

3.3 Related Work

3.3.1 Black Duck Suite

"Black Duck provides a comprehensive software composition analysis (SCA) solution for
managing security, quality, and license compliance risk that comes from the use of open
source and third-party code in applications and containers." [19] Firstly, it identifies OSS
components by build process monitoring, file system scanning, and code snippet matching.
Secondly, it detects security vulnerabilities and notifies users directly. Furthermore, the tool
provides DevOps Integrations to define agile development teams” processes and ensure that
applications comply with open source license terms and that the components are free of
vulnerabilities. [19]

3.3.2 WhiteSource

WhiteSource is a tool that automatically identifies components and their transitive dependen-
cies according to license compliance and security vulnerabilities. The tool is integrated into
the build process. Furthermore, automatic policies can be defined to control usage. Therefore,
a blacklist can be assigned to reject licenses automatically, a white list to automatically ap-
prove licenses and a list of licenses that need to be approved. When a checked component or
dependency is licensed under a blacklisted license, the user gets an alert and/or the build
will fail. [20]

3.3.3 Fossa

Fossa is an Open Source Management Tool that scans the full code to check whether license
obligations are fulfilled, and vulnerabilities are detected. If it is integrated into the build
process, the check will be done at every commit. For product evaluation, specific evaluation
policies are defined to categorize license into the following categories: Uncategorized, Deny,
Flag for Review, Approve. [21]

3.3.4 spdx

"The SPDX License List is a list of commonly found licenses and exceptions used in free and
open source and other collaborative software or documentation. The purpose of the SPDX
License List is to enable easy and efficient identification of such licenses and exceptions in an
SPDX document, in source files or elsewhere. The SPDX License List includes a standardized
short identifier, full name, vetted license text including matching guidelines markup as
appropriate, and a canonical permanent URL for each license and exception." [22]

3.3.5 tl;dr Legal

TLdt Legal is a website where Software Licenses are explained in plain English. An explana-
tion contains a short description and a summary that contains what is allowed to do, what is

14

3 Classification and Objectives

not allowed, and which obligations must be fulfilled. [23]

3.3.6 OpenLogic Stack Builder

OpenLogic is a tool that assembles a technology stack based on short questions in order to
meet the requirements. For example, to select a platform, the user is asked whether he is more
interested in VM or container-based solutions. Furthermore, the user has to specify whether
his solution is a large, multi-regional deployment or a single data center or availability zone.
[24]

3.3.7 Nexus Vulnerability Scanner

Nexus Vulnerability Scanner is a tool to scan the source code of a project in order to discover
vulnerabilities or license risks for components and transitive dependencies. "Licenses are
categorized as Copyleft (red), Non-standard or Not Provided (orange), Weak Copyleft (yellow),
and Liberal (blue)". The scanner checks for license declarations in the source and determines
the risk level. The result of the evaluation contains a value between one and ten and is
grouped into four categories for visualization as a doughnut chart: No Threat (0), Moderate
(1-3), Severe (4-7), Critical (8-10). Vulnerabilities correspond to the Common Vulnerability
Scoring System (CVSS) score. Furthermore, security and license risks of the current version
are compared with newer versions. After the evaluation, a report is provided with the
information.

3.3.8 Eclipse SW360

"SW360 is an open source software project licensed under the EPL-1.0 that provides both
a Web application and a repository to collect, organize and make available information
about software components. It establishes a central hub for software components in an
organization. SW360 allows for: tracking components used by a project/product, assessing
security vulnerabilities, maintaining license obligations, enforcing policies, and generating
legal documents, Integration with other tools and data sources (e.g. license scanner, static
code analysis, build infrastructure, etc" [25]. A build fails if a license obligation is not fulfilled,
e.g., when the license text must be provided, but cannot be found. Furthermore, reports are
provided with information about used components and their licenses. [25]

3.3.9 FOSSology

"FOSSology is a framework, toolbox and Web server application for examining software
packages in a multi-user environment. A user can upload individual files or entire software
packages. FOSSology will unpack this upload if necessary and run a chosen set of agents
on every file of the upload. An agent can implement any analysis operation on a text file.
The FOSSology package as of now focuses on license relevant data. However, it could be
extended with analyses for different purposes (e.g. static code analysis)." [26]

15

3 Classification and Objectives

3.3.10 LChecker

LChecker is a tool developed for automatic checking of license compliance. The tool "utilizes
Google Code Search service to check whether a local file exists in an OSS project and whether
the licenses are compatible." [27]

3.3.11 Kenen

Kenen is a process to support OSS license compliance for java projects. It contains a repository
with pre-approved components. An analysis tool called Joa finds matches of the source (java)
and binary (.class) files. If Joa detects a match, the component is approved. In order to
identify a license of a component, a pattern-matching tool called Ninka is used. [28]

3.3.12 Method of License Compliance of OSS Governance

Licenses of software are detected. Therefore, the name of the license, keywords, or the
complete license text is being searched for. An algorithm checks whether the licenses are
compatible or not. Only the compatibility is evaluated, but there is no evaluation of the usage.
[29]

3.3.13 Suggestion for an easy to use tool

A matrix is suggested to help to meet the requirements and improve the communication
between developers/software architects and legal professionals. The obligations depend on
the usage of the component.

"According GPL v2 Section 2, one is allowed to modify copies of the program and to
copy and distribute such modifications or work, provided, a) that the modified files carry
prominent notices stating who changed the files and the date of any change, and — the most
famous requirement in Open Source Licensing — b) that any work that one distributes or
publishes, that in whole or in part contains or is derived from the program or any part thereof
to be licensed as a whole at no charge to all third parties under the terms of the GNU General
Public License, Version 2 (GPL-2.0-only) License. This means, if some GPL-2.0-only-licensed
source is taken and built into a proprietary source, then, when distributing such combined
work, the requirement may arise, that also the combined proprietary source has to be put
under GPL-2.0-only. This might be a bit touch-and-go, as, perhaps, it is not intended to dis-
close a company’s intellectual property. However, not every software component distributed
together with GPL-2.0-only-licensed software falls under these requirements: In the case, the
further software component is an independent and separate work, it may remain distributed
under its own license. According [4] a work is regarded independent when it communicates
with the GPL-2.0-only-licensed program, e.g., via an operating system interface, as, e.g., pipe,
socket or command line. Taking these few points together, it can be seen that, when using GPL
v2-licensed software, the legal consequences depend strongly on what is done technically." [30]

16

3 Classification and Objectives

Therefore, a matrix is used where the developers provide component information, and
they can x-check several modes to specify the usage. The legal professionals evaluate that
information, and the result contains a traffic light and x-checks in the columns with the
obligations which must be fulfilled. [30]

3.3.14 Open Source Analysis Database (msg)

The Open Source Analysis Database was developed in 2012 by msg 2 in cooperation with an
external lawyer, who is specialized in OSS License Compliance. The method offers an
Excel-based solution for checking the license conditions.

The architects can enter any amount of specific product information, and they receive a
concrete evaluation for each component. In addition to the component, it is necessary to
specify how the component was used. For the usage 14 use types (Table 4.26) have been
defined, which are mentioned in the license texts. Besides the use types, 13 obligations
(Table 4.27) were defined, which model the license’s terms. If an obligation must be fulfilled,
often depends on the usage, which is why an adjacency matrix represents the license terms.
For example, some OSS licenses state that the use type "Modification of the source code" is
only allowed under the condition that "The modifications are made available to everyone
again under the same OSS license", then the cell from the intersection of the particular use
type and the particular obligation contains an entry.

After specifying how the component was used, an algorithm calculates a value that is based
on the Defense Readiness Condition (DEFCON) of the American military: from "DEFCON 5"
for harmless conditions to "DEFCON 1" for KO conditions. This method provides a good
basis by mapping the licenses and components. However, there is potential for improvement
since the method does not include transitive dependencies, and there is no central tool. The
Excel file is located in one division, and therefore the database cannot be shared within the
whole company, which would reduce the manual effort. Therefore, this bachelor thesis’s
solution deals with an elaboration based on this method considering transitive dependencies
and a central database. [1]

’msg is an independent, internationally active group of autonomous companies with more than 8,000 employees.
The core competency: intelligent IT and industry solutions.[18]

17

4 Concept

4.1 Introduction

The brain icon indicates own ideas or improvements, as the method is based on an already
existing method.

4.2 Data model

id: UUID PK
name: string FPK
url: string

icomn: picture
approved: bool
deleted: bool
lastUpdated: date

Id: UUID PK
lastUpdated: date

License Reference

id: UUID PK.
defconLevel: int
lastUpdated: date

subsequent: bool
position: int [1..4]

Architecture Modeling

mitigates— |

Figure 4.1: Architecture Modeling

18

4 Concept

Note: Normal notation represents attributes, and Italic represents relationships.

¢ ComponentUsage: A component usage specifies the component which is used with
the particular version. Addtionally, it contains information on the actual usage of the

component.

Subject

Purpose (What?)

Reason (Why?)

id

Technical unique identifier

Not all entities have domain-
specific primary key

defconLevel

The defconLevel represents
the result of the evaluation as
an integer. The range goes
from one to seven and indi-
cates how bad the conditions
are. Thereby the value one
represents a knockout crite-
rion and the value seven is
harmless.

The evaluated value is stored
in the database to provide the
information to the user. The
name defcon was derived for
historical reasons.

lastUpdated

Date when the defconLevel
was last evaluated.

The user is able to recalcu-
late the status after pressing
a button. When information
change in the system affects
the evaluated value of the
component usage, the user
should get notice and get a
new evaluation. When the
evaluation would be updated
without the user recongniz-
ing, it could lead to surprises.

component

OSS Component, which is
used for the development of
the product.

The architect wants to use
the component and needs to
know whether it is allowed or
not.

version

Specifies the version in which
the component is used.

The version is relevant to de-
termine the appropriate ver-
sion range of the component
in order to determine the li-
cense information which is
relevant for the evaluation.

specifies

Specifies how the component
is used in the product.

The usage is relevant for the
evaluation of the component
usage.

19

4 Concept

Component: A component represents a software component as defined in the Founda-
tion. This is an OSS component that can be used in the development of a product and

for which the architect wants to know whether he can use it.

Subject ‘ Purpose (What?) ‘ Reason (Why?)
id Technical unique identifier Not all entities have domain
specific primary key
name Designation For recognition and basis for
discussion
url Link to component To find the original compo-
nent
vendor Author of component Part of component informa-
tion
icon Icon of the component Recognizing
approved Indicates whether the compo- | After the component has been
nent has been approved. In | approved the changes are vis-
case information have been | ible to any user of the sys-
changed, the component in- | tem and the old version is re-
formation must be improved | placed by the changes.
in order to keep correct infor-
mation.
lastUpdated Date when the component | If it has not been edited for
was last updated a particular time and the ele-
ment is not being referenced,
it can be deleted to prevent
data garbage
dependsOn Transitive dependencies of a | A component often has mul-
component tiple transitive dependencies
which must be considered in
the evaluation.
definedRange Range for which the license | A new version of a com-
modeling applies ponent often contains small
changes that do not affect li-
cense modeling. Therefore,
the license modelling is de-
fined for a specific license
range in order to reduce ef-
fort to conduct the informa-
tion and to avoid duplicates.

20

4 Concept

technicalPlatform | Platform of component Can be used to recommend
only components which are
compatible with the desired
platform
tag Provides information about | Can be used for recommenda-
the component tions
proposalOf Proposed change for a com- | When an item is modified, a
ponent copy is created and stored un-
til the change is approved

Version: Represents a version of a component or product.

Subject Purpose (What?) Reason (Why?)
id Technical unique identifier Not all entities have domain
specific primary key

textual Textual representation of a | A version often has the for-
version mat X.y.z

arithmetic Arithmetic number of a ver- | To be able to compare a ver-
sion sion with another

date Publish date of version of | To be to check whether it is
component/license/product | the newest version

ComponentVersionRange: A version range of a component is defined so that the
license modelling does not have to be redefined for each new minor version. For
example, if a new version only contains bug fixes or more significant features are added
without using another component, and the license of the component does not change,
the version range is extended.

Subject ‘ Purpose (What?) Reason (Why?) ‘
componentRange | Component is defined for a | No need to create a new com-
range of versions ponent for small changes that
are not essential for the cal-
cualation of the DEFCON
id Technical unique identifier Not all entities have domain
specific primary key
from First version for which the li- | To define a range and check
cense modeling is defined whether a component is
within this range

21

4 Concept

upTp Last version for which the li- | To define a range and check
cense modeling is defined whether a component is
within this range
staysUnder A component can be under | Dual licensing is a frequently
several licenses used case which must be con-
sidered

® Product: A product represents a software product for which an architect wants to verify

compliance with the license terms.

‘ Subject ‘ Purpose (What?) ‘ Reason (Why?)
extends A product inherits from a | It has the same properties as
component a component
A product can have multiple | To attach important docu-

attached documents

document

ments of a product

¢ TechnicalPlatform: The Technical Platform depicts a specific property of a component
or product. This information can be used, for example, to give users recommendations
about the most commonly used components. However, if the user is working in a Java
environment, he or she does not want to have JavaScript recommendations, so this
information is relevant.

Subject Purpose (What?) ‘ Reason (Why?) ‘
id Technical unique identifier Not all entities have domain
specific primary key
name Designation For recognition and basis for
discussion
url Link to technical platform To find the original platform
icon Icon of the platform Recognizing
approved Shows whether the technical | After approval the change is
platform has been approved | visible to anyone
lastUpdated Date when the platform was | If it has not been edited for
last updated a particular time and the ele-
ment is not being referenced,
it can be deleted to prevent
data garbage

22

4 Concept

parent

Parent of the technical plat- | To further limit the range of

form (e.g. Java (Java EE,
Spring), JS (Angular, nodejs,
react, vue))

recommendations

¢ Tag: A tag represents information and clusters components.

‘ Subject ‘ Purpose (What?) ‘ Reason (Why?)
id Technical unique identifier Not all entities have domain
specific primary key

name

Designation

For recognition and basis for
discussion

¢ LicenseReference: A license reference is created when a new license is added to the
component. It provides information about whether subsequent versions of the license
are also valid and specifies the position relevant to the associated formula that was
defined for evaluating the licenses.

Subject ‘ Purpose (What?) Reason (Why?)
id Technical unique identifier Not all entities have domain
specific primary key

subsequent Indicates whether subsequent | It needs to be considered in
versions apply the evaluation

position Position of the fixed formula | The position is relevant to
to evaluate the legal status | handle dual licensing and dis-
of the componentUsage: (X1 | tinguish between "and" and
AND X2) OR (X3 AND X4) "or" operations

23

4 Concept

+

\

<Enum: UseType

id: UUID PK
name: string FPK
dascription: string

<Enum= Obligatio

id: UUID PK
name: string FPK
dascription: string

isSpecifiedWith
<< enummeration ==
ObligationType
OBLIGATION
NOT_OBLIGATION_SINGLE
< requiredAdditionalUseType— NOT_OBLIGATION_GLOBAL
ype SUb’SEqUT ipﬂ)posmo
l License
UseTypeObligation License -
Combination Declaration id: UUID PK
n spdxld: string PK é
id: UUID PK =<4 id: UUID PK name: sting FPK
defconLevel: int excerpt: RichText _"'__‘__‘ url: string
obligate: ObligationType : icon: picture 1.4
explicit: bool 1 dascription: string
{xor} vendar: string
\ approved: bool

License

License Modeling

' deleted: bool
lastUpdated: date

Figure 4.2: License Modeling

License: A license is a written document that defines the terms of use for the respective
components under this license. The information of a license, as well as its contents, is
relevant for the evaluation of a specific component.

