
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Information Systems

Improving the Quality of OpenAPI
Specifications Using TypeScript Types and

Annotations

Wolfgang Hobmaier

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Information Systems

Improving the Quality of OpenAPI
Specifications Using TypeScript Types and

Annotations

Verbesserung der Qualität von OpenAPI
Spezifikationen mit Typescript Typen und

Annotationen

Author: Wolfgang Hobmaier
Supervisor: Prof. Dr. Florian Matthes
Advisor: Gloria Bondel
Submission Date: 2020-07-15

I confirm that this bachelor’s thesis in information systems is my own work and I have
documented all sources and material used.

Munich, 2020-07-15 Wolfgang Hobmaier

Acknowledgments

First of all, I want to thank the Software Engineering for Business Information Sys-
tems (sebis) chair at the TUM for enabling the creation of this thesis. Especially towards
my advisor M.Sc. Gloria Bondel, I want to express my great gratitude for her help and
supervision. Without her openness towards my proposal and her support throughout,
this thesis would would never have come about.
I also want to thank my supervisor Prof. Dr. Florian Matthes for his valuable, construc-
tive input especially early on while shaping the scope of this work, helpful discussions
and allowing me to present this research.
I would also like to thank my employer AND Solution GmbH for providing an envi-
ronment to test my assumptions and receive valuable feedback even on beta releases,
especially Thomas Bayr, whose support was invaluable.
I also want to thank the OpenAPI and tsoa communities, who assisted with questions
and sent contributions improving the project as a whole. A special thanks hereby
goes to Phil Sturgeon for his expert feedback and productive input. Finally, I want to
thank my family for their relentless and enduring support, especially during the most
stressful times.

Abstract

The rise of enterprise APIs and the API economy have increased the demand for well
documented APIs on the internet.Practices like microservices require well specified Pri-
vate APIs in order to facilitate communication in complex application landscapes across
language and system boundaries. In this area, the OpenAPI Specification has emerged
as the most commonly used format to provide a standardized, language-agnostic format
to describe Web APIs [Sma19]. Even when documentation is an explicit requirement,
many Web APIs don’t appear to meet these expectations in practice [Hos+18]. When
asked about issues with regards to providing documentation, developers commonly
cite the need for quick release cycles, lack of time and tooling [Sma19].

In order to provide high quality OpenAPI Specification documents, we propose a
tighter integration between code and API descriptions by automating the process of
creating API descriptions from code and therefore reducing the cost associated with
providing high quality API descriptions. In this thesis, we compare existing approaches
to documentation generation in typed systems and suggest a novel approach merging
elements of existing approaches in literature with a less researched approach (Abstract
Syntax Tree Parsing) and a novel approach which involves integration with a Type
Checker.

Early evaluations with 2 participants show that OpenAPI specification documents
automatically generated by our approach can increase the quality compared to state-
of-the-art approaches, while reducing the amount of time needed for documentation
annotations.

While our approach increases coupling between the documentation and source code
and therefore reducing the applicability for different languages and frameworks, that
coupling enables us to limit the amount of outdated or incorrect information in the
generated API description. By depending on a well established standard, tooling de-
veloped for the OpenAPI ecosystem can enable additional quality assurance, including
consistency and backwards compatibility.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1
1.1. Motivation . 1
1.2. Objective . 3
1.3. Research Questions . 4
1.4. Research Approach . 5
1.5. Outline . 5

2. Foundations 7
2.1. HTTP . 7
2.2. REST APIs . 10

2.2.1. REST Constraints . 10
2.2.2. REST Applied to HTTP . 13
2.2.3. REST APIs in practice . 13

2.3. JSON(-Schema) . 15
2.3.1. JSON . 15
2.3.2. JSON Schema . 17

2.4. OpenAPI Specification (OAS) . 18
2.5. High quality API Documentation . 21
2.6. API-first Design . 24
2.7. Living Documentation . 26

3. Related Work 29
3.1. Generating Documentation from API usage or examples 29
3.2. UML Representations from OpenAPI Specifications 31
3.3. Collecting crowdsourced documentation 31

4. Standardized API Reference Documentation using OpenAPI 33
4.1. Elements of Web API Documentation in Literature 33
4.2. Specifying Web API Reference Documentation using OpenAPI 38

v

Contents

5. Approaches to generating API Reference Documentation 45
5.1. Sources of documentation in programs 46

5.1.1. (Structured) Comments . 47
5.1.2. Annotations . 48
5.1.3. Statements . 50
5.1.4. Type Systems . 50
5.1.5. Configuration . 51

5.2. Extracting Documentation . 53
5.2.1. Extracting Documentation using Reflection 53
5.2.2. Extracting Documentation using Abstract Syntax Tree Parsing . 57
5.2.3. Extracting Documentation from a Type Checker 58

5.3. Comparison . 58

6. Building and integrating an OAS Generation Framework 60
6.1. Building the OAS . 60

6.1.1. Operation resolution . 61
6.1.2. Schema resolution . 61

6.2. Contributions . 64
6.3. Limitations . 73
6.4. Integrating the generated API descriptions into a holistic API strategy . 74
6.5. Documenting the Approach . 75
6.6. Case Study . 78

7. Evaluation 81
7.1. Participants . 81
7.2. Time . 82
7.3. Quality . 82
7.4. Discussion . 83

8. Conclusion and Outlook 85

A. Appendix 88
A.1. Evaluation Instructions . 88

A.1.1. Initial survey . 88
A.1.2. Getting familiar with the approaches 88
A.1.3. Coding . 90
A.1.4. Final survey . 93

A.2. TypeScript TypeChecker Type Flags . 94

List of Figures 95

vi

Contents

List of Tables 97

Listings 98

Bibliography 99

vii

1. Introduction

1.1. Motivation

IT Infrastructure is evolving. The popularity of the internet has moved applications
"into the cloud", enabling interconnected and cross-company collaboration to solve
complex business tasks. The shift from monolithic architectures to microservices has
further aligned the communication mechanisms between company-internal business
processes and cross-company collaboration.

“As the connective tissue linking ecosystems of technologies and organizations,
APIs allow businesses to monetize data, forge profitable partnerships, and open new
pathways for innovation and growth.” [Iye+17]

The shift towards an open, cloud-based API economy has significantly increased the
amount of Web APIs available and enabled new opportunities for value creation.

According to a survey conducted by Cloud Elements, “API integration continues to
be critical to business strategy with 84% of respondents reporting that it’s critical or
very critical.”[Clo20]

In order to succeed in an increasingly competitive API economy, or to succeed with a
complex microservice landscape, high quality documentation is vital.

“Clear, easy-to-access, and easy-to-grasp documentation is a prerequisite for
API success. Documentation quickly becomes stale and out-of-date. When
it does, users fail to derive value from it and, worse yet, lose trust in the
company.” [Fat19]

Unfortunately, high quality documentation for Web APIs is not a one time achieve-
ment, but a continuous, time consuming process. Documentation takes time, effort and
buy-in from all parties involved (see Fig. 1.1), while numerous pitfalls or anti-patterns
can hopefully be avoided.

“Like cheap wine, long paper documentation ages rapidly and leaves you
with a bad headache if you try to use it a year after it was created.” [Adz11]

It’s therefore not surprising that a large-scale study conducted by Aghajani et. al.
“empirically confirms and complements previous research findings (and common

1

1. Introduction

Figure 1.1.: The biggest obstacles to providing up-to-date API documentation [Sma19]

sense): Developers (and users) prefer documentation that is correct, complete, up to
date, usable, maintainable, readable and useful.” [Agh+19]. The most commonly
observed issues during the study were completeness, up-to-dateness and correctness.

These documentation issues also apply to Web APIs. According to Maleshkova et.
al, two thirds of the APIs do not state the data-type of the input and 40% of the APIs
do not state the HTTP method, which characterize fundamental aspects of a HTTP
Message. [MPD10]

In order to reduce the cost of creation and allow both humans and machines (with
regards to tooling) to work with the same interface definition, companies around the
world move towards describing their Web APIs in a standardized format. By relying
on a standardized format for description Web API capabilities, integration with the
infrastructure can be simplified, for example routing in gateways or EAM tooling. The
most popular one of these standards is the OpenAPI Specification (OAS).

However, while reducing potential for certain mistakes through OpenAPI based
validation, many OAS documents still do not provide entirely reliable documentation
of the API: In a study conducted by Hosano et. al, of 67 publicly available endpoints
with OpenAPI specification documents available, almost half of them were not cor-
rect. The most common discrepancies between implementation and specification were
undocumented, dynamic or unreturned keys, and type mismatches. [Hos+18]

As a remedy for agile development teams, the notion of Living Documentation

2

1. Introduction

was proposed by Martraire [Mar19], which incorporates documentation as contin-
uous knowledge sharing alongside the continuous development practices of agile
development teams.

“Even in software development projects that claim to be agile, deciding what
to build and doing the coding, testing, and preparing documentation are
too often separate activities [...]. Separate activities induce a lot of waste and
lost opportunities. Basically, the same knowledge is manipulated during
each activity, but in different forms and in different artifacts—and probably
with some amount of duplication. In addition, this “same” knowledge can
evolve during the process itself, which may cause inconsistencies.” [Mar19]

To minimize the potential for inconsistencies between description and implementa-
tion, we therefore propose a new approach that allows developers to use types and
annotations to pre-describe the API in code and then automatically convert this rep-
resentation into formal OpenAPI specification documents. Thus it is still possible to
benefit from the advantages of an API design first strategy (such as early customer
feedback and collaboration on the API definition via collaboration platforms or mocking
tools), but the type system and the web framework ensure that the API description and
actual implementation do not diverge, as the code remains the single source of truth.

1.2. Objective

The objective of this thesis is to outline and evaluate possible approaches to increase
the of quality OpenAPI specification documents for Web APIs through abstraction and
reuse of existing type definitions and framework code needed to power Web APIs,
thereby decreasing the overhead introduced by seperating the activities of modeling,
implementation and documentation using different tools as much as possible. While
the major focus of our work is to enable accurate, correct and complete and up-
to-date API Reference documentation, we intend to provide a clear path towards
increased usability of the API. By relying on the existing ecosystem of standards
and popular tools (HTTP, OpenAPI, JSON, JSON Schema, TypeScript), we intend to
enable further automation at later stages of the API Lifecycle, notably by leveraging
linters (to enforce consistent error messages, descriptions, examples and grouping
of concepts) and Software development kit (SDK) generation to provide increased
API usability, especially when generating statically checked SDKs [End+14] [Wit+17].
To provide additional incentives for developers, our approach removes the need for
runtime validation.

3

1. Introduction

1.3. Research Questions

In this section, three main research questions (RQ) will be outlined to serve as a overar-
ching framework for this thesis.

RQ1: What are required elements of good API Reference Documentation for Web
APIs?
In order to automate documentation, it is vital to define elements of good API Refer-
ence Documentation for Web APIs. Based on existing literature identifying elements
of Documentation, adapt these suggestions for Web APIs and define the scope of a
good Web API Reference Documentation in the context of this thesis. The goal of
this research question is to define a comprehensive list of requirements good API
Reference Documentation for Web APIs should fulfil, and how and where the OpenAPI
specification makes it possible to formally define the knowledge needed to meet the
requirements.

RQ2: What are possible approaches to ensure correct, complete and consistent API
Reference Documentation of Web APIs?
Building on top of the requirements elicited in RQ1, we compare existing approaches
to automated documentation from source code for traditional APIs with regards to
their viability for Web APIs. We study where certain knowledge patterns can be found
in source code while optimizing for correctness, completeness and usability (developer
experience) in different scenarios and outline limitations of each approach. The result
will be a mapping from knowledge sources to requirements and an overview, which
technique is suited to provide extract the knowledge from these sources.

RQ3: Would developers use a OpenAPI driven framework?
Even if our steps towards higher quality API documentation may yield better docu-
mentation results, this question aims to put possible improvements into context. The
best documentation approach likely would not be adopted if the developer experience
suffers disproportionately, therefore we developed 3 hypotheses to question the impact
regarding time, quality of documentation and developer experience:

• The OpenAPI-aware approach to development does decrease time spent on
development

• Developers prefer our approach

• The quality of the OAS document improves

4

1. Introduction

1.4. Research Approach

This thesis will apply a Design Science Research approach [Hev+04], as outlined in
Fig.1.2. This approach is centered around development and evaluation of a new artifact
informed by an existing knowledge base, which will be used to build a foundation of
vocabulary and theories that can be used to define concrete requirements developed as
part of answering RQ1. Based on these scientifically grounded, concrete requirements,
we use RQ2 to argue which techniques are best suited to meets the requirements.
This knowledge base will afterwards be applied to develop artifacts which can be
used to address the demand for high quality documentation as a business need.
Thereupon, we can assess this approach by building an implementation of this approach.
By reapplying these developed artifacts in the appropriate environment during our
evaluation, conclusions about viability in practice and future work can be drawn.

1.5. Outline

In chapter 2, fundamental knowledge will be introduced by defining key terminology
used throughout this thesis, such as HTTP, REST APIs, JSON and the JSON Schema
definitinon language, the OpenAPI Specification and "high quality API documentation".
In chapter 3, we will show related work in the area of automated documentation
generation. In chapter 4, we will present the results of our literature review of RQ1,
whereas in chapter 5, we will determine where we can translate the knowledge patterns
of source code to cover the requirements elicited. Based on our rationale as to which
approach can be used to most accurately cover the requirements, chapter 6 will present
the techniques and implementation chosen. Hereinafter, chapter 7 will present the
results of an evaluation of the tool developed in comparison to other tools already
used to generate API descriptions using the OpenAPI Specification with regards to cost
and quality. We survey users of the tooling built to generate OpenAPI specification
documents and investigate the effects on correctness and API developer experience.
Based on our results, we determine potential effects on API consumer experience and
time spent on documentation. Finally, chapter 8 will briefly summarize our findings,
detail limitations of our approach and lay out future work.

5

1. Introduction

Fi
gu

re
1.

2.
:D

es
ig

n
Sc

ie
nc

e
A

pp
ro

ac
h

[G
H

13
]

6

2. Foundations

This chapter outlines the fundamental concepts and assumptions which setup the
context of the thesis. As design science always happens within an environment of
existing knowledge, existing practices and a certain state of the art, we intend to provide
a better understanding of this environment for the development of Web APIs.

2.1. HTTP

In order to better understand the documentation needs for Web APIs, a sufficient
understanding of the protocol used for communication is required. Thus, this section
will describe the mechanics of the Hypertext Transfer Protocol underlying the commu-
nication that is subject to documentation.

The Hypertext Transfer Protocol (HTTP) is the common language of the modern inter-
net [Net11]. HTTP is a “stateless application-level request/response”[FR14a] protocol,
based on TCP/IP (therefore providing certain guarantees around data-transmission).
The goal of HTTP is to enable the exchange of documents, also called resources, be-
tween applications over the Web. It is so commonly used in Web servers that the terms
HTTP server and web server are often used synonymously.

HTTP is specified in several RFCs:

• RFC 2616: Hypertext Transfer Protocol – HTTP/1.1 1, the initial HTTP standard,
obsoleted by 7230ff

• RFC 7230, HTTP/1.1: Message Syntax and Routing 2

• RFC 7231, HTTP/1.1: Semantics and Content3

• RFC 7232, HTTP/1.1: Conditional Requests4

1https://tools.ietf.org/html/rfc2616
2https://tools.ietf.org/html/rfc7230
3https://tools.ietf.org/html/rfc7231
4https://tools.ietf.org/html/rfc7232

7

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232

2. Foundations

• RFC 7233, HTTP/1.1: Range Requests5

• RFC 7234, HTTP/1.1: Caching6

• RFC 7235, HTTP/1.1: Authentication7

• RFC 7540, HTTP/2: Hypertext Transfer Protocol Version 28

• RFC 5789, PATCH Method for HTTP 9

HTTP is used as a message based client/server computing model. Each message can
be either a HTTP Request the client sends to the server, or a HTTP Response, which
the server sends back to the client to service the Request. While the HTTP messages
are embedded into a binary structure, called frame in HTTP 2, the semantics of the
message are unchanged. 10.

“The target of an HTTP request is called a resource. HTTP does not limit the nature of
a resource; it merely defines an interface that might be used to interact with resources.
Each resource is identified by a Uniform Resource Identifier (URI), as described in
Section 2.7 of RFC7230.”[FR14a]

A HTTP Request therefore is a Tuple consisting of the HTTP start line containing the
HTTP Protocol Version, a Method, a Uniform Resource Identifier (URI), a field of Headers
and a Body11. An example of a HTTP Request/Response is shown in Fig. 2.1.

The HTTP Version is denoted by HTTP/<major>.<minor>. The most common versions
are 1.1 and 2.0. As both versions use the same semantics and message format, adher-
ence to these either one of these versions of the HTTP specification will be assumed for
the remainder of this thesis.

The HTTP standard defines 9 types of Methods (RFC 7231 + RFC 5789, section 2):

• GET: Transfer a current representation of the target resource.

• HEAD: Same as GET, but only transfer the status line and header section.

5https://tools.ietf.org/html/rfc7233
6https://tools.ietf.org/html/rfc7234
7https://tools.ietf.org/html/rfc7235
8https://tools.ietf.org/html/rfc7540
9https://tools.ietf.org/html/rfc5789

10https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview#HTTP_Messages
11Only allowed for certain Methods

8

https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc5789
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview#HTTP_Messages

2. Foundations

• POST: Perform resource-specific processing on the request payload.

• PUT: Replace all current representations of the target resource with the request
payload.

• DELETE: Remove all current representations of the target resource.

• CONNECT: Establish a tunnel to the server identified by the target resource.

• OPTIONS: Describe the communication options for the target resource.

• TRACE: Perform a message loop-back test along the path to the target resource.

• PATCH: Apply partial modifications to a resource.

In order to request resources by name, HTTP uses Uniform Resource Identifiers
(URIs) as defined in RFC398612. URI references are “used to target requests, indicate
redirects, and define relationships”[FR14a].

In the context of Web APIs, a certain format of URIs is particularly common: One
fixed base URL per API, which is comprised of a scheme (only "http" or "https") and
a a static authority, most commonly a domain (i.e. "api.example.com") which serves
resources addresses by paths (i.e. "/products"). Additionally, each URL may contain
query parameters (i.e. "q=glass").

The resulting URL schema therefor may be denoted as

http(s)://<domain><path><query>

in our example:

https://api.example.com/products?q=glass

After the request start line including Method, the URI and the Protocol Version, Headers
(zero or more Header fields) can be present: “Each header field consists of a case-
insensitive field name followed by a colon (":"), optional leading whitespace, the field
value, and optional trailing whitespace.” [FR14a]
Headers usually contain request metadata such as content negotiation headers to inform
the server about the format of the response, language information or authorization
information such as API keys or JWT Tokens13 etc.

12https://tools.ietf.org/html/rfc3986
13https://jwt.io/

9

https://tools.ietf.org/html/rfc3986
https://jwt.io/

2. Foundations

The Response returned as a reply to a Request is a Tuple of the Protocol Version, a Status
Code, the corresponding Status message, Headers (similar to the request headers), and,
depending on the Status Code, a Body.

“The status-code element is a three-digit integer code giving the result of the attempt
to understand and satisfy the request.” [FR14b]
The first digit of each code describes the general class of status (1xx - Informational,
2xx - Successful, 3xx - Multiple Choices, 4xx Error, 5xx - Server Error) [Gou+02].
An exhaustive list of status codes defined in the HTTP specification and their meanings
can be found in RFC 7231 Section 6 14.

The main content of HTTP Messages is delivered via a body. In order for a client
and a server to agree on a common format used, the format of the body is ususally
determined via content negotiation. For detailed reasoning on why the main focus of
this thesis is data exchange via JSON, (MIME type "application/json"), please refer to
Section 2.3, where the format of a JSON Document will be described.

2.2. REST APIs

One of the key terms in the field of Web APIs is representational state transfer (REST).
REST is an architectural pattern applied to create web services via HTTP. The term was
initially used by Fieldings[Fie00] to describe a reusable, predictable way to implement
client-server communication, where the client initially does not require any knowledge
about the application in advance.

2.2.1. REST Constraints

By defining several constraints on top of HTTP, REST acts as a form of implicit
documentation by convention:

• Client-server architecture: REST applications have a server that provides an API
which can be accessed, regardless of the communication protocol. For Web APIs,
REST is commonly applied to the HTTP protocol. The concrete implications of
applying REST to HTTP will be outlined later. “Separation of concerns is the
principle behind the client-server constraints. By separating the user interface
concerns from the data storage concerns, we improve the portability of the user
interface across multiple platforms and improve scalability by simplifying the
server components. Perhaps most significant to the Web, however, is that the
separation allows the components to evolve independently, thus supporting the
Internet-scale requirement of multiple organizational domains”[Fie00].

