
DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Design and Implementation of a
Data-Driven, Provider-Independent Test

Service for Banking APIs

Josef Maria Kamysek

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics

Design and Implementation of a Data-Driven,
Provider-Independent Test Service for Banking APIs

Design und Implementierung eines Datenorientierten,
Anbieterunabhängigen Testservice für Banking APIs

Author: Josef Maria Kamysek

Supervisor: Prof. Dr. Florian Matthes

Advisor: M.Sc. Gloria Bondel

Date: April 15, 2020

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, April 15, 2020 Josef Maria Kamysek

Acknowledgments

This thesis would not have been possible without the help of many people. In the
following lines, I would like to thank those who supported me and contributed to my
work. The opportunity to write my thesis at the Chair of Software Engineering for
Business Information Systems at the Technical University of Munich was a genuinely
great opportunity. Therefore, I would like to thank my supervisor Prof. Dr. Florian
Matthes, for giving me the chance to write my thesis in cooperation with the industrial
partner msgGillardon.

Furthermore, I would like to thank the msgGillardon AG for providing me access to
their network and information for my work. My profound respect and thanks goes to
my advisors M.Sc. Gloria Bondel from the chair of Software Engineering for Business
Information Systems from the Technical University of Munich and M.Sc. Markus Kraft
from my industry partner msgGillardon for their guidance on my topic. Without their
help, my thesis would not have been possible. Their advice, constructive feedback
and encouragement were a continual source of motivation for me. Whenever I had
questions, I could always rely on them and their great feedback. Thank you for your
guidance and for giving me the opportunity to work on this exciting and challenging
project.

In this context, I would also like to thank all my interview partners who shared with
me their valuable knowledge, gave me many insights and the information that I needed
for my research. Finally, I would like to express my deepest gratitude to my family and
friends for their support, patience and backing throughout my studies.

vii

Abstract

In 2015, the Council of the European Union introduced the Second Payment Service
Directive (PSD2), which provided the legal basis for the creation of a uniform and ef-
ficient marketplace for payment services within the European Union (EU). It opened
the financial market to new market participants and innovative services. The PSD2 re-
quires banks to provide access to their infrastructure. Implementing Application Pro-
gramming Interfaces (APIs) enables the exchange of financial data of bank customers
with Third Party Providers (TPPs). The majority of banks and associations in Germany
rely on the concepts and open standards defined by the Berlin Group. This initiative
focused on the technical and organizational requirements to establish a standardized
communication layer from which both banks and TPPs can benefit.

The verification of API implementations plays an essential role in the financial sec-
tor. Flawless functionality of PSD2-compliant APIs is particularly crucial in an industry
mainly based on trust and confidence. Tests must be performed to determine whether
or not the APIs meet the expectations in terms of functionality, reliability and per-
formance. Early feedback shortens the error correction process and prevents costly,
time-consuming problem fixes at a later stage in the development cycle. Therefore it
is essential to have a well-functioning, efficient test process that ensures high quality
and correct functionality.

This bachelor thesis presents an approach to improve the test process of different bank
interfaces. Based on Hevner’s Design Science in Information Systems Research, an ar-
tifact was developed that makes the test process of PSD2-compliant APIs simpler and
more efficient. Before its implementation, the requirements for such a tool were iden-
tified through interviews and literature research. Based on these findings, a prototype
was developed to demonstrate vendor-independent and data-driven testing for the Ac-
cess to Account (XS2A) interface of the Berlin Group. The tool uses a workflow from
the Account Information Service (AIS) of the Berlin Group to demonstrate the test pro-
cess. Financial institutions can use this tool to evaluate a predefined PSD2-compliant
bank interface by dynamically adding test cases to it. Parallel to its implementation,
the extensibility of the program was evaluated.

The results of this work show that the test process for PSD2-compliant APIs faces
many challenges. The large number of different standards makes the evaluation of
bank interfaces difficult. Despite these challenges, the prototype demonstrates a viable
approach to improve and facilitate the test process of PSD2-compliant bank interfaces.
Through the automation of this test process both costs and effort can be reduced.
Furthermore, recommendations for future functionalities are presented based on an
evaluation of the usability and extensibility of the test tool.

ix

x

Contents

Acknowledgements vii

Abstract ix

Outline of the Thesis xiii

I. Introduction and Theoretical Framework 1

1. Introduction 3

1.1. Motivation . 4

1.2. Problem Statement . 5

1.3. Research Questions and Objectives . 7

1.4. Research Approach . 8

2. Theoretical Framework 11

2.1. Foundations of Application Programming Interfaces 11

2.2. Origin and Anticipated Potential of Open Banking 12

2.3. The Second Payment Service Directive . 13

2.3.1. Key Points . 14

2.3.2. Challenges and Opportunities . 15

2.4. Introduction to Software Testing . 17

2.4.1. Goals of Software Testing . 18

2.4.2. Basics of Software Testing . 19

2.4.3. Test Automation . 22

2.4.4. Regression Testing . 23

2.4.5. Data-Driven Testing . 25

2.4.6. API Testing . 26

2.5. Summary of the Theoretical Framework . 27

3. Related Work 29

3.1. Test Approaches for PSD2-compliant Interfaces 29

3.2. Test Tools for Evaluating PSD2-compliant Interfaces 30

xi

Contents

II. Design and Implementation 33

4. Test Tool for PSD2-compliant APIs 35
4.1. Summary of the Test Tool Requirements . 36
4.2. Overview of Test Tool Process . 38
4.3. Test Case Mapping . 41
4.4. Test Tool Architecture . 46
4.5. Summary of the Design and Implementation 48

III.Appraisal and Conclusion 49

5. Test Tool Evaluation from a User Perspective 51

6. Extensibility Analysis of the Test Tool 55

7. Conclusion 59
7.1. Key Findings . 59
7.2. Problems and Limitations . 61
7.3. Future Work . 62

Appendix 65

Interview Partner and Questions 65

Test Tool Architecture 67

Bibliography 73

xii

Contents

Outline of the Thesis

Part I: Introduction and Theoretical Framework

Chapter 1: Introduction

In addition to the motivation, the research topic, and the applied research approach of
this thesis, the research questions and their objectives are presented.