Subject Purpose (What?) Reason (Why?)

id Technical unique identifier Not all entities have domain
specific primary key

spdx General identifier for licenses | Common used license identi-
tier

name Designation For recognition and basis for
discussion

url Link to license text To find the particular license
text

icon License Icon Recognizing

description Prose summary of a license | To summarise the license

text terms

24

4 Concept

vendor Author of the license Part of license information
approved Shows whether the license | After approval it is visible to
has been approved anyone
deleted In case the license has been | The license cannot be deleted
deleted there will be a | if there are elements with ref-
"deleted" flag for the license | erences to this license.
to let the users know.
lastUpdated Date when the license was | If it has not been edited for
last updated a particular time and the ele-
ment is not being referenced,
it can be deleted to prevent
data garbage
basedOn A license can be based on an- | Licenses with equal license
other license. For example, | declarations can be grouped
some license texts are copied | in order to refer to the same
and only the name is changed. | license declarations.
Examples are shown in table
Table 4.10.
subsequent Subsequent versions of a li- | Sometimes you can choose
cense from the specific license and
all subsequent licenses
proposal Of When license information | Changes must be improved in
have been changed a copy is | order to replace the previous
created which must be ap- | information.
proved.
consistsOf A license consists of multiple | Major points of legal texts can
license declarations. be reduced to a set of License
Declarations.
License ‘ Derived Licenses
MIT The JSON License[31], Prototype License[32], Scriptacu-
lous[33], Licensing terms for SLF4]J[34], W3C SOFTWARE
NOTICE AND LICENSEJ[35]
BSDv3C ASM[36], HSQLDBJ[37], JAMon[38], postgresql[39]
BSDv4C dom4;j[40], FreeMarker[41]
MPL gSoap[42]
SDN MAXDB[43]

Table 4.10: Derived Licenses

25

4 Concept

LicenseDeclaration: A license declaration represents a statement of a license accord-
ing to a specific obligation that requires a particular usage. It can either contain a
requirement that must be met or excludes a requirement due to the particular usage.

‘ Subject Purpose (What?) ‘ Reason (Why?) ‘
id Technical unique identifier Not all entities have domain
specific primary key
excerpt Indicates the excerpt of the li- | The license excerpt is a rel-
cense text from which the in- | evant information for the li-
formation of the LicenseDec- | cense modelling.
laration is derived.
obligate Indicates whether an obliga- | The information is relevant
tion must be fulfilled, ex-| for the evaluation in order to
cluded or the whole license | decide whether an obligation
terms do not need to com- | must be fulfilled or not.
plied with.
explicit Indicates whether the infor- | For the complete collection of
mation is explicitly or derived | the data with the correspond-
from another text section ing source
belongsToUseType- | Each license declaration | The object contains a value
ObligationCombi- | refers to the corresponding | which is relevant for the eval-
nation value according to the specific | uation of a componentUsage.
use type and obligation as
shown in Figure 4.26.
requiresAdditional | Specifies an additional use | Some license terms exclude
UseType type, which describes a usage | an obligation when the com-
which cannot be described by | ponent is used in a specific
a single use type. way, and usage is sometimes
covered by two different use
types in the license modelling
which is why an additional
use type is required.

26

4 Concept

«enumeration» ObligationType: The ObligationType indicates whether it is an obliga-
tion, where the user needs to fulfill a burden, or if a specific use type excludes a single
obligation or the whole usage.

‘ Subject ‘ Purpose (What?) Reason (Why?)
OBLIGATION Represents the state that a | A license agreement con-
condition must be fulfilled in | tains several conditions which
order to comply with the li- | need to be fulfilled.
cense terms.
NOT_ Represents the state that a | When a specific usage is
OBLIGATION _ condition is excluded due to | not restricted, the obligation
SINGLE the usage. must not be fulfilled in or-
der to comply with the license
terms.
NOT_ Represents the state that all | Some license agreements in-
OBLIGATION_ license terms can be excluded | clude the statement that the
GLOBAL due to a specific use type. license terms do not apply
when the component is used
in a specified way.

UseTypeObligationCombination: Specifies a relevant value for the evaluation that
applies to a particular obligation for a specific usage.

Subject Purpose (What?) ‘ Reason (Why?)
id Technical unique identifier Not all entities have domain
specific primary key
defconLevel Defcon level of UseTypeCon- | Use types are of a different
ditionCombination severity and must be consid-
ered individually
belongsToUseType | Specifies the use type of the | Specifies for which purpose

corresponding license decla-
ration for which the value of
the UseTypeObligationCom-
bination applies.

the conditions apply.

27

4 Concept

belongsToObligation | Specifies the obligation of the | Specifies the corresponding
corresponding UseTypeObli- | obligation for the license dec-
gationCombination for which | laration.
the value applies.

UseType: List of usage types under which the licenses distinguish and on which they
make a statement.

Subject ‘ Purpose (What?) Reason (Why?)

id Technical unique identifier Not all entities have domain
specific primary key

name Designation For recognition and basis for
discussion

description Description of a use type Explanation for the user, so
that they can correctly classify
the use.

Obligation: List of obligations under which the licenses distinguish and on which they
make a statement.

Subject ‘ Purpose (What?) Reason (Why?)

id Technical unique identifier Not all entities have domain
specific primary key

name Designation For recognition and basis for
discussion

description Description of a condition Explanation for the user, so

that they understand what
they need to do in order
to comply with the license
terms.

28

4 Concept

Session :
Upervisar;
\|ﬁjj
Org Unit User
director——> Role
0.1 | id: UUID PK id: UUID PK +
abbrev: string <——memberDf— usemame: string PK ——has—>| id: UUID PK
name: string PK name: string name:string

parent

Organization

¢ Mitigation: Once the calculation has resulted in a list of obligations that must be
fulfilled, the user must be able to heal them by fulfilling them. Mitigation is created

OrgUnit

Figure 4.3: Compliance Process

once the user has fulfilled an obligation.

Subject Purpose (What?) Reason (Why?)
id Technical unique identifier Not all entities have domain
specific primary key
partially Shows whether the burden | Sometimes the burdens can-
has been partially fulfilled not be fully fulfilled
comment Comment for the user For example, to keep a in-
formation to remember some-
thing (e.g. comments for a
decision)
mitigates A mitigation is specified with | The mitigation is relevant for
a license declaration where | the evaluation for which the
the corresponding obligation | defconLevel of the useType-
has been fulfilled. ObligationCombination is a
basis.

29

4 Concept

has

The mitigation is related | An obligation can only be ful-

to the componentUsage for

tilled for a single component

which the obligation has been | usage.

fulfilled.

¢ Document: A document can be attached to a product. It can be a report, which is
automatically generated by the system, or an evaluation, which is attached to save all
information to one location.

Subject Purpose (What?) Reason (Why?)
data Date when the document was | Keep the history and find the
created newest version.
read Shows whether a document | To highlight unread notifica-
has been read tions
title Title of a document For recognition and basis for
discussion
data Data of the document (e.g. | A document consists of data,
pdf) keep history of a product, pro-
vide documents to customers

* Review: Represents a review of the product, which is optional if one or more compo-
nents show problems according to the calculation of the system and the architects need

further legal advice.

Subject

‘ Purpose (What?)

‘ Reason (Why?)

extends

A review inherits from a com-
ponent

It has the same properties as
a document

¢ Human: Represents a review, which is accomplished by an expert.

‘ Subject

‘ Purpose (What?)

‘ Reason (Why?)

extends

A review human review in-
herits from a review

It has the same properties as
a review

30

4 Concept

General: Represents a review, which is automatically generated by the system.

‘ Subject ‘ Purpose (What?) ‘ Reason (Why?) ‘
extends A general review inherits | It has the same properties as
from a review a review

Report: Represents a report that is automatically generated by the system. This report
can contain information about the components used, as well as the associated licenses
and their transitive dependencies.

‘ Subject ‘ Purpose (What?) ‘ Reason (Why?) ‘
extends A report inherits from a com- | It has the same properties as
ponent a document

31

4 Concept

Document
_| date: Date PK
| read: bool
title: string PK
data: blob
Mitigation /7 v\
id: UUID PK _ Review Report
comment: stnng
partially: bool
Human General

Compliance Pricess

Compliance Process

Figure 4.4: Organization

OrgUnit:Represents any kind of organization unit, can also be a project.

Subject Purpose (What?) Reason (Why?)

id Technical unique identifier Not all entities have domain
specific primary key

abbrev Abbreviation of OrgUnit Part of OrgUnit information

name Designation For recognition and basis for
discussion

parent Parent of OrgUnit To represent the hierarchy of
the organization.

director Director of OrgUnit A director holds the rights for
his unit

User: Represents any user of the system.

Subject ‘ Purpose (What?) ‘ Reason (Why?) ‘

id Technical unique identifier Not all entities have domain
specific primary key

32

4 Concept

username Unique assigned username Required to login, cannot
change
name Represents the real name of | User can edit this name (e.g.
the user after a marriage or do add an
title)
supervisor Supervisor of user Person who manages the
rights of the user
memberOf OrgUnit to which the user be- | Within an OrgUnit the user
longs has special rights
has Role/s of a user Relevant for the authorization
in the system
session User session Technically required to han-
dle multiple HTTP requests
as a single session

* Role: A role represents the user’s role required for

appropriate display of the user interface.

the logic of the server-side and the

‘ Subject ‘ Purpose (What?) ‘ Reason (Why?)
id Technical unique identifier Not all entities have domain
specific primary key
name For recognition and basis for

Designation

discussion

* Session: Represents a user session which is technical required to handle multiple http

requests as a single session.

‘ Subject

‘ Purpose (What?)

‘ Reason (Why?)

id

Technical unique identifier

Not all entities have domain
specific primary key

33

4 Concept

553001 P0UBICLOD

Mdainn:p
uuope|d [eajuyda)

M4 Bus ‘eweu

d ainn et
Bey
BlEq 8P
TE0Y OfjBWLE ||
BuLns :ienixel il
d ainn Pt u
osien

|eauen uewny
1009 :Ajrensed
Bups uewwod
woday majay d ainn :p!
uoneBnIn
qoiq E12p
¥d Buins :apn.
100q :pE3)
d 81eq :2jep
juswnaoq
A i
¢ susponmpanier T
1anpoid
{PX aNY £X)|
HO (2x any 1|
‘ejnuLioj}
OjIENRAS paX
24P P Wse|
1 suofEao|
s1ep :pejepdmise] 1009 :paja|ap [1] 1 :uoyisod
wi:fensTuoviep ‘suodul _....us“..u-vn“_u“ prep—— 1004 uenbasans
d @inn P UOSPuU Buns 1opuA Hd ainn B
n Buyns :pn [e abuey uoisiop n
wauodwod dd Buus aweu wauodwo)
Md aInn :er
UOEU|qUIOD
wauodwon uonebiigoadALas
Joresodoid

IVE0TY NOILYDITE0 10N
FTONIS NOLLYDITE0 LON
NOILYDITEO

dALuonebiao
AA_B_EIE_.!E.uv

Figure 4.5: Data model

34

4 Concept

4.3 License Modelling

4.3.1 General

The modeling is primarily based on adjacency matrices of use types and obligations. Some
OSS licenses, for example, contain the statement that the type of use "modification of the
source code" is only allowed if the condition "the modifications are made available to everyone
again under the same OSS license" is fulfilled. In such a case, the adjacency matrix contains an
entry at the intersection of the specific use type and corresponding obligation. The licenses is
defined by 14 use types (Table 6.25: Use Types) and 13 use types (Table 6.26: Obligations)[1].

Use Type Description ‘ Example

format: source

component is provided in
pristine source format

WEB-INF/jquery.js

format: compiled

component is provided in
compiled/converted /com-
pressed format

com/example/foo.class

dependency: optional

component is loaded on de-
mand and product would rea-
sonably work without it

JDBC driver

without distribution to other
legal entities (e.g. built-time
components)

dependency: mandatory component is loaded/linked | Hibernate ORM
dynamically/statically and
product does not function
without it

delivery: internal component is used internally | Gradle/Ant/Maven

delivery: distributed

component is distributed to
other legal entities (e.g. run-
time components)

lib/example-1.2.3 jar

usage: local-call

component (via product) is lo-
cally called for execution

C:
\Applications\ Example
\example.jar

usage: remote-call

component (via product) is
remotely called for execution
(SaaS)

service.example.com:1234

communication: process

component is called from
product via direct in-process
mechanism (function call, dis-
patch table, etc)

component_function()

35

4 Concept

communication: system

component is called from
product via system/network
service (pipe, socket, dlsym,
execve, etc)

/var/run/
component.socket

bundling: standalone

component artifacts still pro-
vided fully standalone and
recognizable as such

example-1.2.3 jar

bundling: embedded

component artifacts embed-
ded into product and/or not
obviously recognizable

product-1.2.3.ear/
example-1.2.3 jar

artifact: pristine

component artifacts are all as-
is, i.e. exactly as originally
received from upstream ven-

dor

example-1.2.3.jarlcom/
example/foo.class

artifact: modified

component artifacts were
added /replaced/removed

example-1.2.3.jarlcom
/example/addon.class

Table 4.26: Use Types

Obligation ID

Obligation

Description

NO-LIABILITY

No Liability

You cannot make the au-
thor of the component li-
able for any damages it

causes.

KEEP-COPYRIGHT

Keep Copyright Information

The copyright information
of the component’s author

has to be kept.

PROVIDE-LICENSE

Provide License Text

You have to provide the
full license text of the com-

ponent.

PROVIDE-SOURCE

Provide Source Code

You have to provide the
full source code of the com-

ponent.

ADV-CLAUSE

Advertizement Clause

Documentation and/or ap-
plication has to show hint
to the component (and its

author).

36

4 Concept

RENAME Name Change Required The name of the compo-
nent has to be changed (in
case of modifications + re-
distribution).

NO-RELICENSE No Relicensing Allowed The component cannot be
relicensed under a differ-
ent custom license.

CTX-NON-MIL Non-Military Use Only Component is not allowed
to be used in military or
nuclear-power contexts.

CTX-NON-COM Non-Commercial Use Only | Component is not allowed
to be used in commercial
contexts.

COPYLEFT-STRONG Weak Copyleft Effect License applies a weak/re-
stricted copyleft effect.

COPYLEFT-WEAK Strong Copyleft Effect License applies a strong/-
full copyleft effect.

NON-OSS-DEF Non OSS Definition Compli- | License contains condi-

ant tions which are not com-

pliant to Open Source Soft-
ware definition.

OTHER Other Obligations License contains arbitrary
other major conditions not

modeled/covered by us
(fallback).

Table 4.27: Obligations

Each License Declaration represents a single cell of the adjacency matrix. The license analysis
(see file license-modelling .xsxI on CD) provides the adjacency matrices of the following
licenses: MIT [44], The 2-Clause BSD License (BSD-2-Clause) [45], The 3-Clause BSD License
(BSD-3-Clause) [46], The 4-Clause BSD License (BSD-4-Clause) [47], ICU License (ICU) [48],
Apache Software License 1.1 (Apache-1.1) [49], Apache Software License 2.0 (Apache-2.0)
[50], MOZILLA PUBLIC LICENSE VERSION 2.0 (MPL-2.0), COMMON DEVELOPMENT
AND DISTRIBUTION LICENSE Version 1.0 (CDDL-1.0) [11], Common Public License,
version 1.0 (CPL-1.0) [14], Eclipse Public License - v 1.0 (EPL-1.0) [13], GNU Lesser General
Public License, Version 2 (LGPL-2.0-only) [51], GNU Lesser General Public License, Version 3
(LGPL-3.0-only) [17], GPL-2.0-only [52], GNU General Public License, Version 3
(GPL-3.0-only) [15], GNU Affero General Public License, Version 3 (AGPL-3.0) [16], Oracle
Technology Network License Agreement (OTN) [53] and SAP Developers Network MaxDB
License Agreement Version 1 (SDN) [54] (Table 6.27: Full License Names).

37

4 Concept

The selection of the licenses is based on practical experience (msg) as well as on two openly
viewable reports. The first report, "Open source security and risk analysis report from 2020
(OSSRA)" is a study of 1250 codebases in 17 different industries. It covers, besides other
topics, the most commonly used licenses. The second is a technology review, which was
created by lawyers. According to the Table 4.29, the license analysis includes all licenses
included in the list of the most used licenses. Additional licenses are analyzed to verify that

the modeling covers all use types and obligations.

