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Abstract

Innovative technologies have led to enormous growth in the volume and variety of information
being available. The information is stored as large data sets that are often processed in cloud
environments. Organizations leverage the data to improve their products and services and
to gain additional insights, leading to the realization of new economic potentials. However,
when personal data is involved, privacy issues arise. Privacy laws, like the General Data
Protection Regulation, aim to regulate the processing of personal data. Thus, it leads to a
trade-off between the fulfillment of privacy requirements while at the same time enabling the
capabilities of data analytics.

Wrist-worn wearables collect large amounts of highly sensitive health and movement data of
their users. While this data can be used to identify health issues and to enhance the services
offered, the data also poses significant privacy risks. Hence, there is a need to address these
risks appropriately.

This work identifies and evaluates concepts to address the trade-off between an individual’s
privacy and the utility of data by applying de-identification methods. We provide a com-
prehensive overview and classification of applicable de-identification methods and classify
them accordingly. Twelve expert interviews were conducted to derive ten requirements for a
concept for the use-case of wrist-worn wearable data. Furthermore, we propose a local proba-
bilistic k-anonymity concept that involves the local application of de-identification methods
and the calculation of privacy estimates. After elaborating on four different scenarios, we
suggest the formation of privacy clusters that combine users with the same privacy desire as
the most promising approach.
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1. Introduction

1.1. Motivation

"Historically, privacy was almost implicit, because it was hard to find and gather
information. But in the digital world [...] we need to have more explicit rules
[...]" (Gates, 2013).

Advancements in innovative technologies have led to an enormous growth in generated data.
The vast amounts of data serve as the basis for emerging technologies like artificial intelligence,
the Internet of Things, 5G, and Cloud Computing. Organizations and corporations make
use of this data by applying big data analytics to enhance data-driven decision making and
to improve their products and services (Bondel et al., 2020). Therefore, the data is being
entrusted to service providers in the cloud, which enables the creation of new business
opportunities. However, the collection and processing of personal data is also linked to the
issue of privacy (Bondel et al., 2020). Regulations regarding data privacy are being tightened
almost worldwide. The European General Data Protection Regulation (GDPR) is pioneering
in this development. Also, the topic has received increased attention among individuals
through several privacy breaches, e.g., at Dropbox or iCloud, that occurred (Gibbs, 2016;
Lewis, 2014). As a result, people’s privacy is lacking and there is a need to improve such
services.

Wrist-worn wearables like smartwatches do not only provide opportunities for the track-
ing of sports activities. Additionally, individuals can also perform several health-related
measurements. Sensors collect information about a user’s heart rate, blood oxygen satura-
tion, and new devices are even capable of conducting clinically tested ECGs (Bondel et al.,
2020). Health-related data is among the most sensitive data types a human being can reveal.
Hence, lots of sensitive data points are stored and processed on the provider’s side, which
represents a central point of attack. The data is used to detect serious health issues like
cardiac arrhythmia, atrial fibrillation, and sleep apnea of an individual. Additionally, the
service providers use analytics on the aggregated data sets to derive insights in order to
improve their products and services, i.e., to provide users with optimized training and health
recommendations (Bondel et al., 2020). However, the service providers cannot generally be
assumed to be trustworthy and the transfer of data to third-party providers poses a further
risk. As a consequence, there is a substantial trade-off between an individual’s data privacy
and the utility of the data.

To address this trade-off, a concept based on de-identification methods is envisioned. The
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1. Introduction

goal of the application of these measures on wrist-worn wearable data is to ensure analytical
capabilities while at the same time achieving high levels of privacy. Hence, we aim to fulfill
the privacy requirements of an individual while the organizations will benefit from privacy
law compliance and the ability to continuously enhance their products and services.

1.2. Research Questions

To achieve the objectives and address these problems, we aim to answer the research questions
stated in this section. On a high level, the goal of this thesis is to investigate the state of the
art of de-identification methods. Additionally, requirements for the use case of wrist-worn
wearables are examined. These insights are used to develop a concept which enables data
privacy using de-identification methods on wrist-worn wearable data.

RQ 1: What is the state of the art of approaches using de-identification methods for
privacy-enhancing Big Data Analytics and how can they be distinguished from other ap-
proaches?

This research question aims to identify the current state of research in de-identification
methods. Through an extensive literature review, we will contribute with a comprehensive
overview and classification of existing de-identification methods. The benefits, shortcomings,
and possible application scenarios will be investigated for each of these methods. The de-
identification methods will be compared and brought into context with alternative approaches
for the enhancement of privacy in data analytics. Therefore, this research question aims to set
a comprehensive theoretical basis for this work.

RQ 2: What are requirements for privacy-enhancing analytics of wrist-worn wearable data
in the cloud?

This research question is designed to identify requirements for a concept using de-identification
methods targeted explicitly to the use case of wrist-worn wearable data. Therefore, we com-
bine insights derived throughout the literature review alongside with the findings of 12
semi-structured interviews. The interviews will provide practical knowledge and insightful
discussions with experts within the domains of data privacy and data analytics. Specific
requirements will be formulated to serve as the groundwork for the targeted concept.

RQ 3: What are concepts enabling data privacy for wrist-worn wearable data in the cloud
based on de-identification methods?

The third research question aims to result in a concept that facilitates de-identification
methods on wrist-worn wearable data to enhance the data privacy of individuals. Therefore,
we develop and evaluate different concept scenarios within multiple iterations. The results
of the first two research questions are guiding this development. Additionally, a simulation
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approach is proposed to support the evaluation of a local application of de-identification
methods.

1.3. Structure

This section gives an overview of each chapter’s content to facilitate a more structured
understanding for the reader, starting with the second chapter.

Chapter 2: Theoretical Foundations provides an overview of the most relevant terms and
theoretical concepts for this work. A basic understanding of the domains Big Data Analytics
and data privacy is facilitated.

Chapter 3: Related Work introduces related literature that covers similar topics and goals as
this work.

Chapter 4: Research Approach states the research approach that is used as part of this thesis.
The procedure of the literature research and expert interviews are described.

Chapter 5: Approaches for Privacy-enhancing Data Analytics in Cloud Environments
gives an overview and introduction of existing concepts to enhance privacy within cloud
environments.

Chapter 6: De-Identification Methods provides a comprehensive overview and categoriza-
tion of de-identification methods and related privacy models. Each method is described,
analyzed, and classified.

Chapter 7: Use Case of Wrist-Worn Wearable Data describes the specific use case that is
considered in this work. Additionally, a generic data model is developed.

Chapter 8: Requirements for Privacy-Enhancing Analytics of Wrist-Worn Wearable Data
investigates and defines ten concept requirements based on the literature review and expert
interviews.

Chapter 9: Concepts Using De-Identification Methods on Wrist-Worn Wearable Data ex-
plains the development and evaluation of different concepts using de-identification methods
on wrist-worn wearable data. It presents the overall results of this work.

Chapter 10: Conclusion & Outlook summarizes the results of this work based on the research
questions. Finally, related limitations and possible future work are explained.

3



2. Theoretical Foundations

This chapter provides the theoretical foundations for this work and a shared understanding
of specific terminologies. The most important definitions in the areas of Big Data analytics
and data privacy that are relevant for later references are covered.

2.1. Big Data Analytics

2.1.1. Terminology

The term Big Data is used for amounts of data that cannot be processed by traditional
database management systems (Chakraborty & Patra, 2014). This circumstance is due to their
large volume, complexity, and partially non-structured form (R. Lu et al., 2014). Especially
in recent years, Big Data has become popular with technologies like Hadoop, NoSQL, and
MapReduce appearing (Soria-Comas & Domingo-Ferrer, 2016).

The emergence of Big Data mainly started due to its extreme size. Nowadays its characteristics
are often referred to as three to five Vs, which are described below and illustrated in
Figure 2.1 (Dautov & Distefano, 2018). Not all properties need to be satisfied, but some
of them are required for the classification as Big Data (Soria-Comas & Domingo-Ferrer,
2016).

• Volume refers to the large amount of data generated by organizations and individuals (R.
Lu et al., 2014; Soria-Comas & Domingo-Ferrer, 2016).

• Variety describes the proliferation of heterogeneous data forms and formats (Dautov &
Distefano, 2018; R. Lu et al., 2014).

• Velocity refers to the high speed of data generation and processing (Soria-Comas &
Domingo-Ferrer, 2016).

• Veracity is about the trustworthiness and accuracy of Big Data (R. Lu et al., 2014).

• Value describes the ability to transform the data into valuable output (Terzi et al., 2015).

Regardless of the consideration of these five characteristics, one of the biggest challenges of
Big Data lies in its privacy and security (Alloghani et al., 2019; R. Lu et al., 2014). Analytics
of Big Data is often infeasible to be processed locally due to the high costs and computing
powers needed (El-Yahyaoui & Ech-Chrif El Kettani, 2018). For this reason, distributed
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2. Theoretical Foundations

Figure 2.1.: 5 Vs of Big Data
Source: Terzi et al. (2015)

systems and technologies like cloud computing are used extensively (Chakraborty & Patra,
2014; Soria-Comas & Domingo-Ferrer, 2016). This can reduce cost and improve scalability
but also entails critical privacy and security concerns (Domingo-Ferrer et al., 2019; Sidorov
& Ng, 2016). These risks are highly dependent on the respective providers and especially
when personal and sensitive data is stored, one needs to be careful and ensure appropriate
protection measures (R. Lu et al., 2014; Will & Ko, 2015).

2.1.2. Specific Definitions related to Data

Throughout this work, a lot of different terms that are related to data are used. This subsection
serves to provide appropriate definitions. We distinguish between general data related and
specifically personal data related definitions. If possible, the definitions of “ISO/IEC 20889
Privacy enhancing data de-identification terminology and classification of techniques” (ISO,
2018a) are used.

Data related definitions

• Data set / data table: "[...] a collection of records, where each record is comprised of a set
of attributes." (ISO, 2018a, p. 6) (see Table 2.1)

• Attribute: "Each column is called an attribute and denotes a field or semantic category of
information that is a set of possible values [...]." (Sweeney, 2002) (see Table 2.1)

• Attribute value: Each cell of a table is referred to as an attribute value. (see Table 2.1)
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• Record: "Each record is related to one data subject and is composed of a set of values
[...] for each attribute [...]." (Article 29 DP Working Party, 2014, p. 12) (see Table 2.1)

• Numerical data: a value expressed by a number.

• Non-numerical data: a value expressed by characters rather than numbers.

• Categorical data: non-numerical data can take a limited number of values (categories).

• Plaintext: "[...] any information that a sender desires to transfer to a receiver." (Ogburn
et al., 2013)

• Ciphertext: "[...] data that has been encrypted and is unreadable until it has been
decrypted with a key." (Ogburn et al., 2013)

• Data controller: "[...] the natural or legal person, public authority, agency or other body
which [...] determines the purposes and means of the processing of personal data
[...]." (Art. 4 para. 7; European Parliament and Council of the European Union, 2016,
p. 33)

• Adversary / attacker: "[...] a third party (i.e., neither the data controller nor the data
processor) accessing the original records whether accidentally or intentionally." (Article
29 DP Working Party, 2014, p. 12)

Attribute A Attribute B Attribute C
Value A1 Value B1 Value C1
Value A2 Value B2 Value C2
Value A3 Value B3 Value C3

Record

Table 2.1.: Data set example

Personal data related definitions

• Data subject / data principle: identifiable natural person to which the data relates (Euro-
pean Parliament and Council of the European Union, 2016; ISO, 2018a). (see Table 2.2)

• explicit identifier (EI) / direct identifier: "attribute that alone enables unique identification
of a data principal [...]." (ISO, 2018a, p. 2). Examples are the passport number or social
security number. (see Table 2.2)

• quasi identifier (QI): "attribute in a dataset that, when considered in conjunction with
other attributes in the dataset, singles out a data principal." (ISO, 2018a, p. 4) Examples
are attributes like gender, age and the zip code. (see Table 2.2)
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• sensitive attribute (SA): "attribute in a dataset that, depending on the application context,
merits specific, high-level protection against potential re-identification attacks enabling
disclosure of its values, its existence, or association with any of the data principals." (ISO,
2018a, p. 4). Examples for such attributes are health related or financial data (Gerl, 2020,
p. 28). (see Table 2.2)

• non-sensitive attribute (NSA): Attributes that do not belong to the three categories defined
above and are therefore neither identifying nor sensitive (Domingo-Ferrer et al., 2019).

Explicit Identifier A Quasi Identifier B Quasi Identifier C Sensitive Attribute D
Value A1 Value B1 Value C1 Value D1
Value A2 Value B2 Value C2 Value D2
Value A3 Value B3 Value C3 Value D3

Data subject

Table 2.2.: Personal data set example

2.2. Data Privacy

2.2.1. Definition and Differentiation to Security

Before we can discuss data privacy, it is crucial to understand its definitions, implications,
and related terms. We will first have a look at the term security with a particular focus on
information security, which is often seen as the connection between privacy and security.
Then, we present a for this context suitable definition of privacy.

Security can be defined as "[...] a set of measures to ensure that a system will be able to
accomplish its goal as intended, while mitigating unintended negative consequences" (Song
et al., 2018, p. 1). Concerning the IT area, it aims to counter vulnerabilities to software and
hardware like natural disasters, malicious attacks, accidental disruptions, and the unintended
use of computational resources (Hurlburt et al., 2009). Information security, which is a
more specific term, can be considered as the link between privacy and security. It is about
protecting different kinds of information and data from destructive forces and unwanted
actions (Mukherjee et al., 2015). Information security is characterized by three principles
that need to be achieved: confidentiality, integrity, and availability (Domingo-Ferrer et al.,
2019). Together these attributes are also known as the CIA triad and are regarded as the heart
of information security (Song et al., 2018, p. 2). They are the three fundamental elements
of information security and have been widely used and adopted both in practice and in
academic literature (Samonas & Coss, 2014). Figure 2.2 shows a visualization of the CIA triad.
The terms can be defined as follows:

• Confidentiality means that "[...] information is not made available or disclosed to
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unauthorized individuals, entities, or processes" (ISO, 2018b, p. 2). Hence, it implies
full trust and reliance and ensures restrictive access for authorized parties (Samonas &
Coss, 2014; Song et al., 2018).

• Integrity is a "property of accuracy and completeness" (ISO, 2018b, p. 5). It means that
information can only be modified by authorized parties or in authorized ways (Song
et al., 2018, p. 2).

• Availability means to be "[...] accessible and usable on demand by an authorized
entity" (ISO, 2018b, p. 2).

These elements do not only support and shape the theoretical understanding of information
security, they are also often used as a basis for defining privacy rules and for protecting
electronic health information (Samonas & Coss, 2014).

Figure 2.2.: CIA triad
Source: based on Samonas and Coss (2014)

The relation between privacy and security cannot be defined precisely. Hurlburt et al. even
state that there exist different viewpoints on how the two can relate to each other: They
can be interpreted either in an overlapping manner or in such a way that one concept is
trumping the other one (Hurlburt et al., 2009). An often mentioned understanding is that
privacy is seen as an aspect of security because some security methods have a direct effect on
privacy (Song et al., 2018, p. 2). Both - privacy and security - have in common that they deal
with the appropriate use and protection of information. However, their scope and reason of
protection varies widely (Hurlburt et al., 2009; Song et al., 2018).

For the term of privacy, there are a lot of different definitions and interpretations. Two
commonly cited and historical definitions are the following:

• "Privacy is the right to be let alone" (Warren & Brandeis, 1890).

• "Privacy is the claim of individuals, groups or institutions to determine for them-
selves when, how, and to what extent information about them is communicated to
others" (Westin, 1967, p. 7).
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Generally, privacy is often perceived as "[...] freedom from observation, disturbance, or
unwanted public attention [...]" (Song et al., 2018, p. 2). It empowers an individual or a group
of them to limit the level of their self-expression (Song et al., 2018, p. 2). The state of privacy
implies that one might have knowledge about a person’s identity, but without being aware of
any associated personal facts (Jeffrey M. Skopek, 2013, p. 1755). Hence, it can be understood
as a social value (Solove, 2015, p. 79).

However, the usage and interpretation of the term privacy are highly dependent on the context
in which it is used. The scope of the definitions stated above is too broad, and therefore they
are not suitable in our context. For a deeper understanding of privacy, the approaches of
Solove and Wu are more appropriate and described in the following paragraph.

Both authors use a threat-based or attack-based approach to conceptualize privacy. Solove
states that privacy cannot be seen as one single thing. Instead, it is more a combination of
a plurality of many distinct things that are related in different ways (Solove, 2015, p. 74).
Privacy is about identifying and characterizing relevant privacy threats, hence to protect
against a variety of harms and problems (Solove, 2015; Wu, 2012). It then also serves as a
basis for identifying mitigation strategies (Wu, 2012). The resulting (social) value of privacy is
highly dependent on the nature of the problem that is addressed (Solove, 2015, p. 80). The
following two statements illustrate how we will approach privacy in this context:

• Privacy "[...] is defined not by what it is, but by what it is not - it is the absence of a
privacy breach that defines a state of privacy." (Wu, 2012, p. 1147)

• "Privacy is a set of protections against a related set of problems. These problems are not
all related in the same way, but they resemble each other." (Solove, 2015, p. 80)

Thus, it is important to specify what possible privacy breaches are. The problems to be
protected are referred to as privacy properties. An adversary is imagined to attack a system
in order to accomplish a specific goal. In case of success for the attacker, the system does not
sufficiently protect privacy (Wu, 2012). Therefore, privacy is about regulating information
flows, ensuring responsible usage of information, and exercising control over the information
to ensure that respective privacy properties are satisfied (Solove, 2015, p. 73). In the following
Table 2.3, the privacy properties by Deng et al., Bieker et al., and Pfitzmann et al. are compared.
A listing in the same line implies equality or synonymity of the terms.

A total of ten distinct properties were identified. Those properties or protection goals "[...]
represent the perspective of the data subject whose rights are at stake" (Bieker et al., 2016).
Deng et al. even distinguish between hard and software properties, where the first five count
as hard privacy properties and the last two (user content awareness and policy and consent
compliance) are considered to be soft ones. In Table 2.4, the definitions for the different
attributes are stated. Bieker et al. also incorporate the classical information security attributes,
namely confidentiality, integrity, and availability (Bieker et al., 2016). Since they were already
explained in this section, they are not considered in the table.
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Deng et al., 2011 Bieker et al., 2016 Pfitzmann et al., 2010

Unlinkability Unlinkability Unlinkability
Anonymity & Pseudonymity Anonymity & Pseudonymity

Plausible Deniability
Undetectability & Unobservability Undetectability & Unobservability

Confidentiality Confidentiality
User content awareness Transparency

Policy and consent compliance
Intervenability

Integrity
Availability

Table 2.3.: Privacy properties

Term Definition

Unlinkability "[...] of two or more items of interest (IOIs, e.g., subjects, messages, actions, ...)
from an attacker’s perspective means that within the system [...], the attacker
cannot sufficiently distinguish whether these IOIs are related or not" (Pfitzmann
et al., 2010)

Anonymity "[...] of a subject from an attacker’s perspective means that the attacker cannot
sufficiently identify the subject within a set of subjects, the anonymity set" (Pfitz-
mann et al., 2010)

Pseudonymity "[...] is the use of pseudonyms as identifiers" (Pfitzmann et al., 2010)
Plausible
Deniability

"[...] from an attackers perspective means that an attacker cannot prove a user
knows, has done or has said something" (Deng et al., 2011)

Undetectability "[...] of an item of interest (IOI) from an attacker’s perspective means that the
attacker cannot sufficiently distinguish whether it exists or not" (Pfitzmann et al.,
2010)

User content
awareness

"[...] is proposed to make sure that users are aware of their personal data and that
only the minimum necessary information should be sought and used to allow
for the performance of the function to which it relates" (Deng et al., 2011)

Policy and
consent
compliance

"[...] requires the whole system [...] as data controller to inform the data subject
about the system’s privacy policy, or allow the data subject to specify consents in
compliance with legislation, before users accessing the system" (Deng et al., 2011)

Transparency "[...] means that the data subjects have knowledge of all relevant circumstances
and factors regarding the processing of their personal data" (Bieker et al., 2016)

Intervenability "[...] entails the control of the data subjects, as well as the controller or supervisory
authority over the personal data" (Bieker et al., 2016)

Table 2.4.: Privacy property definitions
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2.2.2. Regulations

The concepts of two regulations related to data privacy are illustrated in this subsection. We
look at the General Data Protection Regulation (GDPR), as it is the most important one within
the European Union, and the Health Insurance Portability and Accountability Act (HIPAA),
as it is a very practical and often cited regulation from the US.

There are other relevant regional regulations regarding data privacy such as the German
Federal Data Protection Act and the Clarifying Lawful Overseas Use of Data Act in the US.
Due to time constraints and their limited direct implications on this work, we will not further
elaborate these.

General Data Protection Regulation (GDPR)

The GDPR came into force in 2018. It has the goal of unifying personal data protection within
the whole European Union (Tamburri, 2020). The most relevant articles and principles are
summarized in the following paragraphs.

Article 5 specifies that personal data shall follow the seven key principles (a) lawfulness,
fairness and transparency, (b) purpose limitation, (c) data minimization, (d) accuracy, (e)
storage limitation, and (f) integrity and confidentiality (Art. 5 para. 1, European Parliament
and Council of the European Union, 2016, p. 36).

Article 9 prohibits the processing of special categories of personal data which reveal infor-
mation about racial/ethnic origin, political opinions, religious/philosophical beliefs, mem-
berships, genetic/biometric/health data or sexual orientation. This prohibition is lifted if (a)
the data subject gives explicit consent for the processing, (g) the processing is in substantial
public interest or (h) the processing serves medical or health care purposes (Art. 9 para. 1/2,
European Parliament and Council of the European Union, 2016, p. 38).

Article 20 gives an individual the right to receive his or her personal data that was provided
to a controller (Art. 20 para. 1, European Parliament and Council of the European Union,
2016, p. 45).