14https://tools.ietf.org/html/rfc7231#section-6

10

https://tools.ietf.org/html/rfc7231#section-6

2. Foundations

Figure 2.1.: The HTTP Message format [Gou+02]

11

2. Foundations

• Stateless communication: Servers don’t maintain any client state. Therefore, all
client state required to fulfill the request must be provided on every call. “This
constraint induces the properties of visibility, reliability, and scalability.” [Fie00]

• Cacheable: The server indicates (via response headers) the cacheability of the
response. “In order to improve network efficiency, we add cache constraints to
form the client-cache-stateless-server style. Cache constraints require that the
data within a response to a request be implicitly or explicitly labeled as cacheable
or non-cacheable. If a response is cacheable, then a client cache is given the
right to reuse that response data for later, equivalent requests.”[Fie00] While the
immediate advantage is improved performance by reducing the communication
overhead, this constraint also increases the complexity due to the possibility of
stale records being kept in cache.

• Uniform interface: REST outlines a consistent resource and endpoint naming:
“The central feature that distinguishes the REST architectural style from other
network-based styles is its emphasis on a uniform interface between components.
By applying the software engineering principle of generality to the component
interface, the overall system architecture is simplified and the visibility of interac-
tions is improved. Implementations are decoupled from the services they provide,
which encourages independent evolvability”[Fie00]. This decoupling of business
logic from the services and data representations offered via the API allows both
parts to evolve independently from each other. The cost of this decoupling is a
decrease in efficiency as the uniform interface, subject to the principle of general-
ity, is less efficitent (in terms of bytes transferred) than a specialized form which
adapts to an application’s need, therefore leading to overfetching of data. “The
REST interface is designed to be efficient for large-grain hypermedia data transfer,
optimizing for the common case of the Web, but resulting in an interface that is
not optimal for other forms of architectural interaction”[Fie00].

• Layered System: In order to address scalability and encapsulation, REST adds
a layered system constraint. As a client, this means that there is only one layer
to communicate with, while deeper layers within the hierarchy are transparent.
“The layered system style allows an architecture to be composed of hierarchical
layers by constraining component behavior such that each component cannot
"see" beyond the immediate layer with which they are interacting.”[Fie00] This
constraint is meant to decrease the complexity for the client, while allowing the
addition of intermediaries (like (reverse-) proxies, gateways, firewalls, caches,
load balancers, routing to legacy components etc.). “By restricting knowledge of
the system to a single layer, we place a bound on the overall system complexity

12

2. Foundations

and promote substrate independence.”[Fie00]

• Code-on-demand: “The final addition to our constraint set for REST comes from
the code-on-demand style.”[Fie00] Code-on-demand means that a server may
send or reference executable code in addition to data.[Ric+13] A very common
example of code on demand is the HTML <script> tag, which is executed by
a browser after downloading the containing HTML document. “REST allows
client functionality to be extended by downloading and executing code in the
form of applets or scripts. This simplifies clients by reducing the number of
features required to be pre-implemented. Allowing features to be downloaded
after deployment improves system extensibility. However, it also reduces visibility,
and thus is only an optional constraint within REST.The notion of an optional
constraint may seem like an oxymoron. However, it does have a purpose in
the architectural design of a system that encompasses multiple organizational
boundaries. It means that the architecture only gains the benefit (and suffers the
disadvantages) of the optional constraints when they are known to be in effect for
some realm of the overall system.”[Fie00]

2.2.2. REST Applied to HTTP

Although the REST architecture style can be applied to may different communication
protocols, it has been used to guide the standardisation of HTTP and URIs. [Fie00]
“[T]he motivation for developing REST was to create an architectural model for how
the Web should work, such that it could serve as the guiding framework for the Web
protocol standards. REST has been applied to describe the desired Web architecture,
help identify existing problems, compare alternative solutions, and ensure that protocol
extensions would not violate the core constraints that make the Web successful.” As
the architecture influenced the standardisation of HTTP, many principles of REST are
part of the standard itself, like Cache Control and Content Negotiation via headers.
However, principles like Code on demand, modeling URLs to match resources and
other constraints are not part of the standard and therefore results in API providers not
adhering to them.

2.2.3. REST APIs in practice

In practice, the term REST has often been used without actually conforming to all the
principles outlined in the original definition. While some requirements were already
discussed within the publication ([Fie00]), some common misconceptions about the
REST architectural style have been clarified later. In the words of the author: “I am
getting frustrated by the number of people calling any HTTP-based interface a REST

13

2. Foundations

Figure 2.2.: Richardson Maturity Model [Fow10]

API” [Fie08]. According to Fieldings, “the [...] rules related to the hypertext constraint
that are most often violated within so-called REST APIs. Please try to adhere to them
or choose some other buzzword for your API”[Fie08].

In order to restore a concrete meaning to the terminology around REST, the Richard-
son Maturity Model (RMM) 15 is often used, although other more nuanced approaches
have been proposed since [Alg10][SS15]. The RMM provides terminology do define
states from HTTP APIs in their progress towards conforming to REST constraints
through 4 levels, see Fig. 2.2.

While any HTTP API conforms to Level 0, the Richardson Maturity Model adds
REST constraint iteratively:

1. Resources: Instead of RMI/RPC-style invocations imitating method calls, the
server breaks down large service endpoints into multiple resources. [Fow10]

2. HTTP Methods: In addition to Level 1 requirements, level 2 introduces a standard
set of verbs (HTTP Methods), so similar situations are handled in a predictable
way, removing unnecessary variation.[Fow10]

3. Hypermedia Controls: Level 3 introduces discoverability, providing a way of
making a protocol more self-documenting. Each response should contain links to
other Endpoints which provide related or additional functionality. This behavior
is commonly associated with the acronym HATEOAS (Hypertext As The Engine
Of Application State)[Fow10]

15https://martinfowler.com/articles/richardsonMaturityModel.html

14

https://martinfowler.com/articles/richardsonMaturityModel.html

2. Foundations

As the focus within this thesis is Web APIs, regardless of adhering to any level of the
maturity model or RESTful principles, the name REST APIs does not fit the subject of
the thesis. While the scope could have been limited to generating OpenAPI specification
documents for REST APIs, allowing more assumptions and an overall more specific
approach, the application in practice would have been very limited. Therefore, in order
to apply our approach more broadly, adherence to the RESTful principles are explicitly
not a requirement.

2.3. JSON(-Schema)

To better understand the documentation requirements of data exchange for Web APIs,
it is necessary to understand common (validated) data exchange itself. In this sec-
tion, we will define conventions used within this thesis in order to allow for better
documentation of the data exchange process via Web API endpoints.

2.3.1. JSON

The JavaScript Object Notation (JSON) [Bra+14; ECM16] is the most common data-
exchange format and media type used in Web APIs. As implied by the name, JSON is
based on data types of the JavaScript programming language. The standard can now be
found as ISO/IEC 21778:2017 16. Due to it’s simplicity and great support in client side
applications, JSON “nowadays plays a key role in web applications”[Pez+16], both in
JavaScript and other languages interacting on the Web. “JSON has gained tremendous
popularity among web developers, and has become the main format for exchanging
information over the web.”[Pez+16]

Using JSON, programmers can describe values (see Fig. 2.3), including objects
(unordered key/value pairs, see Fig. 2.4), arrays (Fig. 2.5), numbers (see Fig. 2.6),
strings (Fig. 2.7), booleans and null. An example can be found in Listing. 2.1.

Listing 2.1: JSON Example

{
"id": 123,
"active": true,
"attributes": [],
"created": 1592148288,
"description": "",
"name": "A simple glass of water",

}

16https://www.iso.org/standard/71616.html

15

https://www.iso.org/standard/71616.html

2. Foundations

Figure 2.3.: JSON values [Cro08]

Figure 2.4.: JSON object [Cro08]

Figure 2.5.: JSON Arrays [Cro08]

Figure 2.6.: JSON numbers [Cro08]

16

2. Foundations

Figure 2.7.: JSON strings [Cro08]

In this thesis, JSON will be the default data exchange format, unless explicitly noted.

2.3.2. JSON Schema

Despite the popularity, JSON does not have a standardized meta-schema or vocabulary
that allows specification of JSON document formats [Pez+16]. Given the popularity
of JSON however, there is increasing demand for public Web APIs to implement an
integrity layer, enabling a declarative way to describe valid inputs for elements of a
HTTP request, like a body for POST requests to a Payment API. For instance, our public
API could filter API requests before internal processing, which may increase security,
allow the integrity layer to be reused and extracted, prevent data integrity issues or
API usability concerns if the server crashes during processing with internal server error
messages. In the worst case, that may lead to sensitive information being disclosed.
To fill the gap between lacking standardization and demand for language agnostic,
reusable JSON declaration logic, JSON Schema17 is a vocabulary that allows developers
to annotate and validate JSON documents. For the JSON example shown in Fig. 2.1, a
schema like the one provided in Fig. 2.2 could be used to specify the shape the JSON
document in a declarative way.

In terms of standardization, “[t]he JSON Schema project intends to shepherd all four
draft series to RFC status. Currently, we are continuing to improve our self-published
Internet-Drafts. The next step will be to get the drafts adopted by an IETF Working
Group. We are actively investigating how to accomplish this.”[Org19]

17https://json-schema.org

17

https://json-schema.org

2. Foundations

The current draft can be found online18, the most recent draft at the time of this
writing is Draft 2019-09.

Listing 2.2: JSON Schema Exmample

{
"$schema": "http://json-schema.org/draft-00/schema#",
"type": "object",
"properties": {
"id": {
"type": "integer"

},
"active": {
"type": "boolean"

},
"attributes": {
"type": "array",
"items": {
"type": "string"

}
},
"created": {
"type": "integer"

},
"description": {
"type": "string"

},
"name": {
"type": "string"

}
},
"required": [
"id"

]
}

2.4. OpenAPI Specification (OAS)

The OpenAPI Specification (formerly know as Swagger, OAS) is a community-driven,
“programming language-agnostic interface description”[Ini+20] for HTTP APIs, which
allows both humans and computers to discover and understand the capabilities of the
service without access to source code, documentation, or through network traffic inspec-
tion[Ini+20]. The relationship is visualized in Fig. 2.8. API descriptions that conform to

18https://json-schema.org/specification.html

18

https://json-schema.org/specification.html

2. Foundations

Figure 2.8.: Describing a programming interface with an API description format [Lau19]

the OpenAPI specification (format) are called OpenAPI specification documents (OAS
documents, sometimes called (OpenAPI) specifications or specs).

As OpenAPI specification documents are used to describe APIs consumed via HTTP,
the format uses HTTP naming conventions for the HTTP messages as introduced in
section 2.1. Additionally, OAS documents contain general information about the API,
the API provider and the servers which are used to service API requests. An OpenAPI
specification document also describes the paths and each of the path’s available meth-
ods, parameters, and responses [Lau19].

To provide generalizability when describing the Path to a request a Web API provides,
OpenAPI divides the full path into 2 parts which are described using path templating: A
list of Servers and Paths19. The query parts of the url are described as a query parameters,
the concrete template instances in the path can be described via path parameter aswell.
Therefore, a request with path https://api.twitter.com/1.1/statuses/show/21023?include_entities=false
should be split into a server (https://api.twitter.com/{base_path}, assigned to
#/servers/0/url) with a base path (1.1 at #/servers/0/variables/base_path), a
path (/statuses/show/{id}) with one path parameter (id) and a query parameter
(include_entities). In order to describe the underlying data model for JSON (and

19https://spec.openapis.org/oas/v3.0.3#path-templating

19

https://spec.openapis.org/oas/v3.0.3#path-templating

2. Foundations

Figure 2.9.: An OAS document describing the search for products goal of the Shopping
API [Lau19]

XML), OpenAPI uses a modified version of the JSON Data Schema defined in draft 00.
20. While there are subtle differences, OpenAPI will adapt a newer draft (Draft 2019-09)
21 which consolidates differences in OAS v3.1, so we will refer to the OpenAPI data
model and JSON schema interchangeably while generating code that is compatible
with both Draft-00 with OpenAPI modifications and Draft 2019-09.

Due to the structured layout, the OpenAPI specification allow for a ecosystem of
tooling. They include, but are not limited to: Client generation in various languages,
Documentation generation, data validation layers and mock servers22.

Because OpenAPI documents can be separated from the (eventual) implementation,
the format is suited to document requirements for Web APIs without actual implemen-
tation and may even be used to power the logic of a mock server that can be used by
clients involved who wish to get a deeper understanding of the proposed data format.
[Bon+19]

20https://tools.ietf.org/html/draft-wright-json-schema-00
21https://json-schema.org/specification-links.html#2019-09-formerly-known-as-draft-8
22https://openapi.tools/

20

https://tools.ietf.org/html/draft-wright-json-schema-00
https://json-schema.org/specification-links.html#2019-09-formerly-known-as-draft-8
https://openapi.tools/

2. Foundations

2.5. High quality API Documentation

As presented in the outline, the overarching objective of this thesis is to improve the
quality of OpenAPI Specifications. In an effort to define the term high quality, Zhi et al.
summarized a list of attributes which defines the term based on usage in the studies
analyzed during their systematic mapping study of traditional APIs [Zhi+15]. In order
to apply this list to Web APIs described using the OpenAPI Specification format, these
attributes were sorted into three categories. Attributes that are the central focus of
the tooling developed as part of this thesis are shown in table 2.1, attributes provided
through the OpenAPI Specification format and the broader ecosystem of OpenAPI tools
are listed in table 2.2, attributes which are not a strong focus of the work presented
throughout the thesis and therefore still constitute responsibilities of the API provider
are shown in 2.3.

21

2. Foundations

Quality
Attribute

Description

Accuracy Accuracy measures describe the accuracy or preciseness of documentation content.
Synonyms include ‘preciseness’. The preciseness of documentation content is gen-
erally believed to have impacts on how easy it is for the exact information to be
conveyed to the practitioners. If a document is written in a way that the phrasing is
vague or the descriptions are too abstract without presenting concrete, exact exam-
ples, then it may create barriers for practitioners to retrieve the information and thus
impacts the documentation quality.

Completeness Completeness measures describe how complete document contents are in terms of
supporting development/maintenance tasks. Software documentation is expected
to contain all the information needed for the systems or modules described, so that
when practitioners read documentation, they can retrieve the information needed for
their tasks. If any necessary piece of information is missing, the documentation is
perceived not being able to serve its purpose and not being useful in the scenario of
need.

Correctness Correctness measures describe whether the information provided in the documen-
tation is correct or is in conflict with factual information. If the document presents
incorrect information, it is likely to mislead practitioners and creates unnecessary
barriers for them to finish the tasks. This attribute is included based on common
sense.

Similarity Similarity measures the similarity level in different documents and whether infor-
mation is duplicated. Some papers use the following notions instead: ‘uniqueness’
and ‘duplication’. Content duplication results in redundancy in the documentation
content and leads to unnecessary mental efforts to read and process them.

Up-to-date-ness Up-to-date-ness measures describe the extent to which the documents are kept
updated during the evolution of software systems. Similar to the description of the
attribute Traceability, technical documentation is expected to evolve together with
software systems. In ideal case, each version of new software release is accompanied
with a corresponding version of technical documents. Documentation contents that
describe the past release of software systems may provide incorrect information, or
miss new information, regarding the new system and thus mislead practitioners.

Table 2.1.: Documentation quality attributes goals provided by tooling (1/3), adapted
from [Zhi+15]

22

2. Foundations

Quality
Attribute

Description

Accessibility Accessibility measures describe the extent to which the content of documentation or
document itself can be accessed or retrieved by the software practitioners. Synonyms
include ‘availability’, ‘information hiding’ and ‘easiness to find’. The attribute impacts
how practitioners actually use the documentation. In our repository, quite a few
papers discuss how this attribute impacts documentation quality, both quantitatively
and qualitatively.

Informational
organization

This attribute describe the extent to which information is organized in documents.
If the documentation is organized in a way that is clear and in a structure that is
natural to practitioners to understand, such documentation is like to be perceived as
in high quality.

Consistency Consistency measures describe the extent to which documentation, including in-
formation presented in documents, document format, etc. are consistent and have
no conflict with each other. Synonyms include ‘uniformity’ and ‘integrity’. If the
documentation contents are presented inconsistently with conflicting elements, it
may confuse practitioners and results in unnecessary mental efforts to resolve those
artifacts during the usage of such documentation.

Format This attribute refers to quality of documents’ format, including writing style, descrip-
tion perspective, use of diagram or examples, spatial arrangement, etc. This attribute
is included because practitioners may prefer certain types of writing styles which are
easier for them to understand and use. For example, the decision of choosing to use
graphical elements in the documentation is empirically investigated to have impacts
on the programming understanding.

Trustworthiness Trustworthiness measures describe the extent to which software practitioners perceive
the documents are trustworthy and reliable. Similar to Readability, such attribute is
subjective and up to the practitioners to evaluate.

Table 2.2.: Documentation quality attributes enabled by the OpenAPI specification
format (2/3), adapted from [Zhi+15]

23

2. Foundations

Quality
Attribute

Description

Author-related This attribute refers to those attributes related to document authors, including traces
of who created the documents, author collaboration, etc. In practice, the authoring
process is important for guarantee document quality.

Readability Readability measures describe how easy documents can be read. Synonyms include
‘clarity’. This is a subjective quality attributes that is up to the practitioners to decide.
Several papers in our repository provide empirical evidence related to this quality
attribute.

Spelling and
grammar

This attribute refers to those attributes related to the grammatical aspects of docu-
ments. If a technical document is presented with a large number of spelling and
grammatical errors, it will impact how practitioners read that document.

Traceability Traceability measures describe the extent to which the document modification is able
to be tracked; relevant information includes when/where/why the modification is
performed and who performed. This attribute deals with the evolution of software
documentation which requires special attention in technical documentation. This
is because documentation needs to be kept up-to-date together with the software
systems or code. The traceability attribute ensures that during the evolution, all the
changes to the documentation should be justified and verifiable.

Other Several other attributes related to documentation quality were mentioned in several
papers, including abstractness, perceived goodness, etc.

Table 2.3.: Documentation quality attributes provided by the developers (3/3), adapted
from [Zhi+15]

2.6. API-first Design

The idea of designing the API for a program first has a almost ten year history and
has been applied with various success. “API-first design means identifying and/or
defining key actors and personas, determining what those actors and personas expect
to be able to do with APIs” [Tho09]. While this definition emphasizes the importance
of identifying all the actors’ expectations, other definitions use a process view to
differentiate API-first Design: “Before you build your website, web, mobile or single
page application you develop an API first” [Lan04].

A visualization of the API vs. Code first approach is shown in Fig. 2.10.
To better understand this shift in philosophy, what enables it, and how it manifests

itself in the developer workflow, we will first look at traditional approaches and contrast
it with the API first philosophy.
The classic code first approach to building APIs starts with identifying a business
opportunity which leads to some form of documentation of the requirements of the
API. After the requirements are identified, developers will implement the API and a
technical writer will produce corresponding API descriptions used to document the

24

2. Foundations

Figure 2.10.: API First vs. Code First

API after it was implemented.
The main concern the API first community frequently cites with regards to the code first
approach is that API descriptions and API usability are treated like a secondary concern.
Regardless of location and format of the API description, it requires an additional step,
which may get overlooked, pushed to the side or hastily put together without proper
care and verification.
If you put the consumer front and center, the API first philosophy argues, you have
to put the API front and center and therefore focus on the API before focusing on the
code that powers the API. The tangible difference usually is that API first frequently
uses a specification language to produce a holistic overview of the API before an actual
implementation is built. “Common practice is to create an API specification as an
[OpenAPI Specification document], and define the details of the endpoints, including
request and response formats. Using the API specification as basis, the actual product
can be implemented afterwards” [Bui18].
Using mocking tools, this approach - unlike classic specification first approaches like the
unmodified waterfall model - incorporates feedback cycles where potential customers
can interact with a mock API that returns data conforming to the API description’s
schema. Also, the internals of the application implementing the API do not have to be
specified up front. Existing research in this space “propose[s] a process for collaborative
API proposal management using collaboration engineering”. Bondel et al. “develop[ed]

25

2. Foundations

and evaluate[ed] a prototype supporting this collaborative API proposal management
process, which is designed using a design science approach and is evaluated in an
action research case study. The evaluation results show, that the presented collaborative
API proposal management prototype was perceived as useful and meets usability
requirements” [Bon+19].