License Name

SPDX Identifier

The MIT License [44]

MIT

The 2-Clause BSD License [45]

BSD-2-Clause

The 3-Clause BSD License [46]

BSD-3-Clause

The 4-Clause BSD License [47]

BSD-4-Clause

ICU License [48] ICU
Apache Software License 1.1 [49] Apache-1.1
Apache License, Version 2.0 [50] Apache-2.0
MOZILLA PUBLIC LICENSE VERSION 2.0 [12] MPL-2.0
COMMON DEVELOPMENT AND DISTRIBUTION LICENSE Ver- | CDDL-1.0
sion 1.0 [11]

Common Public License, version 1.0 [14] CPL-1.0
Eclipse Public License - v 1.0 [13] EPL-1.0

GNU Lesser General Public License, Version 2 [51]

LGPL-2.0-only

GNU Lesser General Public License, Version 3 [17]

LGPL-3.0-only

Version 1 [54]

GNU General Public License, Version 2 [52] GPL-2.0-only
GNU General Public License, Version 3 [15] GPL-3.0-only
GNU Affero General Public License, Version 3 [16] AGPL-3.0
Oracle Technology Network License Agreement [53] N/A

SAP DEVELOPERS NETWORK -MaxDB LICENSE AGREEMENT | N/A

Table 4.28: Full License Names

License msg OSSRA Report Technology Review

MIT v v v
BSD-2-Clause v X v
BSD-3-Clause v v v

Apache-2.0 v v v
MPL-2.0 v v X
CDDL-1.0 v v X
EPL-1.0 v v X

4 Concept

LGPL-2.0-only Vv v X
LGPL-3.0-only v v X
GPL-2.0-only v v v
GPL-3.0-only Vv v v

Other v X X

Table 4.29: Most frequently used licenses

4.3.2 License Analysis

The matrices of the license analysis are not just plain adjacency matrices. Each cell, which is
usually identified by true or false, contains further information. Empty fields indicate that the
license makes no statement about the particular obligation and the corresponding use type.
Filled fields contain a text which represents an excerpt from the corresponding license text.
That text indicates that the particular obligation applies according to the particular use type.

Additionally, each filled cell is colored. The color indicates further information. There are
three colors, each with two different contrasts. Light indicates that the information is
implicitly given from the stated license excerpt, and dark indicates that the information is
explicitly given. If the information is explicitly given, the text’s keywords that indicate the
use type are marked bold. The three colors are blue, orange and red. The color blue indicates
that the component is an obligation (OBLIGATION), which means something needs to be
fulfilled.

Orange indicates a NOT_OBLIGATION_SINGLE. This states that the user does not have to
tulfill the obligation if he uses the component in a certain way. For example, some licenses
require the user to comply with conditions if the component is distributed. Since there is no
statement about obligations for internal use, the usage is harmless, and the conditions do not
have to be met.

The last case NOT_OBLIGATION_GLOBAL excludes not only one single obligation, but all
obligations of the license. Some licenses state that the license terms do not apply in case of a
specific usage.

¢ Observing the license analysis of the The MIT License (MIT) (Figure 4.6) license, the
license contains only one color. The reason for this is that this license does not differen-
tiate between the use types. The disclaimer "IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,

39

4 Concept

ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE"[44] e.g. states that the author
or copyright holder is not liable for any damages regarding the use of the software
component. This disclaimer is a general statement and does not refer to a specific use
type, so it can be implied that this applies regardless of the use. Therefore the data
is stored as implicit information for all use types. Referring to the data model, the
disclaimer mentioned is assigned to the excerpt of a License Declaration, the obligation
type is "OBLIGATION" and the boolean "explicit" is false.

- g] g
H E 3 g g g 3
3 £ 5 = 2 3 a i $ 2 5
3 g g 2 S & £ K 3 o]
8 -4 J = £ i 8 s s 2 -] £ t=
5 £ g g £ 2 = S 3 = 2 £ Z 8
3 s g 2 £ < g £ S g R 2 & £
Z 5 £ 2 & & = E s s) B g g
K]] 2 e § § A @ g g £ £ 8 8
E E 8 g 2 2 » ® £ £ 2 2 £ £
8 8 3 3 3 3 3 3 8 8 2 2 & e
"IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS "INNO "INNO "INNO "INNO "INNO "INNO "INNO "INNO "INNO "INNO "INNO "INNO "INNO
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, SHALLTHE SHALLTHE SHALLTHE SHALLTHE SHALLTHE SHALLTHE SHALLTHE SHALLTHE SHALLTHE SHALLTHE SHALLTHE SHALLTHE SHALLTHE
'ARISING FROM, OUT OF OR IN CONNECTION WITH THE AUTHORS ~ AUTHORS ~ AUTHORS ~ AUTHORS ~ AUTHORS ~ AUTHORS AUTHORS AUTHORS AUTHORS ~ AUTHORS ~ AUTHORS ~ AUTHORS ~ AUTHORS
SOFTWARE ORTHE USE OR OTHER DEALINGS IN THE OR OR OR OR OR OR OR OR OR OR OR OR OR
SOFTWARE." COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT

HOLDERS BE HOLDERS BE HOLDERS BE HOLDERS BE HOLDERS BE HOLDERS BE HOLDERS BE HOLDERS BE HOLDERS BE HOLDERS BE HOLDERS BE HOLDERS BE HOLDERS BE
LIABLE FOR LIABLEFOR LIABLEFOR LIABLEFOR LIABLEFOR LIABLEFOR LIABLEFOR LIABLEFOR LIABLEFOR LIABLEFOR LIABLEFOR LIABLEFOR LIABLE FOR
“The above in all copies or copyright notice and this permission ~ "Theabove "Theabove 'Theabove 'Theabove 'Theabove 'Theabove "Theabove "Theabove 'Theabove 'Theabove 'Theabove "Theabove “Theabove
notice shall be included substantial portions of the Software. " inall copies inallcopies inallcopies inallcopies inallcopies inallcopies inallcopies inallcopies inallcopies inall copies inall copies inallcopies —inall copies
orcopyright or copyright or copyright or copyright or copyright or copyright or copyright ~orcopyright o copyright ~ or copyright ~ or copyright ~ or copyright or copyright
noticeand noticeand noticeand noticeand noticeand noticeand noticeand noticeand noticeand noticeand noticeand noticeand notice and
this this this this this this this this this this this this this
permission permission permission permission permission permission permission permission permission permission permission permission permission
notice shall notice shall notice shall notice shall notice shall noticeshall noticeshall notice shall notice shall notice shall notice shall notice shall notice shall

PROVIDE-LICENSE

(P CoPvaGi beincluded beincluded beincluded beincluded beincluded beincluded beincluded beinduded beincluded beincluded beincluded beincluded be included
“The above in all copies or copyright notice and this permission ~ "Theabove "Theabove 'Theabove 'Theabove 'Theabove "Theabove "Theabove 'Theabove "Theabove "Theabove "Theabove "Theabove “Theabove
notice shall be included substantial portions of the Software. " inallcopies inallcopies inallcopies inallcopies inallcopies inallcopies inallcopies inallcopies inallcopies inallcopies inallcopies inallcopies in all copies

orcopyright or copyright or copyright or copyright or copyright or copyright or copyright ~or copyright ~or copyright ~ or copyright ~ or copyright or copyright or copyright
noticeand noticeand noticeand noticeand noticeand noticeand noticeand noticeand noticeand noticeand noticeand noticeand notice and

PROVIDE-SOURCE
ADV-CLAUSE
RENAME
NO-RELICENSE
CTX-NON-MIL
CTX-NON-COM
COPYLEFT-STRONG
COPYLEFT-WEAK
NON-0SS-DEF
OTHER

Figure 4.6: MIT License Analysis [44]

¢ However, looking at the BSD-2-Clause license, which contains the same obligations, the
different types of use are also considered. The disclaimer about NO-LIABILITY is also
valid for all use types. However, the section "Redistributions of source code must retain
the above copyright notice, this list of conditions and the following disclaimer"[45]
explicitly states that you must keep copyright information when distributing the source
code. Therefore there is an entry at the intersection of the use type "format: source" and
the obligation "keep-copyright". Referring to the data model, the corresponding license
declaration has an obligation type "OBLIGATION", and explicit is true. The section
"Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution."[45] gives the information for the same obligation as
above and the use type "format: compiled". The term "redistribution", which is used
in both sections, gives further information. That means that these obligations must
only be fulfilled if the code is redistributed, which is covered by the use type "delivery:
distributed". It further indicates that there are no restrictions for internal use. Therefore,

40

4 Concept

NO-LIABILITY

KEEP-COPYRIGHT

PROVIDE-LICENSE

the use type "delivery: internal" is excluded. The adjacency matrix illustrates that with
the color orange with a light contrast, and the license declaration’s obligation type has

the value "NOT_OBLIGATION_SINGLE" and explicit is false. For all other use types,
there are no specifications.

The first question, which still has to be clarified, is when a component is used in-
ternally. The use within an organization or company is not restricted. [55] If a copy is
given to another organization or individual, then it is a distribution [55].

The second question that arises concerns what happens to service providers who
develop a product within an organization. If the copyright is signed over to the client,
the license compliance artifacts do not have to be provided. However, the client may
want it, and therefore the contract of the project should be checked. Besides, even if
there is no agreement regarding license compliance, it is still a topic that should be
discussed [56].

- g i 3 .
[s o S 1 2 B
3 2 E o H 3 g L 3 3 - 3
@ = g £ £ e b s § i 2 £ &
2 5 5 - g § E 3
8 g] 5 H 3 H § = = @ @ 5 [
“ i T ° & - - 1] 2 2 s & £ =
£ g g g & = ¢ § £ £ E E g &
£ 8 3 < 3 3 3 3 S 3 3 3 5 5
"IN NO EVENT SHALL THE "INNOEVENTSHALL "INNO "INNO "IN NO EVENTSHALL THE "INNO "INNO "INNO "INNO "INNO "INNO "INNO "INNO "INNO
COPYRIGHT HOLDER OR THE COPYRIGHT EVENT EVENT COPYRIGHTHOLDEROR ~ EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT EVENT
CCONTRIBUTORS BE LIABLE FOR HOLDER OR SHALLTHE SHALLTHE CONTRIBUTORS BE SHALLTHE SHALLTHE SHALLTHE SHALLTHE SHALLTHE SHALLTHE SHALLTHE SHALLTHE SHALLTHE
ANY DIRECT, INDIRECT, CONTRIBUTORSBE ~ COPYRIGHT COPYRIGHT LIABLE FOR ANYDIRECT, COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGHT COPYRIGH™
INCIDENTAL, SPECIAL, LIABLE FOR ANY HOLDEROR HOLDEROR INDIRECT, INCIDENTAL, HOLDEROR HOLDEROR HOLDEROR HOLDEROR HOLDEROR HOLDEROR HOLDEROR HOLDEROR HOLDER Of
"Redistributions of source code istributionsin "Redistribut istri istribution and use istri istri istri istril istri "Redistribut istri "Redistribt
must retain yrigh y must ionanduse ionanduse insourceand binary ionanduse ionanduse ionanduse ionanduse ionanduse ionanduse ionanduse ionanduse ionand use
notice, thislist of conditionsand reproducetheabove insource insource forms, withorwithout insource insource insource insource insource insource insource insource insource
the following disclaimer.” copyrightnotice, and binary and binary modification, are andbinary andbinary andbinary andbinary andbinary andbinary andbinary andbinary and binary
thislist of conditions forms, with forms, with permitted provided that forms, with forms, with forms, with forms, with forms, with forms, with forms, with forms, with forms, witt
and thefollowing orwithout orwithout thefollowing conditions orwithout orwithout orwithout orwithout orwithout orwithout orwithout orwithout orwithout
disclaimerinthe modificatio modificatio are met:" i i i i i i i i i i i { i i i i i i
"Redistributions of source code listributions "Redistribut istri istribution and use istri istri istri istril istri "Redistribut istri "Redistribt
must retain the above copyright binary form must ionanduse ionanduse insourceand binary fonand use ionsin ionsin ionsin ionsin ionsin ionsin ionsin ionsin
notice, this i insource insource forms, withorwithout insource binaryform binaryform binaryform binaryform binaryform binaryform binaryform binaryforn
the following disclaimer.” copyright notice, this and binary and binary modification, are and binary must must must must must must must must
list of conditionsand forms, with forms, with permitted provided that forms, with P P pi
the following orwithout orwithout thefollowingconditions orwithout theabove theabove theabove theabove theabove theabove theabove theabove
disclaimerinthe modificatio modificatio aremet:" modificatio copyright copyright copyright copyright copyright copyright copyright copyright

Figure 4.7: Excerpt of BSD-2-Clause License Analysis [45]

Especially for strong Copyleft licenses, the use type is relevant. A strong copyleft effect is
usually a knockout criterion for the use of a component. Considering the license analysis
of the CPL-1.0 license, notice that copyleft-strong is an obligation. Strong copyleft means
that the user has to provide the source code of the entire product. Internal use is
excluded, which means that the internal use of a component under a copyleft license is
harmless. However, if the user wants to use and distribute the component, the usage
is the decisive factor. If the component is used standalone, the usage can be harmless.
However, this also assumes that the product is not dependent on the component. The
product must, therefore, be able to function without this component. If this is the case,
then the component can be used without the provision of the own work. The additional
condition is represented in the license matrix by " &dependency: optional" and in

41

4 Concept

the data model by the field "requiresAdditionalUseTypes". Referring to the following
statement "If the program uses fork and exec to invoke plug-ins, then the plug-ins are
separate programs, so the license for the main program makes no requirements for
them. So you can use the GPL for a plug-in, and there are no special requirements.If
the program dynamically links plug-ins, and they make function calls to each other and
share data structures, we believe they form a single program, which must be treated as
an extension of both the main program and the plug-ins. This means that combination
of the GPL-covered plug-in with the non-free main program would violate the GPL.
However, you can resolve that legal problem by adding an exception to your plug-in’s
license, giving permission to link it with the non-free main program."[55] the additional
use type is relevant.

bundling: standalone

Contributions do not include additions to the Program which: (i) are separate modules of software distributed in conjunction with the
COPYLEFT-STRONG Program under their own license agreement, and (ii) are not derivative works of the Program. &dependency: optional

Figure 4.8: Excerpt of CPL-1.0 License Analysis [14]

* In contrast, the licenses LGPL-2.0-only and GPL-2.0-only exclude the complete license
terms when the component is used separately. The section "These requirements apply
to the modified work as a whole. If identifiable sections of that work are not derived
from the program and can be reasonably considered independent and separate works
in themselves, then this license, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of
a whole which is a work based on the program, the distribution of the whole must be
on the terms of this license, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it."[51] indicates that
the license and its license terms do not apply if the application is standalone. TThe
requirement is that it is independent, i.e., that the product can function without this
component[57].

42

4 Concept

o
=
o
©
°
c
5]
S
w
&
£
©
c
=
2

KEEP-COPYRIGHT

PROVIDE-LICENSE

Figure 4.9: Excerpt of LGPL-2.0-only License Analysis [51]

¢ The relevance of the use types "communication: process" and "communication: system"
appear in LGPL-2.0-only, LGPL-3.0-only, GPL-2.0-only, and GPL-3.0-only. For LGPL-
2.0-only and GPL-3.0-only the section "The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does"[51] states that the act of running the
Program is not restricted.

£
8
2
n
c
o
=]
©
2
=
3
£
£
o
o

KEEP-COPYRIGHT

PROVIDE-LICENSE

PROVIDE-SOURCE

Figure 4.10: Excerpt of LGPL-2.0-only License Analysis [51]

¢ Similarly, for the LGPL-3.0-only and GPL-3.0-only licenses, the section "This License
explicitly affirms your unlimited permission to run the unmodified program"[17] states

43

4 Concept

that you are granted unlimited permission to run the unmodified program. That
statement contains an additional restriction. It only applies if the component is used
unmodified. The additional required use type is, therefore, "&artifact: pristine".

£
[
o}
(d
>
.
=
19
S
©
=2
c
E]
1S
=
o
s}

KEEP-COPYRIGHT

PROVIDE-LICENSE

PROVIDE-SOURCE

Figure 4.11: Excerpt of LGPL-3.0-only License Analysis [17]

¢ Furthermore, the relevance of the use types "usage: local" and "usage: remote-call"
is still undefined. They indicate whether a component was called locally or remotely
for execution. The licenses LGPL-3.0-only, GPL-3.0-only and AGPL-3.0, use the term
convey instead of redistribution[55]. The definition included in each of the licenses is
"To ’convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying"[15] states that interaction over a computer network
is not conveying. As the licenses state that the obligations apply to convey, the implicit
conclusion is that the obligation for the use type "usage: remote-call" can be excluded.

44

4 Concept

usage: remote-call

"To “convey” a work means any kind of propagation that enables other parties to make
KEEP-COPYRIGHT or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying."

"To “convey” a work means any kind of propagation that enables other parties to make
PROVIDE-LICENSE or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying."

"To “convey” a work means any kind of propagation that enables other parties to make
PROVIDE-SOURCE or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying."

Figure 4.12: Excerpt of LGPL-3.0-only License Analysis [15]

¢ After demonstrating the relevance of all use types, the relevance of obligations is
considered in the following. The obligation "NO-LIABILITY" is in general included
in the licenses by the following disclaimer "IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE"[44]. With this note, the user
acknowledges that no liability is assumed for its use.

format: source

"IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
NO-LIABILITY ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE."