Article 25 incorporates the two principles of privacy by design and privacy by default. Privacy
by design means that a data controller should "[...] implement appropriate technical and
organizational measures [...], which are designed to implement data-protection principles
[...], in an effective manner [...] in order to [...] protect the rights of data subjects." (Art. 25
para. 1, European Parliament and Council of the European Union, 2016, p. 48) Privacy by
default specifies that such measures process, by default, only necessary data with regards to
the amount of data, the extent of processing, the storage period, and the accessibility (Art 25
para. 2, European Parliament and Council of the European Union, 2016, p. 48).

Article 32 states that appropriate technical and organizational measures shall be implemented
to ensure a level of security and privacy appropriate to the risk (Art 32 para. 1, European
Parliament and Council of the European Union, 2016, p. 51).
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Article 35 describes that a data protection impact assessment needs to be carried out in case
the processing can result in a high risk to an individual’s rights and freedoms (Art 35 para. 1,
European Parliament and Council of the European Union, 2016, p. 51).

Health Insurance Portability and Accountability Act (HIPAA)

Health Insurance Portability and Accountability Act (HIPAA) is a health-related regulation in
the US which was introduced in 1996 and led to initial challenges for everyone processing
health data (Alshugran et al., 2015; Pentecost, 2004; Schoppmann & Sanders, 2004). It is
especially popular due to the HIPAA Safe Harbor provision which defines 18 attributes that
need to be removed or altered in health data (Prasser et al., 2018; Wu, 2012). However, it
is also often criticized as it does not take into account other available data and advanced
re-identification methods (Nelson, 2015). The respective attributes are the following: (1)
names, (2) geographic divisions smaller than state, except 3 digit zip codes, (3) dates of birth,
death, admission, and ages greater than 89 years, (4) Driver’s license or car license numbers,
(5) social security numbers, (6) numbers of medical records, (7) health plan numbers, (8)
account numbers, (9) phone numbers, (10) fax numbers, (11) e-mail addresses, (12) license
numbers, (13) vehicle identification numbers, (14) medical device or serial numbers, (15)
internet URLs, (16) IP addresses, (17) biometric identifiers and (18) any other unique identifier,
characteristic, or code (Lavin, 2006).

2.2.3. Data Privacy in Practice

The implementation of data privacy in practice is often challenging as one is likely to
underestimate the risk. In 2000, it was shown that around 87% of all US citizens could be
uniquely identified only by knowing the ZIP code, the date of birth and the gender of a
person (Sweeney, 2000). Sweeney also used these attributes to link a medical data set that
was published for research purposes and a purchasable voting list of a city in Massachusetts.
The combination is illustrated in Figure 2.3. As a result, the disclosure of sensitive health data
for particular individuals was facilitated (Sweeney, 2000). It shows that only a few detailed
characteristics are needed to identify a person.

The number of data breaches in general, but also regarding health data, is growing. This is
mainly due to the sharing of data for research purposes (Prasser et al., 2018). Two popular
privacy breaches with large corporations involved are the ones from AOL and Netflix. In
2006, AOL released a dataset containing 20 million search queries for 650,000 users collected
over three months. Identifying attributes were replaced with a unique identification number.
It led to the identification and location of users as researchers were able to correlate different
search terms to individuals (Article 29 DP Working Party, 2014; Ohm, 2009). In the same year,
Netflix published data about more than 100 million movie ratings by 500,000 users as part
of a recommendation system contest. Only the movie names, the rating values, the dates of
rating, and the respective user ids were released with some noise added on top. However,
researchers were still able to identify 99% of the users just be knowing eight ratings and the
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Figure 2.3.: Linking of medical data and voter list
Source: Sweeney (2000)

corresponding dates (Article 29 DP Working Party, 2014; Ohm, 2009; Wu, 2012). These two
examples show that personal information is increasingly exposed to purposes that are useful
in a particular way (Solove, 2015; Wu, 2012). This leads us to the content of the following
subsection.

2.2.4. Privacy vs. Utility

Privacy and utility are two important elements that need to be considered regarding a data
set. The utility represents the usefulness of a data set for a specific purpose (Gerl, 2020,
p. 45). In an ideal case, a data set would allow a maximum of analytical functions while at
the same time achieving a high level of privacy. However, the two goals are in tension with
each other, and there needs to be a balance between them (Venkataramanan & Shriram, 2016,
p. 16). Some argue that they are fundamentally incompatible with each other, while others
say that both can simultaneously be achieved when undertaking the correct actions (Wu, 2012,
p. 1117). This trade-off is, along with the performance, also often seen as a key problem for
cloud service providers (Will & Ko, 2015). Figure 2.4 visualizes an exemplary dependency
between privacy and utility.

It is illustrated that an increase in privacy generally leads to a decrease in utility. Different
types of functions have different effects on the two variables, which leads to varying gradients
in the displayed curve. In a cryptographic function, the privacy and utility are either zero or
one, whereas other anonymization methods lie in between (Wu, 2012, p. 1125). Therefore, the
anonymization process of data can be seen as a constrained optimization problem which, if
designed properly, leads to a reasonable balance between these two goals (Venkataramanan &
Shriram, 2016, p. 17).

The value of utility itself can be measured in various ways. A decision for one should
always be dependent on the context (Wu, 2012, p. 1117). Existing utility measures are
for example generalization height, discernibility metric, average locations appearance ratio,
average relative error, pairs lost, accuracy, completeness, entropy, ambiguity, and normalized
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Figure 2.4.: Trade-off between privacy and utility
Source: Venkataramanan and Shriram (2016, p. 16)

average equivalence class size (Gerl, 2020; Machanavajjhala et al., 2007; Prasser et al., 2018;
Terrovitis et al., 2017; Tomashchuk et al., 2019).
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In this chapter, we introduce previous work with topics and goals that are similar or related
to ours.

De-identification overviews: In 2014, the Article 29 DP Working Party published the “Opin-
ion 05/2014 on Anonymisation Techniques” where existing anonymization techniques were
analyzed regarding three risk criteria. The publication compares the strengths and weak-
nesses of single techniques to recommendations for an adequate anonymization process in a
given context (Article 29 DP Working Party, 2014). The "ISO/IEC 20889" is the official ISO
standard for privacy-enhancing data de-identification techniques. It provides a terminology
and classification of different methods but does not offer much practical guidance on how
and when to apply them.

De-identification approaches: Next to these overviews, there also exist concepts and ap-
proaches similar to the one we aim for. Kim et al. developed methods to collect sensitive health
lifelogs from a smartwatch in a privacy-protecting manner. A histogram-based data collection
approach and a concept using local differential privacy are proposed and implemented (Kim
et al., 2019). Terrovitis et al. present four approaches to preserve privacy in the publication of
location sequences captured by credit cards. Suppression and splitting techniques are used to
prevent privacy breaches while enabling aggregated analysis (Terrovitis et al., 2017). Related
to that, Y. Li et al. developed an algorithm based on differential privacy for transit smart card
data to eliminate privacy concerns on published data (Y. Li et al., 2020). Prasser et al. propose
a de-identification solution for high-quality health data in data sharing environments. The
authors use suppression and generalization methods to protect an individual’s privacy by
focusing on the restriction of unique data characteristics (Prasser et al., 2018). A privacy-
preserving outsourced calculation toolkit named Pockit is using homomorphic encryption
schemes to let data owners outsource their data to cloud storage (Liu et al., 2019). Chatfield
et al. presented a tool specifically designed for the US regulation HIPAA. The ARX Data
Anonymization Tool is a popular open-source software for the application of de-identification
methods. In their paper, Prasser et al. describe the current development state of this tool,
practical experiences they have encountered and the remaining issues and challenges they are
facing (Prasser et al., 2020).
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4. Research Approach

This chapter describes the research approach used in this work to solve the proposed research
questions. The theoretical basis was set throughout an extensive literature review. Further,
we conducted semi-structured interviews with experts in the domains data privacy and
data analytics to elicit requirements in chapter 8. Using these findings, we developed a
privacy-enhancing concept for wrist-worn wearable data. The development, refinement, and
validation of the concept, as it is described in chapter 9, was developed in multiple iterations
supported by discussions with three researchers in this area.

4.1. Literature Research

The research part of this work was conducted as an extensive literature review. The main
areas being covered though the review were existing methods and approaches for privacy-
enhancing data analytics, privacy models, de-identification methods, the processing and
protection of health-related data, and models to evaluate privacy risks. Therefore, we
searched the following databases:

• ScienceDirect

• IEEE Xplore Digital Library

• Web of Science

• ACM Digital Library

• SpringerLink

Additionally, we also considered cited literature from the papers that were identified. The
literature research was primarily used for chapter 5 and chapter 6, partially also for chapter 7
and chapter 8.

4.2. Expert Interviews

The goal of this section is to explain the qualitative data collection approach used in the
expert interviews and to provide an overview of the consulted interview partners.
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The expert interviews are based on the approach of Gläser and Laudel (2009). The authors
propose to guide through the interview with a pre-defined catalog of questions based on the
research questions. The approach consists of recording and transcribing the interviews as
well as the subsequent analysis. As part of this work, we used a semi-structured interview
guide based on our research questions.

The interview guide (Appendix B) starts with a general introduction to the thesis topic and
the request for consent to record the interview. Then the role of the interviewee within his/her
organization and his/her relevant experience are examined. The central part consists of five
open questions. The goal is to derive requirements, practical insights, and implications for the
described concept for the application of de-identification methods on wrist-worn wearable
data. Hence, it targets the second and third research question. We aim to understand how data
privacy is handled within different organizations, how risks can be identified and evaluated,
and which measures are taken to mitigate them. Application potentials of de-identification
methods and the interviewee’s view on our use case are also investigated. The interviews
close with further remarks on the topic and a discussion.

A total of 12 interviews were conducted over a period of about one month. The interviewees
are from nine different companies with a broad and diverse range in terms of their number
of employees. They serve different roles in their organizations, but all with close touching
points to the areas of data privacy or information security. Among them are employees from
specific data privacy departments, data analysts with a focus on privacy as well as consultants
in these domains. In three cases, the interview partners were able to point to other people
in their organization with relevant experience in the investigated areas. All 12 interview
partners agreed to be recorded, and therefore all interviews could be transcribed. On average,
an interview lasted about 40 minutes. Table 4.1 gives an overview of the interviewees. We
use the ID in the first column to refer to specific interviewees from now one.
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ID Role
Relevant experience

(in years)
No. of

employees
Duration

(hh:mm:ss)

I1 Consultant Data Privacy & Information
Security

>5 1-10 01:04:02

I2 Consultant Data Security & Data Privacy 13 1-10 00:56:49
I3 Head of Data Privacy 20 10,001-50,000 00:28:23
I4 Managing Director & Lawyer 11 1-10 00:42:57
I5 Researcher Digital Health 2 11-50 00:28:13
I6 Data-driven Development & Data Pri-

vacy Expert
8 >100,000 0:33:43

I7 Information Security Officer & Data Pro-
tection Officer

20 10,001-50,000 00:35:51

I8 Head of Data Privacy 23 >100,000 00:39:57
I9 Head of Data Privacy 19 >100,000 00:28:58

I10 Consultant Data Privacy 7 51-250 00:34:30
I11 Chief Information Security Officer 8 251-1,000 00:32:55
I12 Key Expert Data Privacy 6 >100,000 00:52:21

Table 4.1.: Interview participants
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5. Approaches for Privacy-Enhancing Data
Analytics in Cloud Environments

This chapter provides an overview of existing approaches that support the enhancement
of privacy for Big Data analytics in cloud environments. In the literature, such approaches
are often referred to as privacy-enhancing technologies (PETs) (Heurix et al., 2015). We
will introduce such technologies, demonstrate how they can be distinguished from de-
identification methods, and illustrate why we focus on the latter.

5.1. General Overview

An overview of relevant approaches is provided in Figure 5.1, divided into two categories.
Data-centric techniques relate directly to the data they protect and therefore enforce changes
in storage or computation of that data (Grandison et al., 2017; Mansfield-Devine, 2014).
Indirect methods, on the other hand, imply changes on an infrastructure level. The four
different techniques will be described along with its advantages and shortcomings in the
following subsections.

Figure 5.1.: Approaches for privacy-enhancing data analytics

5.2. Secure Multi-Party Computation

Secure multi-party computation (MPC) is a subfield of cryptography that deals with compu-
tations of combined data while preventing the different parties to reveal their private input.
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Such calculations are possible through the distribution of encrypted messages (shares) among
the parties, which make it possible to derive correct results without sharing sensitive data
between the parties (McWaters et al., 2019; UN Global Working Group, 2019). Therefore,
a trusted intermediary is not needed anymore (The Royal Society, 2019). The technology
was classified into data-centric as well as indirect methods because infrastructural changes
are needed and specific data needs to be passed. The complete logic behind MPC is rather
complex, but Figure 5.2 illustrates a conceptualization of this technique where three parties
share messages with each other to calculate the overall average of their salary.

Figure 5.2.: Secure multi-party computation
Source: McWaters et al. (2019)

MPC allows the joint computation on sensitive data without the need to trust in third parties
as only the results are revealed. However, these computations can be relatively expensive,
but the times are currently significantly increasing with further developments. Right now,
a slowdown factor of about 10,000 can be estimated, dependent on the operation. The
communication costs for the exchange of messages must also be taken into account because
the parties need to communicate with each other (McWaters et al., 2019; UN Global Working
Group, 2019).

5.3. Trusted Execution Environments

Trusted Execution Environmentss (TEEs) are a fully hardware-based approach and are
therefore part of the indirect technologies. A TEE is an isolated part of a processor that is also
known as an enclave (The Royal Society, 2019). This part is designed such that the rest of
the system cannot access it to provide confidentiality. The memory or execution state is not
visible to other processes on the processor such that the data in the TEE does not need to be
encrypted, and a secure computation capability is provided. As a result, a secret code can be
executed isolated from the rest of the system and in a privacy-preserving manner (UN Global
Working Group, 2019).

TEEs are used to outsource computations to a server or cloud environment without the need
for cryptographic solutions and therefore without loss of information and utility (The Royal
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Society, 2019). However, one needs to fully trust the hardware when it comes to potential
errors and security vulnerabilities. The immunity of such side-channel attacks can be difficult
to prove (Papadimitriou et al., 2016).

Commercial solutions of TEEs are widely available today (Papadimitriou et al., 2016). Com-
mon practical implementations are ARM Trustzone1, Intel Software Guard Extensions2, Intel
Trusted Execution Technologie3, IBM Secure Execution4, and AMD Secure Processor5.

5.4. Data Splitting

Data splitting is a technique that involves fragmenting sensitive data into chunks that are
stored in separate locations. The splitting is done in a way such that single parts do not
disclose identities or reveal sensitive information (Domingo-Ferrer et al., 2019; Sánchez &
Batet, 2017). This approach facilitates storage distribution through multi-cloud environments
and therefore minimizes the consequences a potential data leakage can have (Alqahtani &
Sant, 2016; Sánchez & Batet, 2017). The metadata containing the splitting criterion and the
storage locations needs to be stored in a trusted database. Figure 5.3 shows an exemplary
workflow for data splitting including this metadata in a multi-cloud scenario (Domingo-Ferrer
et al., 2019).

Figure 5.3.: Data splitting workflow
Source: Domingo-Ferrer et al. (2019)

By distributing to multiple cloud environments, issues regarding the file size are avoided and
load balancing is facilitated (Alqahtani & Sant, 2016). No information loss occurs and lots
of computational functionalities are supported by transferring the queries to the different
storage locations (Sánchez & Batet, 2017). However, the metadata storage represents a

1https://www.arm.com/why-arm/technologies/trustzone-for-cortex-a
2https://www.intel.de/content/www/de/de/architecture-and-technology/software-guard-extensions.html
3https://www.intel.de/content/www/de/de/support/articles/000025873/technologies.html
4https://developer.ibm.com/blogs/technical-overview-of-secure-execution-for-linux-on-ibm-z
5https://www.amd.com/en/technologies/security
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single point of failure and attack, as it is a requirement for accessing and reconstructing the
data (Domingo-Ferrer et al., 2019).

5.5. De-Identification

De-identification methods are methods to transform a data set with the goal to preserve an
individual’s privacy while at the same time maintaining as much analytical functionalities
as possible (Tomashchuk et al., 2019). They will be analyzed in detail in the following
chapter.

We focus on de-identification methods as they are the only full data-centric approach that was
obtained in this overview. Therefore, it does not require a direct change of the infrastructure,
and the cloud providers do not need to be trusted. They can realize multiple levels of security
and privacy, which we will elaborate as part of this work.

Several tools for de-identification methods exist. Their application is, however, always very use
case dependent. Such open-source tools are ARX Data Anonymization6, UTD Anonymization
ToolBox7, µ-ARGUS8, τ-ARGUS9 and sdcMicro10. Commercially offered products are Privacy
Analytics Eclipse11 , Google Cloud Healthcare API12, Anonos BigPrivacy13, IBM InfoSphere
Optim Data Privacy14, IBM Guardium Data Protection15, Data Masking by DataSunrise16,
Oracle Data Masking and Subsetting Pack17, and Informatica Data Masking18.

6https://arx.deidentifier.org
7http://www.cs.utdallas.edu/dspl/cgi-bin/toolbox
8http://research.cbs.nl/casc/mu.htm
9http://research.cbs.nl/casc/tau.htm

10https://github.com/sdcTools/sdcMicro
11https://privacy-analytics.com/software/privacy-analytics-eclipse
12https://cloud.google.com/healthcare
13https://www.anonos.com/bigprivacy
14https://www.ibm.com/products/infosphere-optim-data-privacy
15https://www.ibm.com/products/ibm-guardium-data-protection
16https://www.datasunrise.com/data-masking
17https://www.oracle.com/de/database/technologies/security/data-masking-subsetting.html
18https://www.informatica.com/products/data-security/data-masking.html
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6. De-Identification Methods

The following chapter deals with different types of de-identification methods. First, the term
itself is defined and delimited from other terms. Then, a general review of methods in the
existing literature is pursued. As a result, this chapter provides a comprehensive overview
and categorization of applicable de-identification methods and their corresponding privacy
models.

6.1. Definition & Terminology

In the existing literature, there is no unified and consistent definition of the term de-
identification. Also, the term is often used together and sometimes interchangeably with
data anonymization and pseudonymization. These all describe similar concepts about a process
or action to bring data in a more anonymous or pseudonymous state (Tomashchuk et al.,
2019). However, there is no agreed-upon consensus about their relation.

De-Identification A commonly used definition for the term de-identification is that it refers
to a process of removing the associations between

• "[...] a set of identifying attributes [...] and the data principal" (ISO, 2018a, p. 2)

• or "[...] data and identifying elements of individual data subjects." (Tomashchuk et al.,
2019, p. 63)

The data principal (or data subject) describes the person to whom the data refers. Identifying
attributes in this context refer to direct identifiers and quasi identifiers as they were defined
in subsection 2.1.2. The general objective of de-identification is to preserve the privacy
of those individual data subjects, hence to minimize the risk of unintended identity and
information disclosure (Nelson, 2015; Tomashchuk et al., 2019). It is important to understand
that de-identification does not only describe one single method or technique. It is more a
broad "[...] collection of approaches, algorithms, and tools that can be applied to different
kinds of data with differing levels of effectiveness" (Garfinkel, 2015, p. 1). These methods
serve to modify data such that the vulnerability of re-identification attacks is reduced. They
also help to achieve different privacy requirements, which are often represented in privacy
models (Tomashchuk et al., 2019). Hence, those models (see section 6.3) are closely related
to the application of de-identification methods. Generally, one can say a more aggressive
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application of the methods leads to improved privacy protection, but also less remaining
utility in the resulting dataset (Garfinkel, 2015, p. 1).

Data anonymization The term data anonymization sometimes is used as an interchangeable
synonym for de-identification. Hence, the same definition as illustrated in the last paragraph is
applied. In contrast to that, other researchers define data anonymization as a real subset and
specific kind of de-identification (Garfinkel, 2015; Tomashchuk et al., 2019). In that case, the
additional condition of irreversibility is included, which indicates that the process cannot be
reversed and the data cannot be re-identified. Two exemplary definitions for the latter case
are as follows:

• "[...] data anonymization irreversibly masks data in a privacy-preserving way" (Domingo-
Ferrer et al., 2019, p. 43)

• anonymization is a "[...] process by which personal data [...] is irreversibly altered in
such a way that a data subject can no longer be identified directly or indirectly, either
by the data controller alone or in collaboration with any other party" (ISO, 2017, p. 2)

The usage of the terms irreversibility and reversibility however also depends on how it is defined
and interpreted. This is why the second definition above explicitly describes irreversibility
as a measure to disallow the controlled re-identification, including the combination with
other parties or data sources (ISO, 2018a, p. 31). The application of a definition like this is
somewhat subjective because one can not always say for sure that re-identification is not
possible anymore since one might not be aware of all combinable datasets. In contrast to
that, irreversibility can also relate to the property of mathematical functions. In this case, the
definition focuses only on the functionality of the method itself and not on the output and its
identifiability.

Pseudonymization The usage of the term pseudonymization and especially its relation to the
previously described terms are also not consistent in the existing literature. In some contexts,
pseudonymization is treated equivalently to de-identification itself (Garfinkel, 2015, p. 2). Others
describe it as a specific subset of anonymization "[...] that both removes the association with a
data subject and adds an association between a particular set of characteristics relating to the
data subject and one or more pseudonyms" (ISO, 2017, p. 6). Yet others refer to it as not being
a subtype of anonymization and merely reducing the possibility to link data with the original
identity of data subjects (Article 29 DP Working Party, 2014, p. 3). A for this work suitable
and comprehensive definition is the following: "Pseudonymization means the processing
of personal data in such a manner that the personal data can no longer be attributed to a
specific data subject without the use of additional information [...]" (European Parliament
and Council of the European Union, 2016, p. 33).
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Masking Another terminology that needs to be considered in this context is the term masking
or data masking. Generally, masking means to modify data based on predetermined rules
(like transformation algorithms). The objective of this technique is to retain the structure and,
therefore, the functional usability of the data, as far as it is possible (Nelson, 2015). Masking
is an irreversible process because the data can be transformed only in one way (Meunier
et al., 2019). The most widely used example is to mask a credit card number by replacing
several digits with Xs (e.g. 1234 5678 1234 5678 -> XXXX XXXX XXXX 5678). Nelson states
that de-identification methods can generally be described as masking methods (Nelson, 2015,
p. 15).