Chapter 2: Theoretical Framework

Theoretical background information is explained to enable an easy understanding of
the most important research results.

Chapter 3: Related Work

An overview of different API test approaches and tools for testing PSD2-compliant APIs
is given to allow a comparison with the scientific appeal of this research.

Part II: Design and Implementation

Chapter 4: Test Tool for PSD2-compliant APIs

Detailed explanation of the test tool process, the test tool architecture and the func-
tionality of the test case mapping.

Part III: Appraisal and Conclusion

Chapter 5: Test Tool Evaluation from a User Perspective

User-based evaluation of the test tool in regard to usability, user conformity and miss-
ing functionalities.

Chapter 6: Extensibility Analysis of the Test Tool

Analysis of the ability to evaluate additional test cases, add new API calls and integrate
new PSD2-compliant standards.

Chapter 7: Conclusion

Presentation of key results, problems and learnings of the thesis, followed by an outlook
for future development.

xiii

Part I.

Introduction and Theoretical
Framework

1

1. Introduction

In November 2014, the British Competition and Markets Authority (CMA) started an
investigation of the provision of retail banking services because they conceived the
British financial sector as insufficiently customer-friendly and competitive [Smith et al.,
2016]. The accompanying report was published in August 2016 and confirmed their
assumptions. Larger banks had easier access to the market and less competition than
smaller banks [Open Banking Limited, 2016]. According to the retail banking market
investigation, larger "banks will only invest in new products or services or reduce their
prices and improve service quality, if they expect to win business as a result, or fear
losing business if they do not" [Competition and Markets Authority, 2016]. This means
that small banks and fintechs need to invest more in order to reach a similar customer
base as the established banks. Given this knowledge, the CMA wanted to change the
traditional way banks operate in the financial sector [Competition and Markets Author-
ity, 2016]. They aimed to increase competition and to foster the transition to a digital-
ized banking era. In order to retain customers and adapt to their changed behavior,
banks were forced to invest more in innovative products and improved customer rela-
tions [Accenture, 2016]. In response to this issue, the CMA formed an implementation
entity for open access to the banking infrastructure to enable a more transparent and
security-oriented banking experience.

Almost simultaneously, the Council of the European Union introduced the PSD2, which
formed the legal basis for the creation of a single and more efficient payment service
market within the EU. With similar intentions as those of the Open Banking Implemen-
tation Entity, they introduced a clear and comprehensive set of rules. They aimed to
open up the banking sector, through the provision of an operational interface for TPPs,
thus enabling them to access account information. Of course, the consumer must have
given his consent for this access in advance. Furthermore, the directive obliges banks
to implement stricter security requirements to guarantee better protection of customer
data, and promote transparency of banking conditions [Lynn et al., 2019].

Regulatory pressure and growing interest in open APIs prompted banks to develop a
standardized communication interface from which both banks and TPPs could bene-
fit [European Parliament, 2015]. Several standardization initiatives were founded to
develop a uniform approach to this topic. These standardization initiatives consist of
several dozen financial institutions. Their tasks included the development of imple-
mentation and design guidelines to facilitate the implementation of the PSD2. One of
the best-known European wide representatives of these standardization initiatives is
the Berlin Group [Berlin Group, 2020]. Their goal is an open and standard scheme for

3

1. Introduction

the interbanking domain [Berlin Group, 2020, Kirchmann, 2017]. This prompted a fun-
damental change in the way financial services are designed and offered to customers.
Banks can draw benefits by using their APIs as a marketing tool or by creating ser-
vices for previously neglected niches. Throughout the API development cycle, develop-
ers must ensure the correctness of the implementation. This testing process includes
the validation of the API. Testing of these is considered as a rather complicated and
error-prone task [Soap UI, 2019, Edgescan, 2018, KPMG, 2019]. A well-functioning
and efficient test process is, therefore, essential to ensure high quality and correct
functionality [Interview4, 2020]. The following chapters discuss the relevance of such
a test process and the additional complexity that emerges through the use of these
newly introduced API interfaces from a vendor and user perspective.

1.1. Motivation

The use of APIs gives Third Party Providers (TPPs) the opportunity to make banking
more convenient and customer-oriented. The provision of standardized APIs is a sig-
nificant investment for the future, costing banks a lot of time and money. Ensuring the
quality and stability of such APIs must, therefore, be a top priority. However, due to
time pressure and high testing efforts, this task is often reduced. The effort required
for the testing process of Representational State Transfer (REST) APIs is often un-
derestimated [Interview4, 2020]. In fact, it is seen as a problematic, time-consuming
and error-prone task that leads to increased costs and reputational risks [Edgescan,
2018, KPMG, 2019].

To verify the response of an API, complex test scenarios are required. Especially the
case of information retrieval for the end-user requires compound workflows consisting
of multiple API calls. The current state of the art is that test programs are usually
able to perform such workflows. One of the biggest challenges lies in the automation
of these processes, especially if several bank interfaces should be tested with one test
tool using a single test case catalog [Interview2, 2020, Interview3, 2020]. This is where
conventional test programs reach their limits. Especially the differences of the inter-
face structure prevent the execution of the same test cases without adaptation to the
new interface. Each and every test case must be adapted to the new structure. For
example, specific headers have to be renamed and the structure of the request body
has to be changed. These are some reasons why a more flexible and comprehensive
test tool is needed.