By using this approach, the API description created before the API is implemented, is
often subsequently used as the source of truth for the API implementation, but also the
documentation. One of the less discussed aspects of API first strategies are responding
to inevitable change. Not only during the implementation of the initial specification,
but also afterwards, each change has to be first specified, then implemented in order to
use the API Specification Document as the source for documentation at a later point.

Another issue resulting from API first approaches are mismatches that occur because
the modeling in the language of the implementation does not match the specification.
API first advocates therefore promote automatic code generation to create the appli-
cation shell that includes all the endpoints, parameters and models already defined
in the specification. This approach however is only applicable to generate the first
implementation, in response to change: “The main limitation of [generating code from
a model] is the lack of round-trip engineering functionality. Once the model is specified,
and the code is generated, the model and the code are not in synchronization anymore.
When, for example, one of the consumed APIs changes (e.g., when a new API version
was released) the developer has two options: either adjust the code manually or specify
a completely new model. In the latter case, though, code that was added manually
needs to be written all over again.”[HSM18]

2.7. Living Documentation

The term living documentation first became popular in the book Specification by Example
by Gojko Adzic [Adz11] and was further developed by Martraire in the book Living
Documentation [Mar19]. Albeit the concept is commonly used to address internal
documentation needs in agile development teams, many of the terminology and ideas
can be used to inform external documentation strategies for Web APIs.

Living Documentation involves a set of four principles:

• Reliable: Living documentation is accurate and up-to-date with the software
being delivered, at any point in time. Most of the knowledge is already present in
the artifacts of the project, it just needs to be exploited, augmented, and curated
for documentation purposes. [Mar19]

26

2. Foundations

• Low effort: Living documentation minimizes the amount of manual work to
be done on documentation, while ensuring reliability. By relying on standards,
compatibility with existing tools can be preserved and the amount of work
required will be decreased. [Mar19]

• Collaborative: Living documentation promotes conversations and knowledge
sharing between everyone involved [Mar19].

• Insightful: Living documentation offers opportunities for feedback and encour-
ages deeper thinking. It helps reflect on the ongoing work and helps in making
better decisions [Mar19].

Applied to the business needs for Web API providers, the reliability aspect is covered
by a broader set of attributes of high quality API Documentation as discussed in section
2.5. The goal of this thesis is to provide this documentation from knowledge present in
source code therefore lowering the manual effort involved. As described in section 2.10,
collaboration is important not only internally, but also externally, therefore collaboration
with business partners is desirable [Bon+19]. In order to provide insightful living Web
API Documentation, an API description must be able to be shared among all the parties
involved, ideally as soon as the HTTP modeling (Endpoints, Resources, Methods etc.)
is done. Despite the need for our work to address a broader set of goals, some of the
concepts proposed in pursuit of living documentation are shared. The first of these
concepts are knowledge extraction and knowledge augmentation. Knowledge Extraction is
itself based on the observation that “most of the knowledge is already in the system
itself”[Mar19]. Therefore, documentation should often be the process of sharing this
knowledge in a uniform fashion by transforming the format of the knowledge, therefore
making the knowledge accessible, explicit (curation) and less fragmented (consolidated).
Knowledge Augmentation is a concept based on the observation that “most programming

Figure 2.11.: Principles of living documentation [Mar19]

27

2. Foundations

languages have no predefined way to declare the key decisions, to record the rationale,
and to explain the choice made against the considered alternatives. Programming
languages can never tell everything” [Mar19]. Implementation statements can be
understood as the record of the result of discussions and trade-offs, the (current) final
product, which lacks the context of the path towards that product. Programmers
already use comments to provide this context, with close proximity to the relevant
code statements, so that the augmented implementation can paint a bigger picture.
Therefore, this additional, augmented knowledge would be beneficial in any automatic
documentation approach as well. Unlike extracted knowledge however, augmented
knowledge is usually not subjected to the same quality insurance implementation
code is. Whenever possible, additional checks should therefore test this augmented
knowledge whenever possible.

Another relevant categorization is the distinction between stable, or evergreen and
unstable documentation. “Evergreen content is a kind of content that remains of interest
for a long period of time, without change, for a particular audience. Evergreen content
does not change, and yet it remains useful, relevant, and accurate. Obviously, not every
kind of document contains evergreen content.”[Mar19] Evergreen content focuses on
goals and intentions, therefore describing business goals instead of technical details.
Higher-level technical knowledge can also be expressed in evergreen content. In Web
APIs, evergreen, or stable knowledge can often be found in longer (hyper-)text docu-
ments containing high-level guides or tutorials, presented alongside an API Reference.
The API Reference itself should be considered unstable, which implies costly to main-
tain, documentation.

The final important discussion by Martraire revolves around the preference towards
a single source of truth. Whenever knowledge is duplicated or separated, i.e. between
implementation and API description, these knowledge sources must be reconciled,
imposing an additional burden on the API developer. A reconciliation strategy for
manually created API descriptions to insure correctness must therefore incorporate
contract testing between the API description and the API implementation.

28

3. Related Work

In this chapter, an overview of the existing studies of automatic or tooling supported
generation of technical documentation more broadly will be presented. Approaches
to generating documentation automatically from source code will be examined in
chapter 5, but there are several other approaches to generating (parts of) software
documentation from other sources.

3.1. Generating Documentation from API usage or examples

Besides source code, the most commonly studied source for documentation is API
usage data [NAP18].
Nasehi et al. [NM10] suggested this approach as a general concept for APIs. In their
evaluation, subjects had difficulty finding relevant examples by browsing or searching
the unit test code repository did not always result in helpful examples. For Web APIs,
Sohan et al. developed SpyREST [SAM15a][SAM15b][SAM17], a tool to generate REST
API documentation from on API calls. SpyREST hereby adds a proxy between the client
and the server which inspects traffic and infers an API specification from the traffic.
The architecture is displayed in Fig. 3.1. In order to add additional metadata, SpyREST
extracts meta information like descriptions from headers that can be supplied: “The
HTTP headers x-spy-rest-version, x-spy-rest-resource, and x-spy-rest-action can be used to
override autodetection of these respective fields. Additionally, API developers can use
x-spy-rest-desc header to attach human readable descriptions for each API example so
that the web interface can tag the examples against meaningful descriptions.”[SAM15b]
A SaaS version of SpyREST is available online1.

Compared to other approaches, SpyREST is language agnostic and initially requires
no workflow changes for the developer. This setup could be used to ensure all integra-
tion tests that hit the server, regardless of the Test DSL or Framework are observed and
used. As SpyRest treats the Web API like a black box, the approach also has downsides.
One of these issues is indeterministic model reduction. Given one or more examples,
inferring a minimal valid schema for inputs is not deterministic nor can be proven

1http://www.spyrest.com/

29

http://www.spyrest.com/

3. Related Work

Figure 3.1.: SpyREST Design, from [SAM15b]

correct. In code of typed languages, this type inference indeterminism can usually be
avoided by developer provided type information.

One of the limitations of this approach is the ability to reduce the inputs and outputs
to a minimal mapping. The quality attribute that describes this behavior is accuracy,
which will be detailed in Section 2.5. Like any other approach that tries to achieve
specification through examples, “despite occasional claims to the contrary, a set of
examples is rarely a complete specification, for the same reason that testing cannot
prove a program correct. There are significant advantages to a formal specification:
precision, completeness, and machine processability to name a few. In particular,
preconditions and non-determinism are difficult to express with test cases. Nonetheless,
it is important to recognize the role that examples can play and, in fact, have played
for centuries in mathematics”[HS03]. Similar findings were described by Suter et. al
in their publication on inferring Web API Descriptions from usage data using trained
binary classifiers [SW15]: “Reflecting the results of our evaluation, we find inferring
web API descriptions from examples to be a hard problem. While our methods improve
upon the, to our knowledge, only existing tool with the same goal, results are still
impeded by incomplete or noisy input data caused partly by lax API implementations,
which forgive faulty requests” [SW15].

While the major upside of documentation from exemplary usage data are a generally
low cost associated with this approach and a good generalizability across languages
and frameworks, accuracy/precision and correctness are 2 major problems for these
approaches.

30

3. Related Work

Figure 3.2.: The proposed approach [CZ14]

3.2. UML Representations from OpenAPI Specifications

As the OpenAPI document is just structured text that can be used to render docu-
mentation, Ed-douibi et al. proposed a tool (OpenAPItoUML) to visualize OpenAPI
specification document using the unified modeling language (UML)[EIC18]. Their
approach was later refined in through WAPIml, “an OpenAPI round-trip tool that
leverages model-driven techniques to create, visualize, manage, and generate OpenAPI
definitions. WAPIml embeds an OpenAPI metamodel but also an OpenAPI UML pro-
file to enable working with Web APIs in any UML-compatible modeling tool.”[Ed-+19]
WAPIml currently supports OpenAPI 2.0 and works as an Eclipse plugin. We hope
future work can integrate the UML models into a Web based OpenAPI 3 documentation
generator, which is commonly used to display OpenAPI documents.

3.3. Collecting crowdsourced documentation

StackOverflow is an online developer community used to asked development related
questions and receive answers. StackOverflow questions may be tagged, signalling
that the question pertains to a certain topic. Chen et. al therefore proposed enhancing
provider authored API documentation with frequently asked questions (FAQs) into
API documents. The publication presents a prototype of their proposed tool called
Crowdsourced Online FAQs (COFAQ), whose approach is visualized in Fig. 3.2).

A broader approach to collect relevant knowledge to enhance API documentation by
Treude et. al “present[s] an approach to automatically augment API documentation
with “insight sentences” from Stack Overflow — sentences that are related to a particular
API type and that provide insight not contained in the API documentation of that type”
[TR16].

31

3. Related Work

The contribution includes SISE, a novel machine learning based approach that uses
as features the sentences themselves, their formatting, their question, their answer,
and their authors as well as part-of-speech tags and the similarity of a sentence to the
corresponding API documentation.

With SISE, the authors were able to achieve a precision of 0.64 and a coverage of 0.7
on the development set of over 1500 sentences. Furthermore, “[i]n a comparative study
with eight software developers, we found that SISE resulted in the highest number
of sentences that were considered to add useful information not found in the API
documentation. These results indicate that taking into account the meta data available
on Stack Overflow as well as part-of-speech tags can significantly improve unsupervised
extraction approaches when applied to Stack Overflow data.”[TR16]

32

4. Standardized API Reference
Documentation using OpenAPI

4.1. Elements of Web API Documentation in Literature

While API documentation has been extensively studied in literature, studies of Web API
Documentation are comparatively very limited. As the OpenAPI format can be used to
describe a broad set of HTTP based Web APIs, including but not limited to REST APIs,
and does not impose strict constraints on the described API or the way in which it is
described (i.e. conventions around reuse or accuracy requirements), guidance from the
specification is limited.

In order to apply components of good Documentation, we therefore based our initial
list on the taxonomy presented by Cummaudo et. al [CVG19], see Fig. 4.1.

Our general approach to adopt the original publication for Web APIs consists of two
reductive steps and a final transformative step (detailed in section 4.2), as visualized in
Fig. 4.2.

Step 1: Removing sub-dimensions irrelevant in the context of Web APIs

For the first step, we removed elements that do not apply to API reference documenta-
tion from the proposed dimensions.

• A8: Debugging: For Web APIs, debugging by the API consumers is usually not
intended.

• A10: System requirements: The overarching standard (HTTP) sets the require-
ments. Regardless of the preferred (potentially language specific) HTTP client or
library, the API provider should not impose any additional requirements.

• A11: Installation Instructions: One of the main factors attributed to the success of
Web APIs is that they do not rely on complex installations in order to get started
as an API consumer. While many Web APIs require some form of authentication,
providing this information fits best within a quick-start or an authentication guide,
that can be presented in evergreen content.

33

4. Standardized API Reference Documentation using OpenAPI

Figure 4.1.: An overview of the 5 dimensions and categories (sub-dimensions) within
proposed taxonomy [CVG19]

34

4. Standardized API Reference Documentation using OpenAPI

Figure 4.2.: Adapting the initial taxonomy to Web APIs

Step 2: Removing or limiting sub-dimensions that aren’t part of API reference doc-
umentation, or evergreen content

In this step, we analyze the remaining sub-dimensions. While documentation of these
sub-dimensions is necessary as part of a broader documentation strategy, providing
this knowledge may not be suitable for automation or presentation within the API
reference documentation.

• A1: Quick-start guide to rapidly get started using the API in a specific language:
This getting started guide usually constitutes the entry point (or the first page after
a landing page) for potential API consumers. For Web APIs, it usually contains
information on how to obtain API keys used for authentication in subsequent
API Requests. Due to the high variance in procedures involved and high amount
of assumed free flow text, but also a higher degree of stability, the best place for a
getting started guide would be in form of a supplementary resource alongside the
API Reference. Therefore, this element will not be a requirement for the automatic
generation of an OpenAPI description.

• A3: Explanations of the API’s high-level architecture to better understand intent
and context: For Web APIs, this section is usually called an introduction guide,
which contains free form text following the getting started guide. As laid out

35

4. Standardized API Reference Documentation using OpenAPI

in the motivation and the foundations 2, the context of this thesis are Web APIs
which revolve around the modification of resources. Documenting the relation
of resources, with free form descriptions and correct properties is a vital aspect
of API Reference Documentation and will be considered a relevant requirement.
Unlike traditional APIs, the architecture of the API is usually confidential and
should be opaque to the API customer. This implies that any automatic approach
should treat the inner workings of the API as a black box and only document the
surface exposed to the customer.

• A6: Step-by-Step tutorials, with screenshots to understand how to build a non-
trivial piece of functionality with multiple components of the API: Web APIs
are called via HTTP Request, so screenshots do not play an important role. For
Web APIs, a similar notion as step-by-step tutorials exist, usually referred to as
scenarios, a composition of usually sequentially executed HTTP requests. While
detailed scenarios are best provided in a separate document (similar to the high
level architecture), with links from the steps to the API Reference of the method
used, simple links could also be shown if it’s clear given the context which request
is related and should most likely called next. We will therefore consider simple
links, but move more complex scenarios that require persistent state over several
requests to a different approach. In order to allow for operations to be linked, each
Operation should define a unique OperationId, see Fig. 4.4. As outlined in section
2.2, possible links should be included in the response payload of REST APIs
themselves (HATEOAS requirement of REST APIs). Any other Web API, which
does not adhere to the REST constraints may instead choose to only document
static references via OpenAPI Links to other Operations.

• C3: Generalized documentation for non-technical audiences: We consider the
target audience of API Reference to be generally technically versed and therefore
consider non-technical documentation to be provided alongside the API Reference
Documentation.

• D1: A list of FAQs: Not considered due to the assumed low likelihood of finding
this kind of knowledge in source code (even if present). As presented in chapter
3, there are existing approaches to generate this knowledge using crowd-sourced
approaches, however, we think this kind of documentation may best be suited
for additional resources alongside the API reference documentation as part of a
broader API documentation strategy, similar to the Getting Started Guide or long
form tutorials.

• D2: Troubleshooting suggestions: Whenever an API consumer encounters un-
expected behavior, an API should “help users recognize, diagnose, and recover

36

4. Standardized API Reference Documentation using OpenAPI

from errors” [MS16]. While the intention of good documentation should be to
prevent these mistakes in advance, good guidance on how to proceed in case of
an issue could reduce frustration and increase user retention. As the original
publication refers to error handling both in a more general sense (D2) and specific
terms (A12), we consider general error handling in dealing with Web APIs or the
specific Web API to be outside the scope of this thesis and focus on specific error
handling as outlined in A12, which is usually associated with a specific endpoint.
On a more general level, we would recommend adopting a standardized error
format interface, i.e. the format proposed in RFC 7808 1, which aims to improve
the usability of the API itself. Enforcing this style is also not a documentation
concern, but defining an error message interface that can be reused and therefore
referenced throughout the documentation would even improve the API reference
documentation usability in an indirect way.

• D3: Diagrammatically representing API components using visual architectural
representations: For approaches to generating UML diagrams from OpenAPI
specifications that can be presented alongside textual information in the API
Introduction, we refer to work done by Ed-douibi et al. in [EIC18] and [Ed-+19]
as detailed in Chapter 3 and mentioned in Chapter 3.

• D5: A printed/printable resource for assistance: There are existing command-line
tools in the OpenAPI ecosystem that generate offline API Reference Documenta-
tion given an OAS document, providing a downloadable OAS document should
be up to the API Developers.

• E2: Context-specific discussion forum: Omitted as an API Reference Documenta-
tion should not incorporate a discussion forum.

From the remaining 31 sub-dimensions proposed in the taxonomy, we removed 9
sub-dimensions according to our rationale as to which sub-dimensions can or should
not be provided through API Reference documentation. For these 9 dimensions, we
provided general guidance as to which alternative approaches may be taken to provide
other forms of, or strategies to address or mitigate potential lack of documentation.
In order to allow for a successful linking between Operations or from a Tutorial to an
Operation, only the generation of a unique OperationId and that can be referenced using
the OpenAPI Link Objects, as shown in Fig 4.9, remain as a requirement.

1https://tools.ietf.org/html/rfc7807

37

https://tools.ietf.org/html/rfc7807

4. Standardized API Reference Documentation using OpenAPI

4.2. Specifying Web API Reference Documentation using
OpenAPI

In this transformative step, the remaining 22 sub-dimensions will be translated into
the corresponding elements of the OpenAPI Standard. When necessary, appropriate
extensions using the Specification Extension mechanism 2 will be proposed. In order to
reference locations within the OAS, JavaScript Object Notation (JSON) Pointer notation,
as proposed in RFC 6901 [BZN13], is used.

• A2: Low-level reference manual documenting all API components to review
fine-grade detail: This sub-dimension describes the core of every API Reference
Documentation. In Web APIs, accessible via HTTP, this involves description of all
paths the API exposes to the API customers. As outlined in 2.1, the structure of
the HTTP messages to be documented is well defined and based on the HTTP
Message Specification. Translating the Elements of a HTTP Request/Response to
OpenAPI descriptions is presented in Chapter 2, Section 2.4.

• A4: Source code implementation and code comments (where applicable) to
understand the API author’s mindset: Alongside every Path, Parameter, Response
and Body Property, OpenAPI supports a description field to allow for expression of
free flow text in markdown notation as specified by the CommonMark Markdown
Standard 0.27 3.

• A5: Code snippets (with comments) of no more than 30 LoC to understand a basic
component functionality within the API: Beyond the descriptions, the OpenAPI
Specification adds an example(s) field similar to the description fields, see Fig.
4.7.

• A7: Downloadable source code of production-ready applications that use the
API to understand implementation in a large-scale solution: Due to the language
agnostic nature of Web APIs, the code invoked to call the API may vary. Instead
of transforming example parameters to several client examples, standardizing the
output format allows to hook into the OpenAPI ecosystem and generate entire
SDKs. For quick feedback cycles, the tool used to generate the rendered API
Reference Documentation from the API description should transform the example
into a usable example the consumer can try out (i.e. a cURL example or a "Try it
out" feature).

2https://spec.openapis.org/oas/v3.0.3#specification-extensions
3https://spec.commonmark.org/0.27/

38

https://spec.openapis.org/oas/v3.0.3#specification-extensions
https://spec.commonmark.org/0.27/

4. Standardized API Reference Documentation using OpenAPI

• A9: An exhaustive list of all major components that exist within the API: In
order to encourage reuse and promote a better understanding of the resources the
API operates on, instead of defining these components "in-line" and duplicating
descriptions, examples and the data model, the OpenAPI Specification defines
a mechanism called Schema Objects. A Schema Object allows the definition of
input and output data types. These types can be objects, but also primitives and
arrays. If a component of the API is considered "major", every part of the API that
uses that schema can instead reference a Schema Object through a $ref Pointer
according to the JSON Schema Pointer specification, see section 2.3.

• A12: Error definitions that describe how to address a specific problem: According
to the HTTP Standard, the Status should give the initial indication whether a
call was successful. While the Error message, most commonly provided in the
body of the Error Response is determined by the implementation, the OpenAPI
Specification allows each documented response to have a description that should
provide information on how to address issues. A good approach to API refer-
ence documentation should therefore ensure complete coverage of all responses
and provide all the fields shown in Fig. 4.9 for both successful and erroneous
responses.

• B1-7: A description of the purpose or overview of the API as a low barrier to
entry, types of applications the API can develop, types of users who should
use the API, types of users who will use the product the API creates, success
stories and comparisons to other APIs and limitations on what the API can and
cannot provide: The Design Rationale dimension will not be considered as part of
automatic API Reference Documentation for reasons similar to the ones given in
A3. Generating high level rationale from source code while ensuring correctness
goes beyond the scope of the thesis and may be suited best for additional resources
beyond the API Reference Documentation. However, we would recommend a
brief summary of the rationale behind the API at the beginning of the API
Reference Documentation as part of the Information Object, see the description
property of Fig. 4.5.