Implications for this work As shown at the beginning of this section, the terms de-
identification, data anonymization, and pseudonymization cannot be distinguished from each
other in a unified way in the existing research. Because of these inconsistencies, we use
a combination of the approaches of Garfinkel and Tomashchuk et al. with the following
criteria:

• Firstly, we use the term de-identification as a "[...] concept of a higher level, which covers
both anonymization and pseudonymization [...]" (Tomashchuk et al., 2019). The term
therefore describes and comprises all concepts which were mentioned in this section.
Hence, each method that falls under the scope of either one of the concepts is considered
as a de-identification method.

• Secondly, we avoid the terms data anonymization and pseudonymization except for in
this section. Instead, only the term de-identification is used with its generic meaning
explained above.

• Thirdly, within the definition of de-identification methods, we do not use the term of
irreversibility, such that the methods are not restricted and can be taken into account in
a broad context.

Summarizing these criteria, the following overall definition is used within the scope of this
work:

A de-identification methods is a "method for transforming a dataset [...] with the
objective of reducing the extent to which information is able to be associated with
individual data principals [...]" (ISO, 2018a, p. 2).

6.2. General Overview

To obtain a general overview of existing de-identification methods, an extensive literature
review was performed. The goal of this review was first to identify different methods in the
existing literature and then to categorize and cluster them. As a result, we will provide a
comprehensive overview of available methods and their application scenarios. As an initial
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step of the literature review, the following databases were searched for overviews of methods
within the area of de-identification, data anonymization, and pseudonymization:

• ScienceDirect

• IEEE Xplore Digital Library

• Web of Science

• ACM Digital Library

• SpringerLink

As a result, seven different sources were identified. They are listed in Table 6.1 below,
indicating the term they are referring to. The ID value in the first column serves as an
identifier of the source for the following table. These sources are the starting point for the
subsequent categorization of de-identification methods.

ID Source Term referred to

1 Domingo-Ferrer et al., 2019 Data anonymization
2 Mansfield-Devine, 2014 Data masking
3 Nelson, 2015 De-identification
4 Tomashchuk et al., 2019 De-identification
5 Article 29 DP Working Party, 2014 Anonymization techniques
6 Bourka and Drogkaris, 2018 Pseudonymization techniques
7 ISO, 2018a De-identification

Table 6.1.: Identified sources for overviews of de-identification methods

In the next step, the mentioned sources were analyzed with regard to the different methods
they are describing. Table 6.2 denotes an overview of the sources and their corresponding
methods. The first column indicates the ID of the source, which can be mapped to Table 6.1.
The header row shows the names of the methods as they are used in the literature. Techniques
that are already described as synonyms in one paper are summarized in one field (e.g. general-
ization and global recoding). We use the term creating pseudonyms instead of pseudonymization
to prevent misleading regarding the definitions stated earlier in this chapter. Also, terms that
are used to define categories or to cluster multiple methods are not considered since they do
not represent an applicable method for themselves. An X indicates whether the method is
covered in the corresponding source using the specified term. However, this table does not
take method overlaps and equivalences into account. Hence, it solely showcases which source
paper references which methods.

In order to enable a clean classification, a set of distinct techniques needs to be created. To
further summarize the listed terms, we determine appropriate exclusions, synonyms and
variants.

The method anatomization, which refers to data splitting, does not provide any value for
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(1) X X X X X X
(2) X X X X X X
(3) X X X X X X X X X X X X X X X X
(4) X X X X X X X
(5) X X X X X
(6) X X X X X X
(7) X X X X X X X X X X X X X X X X X

Table 6.2.: Overview of de-identification methods in existing research

reducing the association of information with individual data subjects for itself. This is
because different access rights need to be assigned to the split tables. Hence, we also exclude
anatomization in the context of this consideration. Differential privacy is also listed in two
of the sources. However, we refer to it as a privacy model (see section 6.3) and not as a
de-identification method itself.

The methods in Table 6.2 were investigated with regard to their overlap with the objective
to derive synonyms and variants. As a result, 15 unique de-identification methods were
identified. The following Table 6.3 shows these methods and specifies the term we will be
using from now on (first column), the synonyms for each method, and possible variants. The
table contains all terms out of Table 6.2 besides blurring, masking, and perturbation. These
cannot be unambiguously allocated to one of these methods and instead serve as synonyms
for multiple methods. As a result, they were omitted in order to avoid confusion.

To achieve a meaningful categorization, the methods were examined concerning different
characteristics. First of all, we use the classification approach of Domingo-Ferrer et al. to
distinguish between perturbative and non-perturbative methods. Non-perturbative methods
do not alter the truthfulness of the original data but instead reduce their accuracy. Whereas,
the resulting data of perturbative methods is not truthful in general but statistical properties
of the original data may be preserved. (Domingo-Ferrer et al., 2019) A method can always be
assigned to one of them. Hence, one is either perturbative or non-perturbative. Additionally,
the applicability of the techniques on numerical and on categorical (non-numerical) data is
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Method Synonyms Variants

(Sub-) Sampling - -

Suppression Nulling out
Local (cell) / global suppression,

record / attribute suppression (redaction)
Generalization Recoding Local / global generalization

Rounding - -
Top and bottom coding - -

Noise addition Variance masking -
Data swapping Shuffling, Permutation -

Microaggregation Averaging -
Randomization Substitution, Encoding -

Character masking - -
Creating pseudonyms Pseudonymization -
Character scrambling - -

Truncation - -
Deterministic encryption - Order- / format-preserving encryption

Homomorphic encryption - -

Table 6.3.: Synonyms and variants of de-identification methods

assessed. Table 6.4 shows the respective results. An X means the method is always applicable
to that data type. An (X) indicates that the method is not always or only with difficulty
applicable in that case. Lastly, a - shows that the respective method is not applicable at
all.
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Perturbative (P)
N N N N N P P P P N P P N P P

Non-perturbative (N)

Numerical data X X X X X X X X X X X X X X X

Categorical data X X X - (X) (X) X (X) X X X X X X X

Table 6.4.: Classification of de-identification methods
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Based on the information in Table 6.4, the 15 identified de-identification methods were
classified. The final result is displayed in Figure 6.1. This classification approach is the result
of multiple iterations and discussions with three researchers. The perturbation characteristic
serves as input for the two main categories in which the methods are placed. Furthermore,
four subcategories, which are independent of the perturbation category, were derived. They
are defined as follows:

• Data type independent methods can be applied to any type of data.

• Numerical methods are always applicable to numerical data, but not or only partially
to categorical data.

• Deletion classifies methods that incorporate the removal of values.

• Generalizing methods describe methods that reduce the accuracy and granularity of
values.

An interesting finding is that there are no methods that are only applicable to categorical
data. Thus, all methods can be applied to numerical values.

Figure 6.1.: Classification of de-identification methods
Source: Bondel et al. (2020)
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6.3. Privacy Models

Privacy models aim to mathematically conceptualize privacy for data sets. The models specify
conditions and requirements the data set must satisfy to control disclosure risks. They do
not determine specific transformations (Soria-Comas & Domingo-Ferrer, 2016). Thereby,
they guarantee the privacy of individuals to a certain degree and preserve utility at the
same time (Gerl, 2020, p. 38). By using such models, one "[...] may obtain a clearer idea on
the type and level of protection achieved for the data outsourced to the cloud, no matter
their size, type or structure." (Domingo-Ferrer et al., 2019) The literature proposes several
different privacy models. The most cited and used ones, being k-anonymity, l-diversity,
t-closeness, and differential privacy, will be further explained in this work. For each model,
we describe the general definition, provide an example showing the achievable value, and
state the shortcomings of the approach.

6.3.1. k-anonymity

K-anonymity was published as one of the first formal privacy protection models by Sweeney
in 2002. The author itself defines the model as follows:

"A release provides k-anonymity protection if the information for each person
contained in the release cannot be distinguished from at least k-1 individuals
whose information also appears in the release." (Sweeney, 2002)

This definition focuses solely on people, but the concept can generally be applied to every kind
of record within data tables. It implies the requirement that every combination of values of
the quasi-identifiers appears at least k times in the whole table (Machanavajjhala et al., 2007).
When fulfilling this criterion, a data set is denoted as k-anonymous (Gerl, 2020, p. 39). The
set of records with the same values of quasi identifiers (whose minimum size is k) is referred
to as an equivalence class (ISO, 2018a; Soria-Comas & Domingo-Ferrer, 2016). The model
intends that each record can hide within a group of records, its equivalence class. A potential
adversary can never narrow down the set of records to less than k elements (Domingo-Ferrer
et al., 2019; Wu, 2012). Thus, the higher the k, the higher is the achieved privacy level. To
achieve k-anonymity on a data set, the application of different transformation methods is
required. The de-identification methods are described more precisely in the following sections
of this chapter.

Table 6.5 illustrates an example of k-anonymity applied on a data table. The left side shows
the original raw data table with the ZIP code, the age, and the nationality as the non-sensitive
quasi identifiers and the health condition as the corresponding sensitive attribute. In this
table, each record is unique. The table on the right-hand side shows the transformed data
set fulfilling the k-anonymity constraint with k=4. Hence, the table is 4-anonymous. Each
record now cannot be distinguished from three other records by only looking at the quasi
identifiers.

The main advantage of k-anonymity is protection against identity disclosure. Due to the
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Non-sensitive QI Sensitive
Zip

Code
Age

Natio-
nality

Condition

13053 28 Russian Heart Disease
13068 29 American Heart Disease
13068 21 Japanese Viral Infection
13053 23 American Viral Infection
14853 50 Indian Cancer
14853 55 Russian Heart Disease
14850 47 American Viral Infection
14850 49 American Viral Infection
13053 31 American Cancer
13053 37 Indian Cancer
13068 36 Japanese Cancer
13068 35 American Cancer

(a) Original table

Non-sensitive QI Sensitive
Zip

Code
Age

Natio-
nality

Condition

130** < 30 * Heart Disease
130** < 30 * Heart Disease
130** < 30 * Viral Infection
130** < 30 * Viral Infection
1485* ≥ 40 * Cancer
1485* ≥ 40 * Heart Disease
1485* ≥ 40 * Viral Infection
1485* ≥ 40 * Viral Infection
130** 3* * Cancer
130** 3* * Cancer
130** 3* * Cancer
130** 3* * Cancer

(b) k-anonymous table with k=4

Table 6.5.: Example for k-anonymity
Source: based on Machanavajjhala et al. (2007)

indistinguishability from other k-1 records, an individual cannot be linked to less than k
records based on the quasi identifiers (N. Li et al., 2007). This makes the connection with
other data sets more complicated. Precisely, the probability to correctly identify a record is at
most 1/k (Domingo-Ferrer et al., 2019).

However, there are also several shortcomings with this model, which have been addressed by
recent publications. On the one hand side, it is clear that the privacy risk is not reduced to
completely zero. On the other side, this approach may not provide enough data quality for
common usage scenarios (Prasser et al., 2018). The biggest threat is the so-called homogeneity
attack (Machanavajjhala et al., 2007). This one allows deriving sensitive information about
a person or record without knowing precisely which exact record corresponds to it. This is
the case when all records of an equivalence class share the same characteristic of a sensitive
attribute (Wu, 2012, p. 1142). Referring to our example in Table 6.5: By knowing that a
person is part of the data set and falls within the 3rd equivalence class (Zip code: 130**;
Age: 3*; Nationality: *), one can easily conclude that the person has cancer because it is the
only attribute value within this class. Another shortcoming is that the privacy level heavily
depends on the adversary’s background information, which might lead to the discovery
of additional sensitive information (Wu, 2012, p. 1143). This means for our example (4-
anonymous table in Table 6.5): If an attacker knows that a person is 21 years old, lives in a
13068 ZIP code and is Japanese, he cannot be sure whether he has a heart disease or caught a
virus. Nevertheless, when the attacker is additionally considering that Japanese people have
a relatively low incidence of heart disease, he can conclude that the person most likely has
a viral infection (Machanavajjhala et al., 2007). Sweeney formulated further attacks against
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k-anonymity like the unsorted matching attack, the complementary release attack, and the
temporal attack (Sweeney, 2002). However, the two explained attack possibilities are generally
perceived as the most crucial ones.

6.3.2. l-diversity

The l-diversity principle was introduced by Machanavajjhala et al. in 2007 as an extension
of k-anonymity to address its shortcomings. The requirement for l-diversity is defined as
follows:

"An equivalence class is said to have l-diversity if there are at least l ’well-
represented’ values for the sensitive attribute. A table is said to have l-diversity if
every equivalence class of the table has l-diversity." (N. Li et al., 2007)

However, the original paper does not state what exactly ’well-represented’ means (Machanava-
jjhala et al., 2007). The most straightforward understanding is the so-called distinct l-diversity,
which we will use to describe the principle here. In this case, it has the same meaning as
distinct and therefore implies that there are at least l distinct values of the sensitive attribute
in each equivalence class (N. Li et al., 2007). L-diversity is an enhancement of k-anonymity
since it is designed to protect against attribute disclosure through homogeneity and back-
ground knowledge attacks (ISO, 2018a, p. 21). These improvements are achieved by ensuring
diversity of sensitive attributes within the equivalence classes (Domingo-Ferrer et al., 2019;
Machanavajjhala et al., 2007).

By reusing the previous example, Table 6.6 shows how the principle can be applied and
which benefit comes with it. The left-hand side (table a) shows the 4-anonymous table which
resulted in the k-anonymity explanation above. Since the records of the third equivalence
class (the last four records) always have the same sensitive value, the table only fulfills
l-diversity with l=1 and is therefore 1-diverse. Table b represents the same records and values
but in a different order and with partially different representations of ZIP code and age.
The table now is 3-diverse because all equivalence classes have three different values for
the sensitive attribute. This measure addresses the homogeneity attack of k-anonymity in
a very effective way. Additionally, the background knowledge attack also becomes more
difficult (Machanavajjhala et al., 2007). The attacker from before (targeting the 21 year old
Japanese from Zip code 13068) cannot conclude the condition of its victim anymore. Even
with background knowledge, he is left with a significant amount of uncertainty now (Article
29 DP Working Party, 2014). A larger l again leads to higher privacy protection.

The two main disadvantages of l-diversity are represented by the similarity attack and the
skewness attack. The problem of similarity appears when attributes within an equivalence
class are unevenly distributed because the semantical closeness of these values is not taken
into account (ISO, 2018a; N. Li et al., 2007). For our example, this could appear when there are
three pretty similar diseases. The skewness attack can appear when the overall distribution
is skewed (Gerl, 2020, p. 42). Assuming two different equivalence classes: the first one has
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Non-sensitive QI Sensitive

Zip Code Age
Natio-
nality

Condition

130** < 30 * Heart Disease
130** < 30 * Heart Disease
130** < 30 * Viral Infection
130** < 30 * Viral Infection
1485* ≥ 40 * Cancer
1485* ≥ 40 * Heart Disease
1485* ≥ 40 * Viral Infection
1485* ≥ 40 * Viral Infection
130** 3* * Cancer
130** 3* * Cancer
130** 3* * Cancer
130** 3* * Cancer

(a) l-diverse table with l=1

Non-sensitive QI Sensitive

Zip Code Age
Natio-
nality

Condition

1305* ≤ 40 * Heart Disease
1305* ≤ 40 * Viral Infection
1305* ≤ 40 * Cancer
1305* ≤ 40 * Cancer
1485* > 40 * Cancer
1485* > 40 * Heart Disease
1485* > 40 * Viral Infection
1485* > 40 * Viral Infection
1306* ≤ 40 * Heart Disease
1306* ≤ 40 * Viral Infection
1306* ≤ 40 * Cancer
1306* ≤ 40 * Cancer

(b) l-diverse table with l=3

Table 6.6.: Example for l-diversity
Source: based on Machanavajjhala et al. (2007)

an equal number of positive and negative records, the second one has 99% positive and 1%
negative records. Even though both equivalence classes are 2-diverse, the records which are
part of the first class have a much higher probability of having a positive attribute (N. Li et al.,
2007).

6.3.3. t-closeness

The principle of t-closeness extends the privacy model of l-diversity. It was proposed by
N. Li et al. in 2007. The general idea is that the distribution of an attribute in an equivalence
class should mirror the initial distribution of the attribute in the whole table (Article 29 DP
Working Party, 2014; N. Li et al., 2007). It is formerly defined as follows:

"An equivalence class is said to have t-closeness if the distance between the
distribution of a sensitive attribute in this class and the distribution of the attribute
in the whole table is no more than a threshold t. A table is said to have t-closeness
if all equivalence classes have t-closeness." (N. Li et al., 2007)

Hence, the concept ensures that the distance between the distributions stays below a specific
threshold t (ISO, 2018a). Contrary to k-anonymity and l-diversity, higher privacy protection
is, in this case, achieved by a lower value of the parameter t. However, a big issue is to
measure the distance between the distributions in a senseful way. The variational distance
and the Kullback-Leibler distance are two approaches for numerical attributes, but they do
not reflect semantic distances between values (N. Li et al., 2007). Therefore, the Earth Mover’s
Distance (EMD) was proposed, which is suitable for numerical and categorical attributes. The
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calculation is based on the amount of work needed to transform one of the distributions into
another one (N. Li et al., 2007).

Non-sensitive QI Sensitive
Zip

Code
Age Salary Disease

476** 2* 3K gastric ulcer
476** 2* 4K gastritis
476** 2* 5K stomach cancer
4790* ≥ 40 6K gastritis
4790* ≥ 40 11K flu
4790* ≥ 40 8K bronchitis
476** 3* 7K bronchitis
476** 3* 9K pneumonia
476** 3* 10K stomach cancer

(a) l-diverse table with l=3

Non-sensitive QI Sensitive
Zip

Code
Age Salary Disease

4767* ≤ 40 3K gastric ulcer
4767* ≤ 40 5K stomach cancer
4767* ≤ 40 9K pneumonia
4790* ≥ 40 6K gastritis
4790* ≥ 40 11K flu
4790* ≥ 40 8K bronchitis
4760* ≤ 40 4K gastritis
4760* ≤ 40 7K bronchitis
4760* ≤ 40 10K stomach cancer

(b) table with 0.167-closeness (salary) and 0.278-
closeness (disease)

Table 6.7.: Example for t-closeness
Source: based on N. Li et al. (2007)

In Table 6.7, the improvement of t-closeness compared to l-diversity is illustrated. The table
on the left serves 3-diversity: By knowing that a record belongs to the first equivalence class,
an attacker can derive that the person has a relatively low salary (between 3k and 5k) and has
some stomach-related problems (gastric ulcer, gastritis or stomach cancer) (N. Li et al., 2007).
By considering t-closeness, this issue can be solved, which is shown in the right-hand table.
The classification into the three equivalence classes results in 0.167-closeness with regards to
the salary and 0.278-closeness with regards to the disease. Thus an attacker can no longer
infer that a person has a high salary or issues with its stomach (N. Li et al., 2007). Hence,
t-closeness is a useful mitigation measure against inference attacks.

However, t-closeness does not mitigate risks of identity disclosure and unlinkability compared
to k-anonymity and l-diversity. In addition, the model can result in a significant loss of data
utility because correlations within the data (e.g. between quasi-identifiers and sensitive
attributes) are eliminated (ISO, 2018a).

6.3.4. Differential Privacy

Differential privacy is another concept targeting privacy, which was introduced by Dwork
in 2006. It recently received strong attention and is widely accepted within the privacy
community, which led to an increasing number of publications (Kim et al., 2019). The
model is not directly built upon the previously mentioned models. However, it is related to
t-closeness (ISO, 2018a). It copes with privacy from a different perspective and can be defined
as follows:
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"Differential privacy mathematically guarantees that anyone seeing the result of
a differentially private analysis will essentially make the same inference about
any individual’s private information, whether or not that individual’s private
information is included in the input to the analysis." (Wood et al., 2018, p. 212)

Differential privacy is achieved by setting a boundary on the probability to infer the presence
or absence of a data subject from the dataset. This approach even incorporates that the
attacker might have access to other linkable datasets (ISO, 2018a, p. 21). Wu explains that
theoretically, it is always possible that a data set reveals additional information about an
individual. When an adversary knows that a person is exactly two centimeters shorter than
an average Lithuanian woman, a data set with that information would reveal information
about the person (Wu, 2012, p. 1137). The information about the average height would be
roughly the same when one individual did not appear in the data set. This explains the
concept of differential privacy fairly well since its intention is only to reveal information that
does not significantly depend on individuals (Wu, 2012, p. 1138). Dwork has set the following
mathematical definition for differential privacy:

"A randomized function K gives ε-differential privacy if for all data sets D1 and
D2 differing on at most one element, and all S ⊆ Range(K)." (Dwork, 2006)

Pr [K (D1) ∈ S] ≤ eε × Pr [K (D2) ∈ S]

Hence, the parameter ε controls the amount of information which is leaked. A small ε implies
that the affect of an individual’s information being part in the data set is significantly low (X.
Lu & Au, 2017). Figure 6.2 serves as an illustration of the mentioned definitions.

Figure 6.2.: Differential privacy concept
Source: Wood et al. (2018, p. 235)

The method usually used to achieve differential privacy is noise addition, for which the model
sets different requirements and constraints for the needed noise. The more noise is added, the
more privacy can be guaranteed by the concept. However, from a utility point-of-view, this is
not beneficial since an increase of noise also results in less data utility (X. Lu & Au, 2017).
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The big challenge is to come up with the proper amount of noise to preserve the usefulness
of the results on the one hand, and protect an individual’s privacy on the other hand (Article
29 DP Working Party, 2014). Generally, any algorithm that meets the formal definition is
called differentially private (ISO, 2018a). Regarding the application, there are two different
approaches (Soria-Comas & Domingo-Ferrer, 2016):

• Creating a synthetic data set for a specific purpose while keeping the original data.

• Masking the values of the original records by adding noise.