With the increasing complexity of software solutions, the source of human mistakes
increase as well. Simply increasing the number of test engineers, which also means
increased costs, is not a plausible solution. The demand for a useful and automated
test tool that can perform these tasks must be satisfied. Banks urgently need an effi-
cient testing tool to verify the current and future quality as well as the functionality of
their PSD2-compliant APIs [Interview1, 2020]. Banks should work together on a stan-
dard test case catalog that is as comprehensive as possible and covers the majority of

4

1.2. Problem Statement

problematic situations [Interview1, 2020]. This catalog can then be executed with a
program on all diverse interfaces. There are already organizations that deal with this
topic, for instance, the NextGenPSD2 Implementation Support Program (NISP) [NISP,
2019].

One of the main objectives of this thesis is to improve and to simplify the testing pro-
cess while ensuring a more reliable, higher-quality test tool. The accuracy of a test
tool is crucial for a good test process. This does not only reduce the test efforts but
also the overall development costs [Marvin Zelkowitz, 2009]. Factors such as the pro-
fundity of test cases, the velocity of test execution and the data availability must not
be neglected during the design and implementation of the test tool [Interview2, 2020].
They should be a top priority and are essential for the overall success of the project.
The European Banking Authority (EBA) advocates the use of automated test programs,
as these can increase productivity and scalability [European Banking Authority, 2019].
Regression tests facilitate the reuse of test cases and reduce the execution time. This
accelerates the entire feedback process for the developer. It also helps to determine
whether changes in the code have led to dependencies, defects or malfunctions [Warsi,
2016]. In general, regression testing leads to faster error detection and improved error
correction [Mohanty et al., 2017, Jeff Offutt, 2018].

The development of such a test tool allows the testing process to be performed in-
dependently of the developers. This allows an objective view and avoids bias by the
developers, leading to more error detection. Furthermore it reduces cost and effort of
the development process of the API.

In summary, the motivation of this thesis is to develop the requirements as well as the
corresponding prototype under consideration of the state of the art research concepts
for an efficient, extensible and user-friendly process for testing different API imple-
mentations with a large amount of data.

1.2. Problem Statement

Ensuring quality and reliability does not become easier as software projects grow. With
increasing complexity, the number of errors during development increases. Errors pose
a serious threat to the success of the project [Interview4, 2020]. It is essential to test
the software to ensure that it works correctly. Potential errors that are visible to the
customer can cause bad publicity for the company [Jeff Offutt, 2018, Qa, 2019].

When projects are behind schedule, testing time is often sacrificed to make up for
delays [Interview3, 2020, Interview4, 2020]. The shortening of the testing process is
one of the main reasons why rework is necessary and large amounts of money are lost
during software development. Software defects damage the company’s reputation and
change the user’s attitude towards the product because they can affect its usability
and security [Mohanty et al., 2017].

5

1. Introduction

Current Test Approach

Test
Tool of
Bank A

Bank ATest
Data A

Test
Tool of
Bank B

Bank BTest
Data B

Test
Tool of
Bank C

Bank CTest
Data C

Proposed Test Approach

Bank A

Test
Tool Bank BTest

Data

Bank C

Figure 1.1.: Comparison of Current and Proposed Test Approach

In a large and complex system, undetected errors are more likely to occur. The reasons
for these human-made errors are lack of understanding, communication problems and
misinterpretations [Marvin Zelkowitz, 2009, Interview4, 2020]. Verifying the logic and
compliance with the functional requirements of PSD2-compliant APIs is an enormous
and challenging task for banks [Interview1, 2020, Interview2, 2020].

Strict quality requirements and the goal of guaranteed error detection increase the
demand for more efficient software testing. The evaluation of APIs with a test tool that
can only evaluate them through a Graphical User Interface (GUI) is an expensive and
demanding challenge. Often, these applications are used for manual testing because
they are quick to configure and easy to use [Interview4, 2020]. However, once the test
cases become complex, the overview is lost. That makes it difficult to evaluate many
test cases at once.

Additional functionality may also be required to test the interfaces. The integration
of third-party software, such as a reporting system, may be necessary to adapt the
program to the specific requirements of the user. GUI test tools rarely offer this type
of integration. In most cases, it is not available at all.

The problem of the current test process is shown in figure 1.1. Under the present test
approach, each organization is responsible for its testing procedures and the correct-
ness of its API implementations. That results in significantly different qualities of test
environments and test coverage. Besides, there is a constant need for adaptive test
objectives due to adjustments to requirements during different development cycles
[Schwertner, 2019].

Many banks use similar PSD2-compliant APIs, which essentially represent one type of
bank interface standard. For this reason, it is assumed that it should be possible to

6

1.3. Research Questions and Objectives

evaluate all APIs of one standard with just one test tool. Consequently, working to-
gether on a single test data set and a single test tool would make the testing process
more efficient and less time-consuming [Interview3, 2020]. Moreover, the development
of a specific test automation tool would allow a better adaptation to the banking en-
vironment. Many advantages are associated with the possibility of adapting the test
suite to the specific test area. For example, it is possible to perform tests with a large
amount of data more efficiently. Beyond that, an intelligent layer can be offered, which
allows an adaptation to the respective bank interface.

In this thesis, the efficiency and complexity problems of the individual test procedures
are addressed by a uniform test approach. The combination of the individual problems
makes it possible to create a more straightforward test procedure for all interfaces.

1.3. Research Questions and Objectives

The goal of this thesis is to develop the requirements and implementation of a test tool
for PSD2-compliant APIs. The tool can verify the functionality and correctness of the
interfaces of several banks using dynamic test case entries and regression testing. The
following research questions were defined to achieve this goal in the best possible way.
Both the questions and their objectives are briefly explained below.