• C1/2: Description of the relationship between API concepts and domain con-
cepts or terminology, with synonyms, if applicable: For a given Operation, this
information should be provided within the Operation’s description. See Fig 4.4.
As the description is free form text, we will not apply validation of this aug-
mented knowledge. Additional knowledge beyond simple relationships, which
are not expected to change frequently (stable documentation) may be provided in
documentation alongside the API Reference.

39

4. Standardized API Reference Documentation using OpenAPI

• D4: Contact information for technical support: In order to contact the API
provider, it’s useful to provide contact information to the consumer of the API.
This information may be provided within the OpenAPI specification’s Information
Object. A diagram of this object can be found in Fig. 4.5.

• D6: Licensing information: As an API consumer, it’s critical to know what
constitutes appropriate and inappropriate usage of the API. While the legal details
should not be displayed in full detail within the API Reference Documentation of
the API, links to the relevant location should be included. Within the OpenAPI
spec, links and the name of the license and the terms of service can be included
in the Information Object as shown in Fig. 4.5.

• E3: Quick-links to other relevant documentation frequently viewed by developers:
This kind of knowledge may be included using knowledge augmentation at the
Operation level, see the externalDocs property of Fig. 4.4.

Requirements E1, E4, E5 and E6, while important, are not a requirement of the
API description document. Instead, the tooling that transforms the API description
into a rendered API reference documentation should be evaluated according to these
sub-dimensions.

Although the source publication by Cummaudo et. al provides a good indication
about the general availability through a percentage indicator of occurrence, it does not
list popularity or importance of these elements as perceived by the API consumers
reading the documentation. Therefore, we compared our transfomed of the Elements of
Web API reference documentation to a survey of the most important "things" developers
look for in API documentation to validate the relevance of the requirements elicited
as published in the "State of API 2019" survey conducted by SmartBear [Sma19]. The
results are shown in Fig. 4.3.

As our elements - which will now be considered to be requirements - cover docu-
mentation of examples, status codes and error codes, authentication, error message
format, http request format and parameters, the top 6 of the most important "things"
developers look for in API documentation are appropriately covered. Methods and
code samples are also included. For changelogs and SDKs, while not included in our
approach, OpenAPI tooling provides possible generation approaches. If resources
refers to REST resources, resources would be included as well, however, since the term
may also refer to additional documentation resources, we can’t confirm they would be
covered by an approach according to our requirements.

40

4. Standardized API Reference Documentation using OpenAPI

Figure 4.3.: API Documentation priorities for API consumers [Sma19]

41

4. Standardized API Reference Documentation using OpenAPI
Fi

gu
re

4.
4.

:O
pe

nA
PI

Fi
el

ds
ac

co
rd

in
g

to
re

qu
ir

em
en

ts
O

pe
nA

PI
3

co
m

po
ne

nt
s

sc
he

m
as

{n
am

e}

Sc
he

m
a

O
bj

ec
t

se
cu

ri
ty

{n
am

e}

pa
th

/{
pa

th
}

de
sc

ri
pt

io
n

ge
t

pu
t

po
st

op
er

at
io

nI
d

ex
te

rn
al

D
oc

s

ur
l

pa
ra

m
et

er
s

Pa
ra

m
et

er
O

bj
ec

t

ta
gs

re
sp

on
se

s

R
es

po
ns

e
O

bj
ec

t

de
sc

ri
pt

io
n

re
qu

es
tB

od
y

de
sc

ri
pt

io
n

co
nt

en
t

ap
pl

ic
at

io
n/

js
on

sc
he

m
a

Sc
he

m
a

O
bj

ec
t

ex
am

pl
es

{n
am

e}

Ex
am

pl
e

O
bj

ec
t

re
qu

ir
ed

su
m

m
ar

y

de
le

te
op

ti
on

s
he

ad
pa

tc
h

in
fo

In
fo

rm
at

io
n

O
bj

ec
t

se
rv

er
s

Se
rv

er
O

bj
ec

t[
]

42

4. Standardized API Reference Documentation using OpenAPI

Figure 4.5.: Proposed Coverage of the Information Object

info

title description contact

name url email

version license

url name

termsOfService

Figure 4.6.: Proposed Coverage of the Server Object

Server Object

url description version

Figure 4.7.: Proposed Coverage of the Example Object

Example Object

{name}

summary description value

Figure 4.8.: Proposed Coverage of the Parameter Object

Parameter Object

{name}

name schema

Schema Object

in description required deprecated examples

Example Object[]

43

4. Standardized API Reference Documentation using OpenAPI

Figure 4.9.: Proposed Coverage of the Response Object

Response Object

{name}

content

application/json

examples

Example Object[]

schema

Schema Object

description required links

name

operationId

44

5. Approaches to generating API Reference
Documentation

Generating Documentation from source code is not a new concept. While techniques
vary, a systematic mapping study conducted by Nybom et al. compared sources for
documentation generation and identified the approach targeting implementation code
to be the most commonly used general approach (see Fig. 5.1). [NAP18] Although the
study gives a general idea about the popularity, but it does not draw distinctions based
on the techniques used to extract documentation from code.

Additionally, efforts to document Web APIs from source code using these techniques
have, to the best of our knowledge, not been the subject of scientific literature.

In this section, we will present the general approaches used to generate documenta-
tion and compare their strengths and weaknesses with regards to extracting OpenAPI
specification documents from code powering the logic of Web APIs. Compared to the
approaches studied by Nybom et al., generating Web API documentation from source
code adds additional complexity as the source knowledge has to be transformed into a
programming language agnostic format (the OpenAPI Schema).

In order to evaluate the viability of any approach, we choose TypeScript code as the
source, due to the popularity of the language, which could increase the likelihood of
adoption an general relevance of the project, but also because TypeScript’s type system
targets JavaScript, which increases the compatibility between JavaScript objects and
JSON(-Schema).

In order to successfully implement any approach, the following metrics are of special
interest:

• Operation generation: Each Operation describes the format of the HTTP Message
Specification. This includes path, parameters (excluding the schema), responses
(excluding the schema). This corresponds to the OperationItem and it’s parent
items up to the Paths object, as defined in the OpenAPI Specification.

• JSON Schema generation: As every parameter and every response body needs to
be specified using the OpenAPI version of the JSON Schema Draft, the automatic
inference of this schema is a special metric within our evaluation. This includes
generation of major, reusable components (C1)

45

5. Approaches to generating API Reference Documentation

Figure 5.1.: Approaches to documentation generation for traditional APIs [NAP18]

• Usability aid generation: Descriptions, Links and Examples, Tags, or a short
summary are all elements of an API description intended to contribute towards a
better understanding of the API description and therefore improved usability. As
a vital part of documentation, each approach should be able to include this type
of information.

• Metadata generation: Elements such as Contact Information (D4) and Licensing
Information (D6) or Tag descriptions used to group concepts (C1) or a brief
description of the purpose of the API as a whole (B1), which are not directly
related to Operations are considered here.

5.1. Sources of documentation in programs

Pieces of documentary knowledge can be found throughout programs, in various forms
and different levels of hierarchy (Fig. 5.2).

Broadly speaking, when looking at the hierarchy of a program, we can identify at
least 3 levels where documentation can be found. At the highest level, documentation
about the API as a whole can be found at the application level. Typical examples of
this kind of information are configuration files like a package.json file in the root
folder of the application. Below the application level, many frameworks and languages
support modules to group related functionality. A module for a MVC-style framework
may include references to the Controllers or shared authentication logic. If available,
this module may be used to tag (and therefore group) all endpoints defined within
the module with a common tag. Within modules, depending on the programming
style, we will find classes and methods (object oriented programming) or functions
(functional programming), or a mix, to handle HTTP requests. The set of all API request
handlers are referred to as the API surface. At this level, we can often identify detailed
descriptions of one Operation, including a description of the operation, parameters,
and possibly the shape of the response expressed through type annotations. At the
lowest level, the statement level, the actual implementation can be used to derive

46

5. Approaches to generating API Reference Documentation

Figure 5.2.: Hierachy of an API Implementation

information about the knowledge about the API. In traditional APIs, the statements
in combination with some degree of context is often used for source code summary,
which provides a summary or a description of the method. In this section, we intend to
provide information about benefits and issues associated with each source as it relates
to documentation quality.

5.1.1. (Structured) Comments

Comments seem like a natural fit for developer provided documentation, as it is a very
basic form of documentation almost all developers will be familiar with. Furthermore,
most development environments provide some level of integration for documentation
blocks (doc blocks, doc comments) above methods that will i.e. be rendered in a tooltip
when hovering method references. A key property of docomentation comments (doc
comments, doc blocks) is their largely unstructured nature. While this property of doc
comments makes them very flexible, and enable custom domain specific languages
(DSLs) in comments, like Markdown or OpenAPI DSLs (see Fig.5.1, this flexibility
comes at a price. In the cases we studied, these comments were largely unchecked and
therefore provide no guarantees that they do or do not match the implementation. As a
result, comments are a good fit to apply knowledge augmentation, but cannot be used
for knowledge extraction and should therefore be verified whenever possible.

47

5. Approaches to generating API Reference Documentation

Listing 5.1: A DSL for OpenAPI in doc blocks using an @api doc tag

/**
* @api [post] /users
* produces:
* - "application/json"
* requestBody:
* required: true
* content:
* "application/json":
* schema:
* $ref: "#/components/schemas/UserLoginDto"
* responses:
* "200":
* content:
* "application/json":
* schema:
* $ref: "#/components/schemas/User"
* "400":
* content:
* "application/json":
* schema:
* $ref: "#/components/schemas/ErrorMessage"
* ...omitted
**/

One of the most prominent abstractions on top of pure comments is a format first
introduced in Java called JavaDoc. This syntax used in Doc blocks adds some structure
via the use of Doc-Tags. A similar markup language can also be used to annotate
JavaScript and is called JSDoc. As JavaDoc was intended to provide more structured
hints for documentation generation approaches, using the JavaScript equivalent seems
like a good fit for applications of the knowledge augmentation pattern.

5.1.2. Annotations

Another language level feature some generation approaches rely on are Annotations.
In the context of the Java language, these Annotations offer some benefits compared
to (JavaDoc) Comments and are not removed at runtime. This allows for metadata set
via annotations to be read and modified at runtime using reflection 5.2.1. The most
popular library using this feature for OpenAPI Annotations is Swagger-Code 1. One
of the benefits in term of correctness is some limited syntax validation, which can
ensure the supported OpenAPI specification fields are used with the correct structure,

0https://jsdoc.app/
1https://github.com/swagger-api/swagger-core

48

https://jsdoc.app/
https://github.com/swagger-api/swagger-core

5. Approaches to generating API Reference Documentation

therefore preventing invalid OpenAPI specifications. The downside of Annotations,
compared to structured comments, is the lack of editor integration. As annotations
themselves are purely descriptive, they may be used to augment the documentation but
must be subject to additional checking whenever possible. However, the combination
of annotations with knowledge about how the metadata will be used to modify the
program behavior, relying on the knowledge through knowledge extraction is possible.
For example, given we know a web framework that recognizes an @Post("/example")
annotation and registers a request handler that invokes the annotated method for POST
requests on path /example, we can use the annotation to extract knowledge about the
program. We will call these annotations "functional annotations", indicating that the
metadata provided has significant impact on the annotated code.

In the case of Swagger-Core, annotations are used in combination with reflection
at Runtime (meaning these annotations are functional), for example to reflect the
properties and types on class definitions. This part of Swagger-Core will be thoroughly
examined in the Reflection Section and for the scope of this section, only the Annotations
features will be considered. Through coupling with the Web Framework, the swagger-
jaxrs2 reader engine, which is part of the swagger-core package infers elements of the
specification like Path or the Method from the annotations that the Web framework uses
to generate the routing. This means, both of these parts are correctly documented by
default. Parameters will not be documented by default, a special @Parameter annotation
is required. In order to ensure all Parameters are correctly documented, special care is
required. An example of a Parameter annotation can be seen in Listing 5.2.

49

5. Approaches to generating API Reference Documentation

Listing 5.2: Documenting Path, Method and Parameter using Swagger-Code, adapted from 2

1 @Path("/subscription/{subscriptionId}")
2 @GET
3 public Response getSubscription(
4 @Parameter(
5 in = "path",
6 name = "subscriptionId",
7 required = true,
8 description = "parameter description",
9 allowEmptyValue = true,

10 allowReserved = true,
11 schema = @Schema(
12 type = "string",
13 format = "uuid",
14 description = "the generated UUID"
15)
16) String subscriptionId) {
17 // ...
18 }

5.1.3. Statements

At the statement level, the actual implementation statements can be used to derive
information about the knowledge about the API. For traditional APIs, this approach
called source code summarization has been shown to be a promising, but inconsistent
approach to generate summaries or descriptions of the implementation. “Unfortunately,
there is no agreed upon understanding of what makes up a "good summary."”[MM16].
More advanced source code summarization approaches, that include contextual infor-
mation [MM14], seem to improve the performance, however, as the inner workings of
an API should mostly be opaque, this approach may disclose too much information
about the code to be summarized. In order to provide clear boundaries, this thesis will
not use statements in method implementations.

5.1.4. Type Systems

In computer science, a type is a concise, formal description of the behavior of a program
fragment. [Rém15] Types are useful for quite different reasons: They first serve as
machine-checked documentation. More importantly, they provide a safety guarantee.
[Rém15] [End+14] The combination of both reasons make them an interesting research
topic for correct software documentation. The safety guarantees, especially within the

2https://github.com/swagger-api/swagger-core/wiki/Swagger-2.X---Annotations#parameter

50

https://github.com/swagger-api/swagger-core/wiki/Swagger-2.X---Annotations#parameter

5. Approaches to generating API Reference Documentation

boundaries of the system (the API), can aid in making sure variables are assigned and
returned correctly. However, one of the main challenges is enforcing type safety at
the boundaries of a statically typed system at runtime. More generally, this could be
database operations, reading files from disk, or, in Web APIs, accepting HTTP requests.

TypeScript is a popular superset of the JavaScript programming language, that
extends the JavaScript language with a rich gradual type system, that can be used to
statically analyze programs.

“Despite its success, JavaScript remains a poor language for developing and main-
taining large applications” [BAT14]. In order to address scalability concerns of larger
JavaScript applications, TypeScript “aims to provide lightweight assistance to program-
mers, the module system and the type system are flexible and easy to use.”[BAT14] In
fact, a substantial amount of TypeScript’s popularity can be attributed to two major
factors: The ease of adoption and support for gradual adoption and the strong focus
on developer productivity and editor integration, resulting in TypeScript being the 2nd
most beloved programming language of 2020 according to the 2020 Developer Survey
conducted by StackOverflow [Ove20].

A list of type constructs TypeScript offers can be found in table 5.1.
One of the major reasons TypeScript was presumed to yield good results is the focus

on type annotations for JavaScript which is the origin for JSON and therefore provides
good modeling capabilities for JSON objects. However, TypeScript is not a sound type
system. For type systems, soundness means “that all of type-checked programs are
correct (in the other words, all of the incorrect program can’t be type checked)”[Chi14].
If a sound type system "says" that a variable has a particular type, then it is ensured
that type correctly describes the value at runtime. As TypeScript, like many languages,
allows type casting or type expectations that may not hold up at runtime and does not
do type validation at runtime, the runtime type of a particular value may be incorrectly
described. While sound type systems would therefore lead to better results in terms
of correctness, it was determined the price of adoption may be significantly decreased
due to a severe impact presumed with regards to developer experience. Therefore, in
order to address the lack of soundness, implementation code should be present to reject
unintended assignments at runtime, especially since the schema of a HTTP request is
determined by the client sending the request and can not be assumed to match the type
specification as expected by the API developers.

5.1.5. Configuration

Similar to annotations, it is possible to extract documentation from configuration or
project files, if assumptions about the format or can the way the program uses this
configuration can be made. As an example for NodeJS projects, the author and license

51

5. Approaches to generating API Reference Documentation
N

am
e

D
es

cr
ip

ti
on

Ex
am

pl
e

V
al

ue
Ex

am
pl

e
Ty

pe
D

efi
ni

ti
on

Bo
ol

ea
n

Lo
gi

ca
lO

pe
ra

to
rs

tr
ue

,f
al

se
bo

ol
ea

n
N

um
be

r
Ja

va
Sc

ri
pt

flo
at

in
g

po
in

t
nu

m
be

r
3.

14
15

,0
xf

00
d

nu
m

be
r

St
ri

ng
Te

xt
ua

ld
at

a
"H

el
lo

",
’W

or
ld

’
st

ri
ng

A
rr

ay
*

A
rr

ay
C

ol
le

ct
io

ns
[1

,2
,3

]
nu

m
be

r[
],

A
rr

ay
<n

um
be

r>
Tu

pl
e

Fi
xe

d
le

ng
th

,fi
xe

d
ty

pe
or

de
re

d
A

rr
ay

s
[1

,t
ru

e]
[n

um
be

r,
bo

ol
ea

n]
En

um
Fi

xe
d

En
um

er
at

io
ns

C
ol

or
.R

ED
en

um
C

ol
or

{R
ED

,B
LU

E}
Vo

id
ab

se
nc

e
of

a
ty

pe
-

vo
id

U
nd

efi
ne

d
un

as
si

gn
ed

va
lu

e
un

de
fin

ed
un

de
fin

ed
U

nk
no

w
n

Ty
pe

w
it

ho
ut

in
fo

rm
at

io
n

1,
""

,f
al

se
un

kn
ow

n
A

ny
un

kn
ow

n
ty

pe
w

it
ho

ut
ty

pe
ch

ec
ki

ng
1,

tr
ue

,"
"

an
y

N
ul

l
ex

pl
ic

it
un

av
ai

la
bi

lit
y

of
da

ta
nu

ll
nu

ll
N

ev
er

ty
pe

of
va

lu
es

th
at

ne
ve

r
oc

cu
r

-
ne

ve
r

O
bj

ec
t

Ja
va

Sc
ri

pt
ob

je
ct

ty
pe

{}
ob

je
ct

O
bj

ec
t

Li
te

ra
l

K
ey

/v
al

ue
m

ap
pi

ng
{a

:t
ru

e}
{a

:b
oo

le
an

}
In

te
rf

ac
es

*
R

eu
sa

bl
e,

na
m

ed
ob

je
ct

lit
er

al
s

{a
:t

ru
e}

in
te

rf
ac

e
A

{a
:b

oo
le

an
}

C
la

ss
es

*
O

bj
ec

t
Li

te
ra

ls
fr

om
Ja

va
Sc

ri
pt

C
la

ss
es

{a
:t

ru
e}

cl
as

s
A

{
a:

bo
ol

ea
n

}
Li

te
ra

lT
yp

es
Si

ng
le

fix
ed

va
lu

e
’fi

xe
d’

’fi
xe

d’
Bi

gi
nt

Sa
fe

re
pr

es
en

ta
ti

on
fo

r
bi

g
nu

m
be

rs
90

07
19

92
54

74
09

91
n

bi
gi

nt
Sy

m
bo

l
an

on
ym

ou
s,

un
iq

ue
va

lu
e

Sy
m

bo
l(

"u
ni

qu
e"

)
sy

m
bo

l
In

te
rs

ec
ti

on
in

te
rs

ec
ti

ng
co

m
bi

na
ti

on
ty

pe
{a

:t
ru

e,
b:

""
}

{a
:b

oo
le

an
}

&
{b

:s
tr

in
g}

U
ni

on
co

m
bi

na
ti

on
ty

pe
tr

ue
bo

ol
ea

n
|

st
ri

ng
ty

pe
of

O
pe

ra
to

r
In

fe
r

ty
pe

fr
om

da
ta

-
ty

pe
of

"s
tr

in
g"

M
ap

pe
d

Ty
pe

*
ty

pe
m

ap
pi

ng
fo

r
ob

je
ct

ty
pe

s
St

ri
ng

if
yV

al
ue

s
<a

:b
oo

le
an

>
=

{a
:"

"}

ty
pe

St
ri

ng
if

yV
al

ue
s<

T>
=

{
[P

in
ke

yo
f

T]
:s

tr
in

g}

C
on

di
ti

on
al

Ty
pe

*
no

n-
un

if
or

m
ty

pe
m

ap
pi

ng
s

tr
ue

st
ri

ng
ex

te
nd

s
nu

m
be

r
?

st
ri

ng
:b

oo
le

an
Ty

pe
A

lia
s

re
na

m
es

ty
pe

de
fin

it
io

n
"a

w
or

d"
ty

pe
W

or
d

=
st

ri
ng

*
G

en
er

ic
Ty

pe
s

Ta
bl

e
5.