The first approach was the initial idea of differential privacy and is based on the assumption
that the creation of the synthetic data set is dependent on the specific query to be pursued.
Thus, for different queries, different data sets are created instead of releasing one single
data set. However, this also leads to the biggest shortcoming of this approach: By using
and combining multiple query requests, it might be possible to derive information that
should not be disclosed. Hence, it is crucial to retain a query history to detect and limit such
attacks (Article 29 DP Working Party, 2014).

6.4. Non-Perturbative Methods

Earlier in this chapter, non-perturbative de-identification methods were characterized as
methods that do not alter the truthfulness of the original data, but instead reduce their
accuracy (Domingo-Ferrer et al., 2019). Within this section, the identified methods of this
category are presented, covering an explanation, examples, possible applications, and short-
comings.

6.4.1. Sampling

Sampling means to release only a small subset (sample) of all available records (Domingo-
Ferrer et al., 2019; Nelson, 2015). For example, one could decide to share just 20% of a data
set’s records with a third party. This has the effect that an attacker does not know if a unique
record of the released data set is also unique in the original data. Therefore, it is not possible
to imply that a record corresponds to a specific data subject because it is unknown if the
subject is part of the sample at all. Hence, it mitigates several possible attack scenarios. A
smaller amount of records within the sample data leads to more protection and a higher
privacy level (Domingo-Ferrer et al., 2019). At the same time, it has to be considered that the
choice of the sample is crucial since it is used to represent the data set as a whole for analysis
and pattern recognition (ISO, 2018a). In Table 6.8, it is shown how a sampling method can be
applied.

The most straightforward algorithm to pursue sampling is probability sampling, which
incorporates random numbers to select the records. It adds uncertainty about the data on
the one hand, but it also might destroy statistical properties and, therefore, the utility of the
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Nationality Age Gender Disease
Argentina 27 Male None
American 49 Female Cancer
Japanese 43 Female Heart Disease
German 24 Male Cancer
Dutch 22 Female None

American 29 Male Heart Disease
Japanese 43 Male Cancer

Argentina 39 Female Heart Disease
American 38 Male None
German 32 Male None

...
...

...
...

Released data

Table 6.8.: Example for sampling

data (ISO, 2018a). It makes sense to ensure that the proportion of several attribute values
stays the same as in the original (Nelson, 2015). This allows various statistical properties
to be retained. Another approach can be to make use of the k-anonymity model and to
incorporate only the records of equivalence classes with a specific minimum value of k.
This would improve the protection through k-anonymity but also requires a little more
computational effort compared to random sampling. But this approach is then identical to
record suppression (see the following subsection), whereas we only consider the random
probability sampling as part of this method.

The most significant benefit of this method is that correct values remain. However, it can
result in a substantial utility loss due to the removal of records (Domingo-Ferrer et al., 2019).
If applied appropriately, it can be an efficient de-identification method. Combining it with
generalization and randomization methods can increase the effectiveness even more (ISO,
2018a).

6.4.2. Suppression

Suppression (sometimes also referred to as nulling out) is about removing certain attribute
values of the data set either for some records (local suppression) or for all records (global
suppression) (Domingo-Ferrer et al., 2019; Samarati & Sweeney, 1998). The values are then
either deleted or replaced with null values. This method is most suitable for categorical data,
but it generally works on all data types (ISO, 2018a, p. 14). There are different variants:

• Local suppression (also cell suppression) involves removing specific attribute values
from selected records that could lead to the identification of a data subject (ISO, 2018a).

• Global suppression refers to suppressing specific attribute values from all records
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(globally) (Terrovitis et al., 2017).

• Record suppression is about deleting an entire record (for example, because he contains
multiple rare attributes) (ISO, 2018a).

• Attribute suppression (also: redaction) entails the removal of an attribute with all values.

The basic idea of this method is to identify and delete rare attribute values or rare combinations
of attribute values to prevent a possible re-identification of the data subjects. Suppression may
as well be applied in combination with k-anonymity: One can drop all records of equivalence
classes with a number of entries below a certain threshold. Also, the deletion of a single value
can lead to a higher number of records sharing the value combinations and, consequently, to
a higher k-anonymity protection (Domingo-Ferrer et al., 2019; Nelson, 2015).

Table 6.9 shows an exemplary application of local suppression in the left table (a). Since there
is only one record with an age between 40 and 49, that value is suppressed. Furthermore, the
5th record is not only in a unique age range, but also suffers a relatively rare disease. Hence,
it makes sense to suppress the whole record and delete it from the table.

Age Gender Disease
30-39 Male None
30-39 Female Heart Disease
30-39 Female Heart Disease
30-39 Male Heart Disease
60-69 Female Cancer
20-29 Male Heart Disease
20-29 Male None
20-29 Female Heart Disease
40-49 Female None
20-29 Male Heart Disease

Suppressed values

(a) local suppression

Zip Code Age Nationality Condition
13053 28 Russian Heart Disease
13068 29 American Heart Disease
13068 21 Japanese Viral Infection
14853 50 Indian Cancer
14853 55 Russian Heart Disease
13055 21 Japanese Heart Disease
12003 42 Russian Heart Disease
13068 35 American Cancer

...
...

...
...

Suppressed attribute

(b) attribute suppression

Table 6.9.: Example for suppression
Source: based on Machanavajjhala et al. (2007)

The right table (b) shows the application of attribute suppression. The complete deletion of
the zip code will protect the individual’s privacy tremendously, but it can only be applied if
the zip code is no longer necessary for further use. Attribute suppression is therefore best
suited for explicit identifiers like names or unique numbers, but can also be applied to quasi
identifiers in case they are not needed anymore.

Samarati et al. state that the application of suppression is especially useful in combination
with generalization. Rare attribute values can require a significant amount of generalization,
and suppression can be used to moderate this process by deleting those values. The author
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recommends the joint application of both. The data owner has to find the right balance
between generalization, at the cost of less precision, and suppression, at the cost of complete-
ness (Samarati & Sweeney, 1998). Our previous example already showed this combination
since a data set with a generalized attribute (age) was used.

The benefit of suppression is that only true and exact values are kept. However, the application
leads to missing values resulting in a substantial utility loss. Especially for small sub-groups of
the datasets, the utility loss has its most significant impact (Domingo-Ferrer et al., 2019; Nelson,
2015). Nevertheless, if applied in the right way and in combination with generalization,
suppression represents a promising de-identification method. Primarily, attribute suppression
on the right attributes can lead to a substantial effect in privacy protection.

6.4.3. Generalization

Generalization is one of the most popular de-identification methods. It means to substi-
tute attribute values with more general categories to reduce detail (Domingo-Ferrer et al.,
2019). The method is used to make combinations of quasi identifiers less rare, and the
application is especially useful in combination with privacy models like k-anonymity and its
extensions (Article 29 DP Working Party, 2014; Nelson, 2015).

Generalization methods work on all kinds of attributes. Numerical values can be transformed
into categorical intervals to reduce granularity (e.g., 37→ 30-39) (Domingo-Ferrer & Mateo-
Sanz, 2002). For non-numerical and categorical attributes, a suitable generalization hierarchy
is needed. All attributes can potentially be arranged in such a hierarchy in order to enable
generalization. The creation of this generalization hierarchy is a crucial part of this method
because it supports the process based on predefined transformation rules. An example would
be to replace a specific street name with the name of the city, which is a more general category
(e.g. ’221B Baker Street London→ ’London’) (ISO, 2018a). Other possibilities are to generalize
names to genders or words to their first letters.

Job Age Gender Disease
Engineer 35 M HIV
Engineer 33 M HIV
Lawyer 29 M Flu
Lawyer 33 M Flu
Writer 42 F Cancer
Singer 45 F Cancer
Writer 42 F Cancer

(a) Original table

Job Age Gender Disease
Professional 25-37 M HIV
Professional 25-37 M HIV
Professional 25-37 M Flu
Professional 25-37 M Flu

Artist 38-50 F Cancer
Artist 38-50 F Cancer
Artist 38-50 F Cancer

(b) Generalized 3-anonymous table

Table 6.10.: Example for generalization
Source: based on Gerl (2020, p. 41)

Table 6.10 shows an example of how generalization is applied on a numerical and a non-
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numerical attribute to achieve k-anonymity with k=3. The attributes job and age were recoded
such that each equivalence class has at least three corresponding records. The choice of the
generalization hierarchy and the numerical intervals depends on the single values of the
considered attributes. In Figure 6.3, the for this example applied generalization hierarchies
for the two attributes are visualized. The levels at the very bottom (level 0) represent the
most granular attribute values in the original data set. With every further level up granularity
and therefore also the utility of the attribute is reduced, whereas the achieved privacy level
improves. By bringing any value of an attribute to the highest level and using the value Any,
the utility is completely lost, and the effect is analogous to a deletion of the column (Samarati
& Sweeney, 1998). The number of applicable generalization hierarchy levels is called hierarchy
height. Hence, the attribute job has a hierarchy height of 3, the attribute age one of 5. Due
to its aggregating nature, generalization directly influences k-anonymity, l-diversity, and
t-closeness dependent on the selected generalization hierarchy. Therefore, the intention
should always be to increase the size of the clusters (equivalence classes) but at the same time
to keep as much utility as possible.

Any

Professional

Engineer Lawyer

Artist

Writer Singer

(a) Hierarchy of attribute ’job’

Any

≤ 50

0-24

0-12

. . .

13-24

. . .

25-50

25-37

. . .

38-50

. . .

>50

51-74

51-62

. . .

63-74

. . .

75-100

75-87

. . .

88-100

. . .

(b) Hierarchy of attribute ’age’

Figure 6.3.: Generalization hierarchy
Source: based on Gerl (2020, p. 36+40)

The method also offers some specific variants which are sometimes even presented as
independent methods:

• Global generalization refers to the method shown in the example above. It includes
generalizing all single values of an attribute.

• Local generalization means to generalize only specific attribute values from selected
records. The intention is to remove rare values while keeping the remaining ones
unmodified (ISO, 2018a).

The method has the benefit that only true values are released. Limitations are the sig-
nificant loss in granularity and, consequently, utility where one needs to find the right
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balance (Domingo-Ferrer et al., 2019). Hence, the achieved value is highly dependent on the
selected generalization hierarchy which offers much customizability.

6.4.4. Character Masking

Character masking is a method which operates completely character-based and involves
replacing predetermined characters with Xs or other characters (Mansfield-Devine, 2014;
Nelson, 2015). The following table shows three examples of how the method can be applied
to different types of attributes. Character masking theoretically can always be applied, but the
data structure and the formatting of the attribute values have to be considered. The method
has substantial restrictions regarding its applications because the utility of the transformed
values is often lost.

Attribute Original value Transformed value
Credit card number 4678 3412 5100 5239 XXXX XXXX XXXX 5239

Last name Smith Smit*
Phone number +49 160 12345667 +49 176 XXXXXXXX

Table 6.11.: Example for character masking
Source: based on Bourka et al. (2018), Nelson (2015)

6.4.5. Truncation

Truncation is a very specific method where the nth character of an attribute value is removed
or cut. An example is to replace ’SMITH’ with ’SMI’ (Nelson, 2015). The method has com-
monalities with character masking since both delete certain characters. However, truncation
does not indicate if and which characters are missing. Reversing this process is harder than
for character scrambling or character masking because it is not known if and at which point
letters were removed. The utility can also be quite low, but it can be a suitable method when
a part of a string reveals too much information or is simply not needed.

6.4.6. Rounding

Rounding is a method that is part of the generalizing methods but limited to numerical
attributes. It involves the rounding of numerical values based on a predetermined rounding
base (Bourka & Drogkaris, 2018). It reduces granularity and can help to achieve a specific
level of k-anonymity while remaining truthfulness of the data. Examples that incorporate
different rounding bases are 12.734→ 13 and 56,899.5→ 60,000.
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6.4.7. Top and Bottom Coding

Top and bottom coding is also part of the category of generalizing methods. With this method,
only a specific subset of all attribute values are transformed. It is about setting a threshold
for the largest and/or smallest value of an attribute. All values that do not fall within the
given interval are replaced with the respective top and bottom values. An example is to hide
large salaries by only indicating that a value is above a threshold (>100,000) (ISO, 2018a). This
method is useful if extremely low or high values of a quasi identifier are rather rare. In this
case, the method can help to achieve k-anonymity constraints. For the application on sensitive
values, top and bottom coding can help to protect the disclosure of sensitive outliers.

6.5. Perturbative Methods

Perturbative de-identification methods were defined as methods that change the truthfulness
of single values within the data set. However, some statistical properties of the original
data may be preserved (Domingo-Ferrer et al., 2019). Such methods are preferable if the
goal is to perform mainly aggregation computations. This section will explain the identified
perturbative methods together with examples, possible applications, and shortcomings.

6.5.1. Data Swapping

Data swapping (also referred to as shuffling or permutation) means to randomly swap data
between records regarding a specific attribute (Mansfield-Devine, 2014). It has the effect
that values are artificially linked to different data subjects while univariate distributions of
the values are exactly preserved (Article 29 DP Working Party, 2014; Domingo-Ferrer et al.,
2019).

The method is datatype independent and can be applied to numerical and non-numerical
values. As part of the application, it should be considered that the swapping algorithm
cannot be reconstructed (ISO, 2018a). For numerical values, specific conditions can be set in
order to swap values only within a specific range. This allows a more or less stable variance-
covariance matrix, which is also applicable for ranked categorical attributes (Domingo-Ferrer
et al., 2019).

In Table 6.12, the method is applied to the income attribute. However, it shows that another
correlating attribute (in this case, the job), which is not swapped could still make it possible
to draw inferences on the income. Hence, this has to be considered carefully. Generally, an
application on quasi identifiers as well as sensitive attributes is possible to prevent attribute
disclosure (Domingo-Ferrer et al., 2019). A widespread use case, for example, is software
testing because the method provides real values (Nelson, 2015).

Similar to other methods, data swapping alone is not enough in most cases, so it should be
combined with other methods. Another shortcoming is that an attacker can draw wrong
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Year Gender Job Income
1957 M Engineer 45k
1957 M CEO 70k
1957 M Unemployed 5k
1964 M Engineer 43k
1964 M Manager 100k

(a) Original table

Year Gender Job Income
1957 M Engineer 70k
1957 M CEO 5k
1957 M Unemployed 43k
1964 M Engineer 100k
1964 M Manager 45k

(b) Transformed table

Table 6.12.: Example for data swapping
Source: based on Article 29 DP Working Party (2014)

inferences on a data subject. However, this inference might only be probabilistic since it
is mostly not known which attributes have been swapped (Article 29 DP Working Party,
2014).

6.5.2. Randomization

Randomization (also called substitution or encoding) is about replacing data with simulated
random values. Those values can but do not have to match the format of the original
data (Mansfield-Devine, 2014). A simple example would be to replace SMITH with X&T%#. A
suitable application scenario is, for example, to replace the unique or rare values of an attribute
by randomization while retaining the other ones (Nelson, 2015). Hence, randomization is a
useful privacy measure because it reduces the risk of linkability. However, the utility of the
values is also completely lost, so the data is not of any value anymore. The use of the method,
therefore, has to be critically evaluated.

6.5.3. Deterministic Encryption

Deterministic encryption describes a non-randomized encryption technique, which means
that the same value always is transformed into the same ciphertext when using the same
encryption key (ISO, 2018a). This property also qualifies the method as a suitable de-
identification method. Its application can be targeted on explicit identifiers, quasi identifiers,
and sensitive attributes. However, its analytical usage is often very limited or non-existent.
Two variants that enable the preservation of specific utilities (namely order-preserving
encryption and format-preserving encryption) are described further below.

The application of this method generally limits the analytical functionalities on equality
checking or search functions. By knowing the key, one can encrypt the search term and
compare the resulting ciphertext with other values (ISO, 2018a). Due to its non-randomized
nature, it is also still possible to join different tables together based on the same attributes.
Encryption techniques are often computationally complex, but the algorithms are getting less
and less expensive which supports the adoption of this method (Branco et al., 2016; Ciriani

43



6. De-Identification Methods

et al., 2010; Prasser et al., 2018). Deterministic encryption offers a suitable measure against
all kinds of attacks because an adversary needs to have access to the appropriate encryption
key. (ISO, 2018a). However, this is also linked to the biggest shortcoming: the management
of the keys at the human side can be a tough and delicate process. A loss of keys can cause
significant consequences if it falls into the wrong hands (Branco et al., 2016; Ciriani et al.,
2010). Hence, it has to be carefully evaluated if the application of deterministic encryption
makes sense.

Order-preserving Encryption

Order-preserving encryption is a specific type of deterministic encryption that has the property
of retaining the order of values before and after encryption when using the same encryption
key (ISO, 2018a). Thus, it enables a higher utility of the data. It extends the capabilities of
deterministic encryption with range searches and the analysis of frequencies (ISO, 2018a).
However, possible applications are limited to scenarios where the ordering of values is of high
importance. An exemplary scheme for order-preserving encryption is called OPES (Agrawal
et al., 2004).

Format-preserving Encryption

Format-preserving encryption is another sub-type of encryption that retains the data format
and lengths of the original data after the transformation. For example, when encrypting a
9-digit social security number, another sequence of 9 digits is obtained (ISO, 2018a). This
method can be used for systems where specific data formats are required. In general, the
analytical usefulness and utility of the data is very limited.

6.5.4. Homomorphic Encryption

Homomorphic encryption is a specific type of encryption that allows computations on the
encrypted data. The results can then be accessed after decrypting the calculated values. (El-
Yahyaoui & Ech-Chrif El Kettani, 2018). This leads to several interesting possibilities, especially
in the field of cloud computing. The data will not need to be unencrypted in non-trusted
environments, but computations can still be performed. Hence, cloud environments can
be leveraged, while data privacy is still preserved (El-Yahyaoui & Ech-Chrif El Kettani,
2018; Will & Ko, 2015). Because of its properties, homomorphic encryption is often referred
to as the holy grail of encryption (Micciancio, 2010; Sidorov & Ng, 2016). However, the
technique is, especially due to its inefficiencies, not yet really suitable for most practical use
cases (Alloghani et al., 2019).

Figure 6.4 shows the general functionality in a diagram. It shows that one can get from a
message m to a calculated value f(m), either by executing the function, or by encrypting,
evaluating (executing the function on the encrypted message) and decrypting again (Alloghani
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Figure 6.4.: Homomorphic encryption diagram
Source: El-Yahyaoui et al. (2018)

et al., 2019; Micciancio, 2010). There are two different types: fully homomorphic encryption
(FHE) and partially homomorphic encryption (PHE).

FHE is theoretically the best approach and is capable of solving multiple problems in the areas
of privacy and security. It allows one to perform any type and number of computations over
the encrypted data (El-Yahyaoui & Ech-Chrif El Kettani, 2018). In research, a distinction is
made between additive homomorphic encryption, which allows additive operations, and mul-
tiplicative homomorphic encryption, which allows multiplicative operations on data. Only if
both properties are satisfied simultaneously, an algorithm is called fully homomorphic (Tebaa
& Hajji, 2014). Also, the number of operations is not restricted in any way (Gaidhani, 2017).
The potential of this technique is immense since it would allow users to perform operations
on data in cloud data centers while fully preserving privacy (Chatterjee & Sengupta, 2018;
El-Yahyaoui & Ech-Chrif El Kettani, 2018). However, as already mentioned, due to the low
computational efficiency, it has not been widely applied yet (Wang et al., 2017). Somewhat
homomorphic encryption (SHE) is another subclass of FHE, which has a limit on the number
of operations that can be performed (Gaidhani, 2017).

PHE allows only one possible operation like multiplication or addition, but not both (Ogburn
et al., 2013). Multiple schemes for PHE exist that are usable in practice. Due to its focus on
only one operation, it is already more widely adopted than FHE.

There are several different schemes for homomorphic encryption, with the most important
ones being the one from Rivest in 1978 and the one from Gentry in 2009 (Wang et al., 2017;
Will & Ko, 2015). The most mentioned ones are the following:

• PHE (additive): Paillier, Goldwasser-Micali (Tebaa & Hajji, 2014)

• PHE (multiplicative): RSA, El Gamal (Tebaa & Hajji, 2014)

• SHE: Boneh-Goh-Nissim, SYY (Gaidhani, 2017; Tebaa & Hajji, 2014)

• FHE: Gentry, AHEE, EHES (Gaidhani, 2017; Khalid El Makkaoui et al., 2016; Tebaa &
Hajji, 2014)

However, these schemes are very inflexible because they were tailored to specific use cases.
There is no algorithm that fits for all scenarios. Therefore, it always has to be adapted on the
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specific needs. Besides that, time and space complexity is the most crucial shortcoming of
these techniques (Gaidhani, 2017; Prasser et al., 2018). Will et al. describe the methods as "[...]
a balancing act between utility, protection, and performance." (Will & Ko, 2015) These reasons
lead to the fact that real applications (especially of FHE) are years away from a scalable use in
the cloud. This will require a significant advancement in this field through research (Will &
Ko, 2015).

6.5.5. Creating Pseudonyms

Creating pseudonyms, often also referred to as pseudonymization, means to replace the
values of an attribute with other ones (the pseudonyms) (Article 29 DP Working Party, 2014;
Pfitzmann & Hansen, 2010). This process is often done on unique attributes or unique
identifiers. Generally, this can be performed in two ways: reversible, which means the
pseudonym is dependent on the input value, and irreversible, which means it is not derived
from the original value (Article 29 DP Working Party, 2014; Nelson, 2015). There are several
different techniques for the creation of such pseudonyms:

• Tokenization: describes a process where the pseudonym is a randomly-generated value
(token), which has no mathematical relationship with the original value. For some
specific contexts, which require synchronized tokens across multiple systems, this
technique might not be suitable (Bourka & Drogkaris, 2018, p. 28).

• Hash function: refers to a function that transforms one value to another one (hash)
without the possibility to reverse the process. However, by hashing all possible input
values this can potentially be reversed (Article 29 DP Working Party, 2014).

• Keyed hash function: describes hash functions whose output also depends on the
addition of a secret key which increases the protection level. The key might also be
deleted, which would make the function equivalent to tokenization (Bourka & Drogkaris,
2018, p. 23).