1. What are the requirements for a data-driven and vendor-independent re-
gression testing tool for PSD2-compliant APIs?

The first research question examines the requirements for a test tool that uses dynamic
test case entries to make requests to multiple bank interfaces. The knowledge gained
from five expert interviews and a thorough literature research was used to introduce
essential concepts of open banking and software testing. Thus, necessary theoretical
concepts such as API testing or regression testing were introduced to understand the
functionality of the test tool. The respondents enriched both the functional and techni-
cal aspects of this thesis with their outstanding expertise. Their know-how and insights
served as a basis for the development of the test tool.

2. How could the design and implementation of a regression testing tool for
PSD2-compliant APIs look like?

The second research question deals with the actual implementation of the prototype.
Interviews and findings from literature research were used for its creation. The pro-
totype aims to verify different API implementations. For this purpose, an extensive
data set with test cases can be imported to verify bank interfaces. An overview of the
architecture of the test tool is given to understand its structure and functionality. Ad-
ditionally, the mapping of test cases is explained, since this is necessary to address the
different interfaces.

7

1. Introduction

Assess Refine

Implementation of a Data-Driven,
Provider-Independent Test Tool

for Banking APIs

Expert interviews to determine
the test tool requirements

User evaluation of the test tool

Analysis of the test tool
expandability

Environment Information System
Research Knowledge Base

RigorRelevance

Difficulties of the current PSD2-
compliant API test process

Need for a simple and consistent
testing process for multiple API
implementations

Basics of Open Banking, Payment
Services Directive 2, software
testing, regression testing

Related work on the testing
process of APIs

API documentation, test cases,
experience of developers

Business
Needs

Applicable
Knowledge

Figure 1.2.: Information Systems Research Approach - Test Tool for Banking APIs

3. How easily could the test tool be extended to check the functionality and
correctness of the entire banking API?

The third research question evaluates the expandability of the prototype. The goal is to
assess how easy and uncomplicated it is to add functionality. For this purpose, we dis-
tinguish between three different types of extensibility. First, we examine how easy and
uncomplicated it is to add additional test cases. Then we assess how straightforward
it is to add new functionalities in the form of new API calls to the program. Finally, we
will also consider the possibility of adding a completely different PSD2-compliant API
standard. That makes it easier to understand how the program can be expanded and
future improvements can be made.

1.4. Research Approach

This thesis aims to contribute to the ongoing test process of PSD2-compliant bank APIs.
Using an automated test tool helps to improve the test process. It reduces costs while
still ensuring a high-quality product. The framework for Design Science for Information
Systems proposed by Hevner et al. 2004 is applied in this thesis [Alan R. Hevner et al.,

8

1.4. Research Approach

2004]. This approach has been utilized in many other research projects and is an
excellent method to achieve scientific rigor.

The conceptual framework facilitates the understanding, implementation and evalua-
tion of information systems research [Alan R. Hevner et al., 2004]. This approach is
scientifically recognized and provides guidelines for building a relevant artifact based
on a thorough knowledge base. It is also driven by a business need from an environ-
ment with a defined problem. In our case, we are looking for a more efficient test
process for multiple bank interfaces, since the current test process is a very compli-
cated and costly procedure. An overview of the framework used in this thesis is shown
in figure 1.2. It mainly consists of three parts, namely the environment, the information
system research and the knowledge base. Each of these three areas is briefly discussed
below.

The environment reflects the interest in the topic and the problem. The current testing
process of bank APIs is a complex and inefficient procedure. In this thesis, a more ef-
ficient solution for this problem is presented. The presented approach is of particular
interest for banks and the legislator, since a more efficient solution would simplify the
task of testing the individual interfaces. According to the Design Science in Informa-
tion Systems Research (ISR), the environment is used to assess and evaluate "business
needs [...] in the context of organizational strategies, structure, culture and existing
business processes" [Alan R. Hevner et al., 2004]. This means that fundamental con-
cepts and related research are considered for the design and implementation of our
artifact. Therefore, an overview of current research and testing approaches for bank
interfaces is given.

The knowledge base provides an introduction to open banking, PSD2 and software test-
ing. In particular, it provides an overview of the most important topics for this thesis,
such as API testing and regression testing. In order to create a comprehensive knowl-
edge base, original English and German literature, relevant publications on PSD2 and
software testing as well as official papers of the EU are used. Further insights to solve
relevant problems are gained through expert interviews. The five respondents con-
tributed know-how and insights to the functional and technical part of this work. A
summary of the respondents as well as the duration of the interviews can be found
in figure 8.1 of the appendix. Each respondent was asked about the requirements for
an efficient and effective test tool for PSD2-compliant interfaces. Moreover, they com-
mented on current problems of the test procedure of PSD2-compliant bank interfaces.
The questionnaire used in the conducted interviews can be found in figure 7.3 of the
appendix. It is essential to provide an understanding of the basic concepts of the test
tool. That helps to gain a deeper understanding of its functionality.

The evaluation of the interviews, as well as the findings from the literature, helped to
determine the essential requirements for the design and implementation of the pro-
totype. To be able to make a statement about the functionality, an evaluation of the
extensibility and usability of the artifact was carried out. That evaluation is supported

9

1. Introduction

by a refinement process that was established during the development of the test tool. It
helped to gain new insights and thus supported the further design and development of
the test tool. In general, this research approach aims at a continuous improvement of
the artifact through multiple iterations of assessments and evaluations [Alan R. Hevner
et al., 2004].

10

2. Theoretical Framework

This chapter explains the theoretical foundations and the relevance of this scientific
research. Since this thesis deals a lot with Application Programming Interfaces (APIs),
the fundamentals are briefly explained. This will provide a general understanding of
what we are dealing with. In order to understand the necessity of open banking and
its relation to the PSD2, the history of both is briefly presented. Together with their
development, the expected potentials and their focal points are elaborated.