1.
:T

yp
eS

cr
ip

t
ty

pe
s

52

5. Approaches to generating API Reference Documentation

information can be read from a package.json file, where this information is usually
preserved in a structured form. Similarly, many frameworks accept some form of
configuration which provides reliable information about the program behavior. All of
this static information should be used for knowledge extraction.

5.2. Extracting Documentation

After identifying the most common sources of (augmented) knowledge, it’s important
to compare popular approaches on extracting this knowledge in order to acquire these
relevant inputs that can be transformed into an API description.

5.2.1. Extracting Documentation using Reflection

Several popular OpenAPI Projects in various languages take advantage of a program’s
ability to inspect itself at runtime, called reflection. In practice, this constitutes the
overall most common OpenAPI documentation technique. Reflection capabilities are
especially common in object oriented programming languages that heavily rely on
class based program organization. In these languages, it is therefore very common to
wrap the response handlers as class (instance) methods and data transfer objects (DTO)
in classes with properties. By relying on metadata from annotations, reflection can
be used to implement aspect oriented programming paradigms to enable developers
to define complex http request/response interactions using familiar programming
constructs in combination with via the use of annotations. Regardless of language,
comments are usually removed at runtime. Subsequently, (structured) comments can
not be extracted via reflection. In order to address this issue, frameworks use non-
functional annotations to provide descriptions summaries etc. and accept the lack
of editor support as outlined in 5.1.2. Another limitation of reflection capabilityes
is rooted in type erasure. Type erasure is an optimization strategy that removes
type information before execution. Depending on the language, this optimization
may occur during compilation/transpilation or during load time, but in both cases
it limits the ability to access type information required to accurately describe type
schemas. As TypeScript targets JavaScript runtimes like V83, all TypeScript type
annotations are removed. To combat type erasure, TypeScript provides a compiler
flag called "emitDecoratorMetadata" 4 5. If enabled, during transpilation, TypeScript

3https://v8.dev/
4https://github.com/Microsoft/TypeScript/issues/2577
5https://github.com/Microsoft/TypeScript/issues/2577

53

https://v8.dev/
https://github.com/Microsoft/TypeScript/issues/2577
https://github.com/Microsoft/TypeScript/issues/2577

5. Approaches to generating API Reference Documentation

adds functions to the transpiled code which use the Reflect API6 and add metadata for
decorated properties. The relevant metadata is then persisted in the metadata object
of the property available under the "design:type" key, which includes a basic type
information. Possible values are references to the String, Boolean, Number, Object,
Array, or to user defined class constructor functions. Any additional information,
which may already be present in the type annotations must still be provided via
Decorator arguments, leading to a high volume of duplicated modeling effort which
may introduce mismatches.

An example of the transpiled code of a class (Fig. 5.3 using this setting is shown in
Figure 5.4.

While type erasure is less impactful on the ability to reconstruct expressive schemas
in other typed languages, most statically typed languages rely on this optimization, es-
pecially when working with Generics. For example, in Java, Generics are only checked
at compile-time for type-correctness. The generic type information is then removed, i.e.
List<String> will be converted to type List [Doc19] [Ben18].

Although modeling through the use of classes in a different language may look
convenient, it presents its own set of challenges. As classes are very dynamic, static
analysis often can not be used to correctly analyze the serialized schematic representa-
tion of a class instance, requiring manual annotation to help the documentation tool.
TypeScript interfaces therefore provide a more powerful way to express the schema of
a JavaScript object which itself makes it more trivial to correctly produce a schematic
representation.

6https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Reflect

54

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Reflect
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Reflect

5. Approaches to generating API Reference Documentation

Listing 5.3: Decorated class before transpilation

1 import { ApiProperty } from "@nestjs/swagger";
2 import { AnEnum } from "../enum";
3 import { AnotherClass } from "./anotherclass.dto";
4
5 export class CreateCatDto {
6 @ApiProperty()
7 readonly name!: string | null;
8
9 @ApiProperty()

10 readonly age!: number;
11
12 @ApiProperty()
13 readonly breed!: string;
14
15 @ApiProperty()
16 readonly tags?: string[];
17
18 @ApiProperty()
19 createdAt!: Date;
20
21 @ApiProperty()
22 readonly options?: Record<string, unknown>[];
23
24 @ApiProperty()
25 readonly enum!: AnEnum;
26
27 @ApiProperty()
28 readonly tag!: AnotherClass;
29
30 nested!: {
31 first: string;
32 second: number;
33 };
34 }

55

5. Approaches to generating API Reference Documentation

Listing 5.4: Decorated class property after transpilation with metadata

1 "use strict";
2 var __decorate = // Omitted, calls Reflect.decorate() or Object.defineProperty

();
3 var __metadata = // Omitted, wraps Reflect.metadata(k, v);
4 // Omitted
5 const enum_1 = require("../enum");
6 const anotherclass_dto_1 = require("./anotherclass.dto");
7 class CreateCatDto {
8 }
9 __decorate([

10 swagger_1.ApiProperty(),
11 __metadata("design:type", Object)
12], CreateCatDto.prototype, "name", void 0);
13 __decorate([
14 swagger_1.ApiProperty(),
15 __metadata("design:type", Number)
16], CreateCatDto.prototype, "age", void 0);
17 __decorate([
18 swagger_1.ApiProperty(),
19 __metadata("design:type", String)
20], CreateCatDto.prototype, "breed", void 0);
21 __decorate([
22 swagger_1.ApiProperty(),
23 __metadata("design:type", Array)
24], CreateCatDto.prototype, "tags", void 0);
25 __decorate([
26 swagger_1.ApiProperty(),
27 __metadata("design:type", Date)
28], CreateCatDto.prototype, "createdAt", void 0);
29 __decorate([
30 swagger_1.ApiProperty(),
31 __metadata("design:type", Array)
32], CreateCatDto.prototype, "options", void 0);
33 __decorate([
34 swagger_1.ApiProperty(),
35 __metadata("design:type", String)
36], CreateCatDto.prototype, "enum", void 0);
37 __decorate([
38 swagger_1.ApiProperty(),
39 __metadata("design:type", anotherclass_dto_1.AnotherClass)
40], CreateCatDto.prototype, "tag", void 0);
41 exports.CreateCatDto = CreateCatDto;

56

5. Approaches to generating API Reference Documentation

5.2.2. Extracting Documentation using Abstract Syntax Tree Parsing

As laid out in the previous section, reflection capabilities vary between Languages, but
in almost all cases, some amount of information is lost at runtime. In order to avoid this
issue, a method that works closed to the source code itself is required. While working
on the source code files directly is possible, intuition suggests there may be a better
representation: The Abstract Syntax Tree (AST).
An AST is a language specific representation of the syntax of a programming language
in a hierarchical tree-like data-structure. The tree represents all of the constructs in
the language and their subsequent rules. While not every character may be preserved,
an AST is required to contain all structural information. In typed languages, this
data-structure is also used as the input to type checkers, therefore, all type annotations
are present in their entirety. ASTs are specific to programming languages, but research
for universal syntax trees is being conducted. [Tec18]

In TypeScript, the compiler API can be used to generate the AST based by passing
one or more entry files to the program. Different methods of the API then provide the
ability to traverse the AST. Visualization tools like an AST viewer are often useful to
gain a better understanding (see footnote 7).

One property specific to this approach is that the modeling of the type schema
has to be mostly static. This is a benefit in the sense that it is easier to generate
the OpenAPI Specification without starting the application, however the downside of
this approach is that it is harder to change formulate a highly dynamic model that
depends on the runtime environment. As an example we could imagine a scenario,
where a bidding API exposes an endpoint at which bids are submitted. In this case,
only bids higher than the last highest price can be submitted. A runtime approach
could return a specification which includes the minimum price that can currently be
submitted, whereas a build time approach can not express this Schema requirement
without an additional runtime component, which updates the previously generated
specification in a similar fashion. It should however be noted that TypeScript only
evaluates decorators once, so additional steps have to be taken in order to allow for
this behavior (for example if the documentation allows the developer to provide a
function that recalculates the minimum price every time), but enabling this behavior
less complex than static, AST approaches.

7https://bit.ly/3iUOl3c

57

https://bit.ly/3iUOl3c

5. Approaches to generating API Reference Documentation

5.2.3. Extracting Documentation from a Type Checker

As the Abstract Syntax Tree only contains a representation of the structure of the
program, additional APIs, often provided by a compiler or other language tooling are
used to reduce the amount of complex work for example editor integrations have to
perform in order to provide rich editor experiences like providing type information or
autocomplete functionality. In TypeScript, a wrapper around the Type Checker API
called TSServer implements a server to provide type information. Given a Node in
the Abstract Syntax tree, it’s possible to work with the type checker API directly to
gather type information using the getTypeAtLocation() method. The interface of the
returned type information object (TypeScript v3.9.3) is displayed in Fig. 5.5, possible
type flags can be found in the Appendix A.2.

Listing 5.5: The Type interface

1 export interface Type {
2 flags: TypeFlags;
3 symbol: Symbol;
4 aliasSymbol?: Symbol;
5 aliasTypeArguments?: readonly Type[];
6 // more properties here
7
8 getFlags(): TypeFlags;
9 getSymbol(): Symbol | undefined;

10 getProperties(): Symbol[];
11 getProperty(propertyName: string): Symbol | undefined;
12 isUnion(): this is UnionType;
13 isIntersection(): this is IntersectionType;
14 isUnionOrIntersection(): this is UnionOrIntersectionType;
15 isLiteral(): this is LiteralType;
16 isStringLiteral(): this is StringLiteralType;
17 isNumberLiteral(): this is NumberLiteralType;
18 isTypeParameter(): this is TypeParameter;
19 isClassOrInterface(): this is InterfaceType;
20 isClass(): this is InterfaceType;
21 // some methods removed
22 }

5.3. Comparison

The following tables 5.2 and 5.3 give an abbreviated, high level overview of our previous
findings. A checkmark (3) indicates overall good viability, a dash (–) indicates limited
viability, a cross (7) signals limited or no viability.

58

5. Approaches to generating API Reference Documentation

Target Type System Annotations Structured Comments Configuration

JSON Schema 3 – 7 7

OpenAPI Schema – 3 7 7

Usability aid 7 – 3 3

Metadata 7 – 7 3

Table 5.2.: Comparison of documentation sources according to their viability for API
description elements

Target Type System Annotations Structured Comments Configuration
AST Parsing – 3 3 3

Type checker API 7 7 7 7

Reflection – 3 7 3

Table 5.3.: Viability of extraction techniques with regards to source format

To summarize, there is no single approach that is able to satisfy all requirements on
it’s own. Although popular approaches across multiple languages usually leverage a
combination of Annotations and Reflection, this approach is often cumbersome, as it
requires a lot of additional work and repetition, duplicating knowledge between type
system and annotations for the documentation tool. Also, a deep understanding of
reflection capabilities is required in order to recognize when additional annotations
may of may not be necessary."In-Editor" developer experience benefits associated with
JSDoc / JavaDoc are unavailable. Interestingly, we noticed that the languages with best
support for Reflection had the most limited support for describing JSON.

In the following chapter we will therefore investigate a different (hybrid) approach,
that combines AST Parsing and working with the type checker API as a compile time
technique instead of Reflection.

59

6. Building and integrating an OAS
Generation Framework

While we would’ve ideally built the entire framework on our own, due to limited time
and potential re-implementation of more advanced existing, publicly available work,
our approach builds on top of the tsoa 1 framework. The existing implementation
provides an approach that already does limited work on AST parsing.

We added and merged additional work that improves the OAS generation and
incorporates information from the type checker, as outlined in 5, to resolve OpenAPI
definitions for TypeScript types where an AST based approach would be too complex
or inflexible.
The goal of these additions was to provide a broader coverage of all the requirements
as presented in Chapter 4.

6.1. Building the OAS

The overall goal of the tsoa project is to infer a correct OpenAPI specification based on
functional framework annotations and TypeScript types. To allow for a better under-
standing of the architecture and API of a tsoa project, we refer to the Getting Started
Guide2, which was developed as part of this thesis. More details will be presented in
Section 6.5. At a high level, the tsoa cli command takes a TypeScript program as the in-
put, traverses the AST and it’s nodes, and returns both the validation and routing "glue
code" between the controller layer and the underlying web framework (i.e. express3

or koa4), and an OpenAPI Specification document. Internally, tsoa leverages the Type-
Script Compiler API to construct the AST in order to collect ClassDeclaration AST
Nodes, filtering ClassDeclarations with a @Route(<basePath>) Decorator, therefore
identifying all Entrypoints into the application’s controller layer.

1https://github.com/lukeautry/tsoa
2https://tsoa-community.github.io/docs/getting-started.html
3https://expressjs.com/
4https://koajs.com/

60

https://tsoa-community.github.io/docs/getting-started.html
https://expressjs.com/
https://koajs.com/

6. Building and integrating an OAS Generation Framework

6.1.1. Operation resolution

Each of the controller class AST Nodes is subsequently passed into a method analysis,
which checks the ClassDeclaration for child nodes of kind MethodDeclaration. All
the methods declared withing the class are filtered, only retaining relevant method
definitions (public or no modifier, not explicity ignored, with a HTTP Method decorator
(@Get(<path>), @Post(<path>) etc.).

In combination with the basePath, the path will be used to construct an Ope-
nAPI Path Item Object. Each of the HTTP Method decorators will then be used
to fill the corresponding fixed fields and prepare an OpenAPI Operation Object.
The Operation Object object is composed of several properties, displayed in the
lower half of Fig. 4.4, below the link node. In addition to descriptive proper-
ties like tags (set in tsoa using the @Tags(...string[]) decorator), description
(parsed from the JSDoc of the MethodDeclaration), summary (parsed from the JSDoc
@summary tag), and operationId (defaults to the method name, may be overridden by a
@OperationId(name: string) decorator, the Operation Object contains 5 functional
properties. If an operation requires Authentication/Authorization, the corresponding
security field will be set by parsing the @Security(name: string) annotation at the
class or method level. As these security definitions are reusable and applied for several
Operations, according to requirement A9, this definition should also be reused and
therefore only referenced (using JSON Pointers) in the Operation Object. In order to
fill the remaining 3 non-descriptive fields (parameters, responses and requestBody),
tsoa internally uses a TypeResolver to transform the TypeScript type definitions into
JSON Schema definitions.

6.1.2. Schema resolution

While there are other type construct TypeScript uses, only a broader subset of these
types are relevant to determine the Schema of the return type of the Operations
defined via Controllers. Returning instances of function types or types used to model
JavaScript’s this are not useful HTTP Responses, therefore types for specification of
those values are not be resolved and will instead result in a compilation error. For
NodeJS data types like Dates, Buffers and Streams, which are class instances that have
a custom serialization process, but can be transformed into HTTP Responses, special
transformations are required. A list of special interfaces, as an amendment to table 5.1
presented in section 5.1.4, can be found in table 6.1.

61

6. Building and integrating an OAS Generation Framework

Name Description Example Value Type Definition
Date Date(time) class new Date() Date

Buffer Buffer clase new Buffer() Buffer
ReadableStream* Readable stream class new ReadableStream() Readable

Promise*
Asynchronous

operation result
Promise.resolve(5) Promise<number>

* Generic Type

Table 6.1.: TypeScript Controller return types

After defining the input types, we can now formulate a grammar for the output
domain, a JSON Schema derivation with OpenAPI extensions, reduced to a minimal
subset which can be used to map the input type domain. The grammar for this
OpenAPI schema (tables 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8) is based on the formal Grammar
for JSON Schema as presented by Pezoa et. al [Pez+16].

JSDoc := { (defs,)? JSch }
defs := { "components": { "schemas": { kSch (, kSch)*}}}
kSch := kword: { JSch }
JSch := (res (, res)*)

res :=
type | strRes | numRes | arrRes | objRes | multRes | refSch
| description | example | nullable | default | format

type := "type" : typename
typename := "string" | "integer" | "number" | "boolean" | "null" | "array" | "object"

description := "description": string
example := "example": Jval
nullable := "nullable": bool
default := "default": Jval
format := "format": string

Table 6.2.: Base Schema

62

6. Building and integrating an OAS Generation Framework

strRes := minLen | maxLen | pattern
minLen := "minLength": n
maxLen := "maxLength": n
pattern := "pattern": "regExp"

Table 6.3.: String Schema

numRes := min | max | multiple
min := "minimum": r (,exMin)?

exMin := "exclusiveMinimum": bool
max := "maximum": r (,exMax)?

exMax := "exclusiveMaximum": bool
multiple := "multipleOf": r (r >= 0)

Table 6.4.: Numeric Schema

objRes := prop | addprop | req | minprop | maxprop
prop := "properties": { kSch (, kSch)*}
kSch := kword: { JSch }

addprop := "additionalProperties": (bool | JSch)
req := "required": [kword (, kword)*]

minprop := "minProperties": n
maxprop := "maxProperties": n

Table 6.5.: Object Schema

arrRes := items | additems | minitems | maxitems | unique
items := (sameitems | varitems)

sameitems := "items": { JSch }
varitems := "items": [{ JSch }(,{ JSch })*]
additems := "additionalItems": (bool | { JSch })
minitems := "minItems": n
maxitems := "maxItems": n

unique := "uniqueItems": bool

Table 6.6.: Array Schema

63

6. Building and integrating an OAS Generation Framework

multRes := allOf | anyOf | enum
anyOf := "anyOf": [{ JSch } (, { JSch }) *]
allOf := "allOf": [{ JSch } (, { JSch }) *]
enum := "enum": [Jval (, Jval)*]

Table 6.7.: Meta and Enum Schema

refSch := "$ref": "uriRef"
uriRef := (address)? (# / JPointer)?

JPointer := (/ path)
path := (unescaped | escaped)

escaped := ~0 | ~1

Table 6.8.: Referenced Schema

The target (OpenAPI) schema includes type mappings, which can not expressed
through TypeScript. As an example, a TypeScript string can not be used to define a
pattern. Therefore, tsoa supports the ability to fall back to annotations in these cases
(which will be validated on incoming Requests via the integrity layer) using JSDoc
annotations.

interface Password {
/**
* @minLength 8
* @maxLength 20
* @pattern ((?=.*\d)|(?=.*\W+))(?![.\n])(?=.*[A-Z])(?=.*[a-z]).*$
*/
password: string;

}

Using these annotations, we can allow more fine-grained modeling while enforcing
parameter integrity at runtime. However, as of the writing of this thesis, response
integrity for these annotations is not enforced. A list of annotations can be found in the
documentation online 5.

6.2. Contributions

As we based the work done within this thesis on an existing project, some of the Type-
Script type to JSON Schema transformations were already present, so our contributions
included: Type Aliases, Conditional Types, Mapped Types, as well as the Unknown

5https://tsoa-community.github.io/docs/annotations.html

64

https://tsoa-community.github.io/docs/annotations.html

6. Building and integrating an OAS Generation Framework

Top Type, which we will describe in more detail. A full list of contributions to the tsoa
codebase can be found online6.

Reusable Schema naming

One of the requirements elicited in Chapter 4 is A9: An exhaustive list of all major
components that exist within the API. This requirement intends to promote a better
understanding of the Resources the API operates on. OpenAPI allows these reusable
schemas to be defined as reusable component schemas which can be referenced via JSON
Pointer. This approach is similar to type references TypeScript supports to name types:

“Classes, interfaces, enums, and type aliases are named types that are introduced
through class declarations [...], interface declarations [...], enum declarations [..], and
type alias declarations [...]. Classes, interfaces, and type aliases may have type pa-
rameters and are then called generic types. Conversely, named types without type
parameters are called non-generic types.”[Mic16]

In order to allow for type alias and proper generic interface support, we initially
needed to change the resolution of type aliases as a referenceable type with a consistent,
OpenAPI compatible naming scheme (matching the RegEx ^[a-zA-Z0-9\.\- _]+$).

The existing naming scheme was not suitable for any reasonably complex TypeScript
types with Type Arguments.