• Symmetric encryption (secret key): refers to the creation of a pseudonym by encrypting
the value with a secret key. The key holder can then always obtain the original value
with a simple decryption process (Article 29 DP Working Party, 2014). When the data
controller holds the secret key, he always has the possibility to derive the original data.

• Public key (asymetric) encryption: involves two keys in the process, the public and the
private key. Anyone can encrypt data with the public key. However, only the secret key
owner (usually the data subject) can decrypt the data (Bourka & Drogkaris, 2018, p. 26).

Next to these techniques, other de-identification methods, like character masking, gener-
alization, character scrambling, or truncation, can theoretically also be used for creating
pseudonyms. Due to the lack of application scenarios we will not consider these in this
context.
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One of the shortcomings of creating pseudonyms is that the method does not reduce the risk
of singling out a data subject when quasi-identifiers remain (Article 29 DP Working Party,
2014). It only mitigates the risk regarding the specific attribute on which it is applied with
regards to linkability. Therefore, it usually has to be combined with other de-identification
methods.

6.5.6. Character Scrambling

Character scrambling means to mix or rearrange the order of characters of an attribute
value (Bourka & Drogkaris, 2018, p. 28). Examples are to transform a credit card number from
’4678 3412 5100 5239’ to ’0831 6955 0734 4122’ or to change the name SMITH to TMHIS. This
process can be easily reversed and is, therefore, not an effective way to protect an attribute
value (Bourka & Drogkaris, 2018; Nelson, 2015). Also, the utility of the transformed data
is almost zero (with the exception of counting characters), whereas the application of this
method has to be critically assessed.

6.5.7. Microaggregation

Microaggregation (also: averaging) is a method that replaces individual values with aggre-
gated values (the average) in a certain way (ISO, 2018a, p. 19). Different groups of the original
values are formed, for which the aggregated values are then calculated. The intention is that
the elements of one group or cluster are as similar as possible (Domingo-Ferrer & Mateo-Sanz,
2002).

Microaggregation is typically applied to quasi identifiers, and it is mainly used on numerical
values. For numerical data, different conditions on group size and statistical characteristics
can be set. For non-numerical attributes, the application is not that straightforward because it
is harder to define appropriate aggregation operators. However, it is generally also possible
if it is conceptualized in the right way (Martínez et al., 2012). The records with the closest
values of the attribute should be in the same group, and for each group, there should be at
least k records to fulfill k-anonymity. Hence, there is a condition on the group size but not on
the number of groups (Domingo-Ferrer & Mateo-Sanz, 2002; ISO, 2018a). Table 6.13 shows
the exemplary application of microaggregation on the attribute age with k=3. Three different
groups with similar age ranges were created, all of them with at least three records. The
values are replaced with the respective averages of each group.

Microaggregation is, in combination with k-anonymity, an advantageous method to preserve
an individual’s privacy. It is highly dependent on the clustering. More similar records in
a group lead to higher remaining utility, and groups should be chosen such that no indi-
vidual dominates (Domingo-Ferrer & Mateo-Sanz, 2002). Considering numerical values,
this method comes pretty close to generalization. Despite the perturbation of values, at-
tribute means are preserved, and the covariance is only moderately damaged. However, the
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Age Gender Disease
27 Male None
49 Female Cancer
43 Female Heart Disease
24 Male Cancer
22 Female None
29 Male Heart Disease
43 Male Cancer
39 Female Heart Disease
38 Male None
32 Male None

(a) Original table

Age Gender Disease
25.5 Male None
45 Female Cancer
45 Female Heart Disease

25.5 Male Cancer
25.5 Female None
25.5 Male Heart Disease
45 Male Cancer

36.3 Female Heart Disease
36.3 Male None
36.3 Male None

(b) Transformed table with microaggregation
on age with k=3

Table 6.13.: Example for microaggregation

application is computationally more expensive because the clustering leads to a quadratic
complexity (Domingo-Ferrer et al., 2019).

6.5.8. Noise Addition

Noise addition describes a method that modifies data by adding random noise on selected
continuous attributes. The noise is added in a way such that properties like mean, variance,
standard deviation, and covariance are retained as much as possible (ISO, 2018a). It is mostly
applied to numerical and date values. For non-numerical attributes, it is fairly hard to
achieve (Mansfield-Devine, 2014).

There are a lot of different noise addition algorithms. However, the added noise should
always be dependent of the value of an attribute. Examples are to change a student’s grade
from 3.33 to 3.53 or to adapt an individual’s height accuracy to +/-10cm (Article 29 DP
Working Party, 2014; ISO, 2018a). The privacy model which is usually used in combination to
determine the level of noise is differential privacy (see subsection 6.3.4).

Noise addition can be applied to quasi identifiers and sensitive attributes. Hence, it can
avoid identity as well as attribute disclosure. It has linear computational complexity and
is an efficient de-identification method for preserving statistical features (Domingo-Ferrer
et al., 2019). However, the achieved value highly depends on the added level of noise. The
transformed values are not truthful anymore and they deviate with more noise added (Article
29 DP Working Party, 2014, p. 12). Furthermore, it might be possible to recreate the original
values since there exist methods in the area of signal processing to remove the noise (Nelson,
2015).
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6.6. Applying De-Identification Methods & Privacy Models

In this chapter, 14 different de-identification methods and the four most common privacy
models were identified and described. As these should be applied together, Table 6.14
summarizes the methods and their respective models.
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k-anonymity - X X X - - - - - X X X - - X
l-diversity - X X X - - - - - X X X - - X
t-closeness - X X X - - - - - X X X - - X

Differential privacy - - - - - - - - - - - - X - -

Table 6.14.: De-identification methods & privacy models

The de-identification methods were described with their strengths, weaknesses, and possible
application scenarios to serve as a guide for choosing the right ones. However, this decision
is a non-trivial task and is highly dependent on the given context and use-case (Article 29
DP Working Party, 2014; Tomashchuk et al., 2019). Especially the desired levels of privacy
and utility, which act as contradicting elements, have an essential effect on this decision
process.
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In this section, we describe the use case for which we aim to develop and evaluate a concept for
the application of de-identification methods. The first section serves as a general description
of the idea behind wrist-worn wearable data. Then we identify relevant privacy threats and
investigate which ones can be solved with de-identification methods. Lastly, we present a
generic data model for wrist-worn wearable data and analyze its identifiers. The data model
will serve as the basis for the developed concept.

7.1. General Description

Wrist-worn wearables are devices like smartwatches that individual people wear on their
wrist to collect information through various sensors. They steadily collect sensitive data about
the user’s heart rate, blood oxygen saturation, sleep, and steps. Recent devices can even
conduct clinically tested ECGs (Bondel et al., 2020). Besides that, they can be used to track
trajectories during sports activities.

In combination with specific information about the user, this data is often transferred and
stored in platforms offered by service providers. Those providers can be the manufacturers
of such devices themselves, like Garmin, Runtastic, and Fitbit, but also ones that specialize
specifically on such platforms like Strava (Statista, 2019). At the platform, the data of all users
is combined and centrally stored, thus endangering the privacy of individuals. From a user
perspective, the platform can be used to analyze the collected information, compare it with
other users, and detect health issues like cardiac dysrhythmia, atrial fibrillation, and sleep
apnea. On the other side, the service providers make use of the data to achieve improvements
for its products and the platform itself.

The most significant risk of such a platform is that it can lead to a disclosure of personal
information, including sensitive health data, as well as location data that can allow one to
identify an individual’s home and working place. The platform providers can generally
not be considered trustworthy and despite very general privacy policies, there is limited
information about the storage and processing of data. The providers might even sell the data
to third parties in the healthcare or insurance industry.

We will develop a concept to apply de-identification methods on the data that wrist-worn
wearables generate. This concept shall ensure high levels of privacy while at the same time
enabling the benefits of data analytics.
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7.2. Identification of Privacy Threats

The purpose of this section is to identify possible privacy threats for the use case of wrist-worn
wearables. For these privacy threats, we then analyze whether they can be solved or mitigated
by the application of de-identification methods.

In section 2.2, a threat-based approach and definition to conceptualize privacy was presented.
This section builds on top of this approach to identify relevant threats for our specific use
case. Therefore, we make use of the threat modeling methodology LINDDUN, which was
proposed by Deng et al. The framework recently gained attention in the privacy community as
a useful tool for threat modeling (Wuyts et al., 2018). There are several advantages over other
methodologies. First, it is threat-based and therefore fits well with our privacy definition.
Secondly, it is a systematic and step-wise methodology, and lastly, it also supports with an
extensive knowledge base on common threats in the form of a threat tree catalog (Wuyts
et al., 2018).

General procedure

The LINDDUN methodology is based on STRIDE - an approach for security threat modeling
by Microsoft - and consists of six consecutive steps (Robles-González et al., 2020). They are
visualized in Figure 7.1. Within the scope of this thesis, we will focus solely on the first three
steps, which are situated in the problem space. Hence, their focus lies on the identification
of threats (Wuyts et al., 2018). The steps within the solution space are not considered here.
Instead, we are using the resulting threat scenarios and trees to investigate whether they are
potentially solvable with de-identification methods or not.

Figure 7.1.: Process of LINDDUN methodology
Source: Robles-González et al. (2020)

In the first step, an information flow oriented model of the use case needs to be defined.
The framework proposes the data-flow diagram (DFD), which is a standardized notation to
visualize an information system (Deng et al., 2011). This model is then leveraged to map
privacy threats to the different elements of the data-flow diagram. Secondly, the methodology
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provides a predefined list of privacy threat types and also a mapping table between the
threats and the elements (Deng et al., 2011). For the third step, LINDDUN then proposes an
extensive catalog of threat tree patterns related to privacy, which can be used to analyze the
threats in more detail (Deng et al., 2011).

The term LINDDUN is an acronym, and each letter symbolizes one specific privacy threat.
Those threats are obtained by negating privacy properties (Deng et al., 2011). Table 7.1 lists
the seven considered privacy threat types and the corresponding privacy properties. Their
definitions were already stated in Table 2.4 in section 2.2.

Privacy properties Privacy threats

Unlinkability Linkability
Anonymity & Pseudonymity Identifiability

Plausible deniability Non-repudiation
Undetectability & unobservability Detectability

Confidentiality Disclosure of information
Content awareness Content unawareness

Policy and consent compliance Policy and consent non-compliance

Table 7.1.: Privacy properties & privacy threats
Source: Deng et al. (2011)

Modeling the Use Case with a Data-flow diagram

The graphical representation of our use case of wrist-worn wearables using a DFD is rep-
resented in Figure 7.2. Generally, a DFD consists of four different types of elements which
are shown in the legend of the figure: "data flows (i.e. communication data), data stores (i.e.
logical data or concrete databases, files, and so on), processes (i.e. units of functionality or
programs), and external entities (i.e. endpoints of the system like users, external services, and
so on)" (Deng et al., 2011).

The specific elements used in the shown diagram can be described as follows:

• User (entity): The user describes an individual person wearing and using a wrist-worn
wearable (e.g. smartwatch). The user refers to the data subject whose privacy we aim to
protect.

• Wearable (entity): The wearable itself is the physical device the user is wearing on its
wrist to collect different types of user-related data.

• Platform & service (process): This element is fully operated by a platform provider
and contains the analysis and aggregation of the data. It can be represented by a
browser-based web portal and/or a mobile application.

• Provider database (data store): The database stores all the information collected from
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the user and its wearable. It is the bases of the operations within the "platform &
service" element.

• User-wearable data stream (data flow): This data flow symbolizes the physical connec-
tion between user and wearable (e.g. heart rate tracking) as well as the user inputs
while using the device.

• User-platform data stream (data flow): This element represents the direct information
exchange between the user and the wearable platform, including manually entering
information and requesting analyses.

• Wearable-platform data stream (data flow): The wearable communicates the collected
sensor data to the platform to enable the analysis and aggregation of the data.

• Platform-database data stream (data flow): This data flow represents the communica-
tion between the platform and its central database.

Figure 7.2.: Data-flow diagram of wearable use case

Additionally, a trust boundary is introduced to indicate trustworthy and untrustworthy
elements (Deng et al., 2011). The ’platform & service’ process and the ’provider database’
both lie within the trust boundary since they are entirely operated and controlled by the
platform provider. They might be located in a public cloud, so we cannot trust these elements
at all. The user and the wearable itself are assumed to be fully trustworthy until their data
gets shared with the platform.

Mapping privacy threats to the DFD

The LINDDUN methodology provides an identification of the privacy threat categories for
each DFD element by following a mapping table (Deng et al., 2011). Table 7.2 shows the
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predefined mappings applied to the DFD elements of the wrist-worn wearable use case. Each
X indicates a potential privacy threat in the system.

Threat target L I N D D U N

Data Store Provider Database X X X X X X

Data flow User-Wearable data stream X X X X X X
User-Platform data stream X X X X X X

Wearable-Platform data stream X X X X X X
Platform-Database data stream X X X X X X

Process Platform & Service X X X X X X

Entity User X X X
Wearable X X X

Table 7.2.: Threat mapping for the DFD elements
Source: based on Deng et al. (2011)

Analyzing privacy threats via threat trees

For each privacy threat in the depicted table, LINDDUN presents an extensive catalog of
threat tree patterns, which serves for a more detailed investigation of these threats within a
realistic system (Deng et al., 2011). For the scope of this thesis, we make use of the publication
“LIND(D)UN privacy threat tree catalog: CW Reports” by Wuyts et al., which provides the
most recent version of the threat three catalogs. For each threat tree, we analyze whether
the application of our de-identification approach with the assumptions stated above will
either solve or mitigate this threat. Therefore, all concrete threats within the trees were
investigated.

All for this analysis relevant threat trees are displayed in section A.2 of the appendix. In the
following, the analysis of one exemplary threat tree (linkability of a data store) is explained
in detail. The respective tree is shown in Figure 7.3.

From the tree, one can derive that the linkability threat occurs in a data store when there exists
weak access control to the database together with insufficient minimization of the data. The
second leaf node (insufficient minimization) can be mitigated by applying de-identification
methods because that is exactly what these methods aim for. De-identification can not only
reduce the linkability of the data to other external or internal databases, but it is also capable
of reducing the overall amount of data available (e.g., by applying sampling, suppression,
or redaction). Both are depicted as root causes within this threat tree. The green box in the
figure visualizes the mitigation potential by de-identification that was mentioned above. In
contrast to that, weak access control and the resulting disclosure of information is not directly
addressed by de-identification. However, due to their conjunctive relation, a mitigation of the
minimization threat indirectly reduces the potential impact of information disclosure. The
orange box in the figure indicates this finding.
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Figure 7.3.: Linkability of data store (provider database)
Source: Wuyts et al. (2014)

The same procedure was applied to all threat trees. Hence, the same annotation with green
and orange boxes is also used in the further figures in section A.2 (analogous to the legend
of the following table). Table 7.3 summarizes the findings of this analysis and indicates the
threats which can be directly or indirectly influenced by de-identification methods. Threats
regarding the data flow "user data stream" (between user and wearable) cannot be mitigated
since the de-identification will take place after the data is collected (more details can be
found in the following chapters). The same also accounts for the processes "user" and
"entity" because these might be harmed in other ways, e.g., through re-used logins or weak
passwords/usernames.

In total, ten directly solvable and eight indirectly influenceable threats were identified
(considering that policy and consent non-compliance applies to the system as a whole). The
table shows that de-identification methods can directly mitigate the threats linkability and
identifiability, whereas disclosure and non-compliance are affected more indirectly.
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Threat target L I N D D U N

Data Store Provider Database X X X X X X

Data flow

User-Wearable data stream X X X X X X
User-Platform data stream X X X X X X

Wearable-Platform data stream X X X X X X
Platform-Database data stream X X X X X X

Process Platform & Service X X X X X X

Entity
User X X X

Wearable X X X

Mitigation through de-identification possibleX

X
Mitigation through de-identification not possible, but the impact of the
privacy threat is indirectly reduced through mitigation of other threats

X Mitigation through de-identification not possible

Table 7.3.: Privacy threat mitigation with de-identification methods

7.3. Wrist-Worn Wearable Data Model

For the development of an approach for de-identification, a data set or data model is needed
to conceptualize the application of this methods. As data sets of wrist-worn wearable data are
not publicly available, a generic wrist-worn wearable data model was created to support the
concept development. The basis for this data model was formed by requesting data exports
of individual user accounts from the platforms of Garmin, Apple Watch, and Fitbit. These
exports contain information relating to the data stored of one single individual. This gave us
detailed insights into how the wearable information is stored and how it is formatted. Out
of this information, a generic data model for the wrist-worn wearable use case was derived.
The data model is shown in Figure 7.4. Each box refers to one table with a specific structure.
There are seven tables in total: one master data table, and six raw sensor data tables. The
connections between the tables visualize how they can be joined or linked together. The
master data tables store general information about the user itself, which is often entered
directly by himself. This data does not change frequently. In contrast to that, the raw sensor
data tables contain the sensor data about the user, which is frequently collected by the wrist-
worn wearable. An overview of these seven data tables and their columns, corresponding
data types, and example values can be found in section A.1 of the appendix.

The user data table contains the following user-specific information: a unique ID, email
address, first and last name, the country where the user lives, gender, date of birth, body
height, handedness (indicating whether the user is right- or left-handed), a profile image, the
gear he is currently using (e.g., running shoes), the creation date of the account, body weight,
and the maximal oxygen consumption (VO2max). These attributes are mainly used to compare
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Figure 7.4.: Wrist-worn wearable data model

different users with each other based on different criteria. The reveal of information like body
weight and maximal oxygen consumption, which indicates one’s endurance fitness, may be
undesirable for a user. The information in the heart rate data table provides information
about the user’s heart rate at a given time, which may imply details about their activities.
The user’s sleep movement is tracked by indicating a relative activity or movement level
for one minute. This can be leveraged to detect sleep apnea but also to determine one’s
sleeping hours. Information about tracked activities is stored in the activity data and activity
trackpoint data table. They contain information about the type of the activity, as well as
time, GPS coordinates, elevation, heartrate, and cadence of each recorded trackpoint. The
user benefits with detailed insights into his activities, but it could also be used to determine
his home or working place. In case an ECG is performed, a time series of around 15,000
data points indicating the voltage and derivation related to the hearth rhythm are collected.
This data is used to detect cardiac dysrhythmia and atrial fibrillation, which is very sensitive
information for an individual. Lastly, the step data table provides information about the steps
and floors a user covered within one minute.

Table 7.4 indicates the number of records collected per user for each column in the data tables.
When the data exports of the considered providers were using different frequencies (e.g.,
Garmin stores the heart rate for each 2 minute interval, whereas Fitbit saves this information
every 5 seconds), the approach with the higher frequency was chosen.

Data table Type # of columns # of attributes per User

User data Master data 14 1
Heart rate Raw sensor data 3 1 per 5 sec
Sleep movement Raw sensor data 4 1 per min during sleep
Activity Raw sensor data 4 1 per activity
Activity trackpoint Raw sensor data 7 1 per sec during activity
ECG Raw sensor data 4 15,258 per ECG
Step Raw sensor data 4 1 per min

Table 7.4.: Overview of Data Tables

To illustrate the amount of data which is collected for a user during one day, the information
from Table 7.4 was added up. Since the amount of data in the master data tables is relatively
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small and stays stable over time, these tables were not considered in this calculation. The
following formula expresses the number of attributes aday per day and user. It is dependent
on the number of sleeping hours ds, the number of activities per day a, the duration of an
activity in minutes da, and the number of ECGs per day e.

aday = 57, 600 + 240 ∗ ds + 4 ∗ a + 420 ∗ a ∗ da + 61, 032 ∗ e

Assuming that a user sleeps 8 hours (ds = 8), tracks two activities a week (a = 2/7) with
a duration of 60 minutes (da = 60) and performs one ECG per week (e = 1/7), this leads
to 75,440 collected attributes a day. Calculating with an average attribute storage size of 20
Bytes, this leads to 1.43 Megabytes per user and day. This number may sound rather small,
but with an exemplary number of users of 50 million, it already sums up to more than 68
Terabytes per day. It also has to be taken into account that only the raw sensor values without
any calculation or analysis are considered.

7.3.1. Determination of Identifiers and Sensitive Attributes

The goal of this subsection is to identify Explicit Identifiers, Quasi Identifiers, Sensitive attributes,
and non-sensitive attributes within the defined data model. Jung et al. propose a suitable
determination scheme for quasi identifiers. Its original purpose is based on clinical data.
However, the classification approach can be applied in a more general way. The first step of this
scheme includes classifying the data columns based on the process shown in Figure 7.5.

Figure 7.5.: Data classification process
Source: Jung et al. (2020)

Jung et al. use the term Direct Identifiers and its abbreviation DID. However, we use EI and
Explicit Identifiers instead, like it was defined in section 2.1. Strictly following the process
indicates that a data column always gets uniquely classified into one of the four categories
and hence that those are non-overlapping. However, we propose the assumption that the
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two identifying categories (EI and QI) and the two sensitivity categories (SA and NSA) need
to be considered separately from each other. This is because some attributes can be quasi
identifiers while being sensitive at the same time. An example is the attribute weight, which
we classify as both. Therefore, after classifying information as an Explicit Identifier or a Quasi
Identifier, we nevertheless check if the attribute can also be referred to as a sensitive attribute. If
this is not the case, the category non-sensitive attribute is not considered since it does not bring
additional value. Hence, an attribute can only be classified as a NSA exclusively.

In the proposed generic data model, some attributes serve only as QI or SA when combined
with other specific attributes, whereas they alone are classified as NSA. Therefore, we replace
these attributes with matrices containing the related elements as part of this process. Table 7.5
shows the resulting classifications for the data columns of the wrist-worn wearable data
model.