The description of the legal background is followed by a brief overview of software
testing. This introduction focuses on accompanying objectives and concepts such as
API testing, regression testing and test automation. A short definition of regression
testing and its applicability in the area of API testing is outlined. That helps to answer
the question regarding the requirements for a data-driven and vendor-independent
regression testing tool for PSD2-compliant APIs. It is essential to understand how the
prototype and especially the mapping of test cases, one of the main contributions of
this thesis, work. Therefore, the focus is on concepts that are necessary to enable an
efficient test procedure.

2.1. Foundations of Application Programming Interfaces

This section deals with the basic concepts of Application Programming Interfaces (APIs).
Since these are referred to quite often in this thesis, it is essential to understand what
they are and primarily how they work.

According to the Oxford Dictionary, APIs are "a set of programming tools that enables
a program to communicate with another program or an operating system" [Oxford
Learners Dictionaries, 2018]. In other words, they are used to disclose parts of a
software system to a third party [Massé, 2012]. In many cases, these interfaces are also
used as a security layer between the application and the server [MuleSoft, 2020]. Most
people, consciously or unconsciously, have already used services or applications that
leverage APIs, for example, paying online with PayPal, signing in through a social media
account or using web applications such as Google Docs. APIs enable a standardized
communication between the application and the addressed service [Meng et al., 2018].
To enable such standardized communication, it has to be defined how this interface can
be accessed and how the respective access has to look like. That is usually specified in
the corresponding documentation. If the request to the respective service corresponds
to the actual structure, it is straightforward to realize the access.

11

2. Theoretical Framework

APIs are indispensable in today’s software projects, since they provide a high level
of abstraction for the respective task in the program [Meng et al., 2018]. Through
their usage, one attains access to already existing services and this saves the effort
of rebuilding this functionality. Nowadays, APIs are often seen as the actual product
[MuleSoft, 2020]. That also applies to the PSD2-compliant interfaces that banks have
to provide to TPPs.

In general, APIs facilitate smooth integration of already existing services and simplify
the development process [Massé, 2012, Meng et al., 2018]. For APIs to be deployed,
they must be well structured and clearly organized otherwise they will not be used by
a developer.

2.2. Origin and Anticipated Potential of Open Banking

The financial services industry is one of the most important contributors to the success-
ful development of a country. It has a significant impact on a country’s competitiveness
and contributes to the growth of its economy [Romanova et al., 2018]. Stagnating com-
petition, however, hinders this progress and can endanger the successful development
of a country. Long-standing concerns and fears about competitive shortcomings in the
financial market were the reason why the CMA1 launched a market investigation in
2014 to examine these issues [Smith et al., 2016]. They examined the supply of retail
banking services for both private and corporate customers. Problems such as compli-
cated fee structures for overdrafts, open-ended account relationships or the costly and
challenging task of attracting new customers, lead to the conclusion that older and
larger banks, which dominated the market, have it more comfortable to win and retain
customers [Smith et al., 2016, Competition and Markets Authority, 2016]. This leads
to a less competitive and innovative market as new and smaller banks have to work
harder to build a customer base and gain ground with their advanced and pioneering
business models.

Following the publication of the findings of this investigation, the Open Banking Initia-
tive (OBI)2, which aims to help customers by making the financial services simpler and
more transparent, was founded [Daniel Gozman, Jonas Hedman, and Kasper Sylvest
Olsen, 2018]. This initiative wanted more opportunities for clients to manage their
banking experience. Furthermore, they also wanted easier access for small businesses
to the financial market. Remedial measures such as APIs make it easier to obtain fi-
nancial advice or to provide tailor-made products and services over the internet [Com-
petition and Markets Authority, 2016]. The open API standard enables TPPs to access
and process financial data of the bank’s customers. For this access, the customer must
give his consent to the service provider.

The prospects for open banking are immense. Its underlying idea was to promote in-

1British Competition and Market Authority: https://www.gov.uk/cma
2Open Banking Initiative: https://www.openbanking.org.uk/

12

https://www.gov.uk/cma
https://www.openbanking.org.uk/

2.3. The Second Payment Service Directive

novation and security [Chaib, 2017]. The opening of the banking market gave TPPs the
ability to access client data, allowing them to change the way products and services
are created [Chaib, 2017]. These modern and highly specialized services can replace
overpriced products and fill the gap of undersupplied services from large retail banks
[Bramberger, 2019]. To keep pace, larger banks have to adapt as open banking enables
a more dynamic and competitive market. Overall, a fairer financial landscape is emerg-
ing as new financial technologies challenge business models of established banks. The
competitive pressure on the established banks forces them to rethink their business
models. Factors such as quality, customer experience and security are more important
than ever and are decisive for product choice [Mbama and Ezepue, 2018].

The speed and responsiveness of the respective service provider and the focus on niche
customer segments separates success from failure. Rapid adaptation is particularly dif-
ficult for banks, as formalized processes and internally regulated procedures are not
suitable for quick adjustments. Higher customer expectations and increasing compe-
tition force banks to take every opportunity to create new and better products. Open
banking is the future-oriented use of data made available via APIs [Bramberger, 2019].
Not only banks but also other service providers can use APIs and benefit from them.
It is conceivable that they will use these as a marketing tool to promote their products
and to offer better services. They can also start profitable cooperation’s by offering ad-
ditional functionalities that go beyond the minimum requirements of open banking. As
margins are getting lower, it is essential to improve profitability. In general, open bank-
ing strives for a versatile and more effortless use of external services in the financial
sector. APIs enable simple data integration and usage of existing services. That opens
up new opportunities for financial institutions and TPPs to make banking more con-
venient, versatile, easier to use and thus more customer-friendly [Bramberger, 2019].
Furthermore, open banking deals with security issues and the avoidance of customer
risks. Technological improvements and advanced security measures ensure a secure
banking experience [European Banking Authority, 2017].