For example,

let a: MyModel<T | U>

would be transformed to an OpenAPI component named MyModelobject and therefore
clash with a

let a: MyModel<T | U | V>

definition.
Multiple type arguments were not supported either.
Therefore, a new naming scheme was proposed. The new naming scheme applies

OpenAPI compatible escapes for TypeScript reference names while preventing distinct
references to share a common name (reference clashes). A pseudo-implementation
would look like this:

6https://github.com/lukeautry/tsoa/issues?q=label%3Aba+is%3Aclosed

65

https://github.com/lukeautry/tsoa/issues?q=label%3Aba+is%3Aclosed

6. Building and integrating an OAS Generation Framework

function getRefTypeName(name: string): string {
return name
.replace(/<|>/g, ’_’) // Replace | with _
.replace(/\s+/g, ’’) // Trim whitespace
.replace(/,/g, ’.’)
.replace(/\’([^’]*)\’/g, ’$1’) // Strip ’ around string literals
.replace(/\"([^"]*)\"/g, ’$1’) // Strip " around string literals
.replace(/&/g, ’-and-’)
.replace(/\|/g, ’-or-’)
.replace(/\[\]/g, ’-Array’)
.replace(/{|}/g, ’_’)
.replace(/([a-z]+):([a-z]+)/gi, ’$1-$2’)
// Replace ’propertyName: type’ with ’propertyName-type’
.replace(/;/g, ’--’)
.replace(/([a-z]+)\[([a-z]+)\]/gi, ’$1-at-$2’);
// Replace member access: ’MyModel["prop"]’ => ’MyModel-at-prop’

}

With a 1:1 mapping of a unique TypeScript Reference Type name to a unique OpenAPI
Schema Object name, we introduced a naming algorithm that transforms reference
names for type aliases to an intermediate representation withing tsoa that is compatible
with existing reference types like interfaces.

Type Aliases

A type alias serves as an alias for the type specified in the type alias declaration. Unlike
an interface declaration, which always introduces a named object type, a type alias
declaration can introduce a name for any kind of type, including primitive, union,
conditional, mapped and intersection types. [Mic16]

A type alias may have type parameters that serve as placeholders for actual types to
be provided when the type alias is referenced via a type reference. A type alias with
type parameters is called a generic type alias. The type parameters of a generic type
alias declaration are in scope and may be referenced in the aliased Type. [Mic16]

Type aliases are used via type references. A type reference is composed of the name
of the type alias with a list of comma separated type arguments matching the type
parameters of the type alias declaration. Type references to generic type aliases produce
instantiations of the aliased type with the given type arguments. Writing a reference to
a non-generic type alias has exactly the same effect as writing the aliased type itself,
and writing a reference to a generic type alias has exactly the same effect as writing the
resulting instantiation of the aliased type [Mic16].

66

6. Building and integrating an OAS Generation Framework

type StringOrNumber = string | number;
type Text = string | { text: string };
type NameLookup = Dictionary<string, Person>;
type ObjectStatics = typeof Object;
type Callback<T> = (data: T) => void;
type Pair<T> = [T, T];
type Coordinates = Pair<number>;
type Tree<T> = T | { left: Tree<T>, right: Tree<T> };

As tsoa provides additional JSON Schema annotations, our approach allows for
attaching these annotations above the type alias declaration. A common application of
annotation-enhanced type alias translation to OpenAPI schema is visualized in Fig. 6.1.

Figure 6.1.: Declaration and translation of an annotation enhanced type alias

As the usage of type aliases suggests a certain amount of reusability within the
program, they are considered a reusable component (A9). However, unlike regular
references, the schema of a generic type alias reference depends on the type arguments.
Due to limitations of the schema underlying OpenAPI 3, no mechanism to provide
arguments to a schema is available. This means in order to represent the schema of a
generic type alias reference, a new version of the generic schema has to be rendered.
As the previous subsection introduced the naming scheme for this kind of schema
reference, this subsection will provide the concepts used to implement the translation
process between a generic type alias reference to a correct schema definition.

Whenever tsoa’s type resolver encounters a type node of kind TypeReference, a new

67

6. Building and integrating an OAS Generation Framework

Figure 6.2.: Context creation for generic type alias resolution

resolution context is created. During processing of the type alias reference, which
contains all the type arguments, the resolution algorithm jumps to the type alias
declaration and collects all the type parameter declarations of the type alias declaration
based on the type parameter declaration name. If the declaration defines defaults, these
defaults are added to the context. Now, each value of the type arguments is added
to the context, overriding the default if available. After the context is created (see Fig.
6.2), the declaration can be resolved, replacing each occurrence of a type parameter
with the type argument (see Fig. 6.3). The circular reference detection used to escape
infinite recursion is not displayed. As generic type aliases may be nested, this context
is created until the resolution is complete, so a nested alias resolution can access the
parent context if the parameter is not applied in the child context.

As this contextualized resolution and generic naming can also be used for generic in-
terface references, the interface resolution was adapted to use the same implementation
as well.

68

6. Building and integrating an OAS Generation Framework

Figure 6.3.: Context utilization for generic type alias resolution

Conditional Types

One of the types most recently added to TypeScript (in version 2.8) are conditional
types, which “add the ability to express non-uniform type mappings”7. Related to the
if/else statements, “a conditional type selects one of two possible types based on a
condition expressed as a type relationship test”8. As the TypeScript Specification 9 does
not mention conditional types at the point of writing, we will use the relevant parts of
the specification of conditional types which refers to value types as presented in the
announcement post of TypeScript 2.8.

The shape of a Conditional type C can be denoted as T extends U ? V : W, where
T extends U is called a type relationship test, which checks if T can be assigned to U. A
simplified explanation of the Conditional type C would then be: Given type instances
T, U, V, W, C can be resolved to V if T extends U, meaning t ∈ U∀t ∈ T (T can be

7https://www.staging-typescript.org/docs/handbook/release-notes/typescript-2-8.html#
conditional-types

8https://www.staging-typescript.org/docs/handbook/release-notes/typescript-2-8.html#
conditional-types

9https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md

69

https://www.staging-typescript.org/docs/handbook/release-notes/typescript-2-8.html#conditional-types
https://www.staging-typescript.org/docs/handbook/release-notes/typescript-2-8.html#conditional-types
https://www.staging-typescript.org/docs/handbook/release-notes/typescript-2-8.html#conditional-types
https://www.staging-typescript.org/docs/handbook/release-notes/typescript-2-8.html#conditional-types
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md

6. Building and integrating an OAS Generation Framework

assigned to U), W otherwise.

f (T, U, V, W) =

{
V : T ⊆ U

W : T 6⊆ U
(6.1)

Conditional Types can be partially applied, using type aliases. A type alias

type C<T> = T extends string ? ’true’ : ’false’;

therefore is a partial application of f , where U = string, V = ”string”, W = ”other”,
therefore C<T> = f (T, string, ”string”, ”other”). In practice however, TypeScript’s imple-
mentation deviates from our previous definition. First, the extends keyword does not
work exactly like ⊆. Instead, if the checked type is a naked (without being wrapped
in another type, i. e., an array, a tuple, a function, a promise or any other generic
type) type parameter, TypeScript distributes over union types during instantiation.
The conditional type is then also called a distributive conditional type. This means a
conditional type instantiation such as

type C<T> = T extends string ? ’true’ : ’false’;

would lead to C<string | boolean> being distributed over the conditional type,
meaning C<string | boolean> = ’true’ | ’false’ as string⊆ T = string | boolean,
string⊆ U = string =⇒ ′true′ ∈ C<string | boolean> and boolean⊆ T = string|boolean,
boolean 6⊆ U = string =⇒ ′ f alse′ ∈ C<string | boolean>.

The naked type parameter pre-condition for distribution of conditional types means
e.g.

type C<T> = T extends Promise<string> ? ’true’ : ’false’;

evaluates C<Promise<string|number>> to "false" as (string | number[]) is not
naked, therefore will not be distributed and TypeScript asserting that Promise<string|number>
6⊆ Promise<string>.

Similarly, the distribution seems to be currently (version 3.9.5) limited to explicitly
user defined type unions, as

type C<T> = T extends 1 ? 2 : 3;

evaluates to C<number> = 3, where 3 is a numeric literal type, although 1 ⊂ number =⇒
2 ∈ C<number>.

This union distribution is the concept that enables some of powerful predefined
TypeScript Utility types:

/**
* Exclude from T those types that are assignable to U
*/
type Exclude<T, U> = T extends U ? never : T;

70

6. Building and integrating an OAS Generation Framework

/**
* Extract from T those types that are assignable to U
*/
type Extract<T, U> = T extends U ? T : never;

While it may have been tempting to implement parsing the Conditional Node in
context based on the AST nodes, the additional definitions and current limitations
make it considerably more complex to parse Conditional Types. It would incorporate
re-implementing the type resolution as presented in the Changelog, including type
relationship tests and union distribution. Additionally, TypeScript’s implementation
may be subject to change (e.g. addressing some og the current limitations) in the future
and therefore the parsing may have to be adapted. Instead, an approach that works
with TypeScript’s type checker was deemed a better fit given the complexity of the
problem. Once tsoa detects a type reference node, which instantiates a conditional type,
the TypeScript compiler API is used to retrieve an instance of a Compiler Type. The
interface of the result this API provides is listed in Fig. 5.5.

Once the Type is acquired, the provided methods on the type instance are used to
narrow down the corresponding schema. If a Symbol is present on the type instance, the
Type’s symbol can be used to "jump" to the declaration node in the AST and proceed
from there. In other cases, the type instance methods can be used to to transform the
Type instance into a virtual TypeNode (virtual TypeNodes imitate the format of an AST
Node, but have no real position) so the logic otherwise used to resolve real Nodes in
the AST can be applied.

Mapped Types

Mapped types are type constructs to create new object types from existing object types
and a type mapping expression. The new type hereby transforms each property from
the the existing type in the same way, according to the type mapping expression. For
Web APIs, the probably most common use case is the Partial type alias, provided by
TypeScript, which is used to create a new version of an object type where all properties
are optional. The Partial type can often be found as the body type for PATCH, PUT or
POST requests.

/**
* Make all properties in T optional
*/
type Partial<T> = {

[P in keyof T]?: T[P];
};

71

6. Building and integrating an OAS Generation Framework

In order to resolve these more complex type constructs, similar to Conditional Types,
support for mapped types passes some of the work on to the Type Checker API. In
order to retain all required information, the implementation was modified to capture
the the referencing AST type reference node, including type arguments, if the mapped
type is used via reference to a type alias declaration wrapping the mapped type. This
allows the mapped type resolution, which operates on the mapped type declaration to
ask the Type Checker for all the properties on the new type via a method call.

The unknown type

Similar to the any type, the unknown type does not impose any limitations on the values
that can be assigned to a variable of that type.

"TypeScript 3.0 introduces a new top type unknown. unknown is the type-safe counter-
part of any. Anything is assignable to unknown, but unknown isn’t assignable to anything
but itself and any without a type assertion or a control flow based narrowing. Likewise,
no operations are permitted on an unknown without first asserting or narrowing to a
more specific type. "10

The JSON Schema equivalent of the unknown type is an empty schema. During
validation, inputs of type unknown are not validated.

The respective Pull Requests are linked in footnotes 11 12 13 .

Type-Checked Alternative Responses

Before the addition of this PR, controller methods had one return type, used for the
success response type and schema. While the framework provided a mechanism to
describe alternative response types, it was required to throw an Error, catch that error
and transform the error into a JSON response matching annotated shape. This was not
type-safe and indeed error-prone because TypeScript does not perform any checks on
thrown Errors.

With the addition of this PR, it’s now possible to return these additional responses
on a type-checkable channel (an involable function injected by declaring a decorated
parameter in the request handler) that does not impact the regular return type.

The discussion regarding the proposed API of type-checked alternative responses14

10https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-0.html#
new-unknown-top-type

11https://github.com/lukeautry/tsoa/pull/559
12https://github.com/lukeautry/tsoa/pull/640
13https://github.com/lukeautry/tsoa/pull/729
14https://github.com/lukeautry/tsoa/issues/617

72

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-0.html#new-unknown-top-type
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-0.html#new-unknown-top-type
https://github.com/lukeautry/tsoa/pull/559
https://github.com/lukeautry/tsoa/pull/640
https://github.com/lukeautry/tsoa/pull/729
https://github.com/lukeautry/tsoa/issues/617

6. Building and integrating an OAS Generation Framework

and the implementation15 can be found on GitHub, the respective description can be
found in the API (Reference) Documentation of tsoa itself16 17 18.

Author Information

Requirement D4 of API Reference documentation suggests providing contact infor-
mation for technical support. In NodeJS projects, this information is located in the
package declaration file called package.json. For information about the format of this
file, we refer to the NodeJS guides 19 and the npm documentation 20. Our contibution21

allows tsoa to parse this information to fill the Contact Object of the OpenAPI specifica-
tion. If the author is not the person responsible for providing technical support, this
information can be provided via tsoa configuration (tsoa.json) instead.

6.3. Limitations

While we tried to outline several interesting upsides of an AST based approach, various
limitations still exist. First, there are some limitations imposed by the modified JSON
Schema Draft-00 that OpenAPI uses to formalize schemas. One of them is the inability
to specify the order of Array item schemas. This currently makes it impossible to
generate a correct 1:1 mapping from a TypeScript Tuple type to the OpenAPI 3.0
schema. While newer drafts of JSON Schema would support this construct, we will
have to terminate generation of the OAS document if tsoa detects tuple types exposed
to the client.

Another limitation is the lack of type checking TypeScript imposes on throw/catch
statements. Given a method definitions it is very complex to statically analyze which
Errors may occur during execution which makes it hard to track errors, especially since
the underlying web framework may choose to not handle errors or transform them to
an arbitrary JSON response. Therefore, no guarantees around correctly documenting
responses created by throwing Errors can be provided. While developers can address
some of these issues by using type-checked responses instead of throwing an error,
using a global error handling to transform the Error into a response, and adding

15https://github.com/lukeautry/tsoa/pull/699
16https://tsoa-community.github.io/docs/error-handling.html#typechecked-alternate-responses
17https://tsoa-community.github.io/reference/globals.html#res
18https://tsoa-community.github.io/reference/globals.html#tsoaresponse
19https://nodejs.org/en/knowledge/getting-started/npm/what-is-the-file-package-json/
20https://docs.npmjs.com/files/package.json
21https://github.com/lukeautry/tsoa/pull/710

73

https://github.com/lukeautry/tsoa/pull/699
https://tsoa-community.github.io/docs/error-handling.html#typechecked-alternate-responses
https://tsoa-community.github.io/reference/globals.html#res
https://tsoa-community.github.io/reference/globals.html#tsoaresponse
https://nodejs.org/en/knowledge/getting-started/npm/what-is-the-file-package-json/
https://docs.npmjs.com/files/package.json
https://github.com/lukeautry/tsoa/pull/710

6. Building and integrating an OAS Generation Framework

@Response annotations manually, tsoa can not provide proper tooling to verify the
implementation against the annotation at this point.

Another limitations is based on lacking support for @link tags in JSDoc. While this
issue is being tracked in the TypeScript issue tracker22, until the issue is resolved, we
decided to not use the link tag as a source for OpenAPI links.

A minor inconvenience is the handling of the @SuccessResponse decorator. While it
can be used to document the status code of the default response, the developer currently
has to manually make sure the status code is actually set. Instead, this decorator should
is actually set without any additional effort by the developer. As this change would be
considered a breaking change, it’s being tracked as a remaining issue to be resolved in
the future 23.

6.4. Integrating the generated API descriptions into a holistic
API strategy

As we have seen, tsoa can be used to compile the is-state of our application into an
OpenAPI specification. However, this is-state may neither match our requirements (for
example because the body properties are in snake case, while the requirements dictate
the use of camel case), nor established best practices in HTTP APIs, such as offering
various HTTP Methods to interact with resources or best practices regarding OpenAPI
specifications like grouping conceptually related Endpoints using Tags.
In order to ensure this behavior, it’s been very common to use linting, which refers to
to tooling that flags suspicious code in software. Similar tooling exists in for OpenAPI
specifications and while there are currently several openly available packages, we
decided to outline the process using spectral24 as it is actively maintained and popular
in the OpenAPI community.

Spectral can be configured using a configuration file with yaml syntax (.spectral.yml).
Internally, spectral checks the provided OpenAPI specification against a set of rules,
which are intended to increase the quality or consistency of the OpenAPI specificiation
under review.

Out of the box, spectral will apply the default ruleset that checks several more
common recommendations 25. Additionally, custom rulsets can be added26.

22https://github.com/microsoft/vscode/issues/57495
23https://github.com/lukeautry/tsoa/issues/723
24https://github.com/stoplightio/spectral
25https://stoplight.io/p/docs/gh/stoplightio/spectral/docs/reference/openapi-rules.md
26https://stoplight.io/p/docs/gh/stoplightio/spectral/docs/guides/4-custom-rulesets.md

74

https://github.com/microsoft/vscode/issues/57495
https://github.com/lukeautry/tsoa/issues/723
https://github.com/stoplightio/spectral
https://stoplight.io/p/docs/gh/stoplightio/spectral/docs/reference/openapi-rules.md
https://stoplight.io/p/docs/gh/stoplightio/spectral/docs/guides/4-custom-rulesets.md

6. Building and integrating an OAS Generation Framework

Figure 6.4.: Preview of the tsoa documentation

While it is impossible to list all the potentially viable custom rules, some more
commonly known additional rules shall be pointed out:

• Limiting the amount of allowed status codes

• Requiring descriptions and tags

• Allowing only examples that match the JSON Schema

• Enforcing consistent casing for bodies, header, path and query parameters

6.5. Documenting the Approach

Similar to the recommendation developed for providers of Web APIs, tsoa should be
documented using a two-pronged approach aswell: An API Reference documentation
listing the details of all the options as well as a more high level, textual description to
on-board new users. Previously, tsoa itself only offered a long, single page Readme and
a reference to the tests. In order to address this lack of documentation, a Documentation
was developed and an API Reference generation tool for TypeScript was integrated.

The repositories can be found online, both for the generated API Reference 27 and
the high-level Documentation28. The rendered versions are available as well2930.

27https://github.com/tsoa-community/reference
28https://github.com/tsoa-community/docs
29https://tsoa-community.github.io/reference/globals.html
30https://tsoa-community.github.io/docs/

75

https://github.com/tsoa-community/reference
https://github.com/tsoa-community/docs
https://tsoa-community.github.io/reference/globals.html
https://tsoa-community.github.io/docs/

6. Building and integrating an OAS Generation Framework

Figure 6.5.: Preview of the getting started guide of the tsoa documentation

Figure 6.6.: Preview of the tsoa API Reference Documentation

76

6. Building and integrating an OAS Generation Framework

Figure 6.7.: Snipped of the tsoa API Reference Documentation

77

6. Building and integrating an OAS Generation Framework

6.6. Case Study

We will outline the approach of our integration with an exemplary endpoint that
describes the tooling used to improve the OpenAPI specification generated from Code.

The requirements are similar to the endpoint described in the modeling assignment
of the evaluation A.1.3.

A mock of this controller can be found online 31

In order to provide high quality documentation, the imaginary rental company
decided to adopt the pipeline as proposed in the thesis.

Therefore, when implementing this controller, TypeScript will ensure that:

• All services are accessed properly (using static analysis).

• Type mismatches are prevented within the boundaries of the system.

• No unsafe operations are performed on services and parameters if they match
the type annotations.

• The return matches the return annotation (here: the Order interface.

When building the controller using tsoa’s command line:

• An OpenAPI specification will be generated from the TypeScript types and the
JSDoc annotations.

• A runtime wrapper that ensures requests which don’t match the TypeScript types
will be rejected will be generated.

However, tsoa does not impose any limitations on the usability of the documentation.
OpenAPI specifications can be very permissive and vague in many ways. The docu-
mentation after only defining the Controller and Models can be found online 32. As
we have outlined throughout the thesis, descriptions, examples, endpoint summaries
or additional grouping of endpoints with related functionality contribute towards an
easier understanding of the concepts used within the API.

Therefore, as proposed, the imaginary rental company uses a custom spectral ruleset
to ensure these additional documentation artifacts are in place using a custom spectral
ruleset (.spectral.yml).

31https://gist.github.com/WoH/9e8778bbaefa3c4e60cbc0a5ecd8aff2
32https://woh.github.io/redoc-rentals/redoc-rentals-minimal.html

78

https://gist.github.com/WoH/9e8778bbaefa3c4e60cbc0a5ecd8aff2
https://woh.github.io/redoc-rentals/redoc-rentals-minimal.html

6. Building and integrating an OAS Generation Framework

extends: spectral:oas
rules:
contact-properties: error
oas3-valid-example: warn
oas3-schema: warn
oas3-parameter-description: error
no-$ref-siblings: off

Using this ruleset, spectral suggests the following additions:

• Operation ‘description‘ must be present and non-empty string.spectral(operation-
description)

• Operation should have non-empty ‘tags‘ array.spectral(operation-tags)

• OpenAPI object should have non-empty ‘tags‘ array.spectral(openapi-tags)

While tsoa provides ways to infer that information from JSDoc (description) and
the @Tags() decorator, this information was not present, however, since the program
itself was valid, a correct OpenAPI spec could be produced. Now, our imaginary rental
company decides to add a description for the endpoint, a short summary and tags to
the endpoint’s source code implementation and consistent specifications are ensures 33:

@Tags("order")
export class OrdersController extends Controller {
// ...omitted

/**
* This endpoint is used to rent a boat or a ship.
* @summary Add a new rental order.
* @param badRequest Bad Request
* @param paymentRequired Insufficient funds available
* @param notFound Not Found
* @param requestBody The Create Order payload
*/
@Post()
public async createOrder(

The documentation after adding descriptions and tags can be found online 34. In
the future, the rental company may chose to apply some more opinionated rules to
their specification that may not be useful for other companies, but, if applied, may help
consumer satisfaction. Some of our ideas include, but are not limited to:

33As the "orders" tag applies to all endpoints of this controller, it was moved to the class level, not the
method level.