Data table Column Classification

User data

userID EI
eMail EI

firstName QI
lastName QI
country QI
gender QI

birthDate QI
height QI

handedness QI
profileImage QI
currentGear QI
createdDate QI

weight QI & SA
vo2Max SA

Heart rate
userID EI(

timestamp
heartrate

)
SA

Sleep movement

userID SA startTime
endTime

activityLevel

 SA

Activity

userID EI
activityID NSA

time QI & SA
type QI & SA

continued on next page
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continued from previous page

Data table Column Classification

Activity trackpoint

activityID NSA
time

latitude
longitude
elevation

 QI & SA

heartrate SA
cadence SA

ECG

userID EI
startTime SA
voltage SA

derivation SA

Step

userID EI time
steps
floors

 SA

Table 7.5.: Classification of wrist-worn wearable data attributes

7.3.2. Investigation of Quasi Identifiers

In the previous subsection, 14 quasi identifiers in four different data tables were identified.
This section serves to identify and evaluate the identifiability of these quasi identifiers.

Jung et al. propose two meaningful measures to calculate re-identifiability scores for an
attribute. The uniqueness value of an attribute is expressed by the ratio of the number of
unique values to the total number of different values (Dankar et al., 2012; Jung et al., 2020).
Hence, if the uniqueness value is 0, a specific individual cannot be identified just with this
information. If the value is not 0, the attribute has at least one distinct value (Jung et al.,
2020). The inference value compares the number of equivalence classes (records with the same
values on the quasi identifiers) when a specific attribute is excluded to the number of classes
of the entire table. A significant difference indicates a high level of influence of that attribute
which leads to an increasing re-identification risk (Jung et al., 2020). El Emam suggests two
risk metrics that apply to a complete record of a data set instead of a single attribute. If
a potential adversary knows whether a data subject is in that data set, the prosecutor risk
can be used. It describes the probability of re-identification and is calculated by dividing
through the size of the matching equivalence class in the data set (El Emam, 2013, p. 186). If
it is not known whether the individual is in the data set, the journalist risk applies which is
calculated by dividing through the number of records in an identification database (a superset
of the database) (El Emam, 2013, p. 186-188). These two concepts, which are closely related
to k-anonymity, are also used in implementations and tools within organizations for risk
assessment purposes (I12). Table 7.6 summarizes the different risk metrics.
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Metric Calculation Level

Uniqueness value
number of unique values of attribute

total number of different values of attribute
attribute

Influence value 1− number of equivalence classes without attribute
number of equivalence classes

attribute

Prosecutor Risk
1

size of matching equivalence class
record

Journalist Risk
1

size of equivalence class in identification database
record

Table 7.6.: Metrics for risk analysis
Source: based on Jung et al. (2020), El Emam (2013)

However, these measures can only be used to evaluate the risks of quasi identifiers when
there is a complete data set available. Since our basis is a data model with a defined structure
but without explicit values, we cannot calculate measures like the uniqueness and inference
value. To cope with that issue, we identified the amount of distinct values an attribute can
take (also called cardinality) as a suitable alternative measure. It takes into account the
definition and properties of an attribute and is related to the mentioned metrics for risk
analysis. The numbers of distinct values for the attributes of the examined use-case are
presented in Table 7.7.

Generally, a higher number of distinct values also implies a higher risk regarding a possible
re-identification. This is based on the fact that the number represents the level of detail that
can be associated with a data subject. If we assume a uniform distribution of the values
within an attribute, a higher cardinality leads to a higher uniqueness value and also a higher
prosecutor and journalist risk. Of course, this distribution is not entirely accurate in practice.
Taking the date of birth into account, it is unlikely that there are as many smartwatch users
with the age of 60 as with the age of 25. Considering the activity time, there will be more
activities pursued during day time than in the night. However, we will still follow up on
this approach to model the risk values as it is suitable to represent the level of detail in an
unknown data set.

The so-called number of minimal sample uniques is another approach for risk estimation. It is
based on the number of unique patterns of attribute values which can lead to the identification
of individuals within a data set (Manning et al., 2008; Prasser et al., 2020). As it is only usable
in case of availability of a full data set, we propose the following metric which is closely
related to it:

The attribute value combinations (AVC) represent the total number of possible
value combinations for all attributes in a data set.

Hence, it is calculated by multiplying the numbers of distinct values (or value combinations)
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Data table Column Distinct values Assumption

User data

firstName ∼ ∞
lastName ∼ ∞
country 195 Source: xyz
gender 3

birthDate 15,695 Users between 18 and 60 years old
height 51 Heights between 150cm and 200cm

handedness 2
profileImage ∼ ∞
currentGear 2,000 20 brands with 100 models each
createdDate 3,650 Days within the last 10 years

weight 81 Weights between 40kg and 120kg

Activity
time 5,256,000 Minutes within the last 10 years
type 10

Activity trackpoint


time

latitude
longitude
elevation

 ∼ ∞

Table 7.7.: Distinct values of Quasi Identifiers

of each attribute of the data set. It indicates the maximum possible unique records, which
would be the case if each possible attribute value combination existed exactly once.
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8. Requirements for Privacy-Enhancing
Analytics of Wrist-Worn Wearable Data

This chapter deals with the identification of requirements for a concept for privacy-enhancing
analytics of wrist-worn wearable data. We present general insights gained in the expert
interviews. Afterwards, the resulting requirements are presented to address the second
research question.

8.1. Findings of the Expert Interviews

The following section will give an overview of the obtained results in the conducted expert
interviews. The insights are structured into different areas. Further results are stated also in
the following chapter.

Impact of Data Privacy

Data privacy has an increasing impact on organizations and individuals already, primarily
through the release of GDPR. However, it certainly does not yet have the status that it needs
everywhere (I1). Especially for consumer goods, like wearables or smart speakers, users often
see the great things that are possible, but of course, there are some major drawbacks in terms
of privacy (I2). "It is not about the sale of such a smartwatch, it is about the data that is
collected and with which business is to be done." (I1) Furthermore, such wearable service
providers often operate in a grey area as they choose a location where they try to evade the
enforceability of GDPR (I4).

Tools can help to identify and address privacy issues within IT systems. In practice, these
are often simple so that different questionnaires are provided. Based on the results, a
recommendation regarding the risks and potential measures is then given (I7). There are
several tools and software on the market to support the compliance of data privacy. However,
a proper risk analysis should always contain contextual information, whereas it is hard to
implement a generic solution (I1). It would be beneficial, and it is an important topic to find
such a solution for large amounts of data to prevent the possibility of drawing conclusions
about individuals. Especially for topics like the Internet of Things, Artificial Intelligence and
Cloud Computing, this often leads to problems (I3).
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Potential of De-Identification

The potential of a concept using de-identification methods to preserve an individual’s privacy
is perceived to be very large (I1, I4, I7). Simple pseudonymization is not sufficient in most
cases, so there is a need for this approach, and such solutions are on the rise (I4). Some people
do not realize the extent of personal data they provide to cloud providers, which then can
potentially be accessed by the cloud provider itself but also by unauthorized third parties, i.e.,
adversaries (I2). The ultimate goal of such a solution would be to transform the data in a way
that it can no longer be considered as personal data with regards to the GDPR. As a result,
there would be no data protection restrictions, and the individuals would no longer have a
risk of abuse anymore (I4). Hence, the de-identification methods can be used to achieve a
regulation compatible purpose (I9). In most cases, the full raw data is not needed anyway to
obtain trends or statistics. To relate to the example of a smartwatch: It may only be interesting
to know that someone has run three miles, but not where he has run those (I7). The key of
such de-identification methods is to identify how to set the re-identification risk to zero (I3).
The combination of methods on attributes given the constraints for privacy and information
loss might by feasible to solve in an optimization problem (I12).

Suitable use cases can be found in healthcare, telecommunications, and banking for exam-
ple (I4). When it comes to autonomous driving, such concepts will be needed very soon due
to the mass of sensors and personal data which is collected (I7). However, real applications
are rather rare up to now (I1, I2, I3, I7). Initial concepts already exist in the health and
insurance sector (I1, I2). To drive the usage of these concepts a lot of sensitization will be
needed (I1).

Amount of Data

The available amount of data is a crucial factor for risk evaluation. The more (anonymous,
pseudonymous, or de-identified) data one collects, the easier it gets to link it to a person
again (I7, I1). Combining the data with published data sets is one way to contextualize
it. This allows one to narrow down eligible persons by detailing their profile (I1). If many
more records of personal data are processed compared to records with special categories
of data, the former ones can cause much more damage (I10). This is why the principle of
data minimization should be considered to mitigate such risks (I10). Also, if the wearable
data can be assigned to a smartphone, it might be easily linkable to information from other
applications which were not designed in a privacy-friendly way (I7, I2).

Classification of data

Different approaches for the classification of data based on their criticality and risk of abuse
exist (I1). The distinction of GDPR into personal data and special categories of personal
data like health and politic related information often serves as a basis (I3, I6, I8). Our use
case falls into the latter one as it includes health-related as well as GPS motion data. It is

64



8. Requirements for Privacy-Enhancing Analytics of Wrist-Worn Wearable Data

essential to distinguish between unique information, like names, and additional information
that can help to identify individuals. From a GDPR point of view, sensitive and non-sensitive
attributes of personal data are treated equally. Former ones merely have a higher threshold
to be processed (I3). Risk-based classifications into stage models (from high to low risk or
from major to marginal impact) are often used to conceptualize measures accordingly (I6, I8).
An evaluation of the exact content of an attribute is crucial for this purpose (I12). However,
the classification has to be carefully considered together with the amount of data that is
available (I1).

Risk evaluation

"The guiding principle is: no conclusions on individuals unless I have the appropriate
consent" (I3). However, it is often not clear which methods exactly are sufficient for a de-
identification (I5). Often, it is at an individual’s discretion which data is critical. For some
users, it may be valid to share GPS motion data, for others not. Ideally, there would be mature
users that decide for themselves what they want to share and what not (I1). The central
question should be: What implications does it have for individuals in case of a disclosure (I8,
I12)?

Impact of Regulations

Regulations regarding data privacy are gaining more influence and are being tightened
worldwide. The GDPR is pioneering in this development and serves as a basis for laws in
China, Thailand, India, and California, which emerged in recent years (I6, I12). Especially the
threat of punishment and the increase in fines have caused GDPR receiving great attention for
organizations of all kinds (I1, I3). Hence, it is also highly relevant for providers of wrist-worn
wearable services.

Generally, it is essential to distinguish between the two data categories personal data and
special categories of personal data (I2, I4, I9). As the wearable data falls under the latter,
processing requires explicit and demonstrable consent of the individual (I2, I4). Additionally,
the data can only be processed if it is necessary for a specific purpose, which is in our case
the platform service, including the analytical possibilities (I4, I9). Purpose limitation "[...]
is part of the holy grail of data protection principles." (I9) Other important principles are
need-to-know and data minimization that both advice to limit the amount of data as far as
possible (I1, I3). An important aspect with regards to de-identification methods is the integrity
of data, which implies that the data needs to be correct and accurate (I2, I12). For perturbative
methods, this can lead to a challenge as these methods might alter the truthfulness of single
values. The decisive question here is: does the application of a perturbative method like noise
addition change the accuracy and correctness of data in such a way that it violates the GDPR?
There is no precise answer to that as the regulation itself does not define when data can be
considered as incorrect. One can argue that through the perturbation, it is not personal data
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anymore. However, one needs to be careful regarding the application of perturbative methods
and investigate a potential violation for each specific use case.

Two core principles of GDPR that are also crucial for the wearable use case are privacy by
design and privacy by default (I1, I3, I4, I8, I10). Privacy by design indicates that privacy
issues should be addressed in the product development of a software or tool. Hence, our
concept should also mitigate possible risks by design, if possible. Privacy by default suggests
that products should be configured by default in a way that the privacy of individuals is
preserved (I3, I8). Ideally, these two principles are integrated in such a way that the data "[...]
can no longer be considered as personal data under the GDPR." (I4)

For modern data privacy protection, it will be necessary to also bring the algorithms itself
under control. This implies that these should be transparent to enable more straightforward
impact and risk assessments. There is a lack of regulations with regards to this partial aspect
of algorithms, but this will most likely come in the future (I1). Hence, we will include
transparency as a requirement for the development of the concept.

8.2. Derivation of Requirements

In this section, the requirements of a concept for privacy-enhancing analytics of wrist-worn
wearable data are specified and illustrated. In total, ten requirements were identified. They
originate from

• the literature review on de-identification methods and privacy models (chapter 6),

• the conducted interviews and discussions with experts within the domain data privacy,

• and the findings related to the generic wrist-worn data model described in the previous
chapter.

Requirement 1: Local transformation of data
The de-identification methods shall be applied locally on the wrist-worn wearable
before transferring the data to the service provider.

Due to the specific nature of our use case, which incorporates multiple wearables as data
sources, we aim to apply the de-identification techniques on the wearable devices itself. This
implies that the source data is not shared with the service provider. Hence, the risk that this
data gets disclosed is reduced (I7, I12). Only the transformed and de-identified data shall
be transferred to the service provider. In the following chapter, we will further specify the
implications that are caused by this requirement.

Requirement 2: k-anonymity enforcement
The concept shall incorporate the privacy model k-anonymity to conceptualize
the re-identification risk.
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The k-anonymity model is the basis for its extensions l-diversity, and t-closeness and it has
not been thoroughly researched yet how it can be applied on a local basis. For this reason,
we aim for a concept that incorporates local enforcement of k-anonymity. De-identification
methods that work along with this privacy model, are preferably selected. Metrics like the
number of distinct values and the attribute value combinations (AVC) will support the realization
of this requirement.

Requirement 3: Privacy levels
The concept shall provide different levels of privacy dependent on the choice
of the user which reflects his preference for the trade-off between privacy and
utility.

The idea of different privacy levels is that every user might have a different perspective about
how strong he wants to be protected and which kind of analytical functionalities he wants to
use. Each user should decide for a specific level based on which de-identification methods are
applied (I1, I8). However, a minimum level should be defined and set by default (I1).

Requirement 4: Generic wrist-worn wearable data model
The concept shall be explicitly designed for the generic wrist-worn wearable
data model.

The wrist-worn wearable data model, which was described in chapter 7, will be used to
conceptualize and evaluate the de-identification approach. The basis of this concept is
required to be adaptable to other use cases as well.

Requirement 5: Compliance with regulations
The concept shall reflect the principles of privacy by design and privacy by
default of the General Data Protection Regulation. The recommendations of the
HIPAA Safe Harbor method shall also be taken into account.

The impact of regulations on data privacy was already illustrated earlier. The principles of
privacy by design and privacy by default of the GDPR and the HIPAA Safe Harbor method
were identified as the most critical aspects for this use case. The former ones relate closely to
the provision of different levels and the definition of a minimum level in requirement 3 (I1, I3,
I10). Due to its practical nature and its focus on health-related data, the HIPAA Safe Harbor
method will also be considered (see subsection 2.2.2).

Requirement 6: Low performance overhead
The concept shall focus on de-identification methods with rather low compu-
tation times (linear complexity) to limit the performance overhead and enable
scalability for Big Data.

The computation times are a significant factor for the choice and comparison of applicable
methods (I5). De-identification methods with low performance overhead will be preferred
to allow scalability and usability for Big Data sources. Furthermore, the processing power
of wearables might not be able to deal with more complex computations like homomorphic

67



8. Requirements for Privacy-Enhancing Analytics of Wrist-Worn Wearable Data

encryption.

Requirement 7: Constraints from a privacy perspective
The selection of appropriate de-identification methods shall be carried out based
on constraints and requirements out of a privacy perspective instead of an
analytical perspective.

In chapter 2, the trade-off between privacy and utility was illustrated. On the one hand, one
wants to promote data privacy and limit the relation of data to persons. On the other hand,
utility should be preserved as much as possible (I9). The concept shall be developed from a
privacy point of view to ensure appropriate protection of the individual’s privacy. Hence, the
requirements and constraints are set to provide sufficient privacy. The analytical operations
need to adapt to these constraints. This will create higher confidence among the users, which
might again lead to more data that can be collected (I11).

Requirement 8: Protection against complete disclosure to any adversary
The concept shall protect against disclosure of the entire data set, i.e., internal
and external adversaries that have access to the full data.

The concept is supposed to protect a scenario that involves disclosure or leakage of the
complete data set, including all attributes and records. The type of adversaries is also not
limited and includes internal as well as external adversaries of the system provider.

Requirement 9: Transparency
The combination of de-identification methods applied to different privacy levels
shall be disclosed to enable full transparency for a user.

The Article 29 DP Working Party advices to disclose implemented anonymization techniques
if a data set is released (Article 29 DP Working Party, 2014, p. 25). We follow this proposal
and aim to provide a transparent overview of applied de-identification methods to the users.
This will help the users to get an idea of the impact of these to determine which privacy level
to choose.

Requirement 10: Transformation of identifiers
The concept shall focus on the transformation of explicit and quasi identifiers to
reduce the re-identification risk.

Generally, de-identification methods can be applied to identifiers as well as sensitive attributes.
The concept we aim for transforms the identifiers in a way that the re-identification risk is
mitigated. The sensitive attributes will not be modified with this approach as the risk of
allocation to an individual is decreased.
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on Wrist-Worn Wearable Data

This chapter describes the development and evaluation of a concept for the application of
de-identification methods on wrist-worn wearable data. The comprehensive literature review
on de-identification methods in chapter 6, the description of the use case along with its
generic data model in chapter 7, and the identified requirements in chapter 8 serve as the
input for this concept. At first, we describe a suitable technical architecture and evaluate the
applicability of different de-identification methods. We then develop a new local probabilistic
k-anonymity concept that allows applying the privacy model at a local level. We propose a
Monte Carlo simulation to verify certain privacy levels. Lastly, a critical evaluation of this
concept is pursued by the analysis of different scenarios.

9.1. Technical Architecture

In Figure 9.1, two possible variants of a simplified technical architecture for a de-identification
approach on wrist-worn wearable data are presented. Both represent the data flow of
two smartwatches to a provider in the cloud. The red dotted lines indicate the point of
de-identification.

For variant A, the de-identification takes place on the wearable itself before the data is
transferred to the cloud provider. This has the advantage that no additional location is
needed where the data is temporarily stored and processed. Hence, it would work with
existing infrastructures. The computations would need to be done on the wearables or its
corresponding smartwatches which should not be an issue anymore since only the data of
one single wearable would need to be handled (I12). The disadvantage, however, is that one
can use privacy models only in a limited way since the complete data set of other wearables
is not available at the point of de-identification. For differential privacy, concepts coping with
that issue (called local differential privacy) exist (Cormode et al., 2018; Fan et al., 2020). For
k-anonymity and its extensions l-diversity and t-closeness, a local application is more limited
due to the uncertainty of the complete data set.

With variant B, the de-identification takes place at a trustworthy point between the wearable
and the cloud provider. The data from different wearables is merged and de-identification
methods are applied on this complete data set. The data is transferred to the provider
afterwards. This allows the best possible application of de-identification methods with all
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(a) Variant A (b) Variant B

Figure 9.1.: Technical architecture variants

privacy models because the operations can be performed on the full data set. However, this
additional point, which serves as an intermediary, has to be utterly trustworthy as it operates
on the whole data and therefore has access to the individual’s raw data. Furthermore, it
represents an additional point of attack for adversaries. The requirements with regards to
computation power are also very high since calculations on large amounts of data have to be
performed.

Based on scientific publications and current implementations of de-identification methods,
variant B is often assumed. But, due to the ease of compatibility with existing infrastructure
in the wearable use case, the avoidance of an additional point of attack and the existing
research gap for local k-anonymity, we will focus on variant A. This architecture is promising
as the full source data is not transferred and wearables should be capable of performing
such transformative operations (I7, I12). It also harmonizes with requirement 1 where a local
transformation approach was identified.

9.2. Evaluation of Applicable De-Identification Methods

In this section, the local applicability of de-identification methods on the generic wrist-worn
wearable data model is evaluated. As stated in requirement 10, we focus on the transformation
of identifiers rather than sensitive attributes. Table 9.1 shows the de-identification methods
that are applicable to the EIs and QIs of the wrist-worn wearable data model. We focus on
the local application of the methods as stated in the previous section. In case it generally
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makes sense to apply a method, the entry is marked with an X.

The userID is not listed as we decide to leave it untouched. We assume it to be only used
in this context, so it is neither identifiable, nor sensitive. As the eMail is used as a login
parameter, a transformation has to remain its uniqueness. Latitude and longitude are considered
together since they represent one location point in combination, and they have the same
properties regarding possible methods. The same accounts for firstName and lastName. For the
applicability of generalization methods, we investigated if a suitable generalization hierarchy
exists for the respective data column. In case there are only a few possible values (e.g.,
gender, handedness) and the next generalization step would lead to one category containing
all values, the method is considered as not applicable. This accounts for all attributes with a
generalization height of 2. All date columns can be easily transformed into numerical values.
Therefore, several numerical methods are applicable to them. The same procedure applies
for time columns. Attributes with values of only one character (e.g., gender) and columns
with only a few possible attributes (e.g., handedness, activity type) are considered not to be
applicable for character masking. Also, all data columns with a non-consistent length (e.g.,
profileImage, currentGear) are not considered applicable for character masking and the creation
of pseudonyms. When an attribute has only one value per user, data swapping, sampling
and microaggregation are not useful due to the local de-identification approach. In this case,
swapping is not possible, sampling would be equivalent to a deletion, and microaggregation
would not lead to any change of the value. Therefore, these methods cannot be applied to
the attributes of the user data table. The creation of synonyms only makes sense for free-text
fields like firstName and lastName.

Randomization, character scrambling and truncation can be applied on all data columns.
However, we do not consider randomization because the remaining utility is limited and
we suggest to use deletions instead as they do not introduce any false values. Character
scrambling is also not useful for our use case for similar reasons. This method is only beneficial
in very specific cases such as counting characters or creating test data. For truncation, we did
not encounter suitable application possibilities targeted to wrist-worn wearable data. It does
not provide adequate utility and is replaceable with other methods. As a result, we do not
incorporate these three methods for our concept due to the mentioned shortcomings.