2.3. The Second Payment Service Directive

The growing number of online and mobile payments requires improved consumer rights
and security [European Commission, 2018]. Therefore, the Council of the European
Union introduced the revised Payment Services Directive in order to adapt to the highly
dynamic and rapidly developing European payment market [Interview1, 2020]. This
regulatory step aims to improve and remedy the shortcomings of the existing directive
[European Commission, 2016]. The standardization of payment processes is a major
step towards a uniform, digital payment market [Chaib, 2017]. This will make payment
transactions easier, more efficient and more secure [European Central Bank, 2018].

Opening the payment market to new entrants increases competition and leads to bet-
ter prices. The proposal of the new directive was adopted on 8th October 2015 and
became legally binding on 12th January 2016 [European Parliament, 2015]. Each EU

13

2. Theoretical Framework

member had to transpose the directive into national law by 13th January 2018 [Euro-
pean Parliament, 2015]. With the eventuating of the PSD2, a clear and comprehensive
set of rules was established which applies to both new and existing payment service
providers [Interview1, 2020]. The PSD2 forms the legal foundation for the creation of
a unified, efficient payment services market within the EU [European Union, 2016]. In
addition to innovation and competition, the PSD2 lays the foundation for further devel-
opment of a more integrated and international market for electronic payments within
the EU. Consumers and businesses benefit from greater efficiency, a level playing field,
more choice, and better transparency of charges [European Central Bank, 2018]. In
addition, regulatory technical standards were developed by the EBA 3 in cooperation
with the European Central Bank (ECB) 4 to support the security of customer data and
payment transactions [European Parliament, 2019]. These standards enforce the us-
age of rigorous authentication and secure communication protocols based on reliable
open standards [European Central Bank, 2018].

As one of the fundamental legislative changes in the financial sector, it is expected
that the PSD2 will have long-term, groundbreaking effects on the market [Interview1,
2020]. Although the regulatory requirements were clearly stated in the directive, it
focuses mainly on PSD2 API compliance. Nothing is said about the technical imple-
mentation and test process [Romanova et al., 2018]. Banks are under pressure to
deliver and implement the required functionalities.

2.3.1. Key Points

With a total of 117 articles the PSD2 is quite complex [European Parliament, 2015]. It
is, therefore, not possible to cover all individual aspects of the directive in this thesis. In
the following, an attempt is made to summarize the essential statements. It is intended
to provide a general understanding of the complexity and diversity of the PSD2.

In a time when most payments are made online, reliable and secure customer authenti-
cation is more important than ever. The standardization of payment processes achieved
by the PSD2 improves customer protection [Lynn et al., 2019]. According to the PSD2,
meticulous customer authentication is achieved through a combination of at least two
of three possible types of authentication. These three are described as follows: knowl-
edge, possession and inherence [European Union, 2018]. Using the knowledge compo-
nent for verification requires a password or an authentication code. The payment card,
on the other hand, is a typical verification method that proves possession. Moreover,
the use of a fingerprint is an example of inherence. The PSD2 refers to Article 97 when
rigorous customer authentication is required. It states that whenever "the payer: (a)
accesses his payment account online; (b) initiates an electronic payment transaction;
(c) carries out an action via a remote channel that carries the risk of payment fraud or
other misuse", strong customer authentication must be used [European Union, 2018].

3European Banking Authority: https://eba.europa.eu/
4European Central Bank: https://www.ecb.europa.eu/

14

https://eba.europa.eu/
https://www.ecb.europa.eu/

2.3. The Second Payment Service Directive

That increases trust and acceptance of electronic payments since it reduces the risk of
fraud and abuse.

Another key element of the regulation is that banks must provide an open interface for
TPPs in order to enable them access to the customer’s payment accounts. The imple-
mentation of such an interface is done by using open APIs. These interfaces must meet
specific requirements that are defined in the technical requirements standards of the
directive [Innopay DB, 2017]. Article 30 lays down the general obligations regarding
access to these interfaces. It specifies, for example, that "payment initiation service
providers [...] are able to identify themselves towards the account servicing payment
service provider" or that "account information service providers are able to communi-
cate securely to request and receive information" [European Union, 2018]. The APIs
are used for payments and to request account information. As intermediaries, Payment
Initiation Service Providers (PISPs) are responsible for initiating the transaction with-
out taking possession of the customer’s money. Account Information Service Providers
(AISPs) provide the requested consolidated information about customer’s payment ac-
counts. Both are subject to authorization and registration requirements. If a customer
allows a TPP to access his account, the AISPs must provide him with the necessary
information [Deloitte, 2017b].

The rules Third Party Payment Service Providers (TPPSPs) must follow to prevent abuse
of these services are the following. They may not store information about the customer,
nor may personalized security information be saved [Deloitte, 2017b]. Payment Service
Providers (PSPs) are obliged to refund any fees, costs or interest incurred by the payer
if they are responsible for the error. In addition, they are responsible for carrying out
stringent customer authentication and verifying the identity of the payer. In the event
of an incorrectly executed payment, they must take full responsibility and provide a
refund if the payer’s behavior was not fraudulent. This enhances consumer rights in
many aspects [Innopay DB, 2017]. In addition, payers can request a refund for direct
debits within eight weeks. The directive has laid down clear and customer-friendly
liability rules in broad terms.

2.3.2. Challenges and Opportunities

The Second Payment Service Directive (PSD2) is considered as the digital revolution
in the financial sector. While regulation is usually not perceived as disruptive, the
introduction of the PSD2 is likely to have considerable consequences. It is expected to
have a disruptive effect and deregulate the financial market by increasing competition
and encouraging innovation [Accenture, 2016].