Figure 4.13: Excerpt of the MIT License Analysis [44]

45

4 Concept

* The second obligation "KEEP-COPYRIGHT" states that you must retain copyright
information. For example, the MIT license contains the following statement: "The above
in all copies or copyright notice and this permission notice shall be included substantial
portions of the Software"[44].

format: source

KEEP-COPYRIGHT "The above in all copies or copyright notice and this permission notice shall be included substantial portions of the Software. "

Figure 4.14: Excerpt of the MIT License Analysis [44]

¢ "PROVIDE-LICENSE" indicates that you must provide the full license text of the
component. The excerpt "Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer"[45] from the BSD-2-Clause
states that the list of conditions must be provided which corresponds to this obligation.

format: source

PROVIDE-LICENSE ~ "Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer."

Figure 4.15: Excerpt of the BSD-2-Clause License Analysis [45]

¢ "PROVIDE-SOURCE" requires that the full source code of the component is made
available. This obligation is only relevant for the use type "format: compiled", since
the source code is provided when the component is distributed in source format, and
therefore the condition is fulfilled. An example is an excerpt "If You distribute Covered
Software in Executable Form then: a. such Covered Software must also be made
available in Source Code Form, as described in Section 3.1, and You must inform
recipients of the Executable Form how they can obtain a copy of such Source Code
Form by reasonable means in a timely manner, at a charge no more than the cost of
distribution to the recipient; and..."[12] of the MPL license. Executable form corresponds
to the use type "format: compiled".

46

4 Concept

T
9
‘a
=
o
o
o
©
2
=
2

PROVIDE-SOURCE

Figure 4.16: Excerpt of the MPL License Analysis [12]

e "ADV-CLAUSE" denotes that the application or its documentation must contain a note
about the component and its author. Keywords to find this condition in a license are,
for example, "trademarks" or "advertising". For instance, the BSD-4-Clause contains
the following statement: "All advertising materials mentioning features or use of this
software must display the following acknowledgement: This product includes software
developed by the organization"[47].

@
o
g
3
°
v
b
©
E
£
L

ADV-CLAUSE

Figure 4.17: Excerpt of the BSD-4-Clause License Analysis [47]

¢ Furthermore, a statement, for example, included in the BSD-4-Clause is: "Neither
the name of the copyright holder nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission."[47]. This statement affirms that the name of the component must be
changed when modifying and distributing the component. This condition is represented
in the model by the obligation "RENAME".

47

4 Concept

RENAME

format: source

"Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

4. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission."

Figure 4.18: Excerpt of the BSD-4-Clause License Analysis [47]

Another obligation, such as "If the Work includes a 'NOTICE’ text file as part of its
distribution, then any Derivative Works that You distribute must include a readable copy
of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following
places: within a NOTICE text file distributed as part of the Derivative Works; within the
Source form or documentation, if provided along with the Derivative Works; or, within
a display generated by the Derivative Works, if and wherever such third-party notices
normally appear. The contents of the NOTICE file are for informational purposes only
and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text
from the Work, provided that such additional attribution notices cannot be construed as
modifying the License."[50] of the Apache-2.0 license and which is associated with the
obligation "NO-RELICENSE", states that the component may not be relicensed under
another license.

format: source

"If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the

NO-RELICENSE Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the

NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You
distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as
modifying the License."

Figure 4.19: Excerpt of the Apache-2.0 License Analysis [50]

Use in a military context is not permitted by some licenses and is covered by the
obligation "CTX-NO-MIL". An example shows the excerpt "You are not listed on
the United States Department of Treasury lists of Specially Designated Nationals and
Blocked Persons, Specially Designated Terrorists, and Specially Designated Narcotic
Traffickers, nor are You listed on the United States Department of Commerce Table of
Denial Orders"[53], which refers to the OTN license.

48

4 Concept

format: source

"You are not listed on the United States Department of Treasury lists of Specially Designated Nationals and Blocked Persons, Specially Designated Terrorists,

CTX-NON-MIL
and Specially Designated Narcotic Traffickers, nor are You listed on the United States Department of Commerce Table of Denial Orders."

Figure 4.20: Excerpt of the OTN License Analysis [53]

¢ The OTN is not a common OSS license. Therefore some obligations exist to represent
other licenses, which are not OSS licenses but are relevant in practice. In license analysis,
there are two such licenses, the OTN, and the SDN. Both licenses contain conditions
that do not conform to the OSS definition. Regarding the section "Oracle Employees:
Under no circumstances are Oracle Employees authorized to download software for
the purpose of distributing it to customers. Oracle products are available to employees
for internal use or demonstration purposes only"[53] from the OTN license, the OTN
license states that Oracle employees have exclusive rights of use, which contradicts the
equality of the OSS definition.

format: source

"Oracle Employees: Under no circumstances are Oracle Employees authorized to download software for the purpose of distributing it to customers.

NON-OSS-DEF . . q "
Oracle products are available to employees for internal use or demonstration purposes only.

Figure 4.21: Excerpt of the OTN License Analysis [53]

¢ Further restrictions exist regarding copyleft. Some licenses require that the modified
version of the component or even the complete product for which the component is
used is made available."COPYLEFT-WEAK" indicates that not the complete product
inherits the copyleft license. The LGPL-2.0-only license e.g., covers this case: "You must
cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to
all third parties under the terms of this License."[51].

49

4 Concept

format: source

"b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any

COPYLEFT-WEAK
part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License."

Figure 4.22: Excerpt of the LGPL-2.0-only License Analysis [51]

¢ "COPYLEFT-STRONG", on the other hand, states that the complete work as a whole
must be made available under the license, what for instance can be found in the GPL
licenses ("But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this
License, whose permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it"[52]).

format: source

"But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the

COPYLEFT-STRONG
terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it"

Figure 4.23: Excerpt of the GPL-2.0-only License Analysis [52]

¢ Finally, an obligation "OTHER" is defined, which represents obligations that are not
considered in the modeling. These are mostly contained in copyleft licenses, which you
probably are not allowed to use. If the type of use allows the use of such a license, this
requires another manual check. An example of this would be that you must include
installation instructions when distributing the product, according to the following
excerpt of the GPL-3.0-only license: ""Installation Information” for a User Product means
any methods, procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from a modified
version of its Corresponding Source. The information must be sufficient to ensure
that the continued functioning of the modified object code is in no case prevented or
interfered with solely because modification has been made."[15].

50

4 Concept

usage: remote-call

"“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information required to install and
execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because

modification has been made."
OTHER

"Sublicensing is not allowed; section 10 makes it unnecessary."

"a) The work must carry prominent notices stating that you modified it, and giving a relevant date."

Figure 4.24: Excerpt of the GPL-3.0-only License Analysis [15]

4.3.3 Graduation of use types and obligations

For calculation, the obligations are assigned values that indicate the overall impact on the
product. The range is from one to five, whereby five describes a harmless condition and one
a strong one (Figure 4.25). For example, the obligations "NO-LIABILITY",
"KEEP-COPYRIGHT", PROVIDE-LICENSE" have the value five. To violate these obligations,

the user needs to do something intentionally, such as remove the copyright information.

For obligations with the value three or four, certain conditions must be fulfilled, e.g. by
providing the source code. These conditions are not exclusion criteria but must be fulfilled in
order to use the component. A commercial product is intended to provide a minimal amount
of information so that it is not simply imitated. Therefore, the obligation "TADV-CLAUSE"
contains a lower value than, for example, the simple provision of the source code. The
obligation "OTHER" gets the average value, as these obligations are not covered, and it
requires effort to check whether these conditions can be met.

However, licenses that contain such conditions usually already have obligations that are part
of the knockout criteria. Such obligations have the values one or two. These values are
assigned to obligations such as copyleft or if used in a commercial environment is prohibited
(Figure 4.26). Checking the "OTHER" conditions is only relevant if, e.g., the copyleft
condition is excluded by the specific usage type, as can be the case with GPL-2.0-only if the
component is used separately and optionally.

Figure 4.26 represents the entire UseTypeObligationCombination matrix. It includes the
rating of the obligations as well as a rating of the individual use types for certain obligations.
The red marked cells indicate a more harmless use type, whereas blue indicates a more
rigorous use type.

51

4 Concept

Whether the component is used in source or compiled form makes a difference when it
comes to the obligations "PROVIDE-SOURCE" AND "ADV-CLAUSE". When using the
component in source form, the source code is provided when distributing the component.
Also, the source code already contains the advertisement clause, so the user automatically
complies with those license terms.

Furthermore, there is a difference between internal and distributed usage. In the case of
internal usage, the obligation "NO-LIABILITY" is harmless, since no one within the
organization causes someone to be liable. A similar situation applies to other obligations for
internal use. Internally, there is usually no complain, which is why the organization is not as
compliant with the license conditions as in case of distribution. However, the conditions
must be met, but the minor distinction is still necessary. More strict values for the use type
"delivery: distributed" are assigned to the obligations "COPYLEFT-STRONG",
"NON-OSS-DEF" and "OTHER". Since the core aspect of a copyleft license is the distribution,
the value must be stricter than for internal use.

The last two obligations represent potential for trouble, and even if some conditions are not
modeled, they must still be met and can cause trouble. If the component is embedded, it
looks like the user’s own work and the user is partly to blame. Therefore the standalone use
of the component is more harmless. The difference is particularly remarkable with
"COPYLEFT-STRONG" since when the component is embedded, the complete product must
be placed under the license of the component. Furthermore, a distinction is made between
using the unmodified or modified component. In this case, the user is partly to blame and
cannot hold anyone else liable.

Additionally, the obligation "RENAME" is stricter, since the names must actually be changed
after a modification. Furthermore, when re-licensing is forbidden, a modification is stricter,
because the user might provide his own changes under different conditions. Also, the
"COPYLEFT-STRONG" condition is even stronger after a modification since the modifications
must be provided.

52

4 Concept

4
(]
O
e
i
(=]

Condition Id

NO-LIABILITY

KEEP-COPYRIGHT
PROVIDE-LICENSE

PROVIDE-SOURCE
ADV-CLAUSE
RENAME

NO-RELICENSE
CTX-NON-MIL

CTX-NON-COM

COPYLEFT-STRONG
COPYLEFT-WEAK
NON-OSS-DEF
OTHER

Figure 4.25: Obligation Values

payipow :1oejue
aunsud :joeje
pappagwa :8uijpunq
auojepuels :8uijpunq
painquisip :AJaAlep
|eutaiul :AJaAllRp
Wia3sAs :uollediunwwod
$$920.d :uoljealuNWWod
||e2-230Wal :28esn

|edo| :28esn

Alolepuew :Aduspuadap
|euoindo :Aduapuadap
pajidwod :jewJsoy

=22JN0S jew.lo)

NO-LIABILITY

5
5
6

KEEP-COPYRIGHT
PROVIDE-LICENSE

PROVIDE-SOURCE

RENAME

ADV-CLAUSE

4 4 4 4 4 4

4

4
4

NO-RELICENSE
CTX-NON-MIL

1
2

CTX-NON-COM

COPYLEFT-WEAK

1
2

COPYLEFT-STRONG
NON-OSS-DEF
OTHER

Figure 4.26: UseTypeObligationCombination

53

4 Concept

4.4 Roles

Anonymous

An anonymous is a person who gets access to specific information on the system. It can, for
example, be a customer who wants to see information about his product.

Admin

An admin is the administrator of the system, and he has the right to read and write every
entity of the system.

Architect

An architect is a person who develops a product and checks whether his software is affected
by license compliance issues.

Component Expert

A component expert is a person who has know-how about software components. A person
with this role is responsible for maintaining components and for approving changes on
components. Also, they can be asked for help if someone needs help according to components.

License Expert

A component expert is a person who has know-how about licenses. A person with this role is
responsible for maintaining licenses and for approving changes on licenses. Also, they can be
asked for help if someone needs help according to licenses.

Manager

A manager is a person from the management who might be interested in product details
according to a specific product or in reports about the most used components to decide which

vendor to sponsor.

54

4 Concept

4.5 Process

4.5.1 Business Process Model

The business process model (Figure 4.27) represents the process an architect is going through
when checking the components of their products if they comply with the license terms. The
user stories contain some additional functionalities of the system, which are not relevant
for the process, such as editing the user preferences. Since the admin is not relevant for the
license compliance check process and serves only the administration of the system, he is not
part of the model. Also, the manager is not part of the compliance process, but can only view
the information from the products of his team, so he is not contained in the model as well.

4.5.2 User Stories
User Settings Preferences #SETTINGS)

¢ As an Admin / Architect / License Expert / Component Expert / Manager, I can view
and edit my user information so that I configure the user interface for my preferences
(name, username, roles, OrgUnit, language, theme, rights, and the profile picture).

* As an Admin, I can view and edit user information so that he can pre-configure others’
accounts or help others edit their user information.

Administration of System Rights (OrgUnits, User, Rights) (#ORG)

* As an Admin, I can manage the rights, roles, and OrgUnits of any user of the system so
that he can pre-configure the system or help others edit their OrgUnit.

* As a Manager, I can view and edit my own OrgUnit so that I can manage it.

Administration of License Model (#LICENSE)

¢ As a License Expert, I can create and edit licenses so that they are available in advance
for components and products.

¢ As an Architect, I can create and edit a license so that they are ad-hoc available for
components and products.
Administration of Components #COMPONENT)

¢ As a Component Expert, I can create and edit components so that they are available in
advance for products.

¢ As an Architect, I can create and edit a component so that they are ad-hoc available for
components and products.

55

4 Concept

S

sabueyo pieosip [

| —

sabueys
1desoe uop

o
&
sebuey yoaya 2
S | S 6 oo e |
l g
2
| a
—
Jsenbay
dioy mamar I
| |
| |
disypesu | | |
|||||] | -- - - - - - -"-" -"-" -"-"-"-"-"-" -"—-"=-"=-"~-~"~-~"~-~"=-~"~-~"~"=~"~"~"=~"=~"=~"=~"=~"=~”"=~”"=~”"=-"=-/=—-/ -/~
| | |
| |
f
! I A I
! I
I I ,
| Buissiw
I Ssusalj @suga)| dnyooj o < sabueyo pieosy sebuey
_ jsuodwoo Mou sjgal0 | dnxoo| ! ' o plEasip 1danoe juop
| anoidde I esuaa) o
| | o
jsenbai I 3
diey maires | | sabueyd yoayo .m
L [g
| I| PPt x abueyo / ppe I +
I | |
[|
| | |
|
T u
L
7 t
L L L L L L L L L L L e L D L LD Mo —— |
I | |
| | 1
| | |
L— = |
[
|
pajdanoe | wauodwoo weuodwao
Sy mon
suonojoln | Mmau ejeasn dnyoo|
|
suaping [yiiny
| z
E
-

podal

A

ssaoaud
aouendwod ou

wauodwos

jo smess x <+

|eBa ¥oayo

(EEEE]
1 uopenjens
joynsal

v

Jusucdwod 1onpeud

abesn Ajoads
wajes S15/%0 Jusuoduwon MBU 8jeaId

Business Process Model

Figure 4.27

56

4 Concept

Architect

result of
evaluation is
created

component exists select
component

create new
product

specify usage

|
|
|
lookup create new !
component component |
|
|
|
|
|

Component Expert

.

add / change
information

— S

check changes
)

license
discard changes information
missing

don't accept

changes

—

Legal Expert

.| change license
information

accept license ()
check changes

N
don't accept
changes X

S

discard changes

|

Figure 4.28: Business Process Model - Left part

57

4 Concept

)

no compliance

check legal
status of

component

Y
Y

—

)

burdens fulflilled

process
P Generate report

—

fullfill burdens

)

violotions
accepted

view hints

N

ask for help - =

B S|

___________________ 1
|
1
I
b
Ly
 —
|
|
add license l |
|
|
/| L
| I review help
- N | | | request
N | approve . |
lookup license creale new component |
license |
! |
.) v | |
M I |
I | | |
I | -
| I
________ — r—— - - -
| need help

review help

request

O

Figure 4.29: Business Process Model - Right part

58

4 Concept

Administration of Product #PRODUCT)

* As an Admin, I can view, create, and edit a product of any person (Architect) so that I
can help others edit their product.

* As an Architect, I can create and edit a product so that I can capture all product
information to calculate a DEFCON level.

* As a Manager, I can view each product in my OrgUnit so that I can review it.