Noise addition is listed as applicable in many cases but will, however, not be further considered
due to its unsuitability with the k-anonymity privacy model. Theoretically, homomorphic
encryption is applicable to the attributes. Since the computations on that data are not yet
practically applicable due to their complexity and immaturity, we do not incorporate them
within this concept. The same accounts for deterministic encryption as well because we aim
to avoid the necessity of storing a key.
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User data

eMail - X - X X X - - - - - - X X X
firstName

- X - X X X - - - - - X X X X
lastName
country - X - X X X X - - - - X - X X
gender - X - X X X - - - - - - - X X
birthDate - X - X X X X X X - X - - X X
height - X - X X X X X X - X - - X X
handedness - X - X X X - - - - - - - X X
profileImage - X - X X X - - - - - - - X X
currentGear - X - X X X X - - - - - - X X
createdDate - X - X X X X X X - X - - X X
weight - X - X X X X X X - X - - X X

Activity
time X X X X X X X X X X X - - X X
type X X X X X X - - - - - - - X X

time X X X X X X X X X X X - - X X
Activity latitude

X X X X X X X X X X X - - X X
trackpoint longitude

elevation X X X X X X X X X X X - - X X

Table 9.1.: Applicable de-identification methods on identifiers
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9.3. Local Probabilistic k-anonymity

Due to the local de-identification approach, the incorporation of the privacy model k-
anonymity (requirement 2) is not as straightforward as when it is applied globally. This is
caused by uncertainty about the properties of the entire data set. In this section, we propose
a local probabilistic k-anonymity concept to address this uncertainty. The concept will enable
one to draw inferences about the expected privacy level within an unknown data set. A
Monte Carlo simulation is used to verify the privacy levels.

The level of k-anonymity is dependent on three major factors: the number of records, the
number of quasi identifiers, and the distribution of values within the attributes. For this
model, we assume that the number of records, quasi identifiers, and distinct values per quasi
identifier are known. Hence, the attribute value combinations (AVC) can be calculated by
multiplying the number of distinct values of each attribute. For a number of quasi identifiers
a, this accounts to

AVC =
a

∏
i=1

DistinctValues(Attributei)

The distribution of values within an attribute is unknown in the local scenario. Within this
simulation, we model it as an equal distribution. Each value is assumed to occur with the
same probability.

The Monte Carlo simulation is carried out by randomly assigning r records to g groups,
whereas the parameter g represents the AVC. The size of the smallest occupied group is then
equivalent to the achieved k of the k-anonymity model. This process is repeated n times such
that a frequency distribution of k can be obtained. We calculate three different measures,
giving implications about the resulting privacy level: The most frequent value of k and the k
with which at least 95% and 99% of all records serve k-anonymity. We define the anonymity
threshold as a percentage that indicates the risk that the respective k-value is not reached. For
the scope of this work, we assume an anonymity threshold of 1% as reasonable. This implies
that we will further use the k for which 99% of the simulations result in an equal or larger k
(99% rule). An implementation of this simulation in Python, which was used to calculate the
results in this work, can be found in section C.1 within the appendix.

An exemplary simulation was carried out with five groups (g = 5) and 200 different records (r
= 200), the results of which are shown in Figure 9.2. Two different amounts of iterations (n =
1000 and n = 100,000) are compared. It shows that more iterations lead to a smoothing of the
curve and an approximation to a Gauss distribution. This will generally also lead to more
accurate and usable results. Thus, we aim to use a high n to obtain usable results. However,
more iterations also cause an increase in computation time. For the relative small parameters
of g and r, this was still feasible as the computation times of 0.5s and 36s show. However, for
higher ones, this can cause relatively long-lasting simulations. The right-hand graphic shows
that in most cases, a k of 34 is achieved. In more than 99% of all iterations, k-anonymity with
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a k of at least 24 was achieved. We will use the respective 99% thresholds as the relevant
indicator of the privacy level as part of the evaluation of the concept for wrist-worn wearable
data.

(a) Iterations: n = 1000
Computation time: 0.5s

(b) Iterations: n = 100,000
Computation time: 36s

Figure 9.2.: simulation with r = 200 and g = 5

This local probabilistic k-anonymity concept can be considered as a beneficial approach to
investigate the potential privacy in an unknown data set for some given parameters. However,
it is also related to some critical shortcomings. The model, like it is designed, applies a
random distribution for the values of an attribute. This is not always representative for a
data set as there can exist values that occur very frequently and rather rare ones. These rare
values affect the k-anonymity model as it will most likely lead to a lower k. Additionally,
the simulation does not take into account correlations between attributes, so the simulation
is more risk-averse in this case. The implementation has the potential to be extended for
these distribution and correlation purposes. Another drawback is the long computation
time when high values are assigned to the input parameters g and r. Nevertheless, in the
optimal case, the simulation only needs to be executed only once to obtain an appropriate
risk assessment.

9.4. De-Identification of Identifiers

To analyze the de-identification of identifiers, we first differentiate between single value and
multiple value attributes. The former ones indicate that exactly one value is assigned to
each record or user, whereas there are more values assigned to the latter ones. The user
data table contains only single value attributes, while the other tables contain multiple value
ones. In this section, we will investigate the methods for quasi identifiers, propose suitable
combinations for the application and evaluate them with the proposed k-anonymity Monte
Carlo simulation.
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9.4.1. Methods on Single Value Attributes

Single value attributes have the advantage that their risk and utility can be easily investigated
by the number of distinct attribute values. Table 9.2 shows these values in increasing order
along with an indication whether the attribute shall be removed or generalized according
to HIPAA Safe Harbor (see chapter 2). For the date values, HIPAA recommends removing
everything besides the year. For others, which are also marked with an X, it means that
they should be completely removed. The table illustrates that the number of distinct values
correlates with a removal according to HIPAA. We use this table as a risk measure to determine
the application of de-identification methods.
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Distinct values 2 3 51 81 195 2000 3650 15695 ∼ ∞ ∼ ∞ ∼ ∞ ∼ ∞

HIPAA
Safe Harbor

- - - - - - X X X X X X

Table 9.2.: Risk of single value attributes

Attribute suppression

Attribute suppression (the deletion of the attribute) is applicable to all attributes of the user
data table. However, the eMail attribute is not feasible for that as it is used as a login parameter
of the user within the system. There are three attributes with a very large number of distinct
values that do not allow generalization at the same time: firstName, lastName and profileImage.
We propose their redaction as they lead to a high re-identification risk and offer just a small
utility.

Suppression(firstName); Suppression(lastName); Suppression(profileImage)

Generalization

We observed a possible applicability of generalization on the attributes country, height, weight,
currentGear, createdDate, and birthDate. In Table 9.3, we suggest respective generalization
hierarchies, provide example values, and indicate the resulting number of unique values
(last line). The term any means that on this level there is no differentiation between values
anymore, leading to only one distinct value.
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Level Legend country height weight currentGear createdDate birthDate

0
domain

(example)
distinct values

country
(DE)
195

cm
(181)

51

kg
(81)
81

model
(NB Rubix)

2,000

day
(2018-09-12)

3,650

day
(1994-05-04)

15,695

1
domain

(example)
distinct values

continent
(Europe)

6

5cm
(180-184)

10

5kg
(80-84)

16

brand
(New Balance)

20

month
(2018-09)

120

month
(1994-05)

516

2
domain

(example)
distinct values

Any
1

10cm
(180-189)

5

10kg
(80-89)

8
Any

1

year
(2018)

10

year
(1994)

43

3
domain

(example)
distinct values

20cm
(180-199)

3

20kg
(80-99)

4

5 years
(2015-2019)

2

5 years
(1990-1994)

9

4
domain

(example)
distinct values

Any
1

Any
1

Any
1

10 years
(1990-1999)

5

5
domain

(example)
distinct values

Any
1

Table 9.3.: Generalization hierarchies with example values and number of unique values

Figure 9.3 shows the relative influence of the generalization level on the number of distinct
values (0=minimum generalization level, 1=maximum generalization level). The y-axis is
based on a logorithmic scale where each interval section shows a decrease by a factor of
10. One can conclude that the most significant improvements of privacy can be done by
generalization of birthDate and the lowest with height. This also matches with their initial
number of distinct values.
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Figure 9.3.: Distinct values for generalization

76



9. Concepts Using De-Identification Methods on Wrist-Worn Wearable Data

As a result, we propose the application of all six attributes dependent on the desired level of
privacy. The parameter X indicates the respective level of generalization, which will be used
later on. For birthDate and createdDate the lowest generalization level shall be 2 due to the
HIPAA safe harbor rules.

Generalization(birthDate, X); Generalization(createdDate, X); Generalization(currentGear, X);
Generalization(country, X); Generalization(weight, X); Generalization(height, X)

Noise addition

We do not consider noise addition for the single value attributes as it is not suitable because
it does not improve privacy according to the k-anonymity model. Instead, it is more feasible
for privacy models like differential privacy.

Character masking

This method is applicable for the attributes eMail, firstName, lastName, and country. We do not
take this option into account as it destroys the utility, which is why a deletion in this case is
more suitable.

Creating pseudonyms

For the attributes eMail, firstName, lastName, the creation of pseudonyms is very similar. Since
the email address often contains an individual’s name and is used as a login credential, we
propose to replace it with a pseudonym and delete the name attributes.

Creating pseudonyms (eMail)

9.4.2. Evaluation of Single Value Attributes

The evaluation of suitable combinations of de-identification methods on single-value attributes
is done in multiple iterations. For each iteration, the k-anonymity Monte Carlo simulation
is performed. The simulation is carried out based on three user amounts which we assume
to be reasonable and representative for a wrist-worn wearable platform: 20 million users, 2
million users and 100,000 users.

We start the evaluation with the highest user amount (50 million) until adequate privacy
protection is reached. The threshold for adequate privacy protection is illustrated later on.
Then the concept is further extended to 2 million and 100,000 users, respectively. This is based
on the fact that more users lead to higher privacy protection based on k-anonymity.
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First iteration

Based on the findings in the previous section, we propose the methods shown in Table 9.4 as
the first iteration of the privacy levels and calculate the respective AVCs.

The highest AVC value of about 67 million is still higher compared to the largest amount
of assumed users (50 million). This ratio will not lead to sufficient privacy protection
considering the assumptions of the k-anonymity Monte Carlo simulation. An AVC larger than
the number of records will, in almost all cases, lead to k-anonymity with k = 1. Therefore,
these combinations are not considered sufficient since they will lead to unique records in the
data set.

# Suppression
Creating

pseudonyms
Generalization AVC

3
firstName lastName

profileImage
eMail

birthDate(3) createdDate(3)

height(1) weight(1)

currentGear(1)

67.4 * 106

2
firstName lastName

profileImage
eMail

birthDate(2) createdDate(2)

height(1) weight(1)

currentGear(1)

1.6 * 109

1
firstName lastName

profileImage
eMail birthDate(2) createdDate(2) 4.15 * 1012

Table 9.4.: Concept iteration 1

Second iteration

We use level 3 of the first iteration as a basis for the second iteration and add further methods
for the reduction of the AVC, as shown in Table 9.5. As the handedness attribute (2 distinct
values) does not offer large analytical value, it will be deleted from now on.

The k-anonymity Monte Carlo simulation is applied to the calculated AVC values. It was
performed on the three described user amounts, whereas

• (1) relates to 50 million users,

• (2) relates to 2 million users and

• (3) relates to 100,000 users.

For these scenarios, the resulting 99% thresholds, meaning that in 99% of all cases a specific
k-anonymity level is achieved, are used as evaluation criteria. We refer to this value as k (99%
rule) in Table 9.5 and the following ones. The full results of these simulations, including the
corresponding frequency distributions, can be found in section C.2 in the appendix. Due to
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time constraints and the computational complexity, not all combinations were simulated. In
case a k of 1 was retrieved, all combinations with the same parameters but either a higher
AVC or a lower number of records were also set to 1.

The choice for an appropriate k and therefore the interpretation of these k values is rather
difficult. It is not possible to give a minimum recommendation for that parameter. Instead, it
should always be chosen according to the specific use case (Article 29 DP Working Party, 2014;
Kiyomoto & Miyake, 2014). This is because it is hard to assess what exactly is sufficient for
de-identification, and also privacy laws do not provide a specific suggestion (I5). In the field of
health data, a k between 5 and 15 is often used, but it is still an arbitrary value (Desfontaines,
2017). Based on this, we propose a k of 10 as the first value for a minimum privacy protection.
Values above that threshold are framed with a green dashed line in the table. Within this
iteration, two de-identification approaches that serve appropriate privacy protection for the
user amount of 50 million were identified.

# Suppression Creating Generalization AVC k (99% rule)
pseudonyms (1) (2) (3)

4
firstName lastName

profileImage handedness

createdDate

eMail

birthDate(3) height(1)

weight(1)

currentGear(1) country(1)

518,400 48 1 1

3
firstName lastName

profileImage handedness

createdDate currentGear

eMail
birthDate(3) height(1)

weight(1)
842,400 22 1 1

2
firstName lastName

profileImage handedness

createdDate

eMail

birthDate(3) height(1)

weight(1)

currentGear(1)

16,848,000 1 1 1

1
firstName lastName

profileImage handedness
eMail

birthDate(3) createdDate(3)

height(1) weight(1)

currentGear(1)

33,696,000 1 1 1

Table 9.5.: Concept iteration 2

Third iteration

For the third iteration, we add additional methods of generalization and suppression on top
of the proposed combinations in iteration 2. This leads to a further decrease in AVC. Table 9.6
shows the individual results that were obtained in the simulations. The combinations now
lead to sufficient k values throughout all three user groups. It is recognizable that a lower
AVC and a higher amount of users always lead to better privacy protection in terms of
k-anonymity. We stop at this iteration step as even for the smallest user group, an appropriate
k value is reached.
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# Suppression Creating Generalization AVC k (99% rule)
pseudonyms (1) (2) (3)

5

firstName lastName
profileImage handedness

createdDate currentGear
country weight

eMail birthDate(3) height(2) 135 368,110 14,367 640

4

firstName lastName
profileImage handedness

createdDate currentGear
country

eMail
birthDate(3) height(2)

weight(2)
1,080 45,418 1,672 55

3

firstName lastName
profileImage handedness

createdDate currentGear
country

eMail
birthDate(3) height(1)

weight(1)
4,320 11,085 366 5

2
firstName lastName

profileImage handedness

createdDate currentGear

eMail
birthDate(3) height(2)

weight(2) country(1)
6,480 7,307 232 1

1
firstName lastName

profileImage handedness

createdDate currentGear

eMail
birthDate(3) height(1)

weight(1) country(1)
25,920 1,722 39 1

Table 9.6.: Concept iteration 3

9.4.3. Evaluation of Multiple Value Attributes

Quasi identifier attributes with more than one value per user are harder to evaluate in terms
of re-identification risk. This is mainly due to the number of values per user which is another
unknown component that needs to be considered. Table 9.7 shows these attributes, along
with their number of distinct values.

Table Activity Activity trackpoint

Attribute type time


time

latitude
longitude
elevation


Distinct values 5 5,256,000 ∞

HIPAA Safe Harbor - - -

Table 9.7.: Risk of multiple value attributes
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All attributes in this category are related to the tracking of activities. The 4-tuple in the
activity trackpoint table is the most critical one, as it indicates the exact location of an
individual (expressed by latitude, longitude, and elevation) at a specific point of time. Since
many activities are assumed to start or end at home or at work, this can easily be used to
identify an individual or to narrow down possible records. Transformative methods on single
elements of the tuple are not beneficial as the relation of remaining utility and promised
privacy is not justifiable. One option is the suppression of GPS coordinates that fall within
a certain radius, but since a part of an activity’s location data is then deleted, the utility is
questionable. Generalizing, aggregating, swapping, or adding noise to the location points
also does not provide any value in terms of utility and leads to a remaining identification risk.
As a result, we propose not to include the activity trackpoint tuples as part of the user-related
data, which is transferred to the provider’s system. An alternative can be to transfer the
activity trackpoints separately, without linking it to specific users. This would still allow the
support of transport infrastructure planning, for example. The information that is calculated
on the trackpoints, like the distance and pace of an activity, can then be added to the general
activity table as long as they are not classified as quasi identifiers.

The activity table itself, containing activity time and type, also implies a substantial re-
identification risk, mainly because each user can relate to multiple entries of the table. In
case an adversary knows that an individual tracked activities on two specific days, he can
narrow down eligible records. In this case, let us assume a period of one month as valid to be
accountable as quasi identifiers. If individuals pursue between 0 and 15 activities in a month
with 30 days, each one on a separate day, the number of possible combinations is

15

∑
i=1

30!
(30− i)! · i! = 614, 429, 671

This number represents a substantial risk. However, the applicability of this risk is highly
dependent on the type of adversary and his knowledge. An insider, who has a close
connection to the data subject, can know significantly more about an individual (like the days
on which activities were performed) than the general public does (Wu, 2012, p. 1154). Hence,
it relies on a subjective decision which specific knowledge an adversary can obtain.

Since the number of possible combinations is very high compared to the number of distinct
values of the previously analyzed single value attributes, we propose to suppress the activity
related attributes completely. Even after reducing the maximum possible activities per month
to ten, the number of possible combinations is still around 53 million (calculated by adapting
the above formula). As this is higher than the largest user group (50m users), it will very
likely lead to 1-anonymity and to the potential identification of individuals.

As a result, the concept iterations performed in the previous subsection are used as the
overall concept for the de-identification of quasi identifiers. The multiple value attributes are
suppressed additionally, which does not change the previous risk estimation.
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9.5. Evaluation of Scenarios

In the last sections, we introduced the concept of local probabilistic k-anonymity and showed
how it can be applied to the introduced wrist-worn wearable data model. In this section,
we will evaluate the realization of different privacy levels based on the choice of the users.
This condition was identified as one of the requirements in chapter 8. The evaluation will be
carried out using four different scenarios.

Figure 9.4 shows a diagram summarizing all results that were obtained through the simu-
lations. More detailed results can be found in section C.2. The x-axis shows the attribute
value combinations which is the first input parameter of the simulation. The second one is
illustrated through the colored lines which represent different user amounts. The k value
(99% rule) is displayed on the y-axis, and each dot represents one simulation result. Both
axes are represented on a logarithmic scale. The obtained lines are all monotonously falling.
The increase of AVC results in a decrease of k until the minimum value of 1 is reached. A
higher user amount leads to a shift of the points in positive a direction in terms of both x-
and y-axis, which indicates a better privacy protection.
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Figure 9.4.: local probabilistic k-anonymity simulation results

9.5.1. Scenario A: Common Privacy Level

By a common privacy level, we mean that all users within a system are tied to the same level
of privacy, which is illustrated in Figure 9.5. This implies that the same de-identification
methods are applied to all of them. In this case, the k-anonymity simulations stated in
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subsection 9.4.2 can be taken into account as risk indicators. This scenario is beneficial
because all users can be considered together for risk estimation. As Figure 9.4 shows, a high
user number leads to better privacy. However, an independent privacy level based on the
choice of every single user was identified as one of the requirements. As this scenario only
provides one single level, it is not applicable.

Figure 9.5.: Common privacy level

9.5.2. Scenario B: Independent & Individual Privacy Levels

This scenario assumes that each user can choose his desired privacy level completely inde-
pendent, leading to various individual combinations of de-identification methods. Figure 9.6
shows the corresponding data flow.

Figure 9.6.: Independent & individual privacy levels

In the following example, we will show the effect of this scenario on the achieved privacy
of individuals. Let us first assume we have a group of 4 users and apply de-identification
methods independently on them. Thus, each user selects his individual level of privacy, and
based upon this, several methods are applied. However, the desired privacy levels of other
users are unknown. The single records are transformed and then combined in one data set.
Table 9.8 (a) shows an exemplary source data table with four values of the attribute age. Each
age is unique, resulting in k=1.

In variant (b), all values are generalized to the same level of a 10-year interval. This represents
the case that all users choose the same privacy level independently from each other. For this
example, it results in one equivalence class and 4-anonymity.

Now, let us assume the first user aims for a rather low privacy level, leading to no general-
ization at all. The other seven users still use the same level from the previous example and
generalize their age in a 10-year interval. The result, after combining the records, is shown
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in table (c). The first user now cannot be distinguished from the second, third and fourth
records because they all could be 22 years old. Hence, his privacy protection does not change
compared to example (b). However, the next three users are less protected as the value 22 is
not part of their equivalence class anymore. This can be illustrated by a potential adversary
who is looking for a record with the age of 27. He can narrow down the table to three records.
Hence, 3-anonymity is achieved.

The values in table (d) show the contrary situation. Only the first user is aiming for the
mentioned privacy level while the others aim for low protection, whereby their exact age
remains. As a result, the first user is protected with k=1 since because he is the only one that
can be of age 22. In contrast, the other users are all in equivalence classes of size two, i.e., two
records are possible to have the age of 28 (first and last user).

Age

22
23
27
28

(a) Source Table
k=1

Age

20-29
20-29
20-29
20-29

(b) k=4

Age

22
20-29
20-29
20-29

(c) k=3

Age

20-29
23
27
28

(d) k=1

Table 9.8.: Local & independent de-identification

In conclusion, an increase of one user’s individual privacy level would not improve his
privacy, but the remaining users would benefit from such action. Analogously, a decreasing
privacy level would enhance one user’s utility but lead to a decrease in the other user’s
privacy protection. As a consequence, a system like that would make everyone choose the
lowest k possible and therefore harm the privacy protection of each individual. Hence, it is
not suitable for our approach.

9.5.3. Scenario C: Privacy Clusters with Equal Distribution

The third scenario describes the combination of users seeking the same privacy level into
so-called privacy clusters. Within the clusters, the same de-identification methods are applied.
For each cluster, the k-anonymity estimation is performed with regards to the number of users
within this cluster instead of the amount of all users. Through a limited amount of available
levels, it is ensured that the user numbers of one group are not too small. A combination of
the different clusters can then only lead to an improvement of privacy, so there is no mutual
weakening. Figure 9.7 shows a visualization of the scenario.