This section discusses the challenges and opportunities of this directive. In order to be
compliant with the regulation, banks have to provide a particular interface for TPPs.
The provision of new IT infrastructure to comply with the regulatory requirements is
associated with high costs [Deloitte, 2017b]. An additional challenge is the constant
evaluation of security measures with regard to customer friendliness. The process-

15

2. Theoretical Framework

ing of sensitive information and personal data requires robust security procedures and
should not compromise convenience [Wessing, 2017]. Customers will not use a service
that is unreliable and lacks security measures, nor will they accept complicated solu-
tions. The challenge for banks is to find the balance between a secure and easy to use
solution.

The evolution towards a more digitalized banking experience also threatens the di-
rect relationship between the bank and its customers [Deloitte, 2017a]. Especially the
younger generation prefers to do their banking transactions with their mobile phones
instead of going personally to a bank office to talk with a bank employee [PWC, 2018].
Using a mobile application is simply more convenient than going to a bank office. Banks
often compete with TPPs that specialize in specific segments. In many cases, TPPs are
very inventive in terms of usability and responsiveness, both of which contribute signif-
icantly to the customer experience. That increases the competitive pressure on banks
and challenges their position through innovation [Deloitte, 2017a].

The adoption of these highly complex regulations is very time-consuming and increases
the workload for banks [Interview1, 2020]. This time and effort should be used to cre-
ate new and better services that adapt to legislation and technology. Banks must adapt
their strategies and change the way they do business [Interview1, 2020]. Without in-
novative products, they run the risk of losing market share or, even worse, of becoming
a data pipeline [PWC, 2018, Deloitte, 2017a].

With challenges also come new opportunities. The introduction of open APIs not only
offers advantages for TPPs, banks can benefit from those as well. A structured and
well-designed API helps to simplify and optimize internal processes, as well as facili-
tates external accessibility and endorsement [Chaib, 2017, Interview4, 2020]. Adap-
tation to the latest technological standards enables efficient usage. When the API is
in production, an extension can easily be implemented. This enables straightforward
integration of additional functionalities.

Banks can capitalize on collaborations by offering additional services that go beyond
the basic requirements of PSD2 [Interview3, 2020]. Fintech’s use such offerings to pro-
vide services that appeal to a broader customer audience or to respond to the specific
needs of each individual [Mbama and Ezepue, 2018].

In general, an open regulatory environment such as PSD2 offers customers greater
freedom of choice and improves their banking experience. Higher standardization and
competition will lead to improved business efficiency and reduced service costs. It
also enables the development of services related to customer’s transaction data and
payments, as well as improved approaches for risk assessment.

16

2.4. Introduction to Software Testing

2.4. Introduction to Software Testing

According to the Economic Times, software testing is "the process or method of finding
error/s in a software application or program so that the application functions accord-
ing to the end user’s requirement" [Economic Times, 2000]. Today’s industry is highly
dynamic and fast-moving. New and innovative solutions are the order of the day. De-
velopers are racing against time to deliver new products that best meet the needs and
requirements of customers [Mohanty et al., 2017]. Jeff Offutt and Paul Ammann point
out that "paradoxically, free software increases [...] expectations" [Jeff Offutt, 2018].
Free software entails that the quality of paid software and, in particular, its correct
execution and functionality must be flawless. Therefore, the primary task of software
testing is to measure and improve software quality [Jeff Offutt, 2018].

One of the most important phases in the life cycle of software development is software
testing. It is an extremely beneficial and helpful activity to ensure the correct func-
tionality of the software [Qa, 2019, Interview4, 2020]. Although it is considered the
most time consuming and expensive part of software development, it is crucial to meet
customer expectations and requirements of the customer [Jeff Offutt, 2018]. The early
integration of a test process with a good test design prevents errors and drastically re-
duces the development effort and associated costs [Nguyen, 2008, Interview4, 2020].
Especially when the product is in a later stage of development or already in produc-
tion, software errors tend to be very expensive and time-consuming to fix [Interview4,
2020]. That leads to a loss of resources and endangers the reputation of the client [Qa,
2019].

Agile development processes force the industry to rethink its test strategies and how to
improve them [Jeff Offutt, 2018]. One way to increase the efficiency of the test process
is test automation [Interview3, 2020, Interview4, 2020]. The automatic execution of the
test process reduces the test effort and time consumption of testing [Mohanty et al.,
2017, Nguyen, 2008].

People tend to make mistakes, and errors in software development are no exception.
Testing the code is therefore absolutely necessary to solve this problem. It is especially
important in the financial industry, an industry mainly based on trust. The secure and
correct functionality of PSD2-compliant APIs is essential for their successful integra-
tion and adaptation. Software errors such as misunderstood requirements, incorrect
software design or faulty code must be avoided and can be reduced with the right soft-
ware testing approach [Marvin Zelkowitz, 2009]. The test activity helps to validate and
verify compliance and assess the reliability of the API [Jeff Offutt, 2018].

A secure and stable interface fosters functionality, increases the user-friendliness and
improves customer service [Qa, 2019]. Well-tested software prevents the malfunction
of specific operations and helps to avoid syntax and calculation errors [Marvin Zelkowitz,
2009]. One downfall, however, remains. Testing helps to show the presence of errors,
but it cannot ensure that there are no remaining errors [Marvin Zelkowitz, 2009, In-
terview4, 2020].

17

2. Theoretical Framework

The following sections elaborate, the main objectives of software testing. These include
the basic concepts of software testing, such as different test approaches and guidelines
as well as a short introduction to the process of test automation. The respective goals
and benefits are examined and the relevance and necessity for automating the test
process are shown.

2.4.1. Goals of Software Testing

Software must be tested to ensure that it conforms to the business requirements spec-
ification and the system requirements specification [Software Testing, 2016, Try Qa,
2018]. Compliance with such specifications is essential to ensure that the product
performs as expected and meets the intended requirements and functionalities [Inter-
view4, 2020].