Report Request (tREPORT)

* As a Manager, I can download and view a report of all products within my OrgUnit so
that I can overview the legal status of my products.

* As a Architects, I can download and view a report of my own products so that I can
have an overview of the legal status of my products, the most frequency of use of
components as a basis for making decisions regarding sponsorship and decide which
vendor to sponsor and of the security issues of my products.

Request for help (#HELP)

* As an Architect, I can request help regarding the DEFCON level of a product or
component so that I get legal or technical support.

¢ As a License Expert, I get notified when an architect sends a help request so that he can
support him.

¢ As a Component Expert, I get notified when an architect sends a help request so that he
can support him.

Approval (#APPROVAL)
¢ As a License Expert, I can approve license so that they became official.

¢ As a Component Expert, I can approve license, or platforms changes so that they became
official.

59

4 Concept

4.6 Authorization

The following adjacency matrix (Figure 4.30) describes the authorization of the system, i.e.,
which rights are assigned to the individual roles. The roles are shown at the top and the user
stories on the left, as described above. Each intersection, which consists of a combination of a
user role and a use case or its entities, contains an inner matrix (see Table 6.1: Inner Matrix).
At the top, you can see whether the entities are your own entities, i.e., entities assigned to the
role, or entities of others. On the left, we distinguish between four different cases. The first
two indicate whether the user has read and write access. The third case, "#CONFIDENT" tells
us if the user needs approval in case of a change. This case can only occur if the user has
write access. If the user needs approval for a change, this would be mapped in the fourth
case "#UNCONFIDENT /APPROVAL". If we look at the matrix, we notice that the admin has
read and write permissions for each entity and is always confident. This means that the
admin has all rights by definition.

Table 4.30: Inner Matrix

Own Foreign

#READ

#WRITE

#CONFIDENT
#UNCONFIDENT/APPROVAL

Settings #SETTINGS)

¢ By definition, an Admin always has read and write access and never needs approval.
That means he is allowed to access and edit his settings as well as those of other users.

¢ Users with roles License Expert, Component Expert, Architect, or Manager can access
and edit their settings without approval, but not those of other users.

¢ Users with the role of Anonymous have no settings and therefore have neither read nor
write access.
Administration of System Rights (OrgUnits, User, Rights) #ORG)

¢ By definition, an Admin always has read and write access and never needs approval.
That means he is allowed to access and edit his OrgUnit as well as those of other users.

60

4 Concept

¢ Users with the role License Expert, component expert, or architect do not have any
OrgUnits and cannot access foreign OrgUnits.

¢ A Manager has rights access to his own OrgUnit and edit it.
¢ Users with the role of Anonymous do not belong to any OrgUnit and therefore have
neither read nor write access.
Administration of License Model (#LICENSE)

¢ By definition, an admin always has read and write access and never needs approval.
That means he is allowed to access and edit all licenses.

¢ Users with the role License Expert are the owners of licenses, so there are no foreign
ones. They have the right to access and edit them without approval.

¢ Users with the role Component Expert or Architect do not own any licenses, but foreign
licenses in the system can be accessed and edited by these users. For modification, they
need approval.

¢ Users with the role of Manager or Anonymous can view licenses but have no rights to
edit them.
Administration of Components #COMPONENT)

¢ By definition, an Admin always has read and write access and never needs approval.
That means he is allowed to access and edit all components.

¢ Users with the role Component Expert are the owners of components, so there are no
foreign. They have the right to access and edit them without approval.

¢ Users with the role License Expert or Architect do not own any components, but foreign
components in the system can be accessed and edited by these users. For modification,
they need approval.

¢ Users with the role Manager or Anonymous can view components but have no rights to
edit them.

Administration of Product #PRODUCT)

¢ By definition, an Admin always has read and write access and never needs approval.
That means he is allowed to access and edit all products.

¢ Users with the role of License Expert or Component Expert do not own any products.
In case they receive a help request, they can access the products to evaluate the product.

¢ Architects can access their projects in which they are involved.

61

4 Concept

A manager can access the own products as well as those of others within his OrgUnit.

Users with the Anonymous role can view projects if they have been shared with them.

Report Request (#REPORT)

By definition, an Admin always has read and write access and never needs approval.
That means he is allowed to access and edit all reports. As the system automatically
generates a report, write permissions, in this case, are only for deletion.

Users with the role License Expert or Component Expert do not own any products and,
therefore, no reports. In case they receive a help request, they can access the reports to
evaluate the associating product.

Architects can access reports of their projects in which they are involved. As the system
automatically generates a report, write permissions, in this case, are only for deletion
and needs no approval.

A manager can access reports of the own products as well as those of others within his
OrgUnit.

Users with the Anonymous role can view reports of projects if they have been shared
with them.

Request for help (#HELP)

By definition, an Admin always has read and write access and never needs approval.
That means he is allowed to access and edit all help requests.

Users with the role License Expert or Component Expert do not own any help requests.
However, they can view and edit help requests they get without approval.

Architects can access their help request and edit them without approval.

Manager and Anonymous are no actors of the approval process and therefore have no
rights.

Approval (#APPROVAL)

By definition, an Admin always has read and write access and never needs approval.
That means he is allowed to access and edit all approvals.

Users with the role License Expert or Component Expert can access and edit their
approvals. A License Expert owns the licenses and the Component Expert, the one for
components and platforms. Nevertheless, they cannot see the approval of each other.

Users with the roles Architects, Manager, or Anonymous are no participants of the
approval process.

62

4 Concept

Platform (#PLATFORM)

¢ By definition, an Admin always has read and write access and never needs approval.
That means he is allowed to access and edit all platforms.

¢ Users with the role Component Expert are the owners of platforms, so there are no
foreign. They have the right to access and edit them without approval.

¢ Users with the role License Expert or Architect do not own any platforms, but foreign
platforms in the system can be accessed and edited by these users. For modification,
they need approval.

¢ Users with the role Manager or Anonymous can view platforms but have no rights to
edit them.

63

4 Concept

USER ROLES

X XXX

Anonymous

X XXX

X XXX

Manager

BEBX

XXX X

Architect

BB X

X XXX

Component Expert

BB X

X XXX

License Expert

BEBX

BEBX

Admin

BB X

X XXX

X XXX

X XXX

EESX

KX XX

X XXX

X X X X

X X X X

X X X X

X XXX

EESX

EESX

BXXX

X X XX

BXXX

X XXX

PEXB

X X XX

BEXE

X X X X

X X X X

BEBX

BEeX

BEeX

BXXX

XX XX

BXXX

XX XX

BEXD

XX XX

XX XX

BESX

BEXD

XX XX

BESX

BESX

EXXX

X XXX

EXXX

BXXX

KX XX

PESX

BXXX

X X X X

BXXX

X XXX

EPESX

EESX

B X XX

X X X X

B X XX

X X X X

XXX X

SISIS P

B X X X

X X X X

B X X X

X XX X

SISIS P Y

SISISPY

XX XX

XX XX

XX XX

XX XX

BXXX

BEBX

BEBX

X XXX

BEBX

XX XX

BESX

BEESX

X XXX

X XXX

X XXX

X XXX

KX XX

X XX X

X X X X

BESX

X X X X

BEEX

BEEX

EEEX

BXXX

XX XX

BXXX

XX XX

BeaX®

XX XX

XX XX

BEBX

BEEXB

X XXX

BEEBX

BEEBX

HSETTINGS

#ORG

#LICENSE

H#COMPONENT

#PRODUCT

#REPORT

H#HELP

#APPROVAL

#PLATFORM

S311ILN3 T300N V1va

Figure 4.30: Authorization

64

5 Implementation

5.1 Implementation

The calculation of the algorithm (section 5.2!) starts with the component usage on the right
side of the data model and works its way through to the left. First, a class called Evaluation
is created, in which the results of the calculation are stored as an object. The class Defcon
calculates the legal status of a component usage.

It starts with a product that inherits from a component and has several ComponentUsages. A
function called evaluateProduct iterates over each of these ComponentUsages to calculate the
legal status. For the calculation a function calcDefconLevelForComponentUsage is called for
each component usage. This first creates a new evaluation object, in which the results are
stored.

Then another method, calcDefconLevelForComponent, is executed to calculate the legal
status of the respective component. Since a ComponentUsage is associated with a component,
which in turn may have transitive dependencies, in a further step, each dependent
component is recursively called to calculate its status. That ensures that their transitive
dependencies are also taken into account.

The function calcDefconLevelForComponent first determines the correct VersionRange of the
component to get the license information for calculation. The license information includes
the licenses with the respective position for the formula used for the calculation. For each
license, the legal status of the component is calculated, including subsequent licenses in case
subsequent is true.

The function calcDefconLevelForLicense calculates a value for the respective component
usage and the corresponding license. For this purpose, an iteration is executed over each
license declaration of the respective license. A usage type that is not included in the license
declaration will be skipped as they are not relevant for the calculation. In the case of the
specified use type that matches the use type of the license declaration, the system first checks
what type of obligation is involved.

If it is a "NOT_OBLIGATION_GLOBAL", the value infinite is returned.

If it is a "NOT_OBLIGATION_SINGLE", a check is made whether an additional condition is
required. Then, if this is the case, one checks whether this is also fulfilled.

IFor the presentation of the source code the following OSS component is used: https://bit.1y/2QQ004J

65

https://bit.ly/2QQO04J

5 Implementation

Otherwise, case 3 is executed, which checks whether the condition has already been
mitigated. If no mitigation exists, the minimum from the value assigned by the
UseTypeObligationCombination and the current value is calculated (worst-case).

A fourth case whether the mitigation is partially fulfilled. If this is the case, the value is
adjusted by a factor of 2.

The result object evaluation contains the license, the associated conditions, and the license
information, which are responsible for the result. The method returns the calculated value. A
formula is applied to the four calculated values. Therefore two additional functions are
provided.

The first formula 1licenseAnd calculates the minimum from the two calculated values
because this means that both license conditions must be met, and therefore, the worst case
must be used. The second formula is 1icenseOr. This function evaluates the maximum since
only one license has to be complied with, and therefore the more harmless one is chosen.

The result of a component usage evaluation is an object which contains the name of the
component, the license, the calculated value called defcon, the dependencies (children), the
version, a list of obligations which must be fulfilled

Note: The data is queried from the database by GraphQL 2, which provides the functionality
sequelize. Sequelize allows the user to query the relations from the data model in both
directions. Thus it is possible to get directly to the mitigation in the algorithm via the
UseTypeObligationCombination, although the data model does not provide any relationship
in this direction. The relation between Mitigation and ComponentUsage is relevant for the

query.
5.2 Algorithm

1 class Evaluation {

2 constructor (name, version, useType) {

3 this.name = name

4 this.license =

5 this.defcon = Number.POSITIVE_INFINITY
6 this.children = []

7 this.version = version

8 this.useType = useType

9 }

10

11 setClause (clause) {

12 this.clause = clause
13 }

14

2”GrathL is a query language for APIs and a runtime for fulfilling those queries with your existing data."[58]

66

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52

53
54
55

56
57
58
59
60
61
62
63

5 Implementation

setObligation (obligation) {
this.obligation

setDependent (component) {
this.children.push(component)

setDefcon (defcon) {
this.defcon

setLicense(license) {
this.license

class Defcon {
static evaluateProduct(componentUsages, productName) {

let components
Number .POSITIVE_INFINITY

for (let componentUsage of componentUsages) {
this.calcDefconLevelForComponentUsage (componentUsage)
components . push (ev)

defcon = Math.min(defcon, ev.defcon)

return {name: productName, defcon: defcon, children: components}

/* calculates the worst case of the defcons of the component and all transitive
dependencies */
static calcDefconLevelForComponentUsage (componentUsage) {

/* create a new object with information about component */
let evaluation = new Evaluation(componentUsage.component.name,

componentUsage.version, componentUsage.isSpecifiedWith)

/* calculates defcon of componentUsage (first level) x/
this.calcDefconLevelForComponent (componentUsage . component,
componentUsage, componentUsage.isSpecifiedWith, evaluation)

/* calculated dependent components and calculates the worst case */

for (const dependentComponent of componentUsage.component.dependsOn) {
const evaluationDep = this.calcDefconLevelForComponentUsage (dependentComponent)
evaluation.setDependent (evaluationDep)

Math.min(defcon, evaluationDep.defcon)

5 Implementation

64
65
66
67
68
69
70
71
72
73
74
75

76
77
78

79
80
81
82

83
84

85
86

87
88
89

90
91
92

93
94
95

96
97
98
99
100
101
102
103
104
105
106
107

/* writes the calculated defcon level into the object */
evaluation.setDefcon(defcon)

return evaluation

/* evaluate defcons of each component and apply the formula */
static calcDefconLevelForComponent (component, componentUsage, useTypes, evaluation) {
/* find range, in which the used component lies */
const version = componentUsage.version.arithmetic
const componentVersionRange = component.definedRange.find((range) => {
return range.from.arithmetic <= version && range.to != undefined && version <=
range.to.arithmetic

b

/* calculates the defcons of each license including subsequent licenses (dual
licensing) which are put into the formula */
let defcons = [null, null, null, null]
for (const licenseReference of componentVersionRange.licenseReferences) {
if (licenseReference.subsequent) {
/* put subsequent licenses into a list (e.g. GPLv3 or higher) and calculate
the defcons */
let licensesS = [licenseReference.license]
for (const license = licenseReference.license; license.subsequent != null;
license = license.subsequent)
licensesS.push(license.subsequent)
let defcon = licensesS.map((license) => this.calcDefconLevelForLicense(
license, usageTypes, evaluation))

/* aggregate calculated defcons to the best option with least burdens */
defcons[licenseReference.position - 1] = defconsS.reduce((a,b) => Math.max(
a,b), Number.NEGATIVE_INFINITY)
}
else
defcons[licenseReference.position - 1] = this.calcDefconLevelForLicense(
licenseReference.license, useTypes, evaluation)

/* evaluate formula for multi-licensing (X1 AND X2) OR (X3 AND X4) for multi
licensing */

let defcon = this.licenseOr(
this.licenseAnd(defcons[0], defcons[1]),
this.licenseAnd(defcons[2], defcons[3])

return defcon

/* calculates the defcon for a specific license */

static calcDefconLevelForLicense(license, usageTypes, evaluation) {
/* special case for base classes */
if (license.basedOn != null)

68

5 Implementation

108 license = license.basedOn

109

110 /* start with maximum defcon level */

111 let defcon = Number.POSITIVE_INFINITY

112

113 /* bring license declarations in matrix structur, ordered into a map (obligatioms,

[licenseDeclaration]) */

114 let matrix = new Map()

115 for (const licenseDeclaration of license.licenseDeclarations) {

116 /* skip non-relevant usetypes */

117 if (lusageTypes.includes(
licenseDeclaration.belongsToUseTypeObligationCombination.belongsToUseType.name
)

118 continue

119

120 /* sort declarations into obligation-keyed matrix row */

121 const obligation =

licenseDeclaration.belongsToUseTypeObligationCombination.belongsToObligation.name

122 let licenseDeclarations = matrix.get(obligation)

123 if (licenseDeclarations == undefined)

124 licenseDeclarations = []

125 licenseDeclarations.push(licenseDeclaration)

126 matrix.set(obligation, licenseDeclarations)

127 }

128

129 /* iterative over matrix row wise (obligations) */

130 let burdens = []

131 let clauses = []

132 let prev_defcon = 0

133 loop:

134 for (const obligation of matrix.keys()) {

135 prev_defcon = defcon

136 /* iterate over matrix column wise (use types) */

137 for (const licenseDeclaration of matrix.get(obligation)) {

138 /* CASE 1: stop processing of entire matrix */

139 if (licenseDeclaration.obligate ==) {

140 if (licenseDeclaration.requireAdditionalUseType == null ||

141 (licenseDeclaration.requireAdditionalUseType != null &&

142 usageTypes.includes(licenseDeclaration.requireAdditionalUseType.name
)))

143 return Number.POSITIVE_INFINITY

144 }

145

146 /* CASE 2: stop processing of obligation line (this obligation) */

147 if (licenseDeclaration.obligate ==)

148 if (licenseDeclaration.requireAdditionalUseType == null ||

149 (licenseDeclaration.requireAdditionalUseType != null &&

150 usageTypes.includes(licenseDeclaration.requireAdditionalUseType.name
)))

151 defcon = prev_defcon

152 continue loop

69

5 Implementation

153
154
155

156

157

158
159
160
161
162
163
164
165
166
167

168
169
170
171
172
173

174

175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

/* CASE 3: usetypes already sorted above, not in case it has been already
mitigated */
if (licenseDeclaration.belongsToUseTypeObligationCombination.hasMitigation
== undefined) {
defcon = Math.min(defcon,
licenseDeclaration.belongsToUseTypeObligationCombination.defconLevel

)

if (!burdens.includes(licenseDeclaration

.belongsToUseTypeObligationCombinatio

.belongsToObligation.description))
burdens.push(licenseDeclaration
.belongsToUseTypeObligationCombination
.belongsToObligation.description)

let clause = {}

clause.declaration =
licenseDeclaration.belongsToUseTypeObligationCombination

clause.excerpt = licenseDeclaration.excerpt

clauses.push(clause)

}
/* CASE 4: in case it has been partially mitigated */
else if (
licenseDeclaration.belongsToUseTypeObligationCombination.hasMitigation
!'= null &&
licenseDeclaration.belongsToUseTypeObligationCombination.hasMitigation.partially
) A

defcon = Math.min(defcon,
licenseDeclaration.belongsToUseTypeObligationCombination.defconLevel
+ 2)

evaluation.setLicense(license)
evaluation.setObligation(burdens)
evaluation.setClause(clauses)
return defcon

/* special and from our formula (e.g. MIT and additional conditions) */
static licenseAnd(x, y) {
if (x == null && y != null) return y
else if (x != null && y == null) return x
else if (x != null && x !'= null) return Math.min(x, y)
else
return null

70

5 Implementation

195

196 /* special or from our formula (dual licensing) */
197 static licenseOr(x, y) {

198 if (x == null && y !'= null) return y

199 else if (x != null &% y == null) return x

200 else

201 return Math.max(x, y)

202 }

203 }

204

205 module.exports = Defcon

5.3 Visualization

A TreeMap?® of the D3js library is used to process further the data returned by the algorithm.
The following example shows how the treemap is interpreted and used: The product
"MyProduct" consists of two OSS components. The data of the components and their
dependencies are derived from the original information of Spring Boot[59] and Bootstrap
Business Test [60], but does not precisely match the original.