Let us now presume we have a system with 100,000 users, and three different levels of privacy
are offered, resulting in the formation of three clusters. Let us say the users split up evenly to
the different levels. Thus, every cluster has 33,333 users. Based on the previously proposed
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Figure 9.7.: Privacy clusters

minimum k value of 10, we arbitrarily define the different levels to a k of 10, 50, and 100. We
refer to them as the privacy levels A, B and C. Throughout the k-anonymity simulation we
obtain the following results for this example:

• Cluster 1 - 33,333 users, 1,100 AVC: k (99% rule) = 10 (privacy level A)

• Cluster 2 - 33,333 users, 390 AVC: k (99% rule) = 50 (privacy level B)

• Cluster 3 - 33,333 users, 230 AVC: k (99% rule) = 100 (privacy level C)

Now let us compare the achieved results with an approach that combines all 100,000 users
together (scenario A) and leads to the same privacy levels:

• 100,000 users, 3,200 AVC: k (99% rule) = 10 (privacy level A)

• 100,000 users, 1,150 AVC: k (99% rule) = 50 (privacy level B)

• 100,000 users, 680 AVC: k (99% rule) = 100 (privacy level C)

The results show that the user amount can have a significant impact on the remaining utility,
which is represented by the AVC value. Instead of realizing the three privacy clusters and
serving 10-, 50- and 100-anonymity, we could combine all users in one group and obtain
50-anonymity (privacy level B). This yields to a higher utility for all users (1,150 > 1,100, 390,
230). While the clusters 1 and 2 are protected with the same or a higher level, only the third
cluster is harmed as it achieves a lower k value than with a separation of the clusters. To
counteract this, we only merge the first two clusters and leave cluster 3 separately. This leads
to the following results:

• Cluster 1+2 - 66,666 users, 790 AVC: k (99% rule) = 50 (privacy level B)

• Cluster 3 - 33,333 users, 230 AVC: k (99% rule) = 100 (privacy level C)

Cluster 1 benefits from better privacy with a lower utility, while the users from cluster 2
achieve a significantly better utility. A combination of the clusters is highly dependent on
the preferences of the users and cannot be generalized for this reason. Cluster 1 will need to
decide if the trade-off is advantageous for them, whereas cluster 2 can only benefit from a
merge with them.

This scenario shows that it can make sense to combine multiple clusters. However, it is also
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dependent on the user’s perception and preferences. The user numbers in one cluster are an
essential factor to counter the trade-off between privacy and utility.

9.5.4. Scenario D: Privacy Clusters with Unequal Distribution

In scenario D, we assume that the users are unequally distributed to the clusters. This
represents a more realistic approach since an equal distribution is rather unlikely. For three
different clusters, we assume that the majority of users choose the medium privacy level,
whereas only 10% choose level A and C each. For 100,000 total users and the targeted k values
from the previous scenario, we obtain the following results through the simulation:

• Cluster 1 - 10,000 users, 350 AVC: k (99% rule) = 10 (privacy level A)

• Cluster 2 - 80,000 users, 920 AVC: k (99% rule) = 50 (privacy level B)

• Cluster 3 - 10,000 users, 72 AVC: k (99% rule) = 100 (privacy level C)

As indicated by the AVC, cluster 2 has by far the highest remaining utility. This is a result of
the large user amount which is allocated to this group. Compared to that, the first cluster has
a lower utility as well as a lower privacy level. Hence, it is only beneficial to combine the first
two cluster like the following result shows:

• Cluster 1+2 - 90,000 users, 1,050 AVC: k (99% rule) = 50 (privacy level B)

The third cluster, however, will need to be kept separated from the other ones as the high
desired level of privacy cannot be achieved without other shortcomings. Therefore, the users
either have to cope with the relatively low utility or decrease their privacy level. The latter
will lead to a combination with the other clusters resulting in substantially higher utility
value.

9.5.5. Implications for Wrist-Worn Wearable Data

Based on the arguments stated in this chapter, we propose the approach of privacy clusters
for the wrist-worn wearable use case. This scenario commonly leads to the best results for
individual users because it leads to the achievement of privacy guarantees through consistent
de-identification methods. The service provider needs to take into account that the number
of distinct clusters should not be too high and therefore limited as this negatively affects
the general utility of the data. Therefore, we propose three different levels and clusters
as reasonable to cope with the user’s different requirements for privacy. As shown in the
scenarios C and D, it can be beneficial to combine different clusters together into one. This
can yield better results for both groups. However, this dependents heavily on how the users
distribute among the single clusters. A possible cluster combination can be determined and
solved as part of an optimization problem by the service provider. It is also necessary to
consider possible variants and fluctuations between the different privacy clusters. Therefore,
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we propose conducting the simulation with a lower user amount that is deemed to be certain.
This might be around 80% of the actual users.

In combination with the local probabilistic k-anonymity approach, the concept of privacy
clusters will lead to promising results to make predictions for the individual user’s privacy
levels. However, the simulation approach, as it was implemented in this work, brings also
some shortcomings which need to be considered. First of all, a random or equal distribution
for the values of the attributes is assumed. This is not always realistic, but the simulation can
be extended by a different distribution approach in future work. For this purpose, standard
attribute value distributions within data sets would need to be analyzed. These insights
could then serve as the basis to assign attribute values as part of the simulation. While this
fact is an underestimated risk in the simulation, the missing consideration of correlations
between attributes leads to an overestimated risk as some attribute value combinations might
not be possible. Also, dependencies between the records (users) are not considered, as in
our case a homogeneous distribution is assumed. The anonymity threshold was set to 1%
in this work. This can be varied for different use cases in order to set a higher or lower
acceptable risk limit. Overall, we argue that the proposed simulation is an beneficial approach
to estimate k-anonymity and, thus, the achieved level of privacy. It is a practical way to apply
k-anonymity locally without knowing the overall distribution. Furthermore, the needed input
parameters are reasonable to know even in case of a local application.
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10. Conclusion & Outlook

This final chapter summarizes the research results of this work. Additionally, limitations as
well as topics for future research that are related to this thesis are presented.

10.1. Summary & Discussion

In this section, we will present the three research questions alongside with the answers and
contributions this work provides.

RQ 1: What is the state of the art of approaches using de-identification methods for
privacy-enhancing Big Data Analytics and how can they be distinguished from other ap-
proaches?

Through an extensive literature review, we provide a comprehensive analysis of the current
state of the art of approaches using de-identification methods. We illustrate that a clear and
precise delimitation of the terms de-identification, anonymization, and pseudonymization does
not exist in current research. Therefore, a more generic terminology that covers all three
terms was used and proposed for the scope of this work. We contribute to existing research
with a complete and comprehensive classification of de-identification methods, which is
summarized in Figure 6.1. Existing overviews in research either lack in such a classification or
its completeness of methods. A total of 15 distinct methods were identified and then classified
into two categories and four subcategories. We classified them into non-perturbative and
perturbative de-identification methods and distinguished between data type independent
and numerical methods. The overview provides three essential benefits to researchers: First
and foremost, it helps to get a clear picture and impression of available de-identification
methods. Secondly, it illustrates how the methods are related to each other and how they can
be differentiated. Lastly, the classification supports the decision process for the choice of such
a method. Additionally, we provide definitions, explanations, and exemplary application
scenarios for all identified de-identification methods.

RQ 2: What are requirements for privacy-enhancing analytics of wrist-worn wearable data
in the cloud?

Wrist-worn wearables collect large amounts of highly sensitive data and therefore pose a
significant risk to the privacy of their users. In chapter 7, we provide an analysis of how

88



10. Conclusion & Outlook

this specific use case can be impacted by the application of de-identification methods. By
an analytical threat model, it was shown that linkability and identifiability threats can be
mitigated. Additionally, a generic wrist-worn wearable data model was developed based on
data exports of multiple service providers. It contains a data structure for the use case that
can be leveraged for investigations. Ten requirements for a concept using de-identification
methods were identified and described. They were the result of the conducted literature
research in combination with 12 expert interviews. They address the second research question
and serve as guidance in the phase of concept development.

RQ 3: What are concepts enabling data privacy for wrist-worn wearable data in the cloud
based on de-identification Methods?

Throughout chapter 9, a specific concept for the application of de-identification methods
on wrist-worn wearable data was developed. We propose a local probabilistic k-anonymity
concept that uses a Monte Carlo simulation to calculate privacy estimates. Thus, it closes
the existing research gap for a local application of k-anonymity. It is based on reasonable
parameters that shall be available for a local user. We illustrated how this could be applied to
the wrist-worn wearable data model and show the impact that different method combinations
as well user numbers have on the obtained privacy level. A decrease in attribute value
combinations (AVC) and an increase in the user amount were identified as crucial measures
to improve privacy. Furthermore, different scenarios for the choice of privacy levels were
constructed and investigated. The evaluation and comparison led to the conclusion that a
concept based on privacy clusters is the most promising one. In this concept, users with the
same privacy desire are combined, so that the same de-identification methods are applied on
their data. We show that this approach prevents the mutual weakening of each other’s privacy
and leads to the best outcome compared to the other scenarios. We argue that three distinct
privacy levels are reasonable to cope with different user’s needs and to limit the number of
overall clusters. Based on the distribution of all users to these levels, an appropriate number
of AVC and therefore proper de-identification methods can be identified.

10.2. Limitations

The results of this work were influenced by a few limitations which will be explained in this
section.

Firstly, the lacking availability of a complete data set of wrist-worn wearable data limited the
findings and their corresponding evaluation. We circumvented this limitation by the creation
of a generic data model for the specific use case of wrist-worn wearable data. However, this
data model only shows which attributes are stored and how they are related. It does not
take into account how single attribute values look like and how they relate to each other in a
real data model. Therefore, distributions within values and correlations between attributes
could not be obtained. Thus, the current local probabilistic k-anonymity concept is limited
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to some factors which can be improved by incorporating an existing data set. This data set
could also help to validate and further improve the concept through continuous testing and
application of de-identification methods, which was not possible in this work due to time
constraints.

Secondly, the possibility of validation in a real application scenario also limited the results.
This would be especially beneficial for the proposed scenario with privacy clusters. In a
real application scenario, one could derive further insights into how users will allocate and
distribute to different clusters and how frequent switches between privacy levels will happen.
Additionally, the scenario of an increasing number of users over some time was also not
considered.

Thirdly, the difficulty of finding suitable domain experts for the pursued interviews was
another constraint. As the research area is located at the intersection of privacy and data
analytics, we addressed experts of those domains. However, we realized that de-identification
is generally known but not often applied in organizations yet. Therefore, it was hard to
gather practical experiences and knowledge directly tied to the application of such methods.
We were able to obtain broad and usable insights into how data privacy is handled and
perceived in organizations. However, only two interview partners had a deeper knowledge of
the practical application of de-identification methods and privacy models. This limitation is
mainly due to the fact that the use of de-identification is still rather rare in practice.

10.3. Future Work

This work provides some topics that were not covered and therefore leave room for further
investigations.

The proposed local probabilistic k-anonymity concept can be extended with a more realistic
distribution of attribute values. We proposed an equal distribution as a starting point, but an
extension will be beneficial to obtain more valid results. Therefore, we propose to analyze
existing data sets for a specific use case with regards to their distribution of attribute values.
This distribution could then be used as an allocation basis for the simulation. An integration
of l-diversity and t-closeness can also be taken into consideration as these solve reasonable
shortcomings of k-anonymity.

Furthermore, the evaluation and testing of the proposed concept is another area of future work.
First of all, the impact of different anonymity thresholds and the choice of a reasonable one
can be investigated. Secondly, the validity of the obtained simulation results can be performed.
Additionally, a benchmark of local probabilistic k-anonymity against local differential privacy
will be from general research interest.
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A. Wrist-Worn Wearable Use Case

A.1. Wrist-Worn Wearable Data Tables

userID eMail firstName lastName country gender birthDate

(int) (string) (string) (string) (string) (string) (string)
80248072 john.doe@mail.com John Doe DE m 1994-05-04

Table A.1.: User data part 1

height handedness profileImage currentGear createdDate weight vo2Max

(int) (string) (string) (string) (string) (int) (int)
184 right image.png New Balance Rubix 2018-09-12 81 53

Table A.2.: User data part 2

userID timestamp heartrate

(int) (int) (int)
80248072 1540591440000 67
80248072 1540591560000 68

Table A.3.: Heart rate data
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userID startTime endTime activityLevel

(int) (string) (string) (float)
80248072 2019-01-06T22:00:00Z 2019-01-06T22:01:00Z 5.799102389
80248072 2019-01-06T22:01:00Z 2019-01-06T22:02:00Z 4.425838591

Table A.4.: Sleep movement data

userID activityID time type

(int) (int) (string) (string)
80248072 47964342 2020-01-01T08:03Z running

Table A.5.: Activity data

activityID time latitude longitude elevation heartrate cadence

(int) (string) (float) (float) (float) (int) (int)
47964342 2020-01-01T08:48:46Z 48.172334 11.5538459 529.40 163 79
47964342 2020-01-01T08:48:47Z 48.172357 11.5538698 529.20 164 80

Table A.6.: Activity trackpoint data

userID startTime voltage derivation

(int) (string) (int) (int)
80248072 2020-01-15T08:48:00Z -40 438
80248072 2020-01-15T08:48:00Z -44 887

Table A.7.: ECG data

userID time steps floors

(int) (string) (int) (int)
80248072 2020-01-18T14:12:00Z 14 0
80248072 2020-01-18T14:13:00Z 23 1

Table A.8.: Step data
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A.2. LINDDUN Threat Trees

A.2.1. Linkability Threat Trees

Figure A.1.: Linkability of data store (provider database)
Source: based on Wuyts et al. (2014)

Figure A.2.: Linkability of data flow (platform & wearable data stream)
Source: based on Wuyts et al. (2014)
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Figure A.3.: Linkability of entity (user & wearable)
Source: based on Wuyts et al. (2014)

Figure A.4.: Linkability of process (platform & service)
Source: based on Wuyts et al. (2014)
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A.2.2. Identifiability Threat Trees

Figure A.5.: Identifiability of data store (provider database)
Source: based on Wuyts et al. (2014)

Figure A.6.: Identifiability of data flow (platform & wearable data stream)
Source: based on Wuyts et al. (2014)
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Figure A.7.: Identifiability of entity (user & wearable)
Source: based on Wuyts et al. (2014)

Figure A.8.: Identifiability of process (platform & service)
Source: based on Wuyts et al. (2014)
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A.2.3. Unawareness & Non-Compliance Threat trees

Figure A.9.: Unawareness of entity (user & wearable)
Source: based on Wuyts et al. (2014)

Figure A.10.: Policy and consent non-compliance (whole system)
Source: based on Wuyts et al. (2014)
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B. Interview Guide

Einführung

• Einwilligung zur Aufnahme des Interviews
• Einführung ins Thema der Arbeit

Infos zum Befragten

• Rolle im Unternehmen/Organisation
• Relevante Erfahrung

Welchen Einfluss hat das Thema Data Privacy in ihrem Unternehmen?

a) Speicherung / Verarbeitung personenbezogener Daten
b) Einfluss auf Datenanalysen
c) Trends (Bezug auf Analytics / Cloud)

Wie erkennen und bewerten sie Datenschutz-Risiken in ihrem Unternehmen? (Tools /
Prozesse / Methoden)

a) Spezialfall der Speicherung personenbezogener Daten in der Cloud
b) Klassifizierung und Bewertung identifizierbarer Informationen
c) Klassifizierung und Bewertung sensibler Informationen
d) Bewertung möglicher Risiken in Bezug auf sensible Daten

Welche Maßnahmen setzen sie ein um Data Privacy zu gewährleisten?

a) Anonymisierung / Pseudonymisierung von Daten
b) Bewertung der Maßnahmen
c) Wann sind Maßnahmen ausreichend?

Sind ihnen De-Identification Methoden bekannt? Wie schätzen sie diese ein?

a) Potential & Anwendungsfälle
b) Risiken & Nachteile
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Untersuchung des Anwendungsfalls von Gesundheits-/Aktivitätsdaten, die von einer Smart-
watch erfasst werden: Welche Anforderungen & Besonderheiten bringt dies aus ihrer
Sicht mit sich?

a) Erfassung persönlicher Gesundheits-/Aktivitätsdaten
b) Erfassung über Smartwatch und Speicherung / Verarbeitung in der Cloud
c) Einfluss gesetzlicher Regularien

Abschluss

• Weitere Anmerkungen / Hinweise zu dem Thema
• Kontakte als weitere Interview-Partner
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C. Local Probabilistic k-anonymity Simulation

C.1. Python Script

1 from random import randint
2 import matplotlib.pyplot as plt
3 import collections
4 from tqdm import tqdm_notebook as tqdm
5

6 #Input
7 g = 3000000 #number of groups or distinct values
8 r = 50000000 #number of records
9 n = 400 #number of iterations

10

11 #list in which the calculated k values will be stored in
12 k_values = []
13

14 #looping through n iterations
15 for iter in tqdm(range(0,n)):
16

17 #defining an empty list with g+1 items which are initialized with 0. This list will the
number of occurences of each group↪→

18 counting = [0]*(g+1)
19

20 #Assigning values of range g to r records
21 for i in range(0,r):
22 #instead of saving the random number, we directly increase the counting value of the

corresponding list entrie↪→

23 counting[randint(1,g)] += 1
24

25 #deleting the 0 values from the counting list. The k-anonymity value cannot be 0
26 count_values_0 = [i for i in counting if i!=0]
27 #determine value of k (k-anonymity) and append the k_values list with it
28 k_values.append(min(count_values_0))
29

30 #list to count the occurence of different k values
31 count_k_values = []
32 #looping through all possible k values (the maximum is r)
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33 for i in range(0,r+1):
34 #save number of respective k_value in a list which stores all counts
35 count_k_values.append(k_values.count(i))
36

37

38 count_k_values_inc = []
39 #calculate floating sum of occurences to determine the 95% and 99% threshold values
40 count_k_values_inc.append(n-count_k_values[0])
41 for i in range(1,r):
42 count_k_values_inc.append(count_k_values_inc[i-1]-count_k_values[i])
43

44 print("Most frequent k value:", count_k_values.index(max(count_k_values)))
45 print("95% serve k anonymity with k =", count_k_values_inc.index(list(filter(lambda i: i <

0.95*n, count_k_values_inc))[0]))↪→

46 print("99% serve k anonymity with k =", count_k_values_inc.index(list(filter(lambda i: i <
0.99*n, count_k_values_inc))[0]))↪→

47

48

49 ##########Plotting and saving the result##########
50

51 text1 = "Most frequent: k = " + str(count_k_values.index(max(count_k_values)))
52 text2 = "\n95%: k = " +str(count_k_values_inc.index(list(filter(lambda i: i < 0.95*n,

count_k_values_inc))[0]))↪→

53 text3 = "\n99%: k = " +str(count_k_values_inc.index(list(filter(lambda i: i < 0.99*n,
count_k_values_inc))[0]))↪→

54 plt.plot(count_k_values)
55 plt.xlim(0,5)
56 plt.xlabel('k', fontsize=12)
57 plt.ylabel('frequency', fontsize=12)
58 plt.text(0.5,95,text1+text2+text3,fontsize=12)
59 plt.savefig('simu.png',bbox_inches='tight')
60 plt.show()
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C. Local Probabilistic k-anonymity Simulation

C.2. Simulation Results

Figure C.1.: simulation with r = 50,000,000,
g = 16,848,000 and n = 400

Computation time: 7:18h

Figure C.2.: simulation with r = 50,000,000,
g = 842,400 and n = 400

Computation time: 6:15h

Figure C.3.: simulation with r = 50,000,000,
g = 518,400 and n = 400

Computation time: 8:22h

Figure C.4.: simulation with r = 50,000,000,
g = 25,920 and n = 400

Computation time: 6:05h
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Figure C.5.: simulation with r = 50,000,000,
g = 6,480 and n = 400

Computation time: 6:03h

Figure C.6.: simulation with r = 50,000,000,
g = 4,320 and n = 400

Computation time: 6:33h

Figure C.7.: simulation with r = 50,000,000,
g = 1,080 and n = 400

Computation time: 10:33h

Figure C.8.: simulation with r = 50,000,000,
g = 135 and n = 400

Computation time: 6:18h
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Figure C.9.: simulation with r = 2,000,000,
g = 518,400 and n = 400

Computation time: 19min

Figure C.10.: simulation with r = 2,000,000,
g = 25,920 and n = 400

Computation time: 24min

Figure C.11.: simulation with r = 2,000,000,
g = 6,480 and n = 400

Computation time: 42min

Figure C.12.: simulation with r = 2,000,000,
g = 4,320 and n = 400

Computation time: 22min
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Figure C.13.: simulation with r = 2,000,000,
g = 1,080 and n = 400

Computation time: 30min

Figure C.14.: simulation with r = 2,000,000,
g = 135 and n = 400

Computation time: 22min

Figure C.15.: simulation with r = 100,000,
g = 6,480 and n = 400

Computation time: 1min

Figure C.16.: simulation with r = 100,000,
g = 4,320 and n = 400

Computation time: 1min
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Figure C.17.: simulation with r = 100,000,
g = 3,250 and n = 400

Computation time: 1min

Figure C.18.: simulation with r = 100,000,
g = 1,150 and n = 400

Computation time: 1min

Figure C.19.: simulation with r = 100,000,
g = 1,080 and n = 400

Computation time: 1min

Figure C.20.: simulation with r = 100,000,
g = 680 and n = 400

Computation time: 1min
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Figure C.21.: simulation with r = 100,000,
g = 135 and n = 400

Computation time: 4min

Figure C.22.: simulation with r = 90,000,
g = 1,050 and n = 400

Computation time: 30s

Figure C.23.: simulation with r = 80,000,
g = 920 and n = 400

Computation time: 1min

Figure C.24.: simulation with r = 66,666,
g = 790 and n = 400

Computation time: 1min
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Figure C.25.: simulation with r = 33,333,
g = 1,100 and n = 400

Computation time: 1min

Figure C.26.: simulation with r = 33,333,
g = 390 and n = 400

Computation time: 1min

Figure C.27.: simulation with r = 33,333,
g = 230 and n = 400

Computation time: 1min

Figure C.28.: simulation with r = 10,000,
g = 350 and n = 400

Computation time: 30s
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Figure C.29.: simulation with r = 10,000,
g = 72 and n = 400

Computation time: 20s
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