34https://woh.github.io/redoc-rentals/redoc-rentals-full.html

79

https://woh.github.io/redoc-rentals/redoc-rentals-full.html

6. Building and integrating an OAS Generation Framework

• Ensuring response parameter keys are at least 2 characters long and use camel-
Case:

response-property-names:
severity: error
message:
"Invalid response property name: {{property}} (expected: camelCase, length

>1)"
recommended: true
given: "$..components.schemas.*.properties[*]~"
then:
function: pattern
functionOptions:
match: "^[a-z][a-zA-Z]+$"

• Non 2xx codes respond with an Error Message schema.

• Every response with a non-empty parameter array has a 422 response for valida-
tion errors.

• All requests with security schemes have a 401 Unauthorized response.

Especially the last 2 items are results of the type checking limitations and throw/catch
pattern we discussed in section 6.3.

80

7. Evaluation

In order to validate our approach, we conducted a coding exercise with TypeScript
developers that were tasked to implement a service that produces an OpenAPI spec-
ification. We intended to compare 3 approaches (annotation based, reflection based,
macro based) over 3 versions of a todo application. A ready-to-use scaffolded project,
including db and data-access layer were provided. The participants were subsequently
tasked to implement the Controller layer using express with no additional tooling but
an annotation parser, the most popular TypeScript framework for NodeJS (nest), which
provides support for reflection based OpenAPI documentation1 and tsoa, which uses a
build-time approach as outlined in chapter 6.

The instructions for each task/framework can be found in the Appendix A. Due to
time constraints and feedback from the participants, Task 3 was removed from the eval-
uation, and, as both our dummy implementation (~1:20h) and the first candidate (over
2.5h) required approximately double the time for the pure JSDoc (oas) implementation
and annotation, this approach was omitted aswell. As the participating candidates
all were not very familiar (4-5) with the OpenAPI specification itself, it was deemed
unlikely the evaluation would yield comparable results. Unfortunately, from the 4
planned evaluations, 1 participant was not able to complete the evaluation for personal
reasons, another candidate did not submit in time.

7.1. Participants

At the beginning of the evaluation, every participant was asked questions about
their background. This includes information about their role, years of programming
experience and a self-rating of their familiarity with the frameworks and techniques
used throughout the evaluation (1-5, 5 being best).

All times are based on the evaluation author’s time needed to complete these
tasks. The time needed to familiarize with the framework and the time spent reading
respective documentation is not included.

1nest also added an AST parsing plugin, which aids in the annotation process. Therefore, participants
were asked to not use the plugin to provide a better distinction between reflection and AST parsing.
However, the plugin is currently only able to annotate classes, modeling using TypeScript types is
currently not supported

81

7. Evaluation

Role Programming TypeScript Nest tsoa OpenAPI
Author 9 4 4 5 4

Director Development
Product Owner

30 2 1 2 3

Senior Software Engineer 8 3 1 3 1

Table 7.1.: Participant overview

7.2. Time

Task nest tsoa
1 1:40 1:25
2 0:15 0:15
1 1:20 1:30
2 0:10 0:10

Table 7.2.: Time

In order to provide at least some additional context, the times for an implementation
by the evaluation author are provided below.

Style nest tsoa oas
Without Annotations 0:33 0:35 0:35

With Annotations 0:53 0:39 1:21

Table 7.3.: Dummy times

7.3. Quality

In order to assess the quality of the produced API descriptions, a scoring system
that grades each approach with up to 5 points for every operation was developed.
Depending on the severity of accuracy between API description and implementation,
either 0.5 points (property schema inaccuracies) or 1 point (missing response, missing
parameter, type mismatches) were subtracted from the score. If the documentation for
the Validation Error (400) response was missing, 2 points were subtracted, as it affects
4 endpoints. If the documentation for the Unauthorized (401) response was missing,
2 points were subtracted, as it affects 4 endpoints. If the documentation for the Not
Found (404) response was missing, 1 point was subtracted, as it affects 2 endpoints.

82

7. Evaluation

If the API implementation did not match the requirements, but the implementation
matched the API description, no points were subtracted from the score.

nest tsoa
14 18.5
9 17.5

Table 7.4.: Correctness

In order to provide a lower bound for the expected quality of the approaches, three
dummy implementations were conducted. Dummy nest represents a placeholder
for a nest project that only relies on reflection capabilities, enabled through class-
based modeling and decoration of the class properties, but does not include any
additional knowledge augmentation. Dummy tsoa represents a placeholder for a tsoa
implementation that only relies on the AST parsing capabilities of our approach, but
does not include any additional augmentation. This dummy implementation uses
type-checked alternative responses over throw/catch. Dummy OpenAPI similarly
represents a placeholder to provide a baseline for an express implementation with
TypeScript, without any annotations.

nest tsoa oas
8 14 -

Table 7.5.: Dummy Correctness

7.4. Discussion

Does the OpenAPI-aware approach to development decrease time spent on develop-
ment (including documentation)?
As intuition suggests, the overall development time tends to decrease. As even the
dummy implementation required significantly more time, the pure JSDoc (oas) ap-
proach will likely not be as fast, given an equal amount of familiarity.

Do developers prefer our approach?
Based on the feedback we received, it was very clear our candidates prefer TypeScript
code and types over comments yaml or json description. This seems intuitive, as we
chose developers to participate. Technical writers may have a very different perception,
but one of the candidates in our evaluation explicitly mentioned they would not con-
sider writing OpenAPI "by hand". While the UI was generally well perceived, the lack

83

7. Evaluation

of efficiency still drew criticism. While some developers preferred nest, others were of
the opinion the additional documentation to understand what had to be annotated was
too confusing. One candidate mentioned, that, while declaring parameters instead of
accessing them via a request object required more thinking up front, the validation and
documentation benefits were more important and therefore reasonable and, all things
considered, worth it.

Does the quality of the OAS document improve?
While, as shown in the nest dummy candidate, some information regarding parameters
can be correctly identified, the accuracy is very limited. Manual annotations are error
prone, developers often missed 4xx response annotations. While tsoa tended to include
more of these responses, the validation and authorization error responses required
manual annotation and indeed were sometimes missed. As the evaluation did not
explicitly require descriptions, tags or and summaries, only the "easily assessable"
or less subjective attributes of high quality documentation were evaluated. Drawing
conclusions from this data should therefore be avoided, but the improvements seem to
be sufficiently promising to collect further data in the future.

84

8. Conclusion and Outlook

The goal of the work described in this thesis was to improve the quality of OpenAPI
specification documents using existing knowledge already present in source code. By
using TypeScript as a modeling language for API specifications, we reduced duplication
and, as the evaluation shows, we may able to reduce time spent on API implementation
+ documentation, compared to other approaches. This enables an API first approach
(in code) to API documentation that can be used to gather feedback early - which is
usually only available to APIs developed using a separate, unverified API description -
while being able to directly use the models in the implementation for type checking
and request validation (see Fig. 8.1). However, there are still several limitations, some
of which are the result of trade offs, others as a result of time limitations or restrictions
of the TypeScript, or the OpenAPI modeling language based on JSON Schema Draft-00.

Figure 8.1.: API Model first approach

One of the major trade-offs is the focus on one language and one framework only.
While necessary to improve correctness, this limits the applicability to other web
frameworks and moreover seemingly hard to port the approach to other languages.

85

8. Conclusion and Outlook

As TypeScript has no way of expressing certain limitations (data type integer, string
patterns etc.), a small DSL using annotations was needed. This means TypeScript will
not be able to check if statements assign an invalid value to a variable of this type,
and only incoming requests will be checked. Extending TypeScript to improve this
behavior may be possible, but was not explored yet due to time constraints. Also, our
correctness guarantees are tied to the ability of TypeScript to check the API implemen-
tation code. As discussed, type casting and safety after throwing errors is limited in
order to provide a better gradual adoption. Incorrectly modeling the shape of e.g. a
database response may propagate throughout the application and impact the OpenAPI
Specification document. Even though version 4.0 of TypeScript will allow catching
errors as unknown instead of any, which forces the developer to manually narrow down
the type, this opt-in feature - unless enforced by a TypeScript linter - may not be used
and subsequently still lead to mismatches. A stricter language with similar JSON
modeling capabilities like Hegel1 would likely improve the correctness.

Literature also recommended an integration of links between Endpoint documenta-
tion. As the ‘@link‘ annotation was not properly supported by TypeScript, implementing
this requirement was deemed too time consuming.

We conducted an evaluation, but due to the small sample size of participants and
varying familiarity with the frameworks and approaches, the external validity is low.
Applying this comparison with a broader set of endpoints and more participants that
are already familiar with all 3 approaches would therefore be helpful to better under-
stand the impact of each approach with regards to API description quality.

In the OpenAPI community, our approach was positively received. In a comparison
between different approaches, the verdict of one industry expert was particulatly clear:
“Other frameworks have first-party or third-party support for annotations, which are
purely descriptive repetitions of the actual code they sit above at best. At worst they’re
just lies” [Stu20]. In contrast, the notion of using the code as a source for descriptions
was deemed an improvement: “There is a new category of API description integration
popping up in some web frameworks which is somewhat like Annotations or DSLs, but
instead of being purely descriptive it’s actually powering logic and reducing code, giv-
ing you one source of truth. [...] Instead of descriptive annotations or comments shoved
in as an afterthought, the API framework has been designed around the use of annota-
tions. [...] [T]his new approach for making annotations useful is very much closing the
gap. If you’re going to use a code-first approach, you should absolutely try and find a

1https://hegel.js.org/

86

https://hegel.js.org/

8. Conclusion and Outlook

framework like TSOA to power your API and reduce the chance of mismatches”. [Stu20]

Although one possible integration strategy into a holistic API strategy was briefly
described, more research should study needs to be done before before one could obtain
better recommendations in this space.

As OpenAPI is in the process of integrating a newer, more expressive JSON Schema
Draft for OpenAPI 3.1, modeling TypeScript using the 2019-07 draft requires signif-
icantly less workarounds. This alignment in the standards ecosystem allows future
implementations of our general strategy to depend on tools from the JSON Schema
ecosystem, as there will not be any more OpenAPI special cases with regards to the
schema (instead, there is a well specified, optional OpenAPI vocabulary). This helps
with combining efforts, possibly across languages in (typed) language to JSON Schema
translation, but also in JSON Schema based validation for API Requests.

87

A. Appendix

A.1. Evaluation Instructions

Thanks for participating in our evaluation! Today, we want to test different approaches
to generating OpenAPI specifications from Code. This means we would like you to
implement and evolve the same application with 3 different controller layers. In order
to get started quickly, we provide the application shell with a database, a data-access
layer and required configuration in advance.

A.1.1. Initial survey

Before we get started, we’d like to know some general information about you:

• What’s your current role?

• How many years of programming experience do you have?

• How familiar are you with TypeScript? (1-5, 5 is very familiar)

• How familiar are you with nest’s swagger capabilities? (1-5)

• How familiar are you with tsoa? (1-5)

• How familiar are you with express? (1-5)

• How familiar are you with the OpenAPI Specification? (1-5)

Along with these instructions, you will be provided with an order to complete this
tasks in. We would kindly ask you to respect that order.

A.1.2. Getting familiar with the approaches

In case you are not familiar with NestJS:

NestJS1 uses Controllers2 to handle requests, which will return Data Transfer Objects
(DTOs), which are classes with (public) properties. In order to document these Classes,

1https://github.com/nestjs/nest
2https://docs.nestjs.com/controllers

88

https://github.com/nestjs/nest
https://docs.nestjs.com/controllers

A. Appendix

NestJS uses property decorators 3. In order to validate requests, usually validation
decorators are required 4. The Auto Validation pipe is already set up in the starter
project.

In case you are not familiar with tsoa:

Tsoa5 compiles your code into an OpenAPI specifications and a small runtime layer
at build time. This means tsoa can make use of TS interfaces and type definitions to
generate documentation and validation logic. Additionally, tsoa uses JSDoc annotations
to enhance documentation and validation6 7 8.The starter project already handles
serialization of Validation and Authorization Errors.

In both cases, methods with decorators and decorated parameters are used to inject
parts of the request at runtime9 10. Similarly, @Request() will inject the entire request
but not produce documentation for access.

In case you are not familiar with swagger-inline/OpenAPI:

swagger-inline11 is a small utility that allows you to write the OpenAPI specification
side-by-side with your express code. If you do not feel comfortable writing OpenAPI
by hand, we’d suggest you use a web UI12.

Here’s the list of starter projects:

• Approach 1: tsoa

• Approach 2: nest

• Approach 3: express + swagger-inline (oas)

For all 3 projects, the basic structure is already in place. Additionally, authentication
is already implemented and ready to be used. All projects expose a Swagger UI

3https://docs.nestjs.com/recipes/swagger#decorators
4https://docs.nestjs.com/techniques/validation
5https://github.com/lukeautry/tsoa
6https://tsoa-community.github.io/docs/annotations.html
7https://tsoa-community.github.io/docs/descriptions.html#endpoint-descriptions
8https://tsoa-community.github.io/docs/examples.html
9https://docs.nestjs.com/controllers#request-object

10https://tsoa-community.github.io/docs/getting-started.html#defining-a-simple-controller
11https://github.com/readmeio/swagger-inline
12https://stoplight.io/p/studio

89

https://docs.nestjs.com/recipes/swagger#decorators
https://docs.nestjs.com/techniques/validation
https://github.com/lukeautry/tsoa
https://tsoa-community.github.io/docs/annotations.html
https://tsoa-community.github.io/docs/descriptions.html#endpoint-descriptions
https://tsoa-community.github.io/docs/examples.html
https://docs.nestjs.com/controllers#request-object
https://tsoa-community.github.io/docs/getting-started.html#defining-a-simple-controller
https://github.com/readmeio/swagger-inline
https://stoplight.io/p/studio

A. Appendix

on http://localhost:3001/api. As a point of reference, please take a look at the
UserController.

The only requirement for running the projects is Docker (with docker-compose). To
start, run docker-compose up inside the folder of each project.

A.1.3. Coding

In this step, we want to define a controller and data transfer objects for Todos. Each
Todo belongs to a User who can create, retrieve, update, delete them.
Please note down the time needed to complete the objective for each task.

Task 1: Implementing

First, we need to define some data transfer objects. In tsoa, we can use classes, but
usually (annotated) TypeScript interfaces/type aliases will be sufficient.

The shape of the DTOs is based on the TodoEntity. Additionally, the requirements
are:

• The title must have a minLength of 3.

• The description is returned as null if it wasn’t set.

Todo DTO
The title, description and progress properties of the TodoEntity. (user is optional)

CreateTodo DTO

• A title of type string with a minLength of 3.

• An optional description of type string.

• A progress of type TodoProgress

UpdateTodo DTO

• Optional title of type string with a minLength of 3

• An optional description of type string.

• An optional progress of type TodoProgress.

90

A. Appendix

All of the Todo Endpoints require an authorized User. Otherwise, the request should
respond with a Status of 401 and a JSON Object with a message of type string. The
User is defined on the request object and is provided:

• In tsoa by declaring @Request() @InjectUser() user: User as a parameter for
the request handler

• In nest by using @InjectUser() user: User

• In express/swagger-inline as request.user

The Update and Delete Endpoint will be called with the UUID as a Path parameter
and should respond with a Status of 404 and a JSON body with a message property of
type string if the Todo to update is not present (or does not belongs to the user). All
endpoints should respond with a Http response with status 400 and a JSON body with
at least a message property of type string) (or string[]) if validation fails.

While the GET /todos endpoint responds with an array of Todos, the Create, Update
and Delete Endpoints should respond with a single Todo Entity. Please implement the
controller/data transfer layer and document the API using OpenAPI.

Tips:
While there are a lot of similarities, all 3 approaches handle returning non-successful
responses differently. While nest promotes throwing errors (with names based on the
eventual status code) which require annotating the request handlers with @ApiResponse
et al., which are caught and transformed to JSON responses, tsoa similarly uses
@Response<T>(status, description, example) to document responses as a result of
error handling (Validation and Authorization Errors in middleware), but promotes in-
jecting responders (@Res() errorResponse: TsoaResponse<Status, Res, Headers>)
which can be called in a checked way instead. This is very similar to calling res.status(400).json({})
in express directly.

Task 2: Improving

In this part, we will change the implementation of the GET /todos endpoint. We will
introduce 2 optional query parameters, progress and search. The progress query param is
of type TodoProgress[] and will be used to filter Todos by progress. The search of type
string with a minLength of 3 can be used to search for a text. Add these 2 parameters
to the endpoint, merge them into a GetTodosDto and pass it to the getAll() method of
the TodoService.

91

A. Appendix

Task 3: Modeling

In this part of the evaluation, we would like to explore modeling with all of these
frameworks. Therefore, we created 2 requirements for Endpoints. The Documentation
can be found here.

We have also provided stubs here.
Your task will be to add missing models and controllers.
The endpoint we use may belong to a rental company for boats and ships. There are

multiple ships that can be rented (by passing the ship’s id), or a boat, and while there
are several boats, they are of the same type, so providing an id is not neccessary. To
enable integration with other marketplaces beyond their homepage, the decision was
made to publish this endpoint via API. The endpoint can be used by POSTing a request
to /orders. The body should contain a JSON object with information about the order:

• a configuration, either for a ship or for a boat

• start date/time of the rental

• end date/time of the rental

• in case of a boat, the configuration must be an object which may contain an
amount of lifevests, up to 8, which is the capacity of a boat

• in case of a ship, the configuration must contain the shipId annd a captainId, a
reference to a captain the renter chose to accompany the trip. In case the renter
is allowed to navigate the ship (will not be verified by the API), the capitainId
should be explicitly set to null.

• a chargeAccountId, which references the account to charge for that purchase

Additionally, in order authorize the request, an Authorization header with a JWT
must be provided.

There are several ways, the API will respond to these requests:

• 200: Ok: The rental was successful

• 400: The request failed because the rental could not be made (i.e. because a ship is
not available that day). The response body will contain an object with a message
explaining why the rental could not be processed.

• 401: Unauthorized: The Authorization header was not provided or incorrect

• 404: Not Found: One of the provided id’s was not found. A message with details
will be provided in the body

92

A. Appendix

• 422: Unprocessable Entity: The request did not match the specification

A.1.4. Final survey

Thanks and congrats on completing these tasks. We would like you to answer a few
questions about the approaches you got to know today.

• Would you prefer explicitly listing Parameters in Controllers (instead of grab-
bing them off the request object directly) in exchange for documentation and
validation?

• Did you prefer to write descriptions/metadata in Decorator arguments or JSDoc?

• Did you enjoy using JSDoc as the source for descriptions?

• Did you enjoy using JSDoc for OpenAPI/JSON Schema modeling? Please provide
reasons if you want to share any.

• Did you prefer classes over interfaces and type aliases to define DTOs?

• If your TS types were validated at runtime, would you still use class based DTOs?
If the answer is yes, we would like to hear why.

• Which approach to writing the controller layer did you enjoy best overall?

• If requirements changed, which approach would be the least error-prone?

• Please share the time you needed for each task and framework.