A standard useType instance is used for each component usage of this component this
example:

O format: source format: compiled

dependency: optional dependency: mandatory
delivery: internal delivery: distributed
usage: local usage: remote-call
communication: process communication: system

bundling: standalone bundling: embedded

O X 0O X O O
X O X O X XK K

artifact: pristine artifact: modified

Bootstrap Business Test Tree (MIT)
¢ Wiremock (Apache-2.0)

- jackson-annotations (Apache-2.0)
- jackson-databind (Apache-2.0)
- slf4j-api (MIT)

* Loremipsum (MIT)

3The following link shows the link to the OSS component used to visualize the output: https://bit.1ly/3hTQzPy

71

https://bit.ly/3hTQzPy

5 Implementation

— junit (EPL-1.0)
* hamcrest-core (BSD-3-Clause)

jetty-server (Apache-2.0, EPL-1.0)
- jetty-xml (Apache-2.0)
- jetty-util-ajax (Apache-2.0)
- jetty-slf4j-impl (Apache-2.0)
- jetty-test-helper (Apache-2.0)

HSQLDB (HSQLDB License - based on BSD-3-Clause)
* junitjupiter-engine (EPL-1.0)

* junitjupiter-params (EPL-1.0)

bootstrap-core (MIT)
- jackson-annotations (Apache-2.0)
- jackson-databind (Apache-2.0)
- jackson-jaxrs-json-provider (Apache-2.0)
- jsoup (MIT)
+ gson (Apache-2.0)
- junit (EPL-1.0)
- hamcrest-core (BSD-3-Clause)
+ junit (EPL-1.0)
- hamcrest-core (BSD-3-Clause)
+ jetty-server (Apache-2.0)
+ jetty-servlet (Apache-2.0)

* bootstrap-launcher (MIT)
¢ mockito-core (MIT)

¢ spring-test (Apache-2.0)

Spring Boot Tree (Apache-2.0)
* spring-core (Apache-2.0)
- spring-icl (Apache-2.0)
- spring-context (Apache-2.0)
+ spring-aop (Apache-2.0)

72

5 Implementation

- spring-beans (Apache-2.0)
- spring-core (Apache-2.0)
- spring-core (Apache-2.0)
+ spring-beans (Apache-2.0)
+ spring-core (Apache-2.0)
+ spring-expression (Apache-2.0)
- spring-core (Apache-2.0)
The above example shows that even the use of two components contains a large number of
components, all of which must be checked, and this example does not contain all transitive
dependencies of the original components. Executing the algorithm with the two components

and the standard use types shown above will result in a large object. The following treemap
visualizes the output:

spring-boot
6

At the first level, the product consists of two components, each represented as a rectangle.
The calculated value of each component usage, which ranges from zero to six, is classified
into three categories that define the colors of the rectangles. Red rectangles represent
component usages with values between zero and two. It indicates that the component should
not be used because the license terms cannot be met. Component usages with values three
and four are displayed in yellow. Burdens must be fulfilled to comply with the license terms.
Green means that all license conditions are met. It contains values higher than four. The text
in each rectangle presents the name, and the number below it the number of components
contained. The grey rectangle indicates the current path and is used for navigation. Looking
into a lower layer, clicking on this rectangle will navigate the user back to the parent.
Inspecting the dependencies is useful, for example, to understand the cause of a problem.
Considering the Bootstrap Business Test component, it does not cause a problem itself, as it is

73

5 Implementation

licensed under the MIT license. Therefore, the conclusion is that the problem is related to a
direct or transitively dependent component on the component. In order to determine the
location of the problem, the tree of the component itself is examined.

jetty-server
4

wiremock
3

spring-test
1

The grey rectangle shows the path. It indicates that the tree of the Bootstrap Business Test
component is displayed. The colors identify which components are causing problems.
Observing the component bootstrap-core, which is licensed under the Apache-2.0 license, the
cause of the problem can be investigated further by clicking on the component.

jackson-annotation Jjackson-jaxrs-json-provider
1 1

jackson-databind
1

The following two graphs represent the view down to the last child node. As the next two
graphics show, the component JUnit is one of the problem causing components. It stays
under the EPL-1.0 license, which has a strong copyleft effect. This case shows how important

5 Implementation

it is to specify the usage. If a component is only used for testing, the architect still needs to
comply with the license terms. However, JUnit is only used for testing, and, therefore, will
not be delivered to the customer. Since a standard use type is used, which did not specify
that the component is only used internally, the component is causing a problem. But, if the
usage would be specified for each component, then JUnit would not cause any trouble, since
for internal use, the EPL-1.0 is harmless.

75

5 Implementation

5.4 Mockups

The following graphics represent mockups created with the tool Adobe XD. These serve as
a basis for the implementation and provide the view of the end-users in the system. The
goal is to provide the information and functionalities in a user-friendly and easy way for the
end-user.

2 Product

Id

Name
Version

URL

Vendor

Components - DEFCON Tree

IU 552

Documents
Docl Evaluation
Doc2 Evaluation

Figure 5.1: Product View

76

5 Implementation

‘& Component

Platform Name
Platform Version
Compaonent Id

Wraps reusable product

Component Name

Vendor

Version min

Version max

wersion min arithmeric

Version max arithmetic

License Id
License Version

Tags

Dependent Components - DEFCON Tree

Figure 5.2: Component View

77

5 Implementation

«OSCAR

Licenses

& Abc
L@m
L@ wery

B Apache20

8 BSD-ac
L@ antr
L@ vy

w Keep Copyright Information

Open Source Compliance and Responsibility

Edit License Class

+
Name BsDc
R hitos:/spd.org/licenses/ BSD-4-Clause html o
Descrpton
Overview

& commerdluse
& iy use

™ wodity
& pistribute.

& rdemarc
& pacewarensy
Gonditions

~ No Liabilty

~ Keep Copyright Information

The copyright nformacion of the comporents author has o b kept.

~ Provide License Text
Vo e to provide the ol s et of the companent,

[——

2 Relevant forall use types

O Relecant for all se ypes

Format oependency usnge
& source & opsona & soure
7 Comnlied [mandatory W comnlied

Figure 5.3: License Overview

The copyright information of the component's author has to be kept.

v Provide License Text
You have to provide the full license text of the component

(W Relevant for all use types

[Relevant for all use types

Format

Licence condition depends on the format in which
the component st provided to the customer

@ Source

relevant if component is provided in pristine

8 Complied
relevant if component is provided in
compiled/ converted/ compressed format

Dependency

Licence condition depends on the format in which
the component ist provided to the customer

8 Optional

relevant if component is loaded on demand

8' Mandatory

relevant if component is loaded/linked
dynamically/statically and product does not

Usage
Licence condition depends on the format in which
the component ist provided to the customer

8 Source

relevant if component (via product) is locally

v Complied
relevant if component (via product) is
remotely called for execution (aas)

Communication

Licence condition depends on the format in which
the component ist provided to the customer

8 Process

relevant if component is called from product

V) system
relevant if component is called from product
via system/network service (pipe, socket,

Delivery
Licence condition depends on the format in which
the component st provided to the customer

D Internal

relevant if component is used internally

[V Distributed
relevant if component is distributed to other
legal entities (e.g. run-time components)

Bundling
Licence condition depends on the format in which
the component st provided to the customer

@ Standalone

relevant if component artifacts still provided

(W Embedded

relevant if component artifacts embedded
into product and/or not obviously

Artifact

Licence condition depends on the format in which
the component st provided to the customer

8 Pristine

relevant if component artifacts are all as-is,

B Modified

relevant if component artifacts were added/
replaced/removed

» Advertisement Clause

» No Relicensing Allowed

Figure 5.4: License Overview - Part two

Save

78

5 Implementation

Y
., & 0
Organization and Persons
OrgUnit Name
msg hd Parent Unit
L .
msg systems -
Name
L XT -
] RSE e Abbreviation
L
NLA

Director

Members

Figure 5.5: Organization and Persons Overview - Edit OrgUnit

Organization and Persons
Person Name

msg -
L ’
msg systems - Orgunit

L XT -~

Name
RSE -
[
NLA Username

Figure 5.6: Organization and Persons Overview - Edit Person Details

79

6 Evaluation

6.1 Iterative Process

The support within the company ensured continuous evaluation. We regularly discussed the
status and changes through regular status meetings, which took place every one to two
weeks. The development team consists of one architect and four master students of
information systems. Additionally, my supervisor, Dr. Ralf S. Engelschall, attended. We
discussed in each iteration if the new ideas and changes are technically feasible.

Furthermore, the architect was able to check the technical correctness from his experience
and gave us suggestions for improving the data model, for example, to avoid technical
duplicates. One example is the avoidance of duplicates in licenses. Originally, licenses were
assigned to a license class, which were defined by license declarations. This solution did
result in duplicates for licenses that represent both an association class and a license itself.
An example is the license MIT. MIT is a license on which some licenses are based, e.g., the
JSON License, which has the same license terms as MIT but a different name.

Also, MIT is a frequently used license, which can be used for a component. To avoid
duplicates, we have adjusted our modeling so that a license only has to be created once. It
can have a single parent on which a license is based (e.g., JSON license is based on MIT), or it
can already be a license on which other licenses are based, and it has license declarations.

Another learning is that dual licensing is a bit more complicated than we thought. Initially,
we assumed that there could be multiple licenses and that the architect could choose the best
option with the least number of conditions to fulfill. However, it is a bit more complicated
and often results in complex boolean expressions. For example, it is common to specify a
license and combine it with an "AND" operator. This insight gave us the idea to introduce our
formula. It took several iterations until it was both technically correct and technically feasible.

Additionally, to the regular consultation within the development team, there was also a
regular exchange with the User Experience Team. The regular exchange allowed us to check
the professionalism and consider whether the ideas can be meaningfully and user-friendly
reflected on the user interface.

80

6 Evaluation

6.2 Interviews

In order to evaluate the suggested solution, nine interviews were conducted with five
architects, two product managers, one legal expert from the legal department of msg, and
one external interviewee responsible for information security in an insurance company.

Interview 1

Legal expert of msg Legal Department.

Interview 2

Project Manager who is currently confronted with license compliance
from a customer of a big automotive manufacturer.

Interview 3

Architect who is currently confronted with license compliance from
a customer of a big automotive manufacturer.

Interview 4

Architect who is currently confronted with license compliance from
a customer of a big automotive manufacturer.

Interview 5

Architect who usually develops individual software for the customer.

Interview 6

Architect who develops both product and individual software.

Interview 7

Architect who develops individual software for the automotive sec-
tor.

Interview 8

Architect who is also an OSS expert, including knowledge about
licenses.

Interview 9

The interviewee is responsible for information security process in
an insurance company.

Questions

Table 6.1: Interviews to evaluate the solution

The following questions were prepared before the survey. However, the survey also
considered the respondents’ interests, and based on their answers, further questions were

asked.

1. What is your role in projects?

2. How educated are you on OSS?

3. How do you choose the components for your current project (or previous projects)? Are
you responsible for the compliance check?

— Present solution —

4. (After presenting license overview mockup) Is the license overview useful? How would
it benefit your work?

5. How appropriate is the process compared with your previous process? What are the
advantages or disadvantages?

81

6 Evaluation

6. How could the tool benefit your work?

7. (After presenting visualization) What do you think about the visualization? Is it helpful?
Do you have any suggestions for improvement?

8. Are there other aspects that are missing and would encourage you more to use the tool?

9. Do you have any further comments?

Results

The following table summarizes the most frequent statements from the interviews and
indicates whether the respective interviewee made this statement.

Features | Notification on Component Updates

Interviews
Statement 1123456789
Central tool with relevant information | v' | v |V |V |V |V |V |V |V
Positive License Overview VIVIVIVIVIVIVIVIX
Feedback Treemap Visualisation VIiIVIVIVIVIVIVIVIY
Reports VIVIVIVIVIVIVIVI|V
Detailed process description X | VIV I VIV IX|X| V]|V
Further Automatization X |V I VIV IV IV IV]X|V
Desired Notification on Security Issues VIVIVIVIVIVIVIVIY
VIVIVIVIVIVIVIVYVIX
VIVIVIVIVIVIVIVYIY

Configuration Options for Reports

Table 6.2: Overview of evaluation results
e Interview 1

The legal experts at msg are usually not responsible for verifying licenses, and the
interview demonstrated that this task is also a challenge for them. Generally, the
department itself is responsible for the review and is more familiar with licenses than
the legal department. Therefore, the tool would provide significant relief for him since
there is currently no defined process, and he has to search for information on the
Internet. The tool’s information would thus save him the search, and by displaying the
license excerpts, they can help the requesting party from a legal perspective.

The Use Types’ gradation seems to make sense to him, but one has to be careful not to
build an internal tool and integrate it into a distributed product. However, this is
prevented by specifying use types for each component usage and by the check of
transitive dependencies. He also considers the visualization component as useful, and
there are no suggestions for improvement.

82

6 Evaluation

¢ Interview 2

The project manager realized the license compliance check challenge when confronted
with the team by a customer. He is not responsible for selecting the components. That
is the task of the architects and includes making sure to comply with the license terms.
A detailed description of the process is essential, including defining the restrictions and
defining how to deal with them. An example is to answer the question on which
granularity authors must be indicated.

The visualization seems to make sense but would have to be agreed with the architects.
He thinks an overview is good but is not sure whether there would have to be a
visualization for it. A report with information about which components are used and
which licenses they have is beneficial. However, the report should be in a form that can
be processed further, since it usually has to be adapted to the needs of the customer.

e Interview 3 + 4

The two architects work together as part of an agile team and were recently
commissioned by a client from the automotive industry to review the licenses. Both are
not very familiar with licenses. The licenses were partially read, but the obligations are
still unclear. However, the licenses’ selection and compliance with the license
conditions are part of their job. The license overview, which summarizes the
information shortly and understandably, would help them for this purpose.

The excerpts from the licenses should not be missing in the license overview, as the
customer requests these, and thus a proof of the displayed information is available.
Automation and integration into the build process are significant for the team because
the use cases change very frequently, and the initial effort would be too high. The use
types could be partially automated, for example, by reading information from the
pom.xml. Only as much as necessary should be filled in manually. The rest should be
automated. The manual input could be simplified by a list of default use types, which
can be edited for each component because usually, 80-90% of the components have the
same use type.

Furthermore, a defined process is desired, which also specifies the exact steps so that
the user does not have to check the Internet for further information. For example, since
there is no specification on how to provide the license, they wish to have positive and
negative examples for orientation. The report is also beneficial but should be provided
in a form that can be further processed. Optionally, it should also contain the license
excerpts, which are part of the obligations. The conclusion was that a reasonable basis
was established, but that automation is desirable for the next step. For the future, they
desire to get notified of security issues and security updates.

83

6 Evaluation

¢ Interview 5

The interviewee is an architect who usually develops individual software for a client.
He is not familiar with the licenses and does not check whether he complies with the
license terms. He assumes that the use is permitted if the component has already been
built into other products. There was positive feedback for the creation of a common
database and that it should become a web portal and not Excel. The tool would help
him to make sure that the license conditions were met.

He does not need the license excerpts in the license overview because he does not
understand them and only wants a simple summary that makes the process as easy as
possible. For the overview, he would also like to have a traffic light that shows him
directly what is critical, where there is still something to consider, and what is not
critical. He finds the visualization helpful to get an overview.

Automation makes no sense for developing a product because the selection is made
before integration, and the components are not yet included in the pom.xml. However,
automation could be used for existing products in order to check afterward whether the
license conditions have been met. He also considers the report to be beneficial.

Furthermore, he finds it helpful to be able to mitigate conditions after they have been
met. In addition, the help request is useful, which connects him directly with a
responsible contact person if he needs help. Generally, he desires a well-explained
process where he is told what steps to take. The use type group "communication” is
inappropriate because it reminds him of communicating people.

Alternatively, he suggests "execution type". The word execution should be used in any
case. For the future, he would like to have a report every 2-4 weeks, which points out
component updates and security issues. This report should make significant statements
on these issues so that competence can be shown to the customer.

¢ Interview 6

The interviewee is an architect who develops both individual and product software. He
is very familiar with licenses and has a personal interest in adhering to the license
terms, as he appreciates the added value of OSS. Despite his good knowledge about
OSS licenses, the license overview helps him, as he can use it as a look-up guide. The
associated license excerpts are relevant for him, as he likes to question information, as
this information is relevant for making decisions, and therefore he can better justify his
decision and disclaim the source of his information.

84

6 Evaluation

The report offers an added value. He would use it primarily in pdf form, but would
optionally wish for a format that can be further processed. The visualization is
attractive to him. It is informative, and he enjoys it. However, the number of
components is confusing, as he does not know whether it is the number of components
or the number of critical components with licensing problems. In order to have a better
overview of all critical components, he would like to have another view that shows all
components nested on one screen. For the future, he desires automation and
notifications on security issues.

Interview 7

The interviewee is an architect developing individual software in the automotive sector.
In the current process, the architects create a blueprint containing components that are
allowed to be used. In the selection process, components with the licenses MIT and
Apache-2.0 are usually chosen. To the standard licenses, he is familiar. An overview of
the license information could help him to select components. He does not need the
license excerpts. However, it would have to be ensured that the information is correct
since he relies on it to make decisions. No customer has been interested in a report so
far, but it could be made available to the customer if it is generated automatically. He is
critical of the tool’s maintenance effort, as this is a significant expense. The license
modeling will not frequently change, because, in his opinion, the analyzed licenses
represent 99% of all required licenses. However, the component information could be
read in automatically in the future. Furthermore, he would like to see build process
integration and notifications on security issues and component updates in the future.
The reports’ frequency with this information should be customizable to be adapted to
the duration of a sprint. The visualization seems practical to him. On the last level, he
would like to mitigate the obligations, e.g., by using a checkbox directly. Then the status
should be recalculated. Another aspect of the future are suggestions for components.

Interview 8

For the last ten years, the interviewee acted as an adviser and trainer for Software
Architects or System Architects. Before, he primarily worked as a Software Architect.

He considers himself an OSS expert, as he is both performing active OSS development
for 25 years on the one hand and massively leveraging from OSS components in the
industry on the other hand for 20 years. He states that as an Architect, he is always
responsible for the compliance checks. However, he usually does it formally, except
when asked by the customer for a detailed report.

Nevertheless, he always checks transitively in-depth the esoteric or newer components.
Still, he glances over those components he already checked once in the past, even if it
was a different version. He states that it is not perfect, but more investigation is usually
not within the time budgets.

85

6 Evaluation

He usually knows the individual licenses "good enough", but forget lots of details
because of the total amount of licenses in practice. Therefore, an overview would
indeed be useful for him to recap the essential points of a license. Compared to his old
process, the new approach is more strict and precise and also more formal.

He considers the preciseness as an advantage, but the formal nature and the fact that
one still has to enter lots of details are not optimal and states that it can be considered a
disadvantage as it might be a nasty burden in practice. Another advantage he states is
that the license analysis is no longer in the head of an architect, but permanently stored
and available in a structured way. He states that this especially allows reports to be
generated more quickly, and he hopes the tool can simplify the overall process.

The visualization he considers as looking cool and very useful. He states that it allows
one to easily drill down to the origins of the license compliance trouble in the usual
deeply nested component scenarios. An improvement he suggests is the comparison of
a new and an old state. Currently, the visualization is only for a particular scenario. If
the scenario changes, because component versions changed, he states that it would be
cool to see just the actual difference against an older version to drill down to only these
differences instead of drill down on all red cells from scratch.

Another improvement he suggests is the integration into the build process of an
application. He states that this way, the architect would not have to fill information into
a portal, but could keep the master information inside the source tree.

Even if he desires full automation through the build process, he considers it not as
feasible. About a decade ago, he already tried such an approach and failed because it is
not trivial to map from a component version to the precise license. He said it might be
easier as SPDX became more feasible, but the guesses one might fail due to imprecise
automated determination of information.

Interview 9

The interviewer is mainly responsible for information security, but he also considers to
check license compliance within his process. There is no previous process. His
responsibility is to establish a process to check the components, mainly for
vulnerabilities and license compliance.

For the license overview, he considers an indicator for licenses in the form of a time bar
or a tachometer. A traffic light, he states, as tricky as it only has absolute values.
Furthermore, he desires information about risk acceptance and statement on the risk
level based on statistics when using the component when not complying with all the
license terms. Further license information is not required since he would trust the
algorithm. After the evaluation, he would desire a step by step description who guides
him to comply with the license terms.

86

6 Evaluation

He also noted the help request as positive because it allows you to automatically
request help within the tool without searching for a suitable contact person. He
considers the user-friendly and understandable presentation of the use types as very
important because if the results are not correctly understood, the results could be
incorrect. He also considers the input and maintenance of the information to be
time-consuming.

The reports are considered as very useful. The interviewee states that it can also be
used by the legal department or the compliance team as a basis for making decisions
about what risks they are willing to take.

He likes the idea of visualization. However, he misses context information when
displaying the results, e.g., the license information with the specified use types for a red
component. Furthermore, he wants a complete overview of the trouble-causing
components without clicking through the whole tree.

Besides, he states that automation would be essential. Therefore he suggests that a
warning should be displayed when installing a component. Suppose the command
"npm install component" is entered, and the installed component stays under a
problematic license. In that case, a warning should be displayed, which indicates that
the license is causing problems, with the exception that the license is, e.g., used
internally, which usually eliminates the copyleft effect. The user should then confirm by
entering "yes" when the component should still be installed. This workflow would
ensure that the component would not have to be removed again, but would be checked
right at the beginning of the integration.

Conclusion

My conclusion is that we have created a reasonable basis for a tool that supports the
architects in the license compliance process. I share Interviewer 5’s statement that the
selection of components must happen before integration. However, the process should
be automated for agile teams where something is constantly changing. I also share the
Interviewer’s statement that a defined process is essential, including the verification of
licenses using this tool. The component information could also be read in automatically
in a further step, significantly reducing the manual effort. However, one would have to
make sure that the data is correct since the architects rely on the data’s correctness. The
current solution solves this through the approval process, which means that experts
confirm the information. I also consider the notifications on security issues and
component updates as very useful. The more added value the system provides for the
architects, the more motivated they are to follow the process. Furthermore, if the
information is already stored in a central system, the benefits should be used. Besides,
providing such information to the customer and reports on the components used and

87

6 Evaluation

the associated licenses makes the company look competent. There is also a potential for
improvement for the treemap. I like the idea for different views from Interviewer 6, so
everyone could choose the view that gives them more advantages. Also, I like the idea
of integrating mitigation into the treemap, as Interviewer 7 suggested. So all
information would be contained in the treemap.

88

7 Conclusion

7.1 Lessons learned

Architects are overwhelmed with the task and are looking for help. One indication of this
was the request for support for a customer project. The customer was a large automotive
manufacturer who requested information regarding the OSS components in their product.

Within a bachelor thesis, it is not possible to plan and implement the system simultaneously.
Although it looks like a small application, it is still a whole business information system
challenging to plan. Through many iterations, the understanding of the system grows and
leads to new ideas and improvements.

Designing a data model to represent the real world is challenging. It requires many iterations
and is, therefore, continuously improved. Moreover, the limits of modeling are quickly
reached. An example demonstrates the formula, which is attached to the entity License
Reference (Figure 4.5) by a comment.

7.2 Limitations

The solution of the bachelor thesis is limited by aspects such as time and limited access to
information. For example, it is not possible to include and interview an unlimited number of
organizations and persons within the given time, limiting the amount of information.

The collection of requirements through interviews is also subjective, as is the evaluation. To
obtain meaningful information from interviews, this tool’s users should be asked regularly
after the development is completed. As the tool is not used daily, it is recommended to
interview different people in intervals of 2-6 months to evaluate the experiences and identify
the problems in different projects. Additionally, the implementation was outside the bachelor
thesis scope due to the time limit, making the evaluation difficult. Furthermore, it was
impossible to realize all requirements, e.g., automation, within the bachelor thesis.

7.3 Future work

For future works one could consider to focus more on automatization, since the basis is
already proofed. Therefore, a scanner can be implemented, which disassembles the product
and determines the structure. This should automatically evaluate a component. The architect

89

7 Conclusion

should not have to make any manual specifications regarding all components that the
product must contain. Also, the tool could generate a graphical report in the form of an
architecture diagram on request.

The integration of Common Vulnerabilities and Exposures (CVE) security numbers can
inform users of security issues. CVE is a common database that provides information about
security issues. The system should automatically determine which product is affected by a
security issue and inform the corresponding product owner and/or architects. However, to
get information about a CVE report, machine learning must be applied. Alternatively, the
National Vulnerability Database (NVD) can be used to provide CVE information in a
structured form.

Integration of third-party tools and external databases can be integrated to keep the
information up to date and reduce manual effort. For example, if a user in the company
looks up a related topic in a search engine such as Google, the information of the tool could
be used to deliver suitable results.

The functionality to recommend components based on the number and frequency of security
issues, the number of GitHub likes and ratings, the number of releases and over what period
they were released, the number of dependencies a component contains through the
integration of other components, and the number of people using the component can
additionally be developed.

A metric for the strictness of the licenses could be computed to enable users to estimate the
licenses better. Therefore, the values assigned in the solution from the UseTypeObligation
combination can be used. The following graphs show examples based on the MIT

(Figure 7.1), Apache-2.0 (Figure 7.2) and AGPL-3.0 license (Figure 7.3). The formula f(x) =7 -
x was applied to each cell of the adjacency matrix. On the left the original matrix is shown
and on the right the matrix after applying the formula. However, this method needs to be
checked for additional licenses to verify the validity and validity of the general public.

90

7 Conclusion

Paiipow :3oeje
aunsud :oejue
pappaquia :8uljpunq
auo|epuejs :8ulpung
wa)sAs :uofedIUNWWOod
$$320.d :uof3EIIUNWWOd
||e3-910wai :98esn

|e20| :98esn

painquasip :Asanjsp
|eusaqul :Asanlap
Aiorepuew :Asuspuadap
Jeuondo :Aduspuadsp
pajidwon :jew.oy

92IN0S jew.o)

~

—

~

~

~

~

~

~

~

2
2

PROVIDE-SOURCE
ADV-CLAUSE
RENAME

NO-RELICENSE
CTX-NON-MIL

CTX-NON-COM

COPYLEFT-STRONG
COPYLEFT-WEAK
NON-OSS-DEF
OTHER

palipow :1oejiue
aunsud :0eyue
pappaquia :8uljpung
auo|epues :Sulpung
wa)sAs :uopedIuNWWOod
$5920.d :uoI1EIIUNWIWOI
||e2-930wWwal :a8esn

|e20| :98esn

painquisip :Asanijap
|eusayul :AIaAI9p
Aorepuew :Aduspuadap
Jeuondo :Aduspuadsp
pajidwo :1ew.oy

92JN0S :1ew.o}

6|NO-LIABILITY

5
5
5

n

n

wn

n

n

NO-LIABILITY

5|KEEP-COPYRIGHT
5|PROVIDE-LICENSE

5
5

5
5

KEEP-COPYRIGHT
PROVIDE-LICENSE

PROVIDE-SOURCE
ADV-CLAUSE
RENAME

NO-RELICENSE
CTX-NON-MIL

CTX-NON-COM

COPYLEFT-STRONG
COPYLEFT-WEAK
NON-OSS-DEF
OTHER

Figure 7.1: MIT Metric Calculation

palipow :3oeyie
aunsud :1oepe
pappaquia :8uljpunq
auojepuejs :Supung
wialsAs :uol3edIUNWIWOD
$s920.d :uollEdIUNWWOod
||ed-210wWal :a8esn

|e20] :98esn

painquisip :Asanijap
|eusaqul :Asonlap
Aiorepuew :Aduspuadsp
|euondo :Asuapuadap
pajidwon :1ew.oy

924Nn0S jew.o)

2
2

PROVIDE-SOURCE

4

4 4 4

2

3

NO-RELICENSE
CTX-NON-MIL

CTX-NON-COM

COPYLEFT-STRONG
COPYLEFT-WEAK
NON-OSS-DEF
OTHER

pauipow :3oejiue
aunsud :oejiue
pappaquia :8uljpunq
auojepue)s :8ulpung
wa)sAs :uopesuNWWod
$5920.d :uol1BIIUNWWOD
||e2-930wWal :a8esn

|edo| :a8esn

painquisip :Asanijap
|eusaul :Asan1ap
Aiorepuew :Aduspuadap
|euondo :Asuspuadap
pajidwod :1ew.o}

92JN0S :1ew.o}

6|NO-LIABILITY

5
5
5

NO-LIABILITY

5|KEEP-COPYRIGHT
5|PROVIDE-LICENSE

5
5

5
5

KEEP-COPYRIGHT
PROVIDE-LICENSE

PROVIDE-SOURCE
ADV-CLAUSE
RENAME

3|ADV-CLAUSE
4|RENAME

3
5
4

3
5

4

NO-RELICENSE
CTX-NON-MIL

CTX-NON-COM

COPYLEFT-STRONG
COPYLEFT-WEAK
NON-OSS-DEF
OTHER

Figure 7.2: Apache-2.0 Metric Calculation

91

7 Conclusion

paijipow :3oey3e
aunsiid :30ej1ue
pappaqusa :8ujpunq
auojepuels :3uljpunq
wia)sAs :uoieIIUNWWOD
$s920.d :uoiEIIUNWWOI
||ed-210waJ :a8esn

|eao| :a8esn

painqLisip :Asanap
|eusaqul :AsaAlap
Aiojepuew :Aduspuadsp
|euondo :Aduapuadap
pajidwod :jew.oy

92JN0S jew.Jo}

-

~

-

~

~

~

~

~

~

-

~

~

~

~

2
2

ADV-CLAUSE
RENAME

3

CTX-NON-MIL

CTX-NON-COM

6

COPYLEFT-WEAK
NON-OSS-DEF

4 4 4 4 3 5 4 4 4 4 4 4 4 o8

palyipow :3oejiue
aunsiud :oeye
pappaqwsa :8uljpunq
auojepuess :8ulpunq
wia)sAs :uoIEIIUNWWIOD
$59204d :UONEIIUNWIWOD
||e2-230waJ :a8esn

|ed0| :a8esn

painquasip :Asanpp
|eusaaul :Asaniap
Aiorepuew :Aduspuadap
|euondo :Aduspuadap
pajidwod :jew.oy

924N0s :jew.oy

6|NO-LIABILITY

5
5
5
5

NO-LIABILITY

5|KEEP-COPYRIGHT
5|PROVIDE-LICENSE

5
5
4

5
5

KEEP-COPYRIGHT
PROVIDE-LICENSE

4|PROVIDE-SOURCE

PROVIDE-SOURCE
ADV-CLAUSE
RENAME

3|NO-RELICENSE

4

4

4

NO-RELICENSE

CTX-NON-MIL

CTX-NON-COM

0|COPYLEFT-STRONG

1

0

1

COPYLEFT-STRONG
COPYLEFT-WEAK
NON-OSS-DEF
OTHER

3|OTHER

3

3

AGPL-3.0 Metric Calculation

Figure 7.3

92

8 Appendix

In the back of this bachelor thesis a CD is attached with the following documents:

Filename

Description

license-modeling.xlsx

License document of the 18 mentioned licenses in subsection 4.3.2

licenses-to-json-format.js

Script to convert license analysis into json format.

license-declarations.json

License Declarations from License Analysis in json format.