93

A. Appendix

A.2. TypeScript TypeChecker Type Flags

Listing A.1: TypeScript Type Checker Flags

export enum TypeFlags {
Any = 1,
Unknown = 2,
String = 4,
Number = 8,
Boolean = 16,
Enum = 32,
BigInt = 64,
StringLiteral = 128,
NumberLiteral = 256,
BooleanLiteral = 512,
EnumLiteral = 1024,
BigIntLiteral = 2048,
ESSymbol = 4096,
UniqueESSymbol = 8192,
Void = 16384,
Undefined = 32768,
Null = 65536,
Never = 131072,
TypeParameter = 262144,
Object = 524288,
Union = 1048576,
Intersection = 2097152,
Index = 4194304,
IndexedAccess = 8388608,
Conditional = 16777216,
Substitution = 33554432,
NonPrimitive = 67108864,
Literal = 2944,
Unit = 109440,
StringOrNumberLiteral = 384,
PossiblyFalsy = 117724,
StringLike = 132,
NumberLike = 296,
BigIntLike = 2112,
BooleanLike = 528,
EnumLike = 1056,
ESSymbolLike = 12288,
VoidLike = 49152,
UnionOrIntersection = 3145728,
StructuredType = 3670016,
TypeVariable = 8650752,
InstantiableNonPrimitive = 58982400,
InstantiablePrimitive = 4194304,
Instantiable = 63176704,
StructuredOrInstantiable = 66846720,
Narrowable = 133970943,
NotUnionOrUnit = 67637251,

}

94

List of Figures

1.1. The biggest obstacles to providing up-to-date API documentation [Sma19] 2
1.2. Design Science Approach [GH13] . 6

2.1. The HTTP Message format [Gou+02] . 11
2.2. Richardson Maturity Model [Fow10] . 14
2.3. JSON values [Cro08] . 16
2.4. JSON object [Cro08] . 16
2.5. JSON Arrays [Cro08] . 16
2.6. JSON numbers [Cro08] . 16
2.7. JSON strings [Cro08] . 17
2.8. Describing a programming interface with an API description format

[Lau19] . 19
2.9. An OAS document describing the search for products goal of the Shop-

ping API [Lau19] . 20
2.10. API First vs. Code First . 25
2.11. Principles of living documentation [Mar19] 27

3.1. SpyREST Design, from [SAM15b] . 30
3.2. The proposed approach [CZ14] . 31

4.1. An overview of the 5 dimensions and categories (sub-dimensions) within
proposed taxonomy [CVG19] . 34

4.2. Adapting the initial taxonomy to Web APIs 35
4.3. API Documentation priorities for API consumers [Sma19] 41
4.4. OpenAPI Fields according to requirements 42
4.5. Proposed Coverage of the Information Object 43
4.6. Proposed Coverage of the Server Object 43
4.7. Proposed Coverage of the Example Object 43
4.8. Proposed Coverage of the Parameter Object 43
4.9. Proposed Coverage of the Response Object 44

5.1. Approaches to documentation generation for traditional APIs [NAP18] 46
5.2. Hierachy of an API Implementation . 47

95

List of Figures

6.1. Declaration and translation of an annotation enhanced type alias 67
6.2. Context creation for generic type alias resolution 68
6.3. Context utilization for generic type alias resolution 69
6.4. Preview of the tsoa documentation . 75
6.5. Preview of the getting started guide of the tsoa documentation 76
6.6. Preview of the tsoa API Reference Documentation 76
6.7. Snipped of the tsoa API Reference Documentation 77

8.1. API Model first approach . 85

96

List of Tables

2.1. Documentation quality attributes goals provided by tooling (1/3), adapted
from [Zhi+15] . 22

2.2. Documentation quality attributes enabled by the OpenAPI specification
format (2/3), adapted from [Zhi+15] . 23

2.3. Documentation quality attributes provided by the developers (3/3),
adapted from [Zhi+15] . 24

5.1. TypeScript types . 52
5.2. Comparison of documentation sources according to their viability for

API description elements . 59
5.3. Viability of extraction techniques with regards to source format 59

6.1. TypeScript Controller return types . 62
6.2. Base Schema . 62
6.3. String Schema . 63
6.4. Numeric Schema . 63
6.5. Object Schema . 63
6.6. Array Schema . 63
6.7. Meta and Enum Schema . 64
6.8. Referenced Schema . 64

7.1. Participant overview . 82
7.2. Time . 82
7.3. Dummy times . 82
7.4. Correctness . 83
7.5. Dummy Correctness . 83

97

Listings

2.1. JSON Example . 15
2.2. JSON Schema Exmample . 18

5.1. A DSL for OpenAPI in doc blocks using an @api doc tag 48
5.2. Documenting Path, Method and Parameter using Swagger-Code, adapted

from 13 . 50
5.3. Decorated class before transpilation . 55
5.4. Decorated class property after transpilation with metadata 56
5.5. The Type interface . 58

A.1. TypeScript Type Checker Flags . 94

98

Bibliography

[Adz11] G. Adzic. Specification by Example: How Successful Teams Deliver the Right
Software. 1st. USA: Manning Publications Co., 2011. isbn: 1617290084.

[Agh+19] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez, L. Moreno,
G. Bavota, and M. Lanza. “Software Documentation Issues Unveiled.”
In: Proceedings of the 41st International Conference on Software Engineering.
ICSE ’19. Montreal, Quebec, Canada: IEEE Press, 2019, pp. 1199–1210. doi:
10.1109/ICSE.2019.00122.

[Alg10] J. Algermissen. Classification of HTTP-based APIs. 2010. url: http : / /
algermissen.io/classification_of_http_apis.html (visited on 05/03/2020).

[BAT14] G. Bierman, M. Abadi, and M. Torgersen. “Understanding typescript.” In:
European Conference on Object-Oriented Programming. Springer. 2014, pp. 257–
281.

[Ben18] E. Bendersky. Type erasure and reification. 2018. url: https://eli.thegreenplace.
net/2018/type-erasure-and-reification/ (visited on 06/28/2020).

[Bon+19] G. Bondel, D. H. Bui, A. Faber, D. Seidel, and M. Hauder. “Towards a
Process and Tool Support for Collaborative API Proposal Management.”
In: The 25th Americas Conference on Information Systems (AMCIS), Cancun,
Mexiko (2019).

[Bra+14] T. Bray et al. “The javascript object notation (json) data interchange format.”
In: URL https://www. rfc-editor. org/rfc/rfc7159. txt (2014).

[Bui18] D. H. Bui. “Design and Evaluation of a Collaborative Approach for API
Lifecycle Management.” In: (2018).

[BZN13] P. Bryan, K. Zyp, and M. Nottingham. “JavaScript object notation (JSON)
pointer.” In: RFC 6901 (Proposed Standard) (2013).

[Chi14] T.-h. Chien. Soundness and Completeness of the Type System. 2014. url: https:
//logan.tw/posts/2014/11/12/soundness-and-completeness-of-the-
type-system (visited on 06/26/2020).

99

https://doi.org/10.1109/ICSE.2019.00122
http://algermissen.io/classification_of_http_apis.html
http://algermissen.io/classification_of_http_apis.html
https://eli.thegreenplace.net/2018/type-erasure-and-reification/
https://eli.thegreenplace.net/2018/type-erasure-and-reification/
https://logan.tw/posts/2014/11/12/soundness-and-completeness-of-the-type-system
https://logan.tw/posts/2014/11/12/soundness-and-completeness-of-the-type-system
https://logan.tw/posts/2014/11/12/soundness-and-completeness-of-the-type-system

Bibliography

[Clo20] Cloud Elements. The State of API Integration 2020. 2020. url: https://
offers.cloud-elements.com/2020-state-of-api-integration-report
(visited on 04/01/2020).

[Cro08] D. Crockford. JavaScript: The Good Parts: The Good Parts. " O’Reilly Media,
Inc.", 2008.

[CVG19] A. Cummaudo, R. Vasa, and J. Grundy. What should I document? A prelimi-
nary systematic mapping study into API documentation knowledge. 2019. arXiv:
1907.13260 [cs.SE].

[CZ14] C. Chen and K. Zhang. “Who Asked What: Integrating Crowdsourced
FAQs into API Documentation.” In: Companion Proceedings of the 36th In-
ternational Conference on Software Engineering. ICSE Companion 2014. Hy-
derabad, India: Association for Computing Machinery, 2014, pp. 456–459.
isbn: 9781450327688. doi: 10.1145/2591062.2591128.

[Doc19] O. J. Documentation. Type Erasure. 2019. url: https://docs.oracle.com/
javase/tutorial/java/generics/erasure.html (visited on 06/28/2020).

[ECM16] J. ECMA. “404 the json data interchange standard.” In: ECMA International
(2016).

[Ed-+19] H. Ed-douibi, J. L. Cánovas Izquierdo, F. Bordeleau, and J. Cabot. “WAPIml:
Towards a Modeling Infrastructure for Web APIs.” In: 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C). Sept. 2019, pp. 748–752. doi: 10.1109/MODELS-
C.2019.00116.

[EIC18] H. Ed-Douibi, J. L. C. Izquierdo, and J. Cabot. “OpenAPItoUML: a tool
to generate UML models from OpenAPI definitions.” In: International
Conference on Web Engineering. Springer. 2018, pp. 487–491.

[End+14] S. Endrikat, S. Hanenberg, R. Robbes, and A. Stefik. “How Do API Doc-
umentation and Static Typing Affect API Usability?” In: Proceedings of
the 36th International Conference on Software Engineering. ICSE 2014. Hyder-
abad, India: Association for Computing Machinery, 2014, pp. 632–642. isbn:
9781450327565. doi: 10.1145/2568225.2568299.

[Fat19] F. Fatemi. “3 Keys To A Successful API Strategy.” In: Forbes (2019).

[Fie00] R. T. Fielding. “REST: architectural styles and the design of network-based
software architectures.” In: Doctoral dissertation, University of California
(2000).

100

https://offers.cloud-elements.com/2020-state-of-api-integration-report
https://offers.cloud-elements.com/2020-state-of-api-integration-report
https://arxiv.org/abs/1907.13260
https://doi.org/10.1145/2591062.2591128
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html
https://docs.oracle.com/javase/tutorial/java/generics/erasure.html
https://doi.org/10.1109/MODELS-C.2019.00116
https://doi.org/10.1109/MODELS-C.2019.00116
https://doi.org/10.1145/2568225.2568299

Bibliography

[Fie08] R. T. Fielding. REST APIs must be hypertext-driven. 2008. url: https://
roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
(visited on 06/28/2020).

[Fow10] M. Fowler. Richardson maturity model. 2010. url: http://martinfowler.
com/articles/richardsonMaturityModel.html (visited on 06/21/2020).

[FR14a] R. Fielding and J. Reschke. Hypertext transfer protocol (HTTP/1.1): Message
syntax and routing. Tech. rep. RFC 7230, June 2014, 2014.

[FR14b] R. Fielding and J. Reschke. Hypertext transfer protocol (HTTP/1.1): Semantics
and content. Tech. rep. RFC 7231, June 2014, 2014.

[GH13] S. Gregor and A. R. Hevner. “Positioning and presenting design science
research for maximum impact.” In: MIS quarterly (2013), pp. 337–355.

[Gou+02] D. Gourley, B. Totty, M. Sayer, A. Aggarwal, and S. Reddy. HTTP: the
definitive guide. " O’Reilly Media, Inc.", 2002, p. 33.

[Hev+04] A. R. Hevner, S. T. March, J. Park, and S. Ram. “Design science in informa-
tion systems research.” In: MIS quarterly (2004), pp. 75–105.

[Hos+18] M. Hosono, H. Washizaki, Y. Fukazawa, and K. Honda. “An Empirical
Study on the Reliability of the Web API Document.” In: 2018 25th Asia-
Pacific Software Engineering Conference (APSEC). IEEE. 2018, pp. 715–716.

[HS03] D. Hoffman and P. Strooper. “API documentation with executable exam-
ples.” In: Journal of Systems and Software 66.2 (2003), pp. 143–156.

[HSM18] A. Hernandez-Mendez, N. Scholz, and F. Matthes. “A Model-driven Ap-
proach for Generating RESTful Web Services in Single-Page Applications.”
In: MODELSWARD. 2018, pp. 480–487.

[Ini+20] O. Initiative et al. “The OpenAPI Specification.” In: URL: https://github.
com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3, accessed: 14.07.2020
(2020).

[Iye+17] K. Iyengar, S. Khanna, S. Ramadath, and D. Stephens. “What it really takes
to capture the value of APIs.” In: McKinsey & Company (2017).

[Lan04] K. Lane. What Is An API First Strategy? Adding Some Dimensions To This
New Question. 2004. url: https://apievangelist.com/2014/08/11/what-
is-an-api-first-strategy-adding-some-dimensions-to-this-new-
question (visited on 06/03/2020).

[Lau19] A. Lauret. The Design of Web APIs. 1st. USA: Manning Publications Co.,
2019. isbn: 9781617295102.

101

https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html
https://apievangelist.com/2014/08/11/what-is-an-api-first-strategy-adding-some-dimensions-to-this-new-question
https://apievangelist.com/2014/08/11/what-is-an-api-first-strategy-adding-some-dimensions-to-this-new-question
https://apievangelist.com/2014/08/11/what-is-an-api-first-strategy-adding-some-dimensions-to-this-new-question

Bibliography

[Mar19] C. Martraire. Living Documentation: Continuous Knowledge Sharing by Design.
1st. USA: Addison-Wesley Professional, 2019. isbn: 0134689321.

[Mic16] Microsoft. TypeScript Language Specification. 2016. url: https://github.
com / Microsoft / TypeScript / blob / master / doc / spec . md (visited on
06/21/2020).

[MM14] P. W. McBurney and C. McMillan. “Automatic Documentation Generation
via Source Code Summarization of Method Context.” In: Proceedings of the
22nd International Conference on Program Comprehension. ICPC 2014. Hyder-
abad, India: Association for Computing Machinery, 2014, pp. 279–290. isbn:
9781450328791. doi: 10.1145/2597008.2597149.

[MM16] P. W. Mcburney and C. Mcmillan. “An Empirical Study of the Textual
Similarity between Source Code and Source Code Summaries.” In: Empirical
Softw. Engg. 21.1 (Feb. 2016), pp. 17–42. issn: 1382-3256. doi: 10.1007/
s10664-014-9344-6.

[MPD10] M. Maleshkova, C. Pedrinaci, and J. Domingue. “Investigating web apis on
the world wide web.” In: 2010 eighth ieee european conference on web services.
IEEE. 2010, pp. 107–114.

[MS16] B. A. Myers and J. Stylos. “Improving API usability.” In: Communications of
the ACM 59.6 (2016), pp. 62–69.

[NAP18] K. Nybom, A. Ashraf, and I. Porres. “A systematic mapping study on
API documentation generation approaches.” In: 2018 44th Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA). IEEE. 2018,
pp. 462–469.

[Net11] M. D. Network. HTTP Messages. 2011. url: https://developer.mozilla.
org / en - US / docs / Web / HTTP / Overview # HTTP _ Messages (visited on
04/03/2020).

[NM10] S. M. Nasehi and F. Maurer. “Unit tests as API usage examples.” In: 2010
IEEE International Conference on Software Maintenance. IEEE. 2010, pp. 1–10.

[Org19] J. S. Organisation. The home of JSON Schema. 2019. url: https://json-
schema.org/ (visited on 05/13/2020).

[Ove20] S. Overflow. 2002 Developer Survey. 2020. url: https://insights.stackoverflow.
com/survey/2020 (visited on 06/21/2020).

102

https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://doi.org/10.1145/2597008.2597149
https://doi.org/10.1007/s10664-014-9344-6
https://doi.org/10.1007/s10664-014-9344-6
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview#HTTP_Messages
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview#HTTP_Messages
https://json-schema.org/
https://json-schema.org/
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020

Bibliography

[Pez+16] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč. “Foundations
of JSON Schema.” In: Proceedings of the 25th International Conference on
World Wide Web. WWW ’16. Montréal, Québec, Canada: International
World Wide Web Conferences Steering Committee, 2016, pp. 263–273.
isbn: 9781450341431. doi: 10.1145/2872427.2883029.

[Rém15] D. Rémy. “Type Systems for Programming Languages.” Course notes,
available electronically. 2015.

[Ric+13] L. Richardson, M. Amundsen, M. Amundsen, and S. Ruby. RESTful Web
APIs: Services for a Changing World. " O’Reilly Media, Inc.", 2013.

[SAM15a] S. M. Sohan, C. Anslow, and F. Maurer. “Spyrest: Automated restful API
documentation using an HTTP proxy server (N).” In: 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE. 2015,
pp. 271–276.

[SAM15b] S. Sohan, C. Anslow, and F. Maurer. “Spyrest in action: An automated
RESTful API documentation tool.” In: 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE. 2015, pp. 813–818.

[SAM17] S. Sohan, C. Anslow, and F. Maurer. “Automated example oriented REST
API documentation at Cisco.” In: 2017 IEEE/ACM 39th International Con-
ference on Software Engineering: Software Engineering in Practice Track (ICSE-
SEIP). IEEE. 2017, pp. 213–222.

[Sma19] SmartBear Software. State of API 2019. 2019. url: https : / / static1 .
smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_
2019.pdf (visited on 04/01/2020).

[SS15] I. Salvadori and F. Siqueira. “A maturity model for semantic restful web
apis.” In: 2015 IEEE International Conference on Web Services. IEEE. 2015,
pp. 703–710.

[Stu20] P. Sturgeon. There’s No Reason to Write OpenAPI By Hand. 2020. url: https:
//apisyouwonthate.com/blog/theres-no-reason-to-write-openapi-
by-hand (visited on 04/13/2020).

[SW15] P. Suter and E. Wittern. “Inferring web API descriptions from usage data.”
In: 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies
(HotWeb). IEEE. 2015, pp. 7–12.

[Tec18] Techopedia. Abstract Syntax Tree (AST). 2018. url: https://www.techopedia.
com/definition/22431/abstract-syntax-tree-ast (visited on 06/20/2020).

[Tho09] K. Thomas. API-First Design. 2009. url: http://asserttrue.blogspot.
com/2009/04/api-first-design.html (visited on 06/21/2020).

103

https://doi.org/10.1145/2872427.2883029
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://static1.smartbear.co/smartbearbrand/media/pdf/smartbear_state_of_api_2019.pdf
https://apisyouwonthate.com/blog/theres-no-reason-to-write-openapi-by-hand
https://apisyouwonthate.com/blog/theres-no-reason-to-write-openapi-by-hand
https://apisyouwonthate.com/blog/theres-no-reason-to-write-openapi-by-hand
https://www.techopedia.com/definition/22431/abstract-syntax-tree-ast
https://www.techopedia.com/definition/22431/abstract-syntax-tree-ast
http://asserttrue.blogspot.com/2009/04/api-first-design.html
http://asserttrue.blogspot.com/2009/04/api-first-design.html

Bibliography

[TR16] C. Treude and M. P. Robillard. “Augmenting API Documentation with
Insights from Stack Overflow.” In: Proceedings of the 38th International
Conference on Software Engineering. ICSE ’16. Austin, Texas: Association
for Computing Machinery, 2016, pp. 392–403. isbn: 9781450339001. doi:
10.1145/2884781.2884800.

[Wit+17] E. Wittern, A. T. Ying, Y. Zheng, J. Dolby, and J. A. Laredo. “Statically check-
ing web API requests in JavaScript.” In: 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE. 2017, pp. 244–254.

[Zhi+15] J. Zhi, V. Garousi-Yusifoğlu, B. Sun, G. Garousi, S. Shahnewaz, and G.
Ruhe. “Cost, benefits and quality of software development documentation:
A systematic mapping.” In: Journal of Systems and Software 99 (2015), pp. 175–
198. issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2014.09.042.

104

https://doi.org/10.1145/2884781.2884800
https://doi.org/https://doi.org/10.1016/j.jss.2014.09.042

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Objective
	Research Questions
	Research Approach
	Outline

	Foundations
	HTTP
	REST APIs
	REST Constraints
	REST Applied to HTTP
	REST APIs in practice

	JSON(-Schema)
	JSON
	JSON Schema

	OpenAPI Specification (OAS)
	High quality API Documentation
	API-first Design
	Living Documentation

	Related Work
	Generating Documentation from API usage or examples
	UML Representations from OpenAPI Specifications
	Collecting crowdsourced documentation

	Standardized API Reference Documentation using OpenAPI
	Elements of Web API Documentation in Literature
	Specifying Web API Reference Documentation using OpenAPI

	Approaches to generating API Reference Documentation
	Sources of documentation in programs
	(Structured) Comments
	Annotations
	Statements
	Type Systems
	Configuration

	Extracting Documentation
	Extracting Documentation using Reflection
	Extracting Documentation using Abstract Syntax Tree Parsing
	Extracting Documentation from a Type Checker

	Comparison

	Building and integrating an OAS Generation Framework
	Building the OAS
	Operation resolution
	Schema resolution

	Contributions
	Limitations
	Integrating the generated API descriptions into a holistic API strategy
	Documenting the Approach
	Case Study

	Evaluation
	Participants
	Time
	Quality
	Discussion

	Conclusion and Outlook
	Appendix
	Evaluation Instructions
	Initial survey
	Getting familiar with the approaches
	Coding
	Final survey

	TypeScript TypeChecker Type Flags

	List of Figures
	List of Tables
	Listings
	Bibliography