Defcon.js

JavaScript File with the Algorithm as described in section 5.2

bootstrap-business-test.json

Component Usage as described in section 5.3

spring-boot.json

Component Usage as described in section 5.3

test.js Test JavaScript file to run the algorithm
output.json Generated output after running the test.js file.
datamodel.pdf Datamodel of the application Figure 4.5.
bpmn.pdf Business Process Model of the application process Figure 4.27.

93

Acronyms

AGPL-3.0 GNU Affero General Public License, Version 3. 37, 44, 90
Apache-1.1 Apache Software License 1.1. 37

Apache-2.0 Apache Software License 2.0. 37, 71-74, 85, 90

BSD-2-Clause The 2-Clause BSD License. 37, 40, 41, 46
BSD-3-Clause The 3-Clause BSD License. 37, 72

BSD-4-Clause The 4-Clause BSD License. 37, 47, 48

CDDL-1.0 COMMON DEVELOPMENT AND DISTRIBUTION LICENSE Version 1.0. 37

CPL-1.0 Common Public License, version 1.0. 37
EPL-1.0 Eclipse Public License - v 1.0. 37, 72, 74, 75

GPL-2.0-only GNU General Public License, Version 2. 16, 37, 42, 43, 50, 51

GPL-3.0-only GNU General Public License, Version 3. 37, 43, 44, 50, 51
ICU ICU License. 37

LGPL-2.0-only GNU Lesser General Public License, Version 2. 37, 42, 43, 49, 50

LGPL-3.0-only GNU Lesser General Public License, Version 3. 37, 43-45

MIT The MIT License. 39, 40, 71, 80, 85, 90
MPL-2.0 MOZILLA PUBLIC LICENSE VERSION 2.0. 37

OSS Open Source Software. iii, viii, 1, 2, 6, 7, 10-14, 16, 17, 19, 20, 35, 49, 65, 71, 81, 85, 89

OTN Oracle Technology Network License Agreement. 37, 48, 49

SDN SAP Developers Network MaxDB License Agreement Version 1. 37, 49

94

Bibliography

(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. R. S. Engelschall. “ARCHITEKTUR VS. LIZENZRECHT: LIZENZKONFORME
VERBAUUNG VON OPEN-SOURCE-SOFTWARE”. In: (2012).

A. R. Hevner, S. T. March, J. Park, and S. Ram. “DESIGN SCIENCE IN INFORMATION
SYSTEMS RESEARCH”. In: (2004).

D. R. S. Engelschall. “Archicture Fundamentals”. In: (2009-2020). URL: https://bit.1ly/
2YJBWGQ (visited on 09/25/2020).

N. Hansen. “Wirtschaftsinformatik 1, UTB Verlag, 10. Auflage”. In: (2009).

P. D. FE. Matthes. “Lecure 6 of Software Engineering in Business Applications: "Technis-
che Grundlagen betrieblicher IS"”. In: (2019).

OSI/IEC. “Systems and software engineering — Vocabulary”. In: (2017). URL: https:
//bit.1ly/3ibcNgX.

A. Silberschatz, P. B. Galvin, and G. Gagne. “Operating System Concepts, Ninth edition”.
In: (2012).

R. Stallman. “Free Software Definition”. In: (1996-2019). URL: https://bit.1ly/3iPwLwP
(visited on 08/05/2020).

bitkom. “Am Anfang war alle Software frei”. In: (2016). URL: https://bit.1y/3gVj10f
(visited on 09/03/2020).

R. Stallman. “Licenses”. In: (2014-2020). URL: https://bit.1ly/3£fsTb4C (visited on
08/05/2020).

O. Sun Microsystems. “Common Development and Distribution License 1.0”. In: (N/A).
URL: https://bit.1ly/2E8hyrD (visited on 08/05/2020).

Mozilla. “Mozilla Public License Version 2.0”. In: (2012). URL: https://mz1l.1la/2Y85bml
(visited on 08/05/2020).

Eclipse. “Eclipse Public License - v2.0”. In: (N/A). URL: https://bit.ly/2E4w0Wv
(visited on 08/05/2020).

IBM. “Common Public License, version 1.0”. In: (N/A). URL: https://bit.1ly/3ib5hkG
(visited on 08/05/2020).

R. Stallman. “GNU General Public License, Version 3”. In: (2007). URL: https://bit.
1y/39WGYUQ (visited on 08/05/2020).

R. Stallman. “GNU Affero General Public License, Version 3”. In: (2007). URL: https:
//bit.1ly/2PrJjoOM (visited on 08/05/2020).

95

https://bit.ly/2YJBWGQ
https://bit.ly/2YJBWGQ
https://bit.ly/3i5cNgX
https://bit.ly/3i5cNgX
https://bit.ly/3iPwLwP
https://bit.ly/3gVjlOf
https://bit.ly/3fsTb4C
https://bit.ly/2E8hyrD
https://mzl.la/2Y85bml
https://bit.ly/2E4wOWv
https://bit.ly/3ib5hkG
https://bit.ly/39WGYUQ
https://bit.ly/39WGYUQ
https://bit.ly/2PrJj0M
https://bit.ly/2PrJj0M

Bibliography

[17]

[18]

[19]
[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]
[35]

[36]

R. Stallman. “GNU Lesser General Public License, Version 3”. In: (2007). URL: https:
//bit.1ly/30wVVK1 (visited on 08/05/2020).

msg systems ag. “msg”. In: (2020). URL: https : //bit . ly / 2YP5DWZ (visited on
08/30/2020).

Snopsys. “Black Duck”. In: (2019). URL: https://bit.1ly/3hp9cdL (visited on 08/23/2020).

WhitSource. “WhiteSource”. In: (2020). URL: https://bit.1ly/3golEXi (visited on
08/23/2020).

FOSSA. “FOSSA”. In: (2020). URL: https://bit.1ly/31n07Ln (visited on 08/23/2020).

SPDX. “SPDX License List”. In: (2018). URL: https://bit.1ly/311mjXN (visited on
08/23/2020).

t,dr Legal. “tl;dr Legal”. In: (2012-2017). URL: https://bit.1ly/32fBBwt (visited on
08/23/2020).

PERFORCE. “OpenLogic”. In: (2020). URL: https://bit . 1ly/3aMogzN (visited on
08/23/2020).

Eclipse. “Eclipse SW 360”. In: (2018). URL: https: //bit . 1ly/31mvXKO (visited on
08/23/2020).

FOSSology. “FOSSology”. In: (2017). URL: https : //bit . 1y / 2YsowyW (visited on
08/23/2020).

H. Zhang, B. Shi, and L. Zhang. “Automatic Checking of License Compliance”. In: 2010
IEEE International Conference on Software Maintenance (2010), pp. 1-3. por: 10.1109/icsm.
2010.5609557.

D. M. German and M. D. Penta. “A Method for Open Source License Compliance of
Java Applications”. In: [EEE COMPUTER SOCIETY (2012).

H. Y. Yun, Y.]. Joe, and D. M. Shin. “Method of License Compliance of Open Source
Software Governance”. In: (2017).

D. O. Block. “Assessing Open Source Software Usage in the Development of Grid
Control and Measurement Device Software”. In: 2012 International Conference on Smart
Grid Technology, Economics and Policies (SG-TEP) (2012), pp. 1-3. por: 10.1109/sg-
tep.2012.6739584.

“The JSON License”. In: (2002). URL: https://bit.1ly/2EcDJww (visited on 08/16/2020).
“Prototype”. In: (2005-2007). URL: https://bit.1ly/2E9vilE (visited on 08/16/2020).

T. Fuchs. “Scriptaculous”. In: (2005-2008). URL: https://bit.1ly/31VZTeR (visited on
08/16/2020).

“SLF4]”. In: (2004-2017). URL: https://bit.1ly/3hdXPFi (visited on 08/16/2020).

“W3C SOFTWARE NOTICE AND LICENSE”. In: (2015). URL: https://bit.ly/3h2emMt
(visited on 08/16/2020).

“ASM”. In: (2000-2011). URL: https://bit.1ly/340d7tM (visited on 08/16/2020).

96

https://bit.ly/30wVVKl
https://bit.ly/30wVVKl
https://bit.ly/2YP5DWZ
https://bit.ly/3hp9cdL
https://bit.ly/3go1EXi
https://bit.ly/31nO7Ln
https://bit.ly/31lmjXN
https://bit.ly/32fBBwt
https://bit.ly/3aMogzN
https://bit.ly/31mvXK0
https://bit.ly/2YsowyW
https://doi.org/10.1109/icsm.2010.5609557
https://doi.org/10.1109/icsm.2010.5609557
https://doi.org/10.1109/sg-tep.2012.6739584
https://doi.org/10.1109/sg-tep.2012.6739584
https://bit.ly/2EcDJww
https://bit.ly/2E9vilE
https://bit.ly/31VZTeR
https://bit.ly/3hdXPFi
https://bit.ly/3h2emMt
https://bit.ly/340d7tM

Bibliography

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

T. H. D. Group. “HSQLDB”. In: (2001-2020). URL: https://bit.1ly/3h5h2Ji (visited on
08/16/2020).

S. Souza. “JAMon License Agreement”. In: (2002). URL: https://bit.1ly/2PZQ9uB
(visited on 08/16/2020).

T. P. G. D. Group. “PostgreSQL”. In: (1996-2020,). URL: https://bit . ly/2Y4qGo6
(visited on 08/16/2020).

M. Ltd. “dom4j Copyright and License Agreement”. In: (2001-2016). URL: https://bit.
1y/3g2FGZG (visited on 08/16/2020).

T. V. S. Society. “FreeMarker”. In: (2003). URL: https://bit.1ly/2Y8IQFr (visited on
08/16/2020).

G. Robert A. van Engelen. “gSOAP Public License”. In: (2001-2009). URL: https://fla.
st/2PWphvr (visited on 08/16/2020).

S. AG. “SAP DEVELOPERS NETWORK -MaxDB LICENSE AGREEMENT”. In: (N/A).
URL: https://bit.1ly/3iKpqhL (visited on 08/16/2020).

M. L. of Technology. “The MIT License”. In: (N/A). URL: https://bit.1ly/3fDfQM1
(visited on 08/05/2020).

R. of the University of California. “The 2-Clause BSD License”. In: (1999). URL: https:
//bit.1ly/33ucLuY (visited on 08/05/2020).

R. of the University of California. “The 3-Clause BSD License”. In: (1999). URL: https:
//bit.1y/30riVué (visited on 08/05/2020).

R. of the University of California. “The 4-Clause BSD License”. In: (1999). URL: https:
//bit.ly/2DplvYT (visited on 08/05/2020).

“ICU License”. In: (1995-2009). URL: https://bit.ly/2DxYAuf (visited on 08/05/2020).

A. S. Foundation. “Apache Software License 1.1”. In: (2001). URL: https://bit.1ly/
2ESVUrI (visited on 08/05/2020).

A. S. Foundation. “APACHE LICENSE, VERSION 2.0”. In: (2004). URL: https://bit.
1y/2PnbLAG (visited on 08/05/2020).

R. Stallman. “GNU Lesser General Public License, Version 2”. In: (1991). URL: https:
//bit.1ly/2QZYwXz (visited on 08/05/2020).

R. Stallman. “GNU General Public License, Version 2”. In: (1989-1991). URL: https:
//bit.1y/33ufXGY (visited on 08/05/2020).

Oracle. “Oracle Technology Network License Agreement”. In: (2014). URL: https :
//bit.ly/2Pt£2i1 (visited on 08/05/2020).

SAP. “SAP DEVELOPERS NETWORK -MaxDB LICENSE AGREEMENT Version 1”. In:
(2007). URL: https://bit.1ly/31kE2xs (visited on 08/05/2020).

R. Stallman. “Frequently Asked Questions about the GNU Licenses”. In: (2014-2020).
URL: https://bit.1ly/3iT56uW (visited on 08/18/2020).

97

https://bit.ly/3h5h2Ji
https://bit.ly/2PZQ9uB
https://bit.ly/2Y4qGo6
https://bit.ly/3g2FGZG
https://bit.ly/3g2FGZG
https://bit.ly/2Y8IQFr
https://fla.st/2PWphvr
https://fla.st/2PWphvr
https://bit.ly/3iKpqhL
https://bit.ly/3fDfQM1
https://bit.ly/33ucLuY
https://bit.ly/33ucLuY
https://bit.ly/30riVu6
https://bit.ly/30riVu6
https://bit.ly/2DplvYT
https://bit.ly/2DplvYT
https://bit.ly/2DxYAuf
https://bit.ly/2ESVUrI
https://bit.ly/2ESVUrI
https://bit.ly/2PnbLAG
https://bit.ly/2PnbLAG
https://bit.ly/2QZYwXz
https://bit.ly/2QZYwXz
https://bit.ly/33ufXGY
https://bit.ly/33ufXGY
https://bit.ly/2Ptf2i1
https://bit.ly/2Ptf2i1
https://bit.ly/31kE2xs
https://bit.ly/3iT56uW

Bibliography

[56]

[57]

[58]

[59]

[60]

P. D. D. Riehle. “Open Source License Compliance and Work-for-Hire”. In: (2020). URL:
https://bit.ly/3i¥nItz (visited on 08/18/2020).

P. D. D. Riehle. “Open Source License Compliance and Work-for-Hire”. In: (2020). URL:
https://bit.1ly/3h9wxjn (visited on 08/18/2020).

T. G. Foundation. “GraphQL”. In: (2020). URL: https://bit.1ly/3jxbgAX (visited on
08/30/2020).

Pivotal. “Spring Boot » 2.3.3.RELEASE”. In: (2006-2020). URL: https://bit.1ly/3iQv6XD
(visited on 08/18/2020).

F. Daugan. “Bootstrap Business Test » 2.8.3”. In: (2006-2020). URL: https://bit.1ly/
3ha4QXP (visited on 08/18/2020).

98

https://bit.ly/3iYnItz
https://bit.ly/3h9wxjn
https://bit.ly/3jxbgAX
https://bit.ly/3iQv6XD
https://bit.ly/3ha4QXP
https://bit.ly/3ha4QXP

	Abstract
	Contents
	Introduction
	Motivation
	Research Questions
	Research Approach

	Foundations
	Enterprise Terms
	Large Enterprises
	Agile Software Engineering

	Architecture Terms
	Architecture
	Component
	Plug-in
	Framework
	Library
	Tool
	Program
	Operating System
	Technology Platform
	Technology Stack

	Open Source Software Terms
	Open Source Software
	Free Software
	Free/Libre and Open Source Software (FOSS/FLOSS)

	Open Source Software License Terms
	Obligations
	Use Types
	License
	Prose Text
	Copyright
	Copyleft
	Contributor
	Contribution
	Propagation
	Convey
	Covered Software
	Covered work
	Combined Work
	Source Form
	Executable Form
	Larger Work
	Unmodified / Original / Pristine
	Modifications
	Derivative Work
	Program
	Disclaimer
	Patent Claims

	Classification and Objectives
	Context
	Requirements
	General Requirements
	User Requirements from Interviews

	Related Work
	Black Duck Suite
	WhiteSource
	Fossa
	spdx
	tl;dr Legal
	OpenLogic Stack Builder
	Nexus Vulnerability Scanner
	Eclipse SW360
	FOSSology
	LChecker
	Kenen
	Method of License Compliance of oss Governance
	Suggestion for an easy to use tool
	Open Source Analysis Database (msg)

	Concept
	Introduction
	Data model
	License Modelling
	General
	License Analysis
	Graduation of use types and obligations

	Roles
	Process
	Business Process Model
	User Stories

	Authorization

	Implementation
	Implementation
	Algorithm
	Visualization
	Mockups

	Evaluation
	Iterative Process
	Interviews

	Conclusion
	Lessons learned
	Limitations
	Future work

	Appendix
	Acronyms
	Bibliography