The validation of the required functionality can be done by comparing the expected
and actual results of a test case. An error is detected if the outcome of a test does not
match the expected behavior described in the specification. Problems such as faulty
calculations, incorrect data processing, insufficient software performance or security
leaks must be avoided [Interview4, 2020, Interview2, 2020]. Identifying and correcting
such errors prevents their re-occurrence in the future and leads to more efficiency and
better functionality of the respective program [Balaban, 2011].

The review of the system and its requirements shows what needs to be done to improve
the system and thus increase the usability and service for the customer. Detecting and
correcting errors helps in this process [Lingard, 2011, Qa, 2019]. It is important to
have good test coverage and to fix errors as soon as possible. Good test cases are
neither too simple nor too complex. They help to detect undiscovered errors. Both the
identification of an error, which is then corrected, and a successful iteration of the test
process provide information about the reliability and quality of the product [Try Qa,
2018].

The test process increases confidence in the release of the product and ensures that
the conformity requirements are met. By creating and executing specified test cases,
a verification of the system under test is possible. Testing for errors helps to detect
incorrect and non-compliant behavior of the program. The main objective of software
testing is to find errors in specification, design and implementation [Interview4, 2020,
Interview2, 2020].

The testing process of software helps to meet the functional requirements of a system.
Financial losses and costs can be minimized by the early detection of errors in the
software [Jeff Offutt, 2018, Mohanty et al., 2017]. The goal is to test the software
application thoroughly and thereby ensure that it works well. Thereby one tries to
achieve the best possible test coverage [Try Qa, 2018]. However, this is not always so
easy, as there are often many different scenarios. For example, PSD2-compliant APIs
have many possibilities to configure each individual API call [Try Qa, 2018].

18

2.4. Introduction to Software Testing

The goals of testing is to improve the quality of the product through continuous mea-
surement and verification of design and code [Qa, 2019]. Software testing should fol-
low Dr. W. Edwards Deming’s learning cycle of quality and adhere to his statement:
"Inspection with the aim of finding the bad ones and throwing them out is too late, inef-
fective and costly". Therefore the ultimate goal should be to improve processes through
inspection. Testing is seen as a means to evaluate and verify the correct functioning of
certain processes [Software Testing, 2016].

2.4.2. Basics of Software Testing

Software testing is considered one of the most critical processes in the development
cycle. Continually changing and more agile methods of software development require
new integrative solutions that improve the traditional way of software testing [Qa,
2019, Mohanty et al., 2017]. Guidelines and various test approaches are presented
below.

Software testing starts with the identification of requirements and continues during
the development phase [Interview4, 2020, Interview2, 2020]. However, the test proce-
dures and methods vary in each development cycle and are strongly dependent on the
software life cycle model used. Since it can never be guaranteed that the entire sys-
tem is correct, certain assumptions must be made to determine the end of the testing
process [Interview4, 2020].

Nobody can actually guarantee error-free software. The end of testing depends on
time, budget and duration of the respective test case [Software Testing Help, 2020,
Software Testing, 2016]. It is essential to find the right balance between all three con-
straints [Interview4, 2020]. That varies from project to project and should be deter-
mined at the beginning of each undertaking. The test coverage should be high enough
to test all specified requirements, and testing should only be stopped when high pri-
ority defects have been identified and fixed [IEEE Standard, 1998, Software Testing,
2016, Software Testing Help, 2020].

The Institute of Electrical and Electronics Engineers (IEEE) published several stan-
dards such as IEEE Std 829-1998 or IEEE Std 829 2008-1998, which provide a refer-
ence framework for software testing. Among other things, these documents provide
guidance for creating test design specifications, test case specifications, and test pro-
cedure specifications. A basic software test lifecycle phase may have the following
characteristics:

1. Requirements study

2. Test Case Design and Development

3. Test Execution

4. Test Closure

19

2. Theoretical Framework

5. Test Process Analysis

The requirements study deals with the needs of the customer. Its thorough understand-
ing is essential for the testing process and for determining the customer’s expected
results [Ostrand and Balcer, 1988]. Furthermore, test objectives, required resources
and the need for specific tools can be derived. The analysis of the functional and non-
functional requirements facilitates the planning and creation of the test case design
and promotes the definition of a tailor-made test process for each project [Interview2,
2020, Ostrand and Balcer, 1988].

According to the IEEE Std 829-1998, test case design and development "refines the
test approach and identifies the features to be covered by the design and its associated
tests" [IEEE Standard, 1998]. Its purpose is to validate the acceptance of the product
and to facilitate the understanding of the test requirements by people outside the test
group [Software Testing, 2016]. A traceability matrix can be useful to ensure that all
test requirements are considered in the preparatory phase of test planning [Ostrand
and Balcer, 1988]. The IEEE requires the specification of the test approach and the
accompanying features that are to be tested. Additionally, each test case should spec-
ify the input required to perform the test and the expected output [Software Testing,
2016]. That facilitates the execution and validation of the test cases and enables an
uncomplicated development of the test cases [Software Testing, 2016, IEEE Standard,
1998]. Test execution offers the possibility to evaluate the performance and function-
ality of the software. During the execution phase, errors can be easily detected. That
is always the case if the test results do not match the expected output.

Test closure and test process analysis are closely related [IEEE Standard, 1998]. They
include all test reports generated during the test process. These reports are analyzed
to improve and correct the program’s misbehavior.

There are different types of tests and various test methods. For the purpose of this
scientific work, only the most common approaches are examined. In most cases, the
testing approach can be categorized into three main techniques: functional testing,
performance testing and security testing [Ostrand and Balcer, 1988]. Within these
techniques, the choice is between static or dynamic testing. Static testing, also known
as manual testing, checks the requirements specification or the source code of the
software. It is usually applied in the initial phase of software development [Nahid
Anwar & Susmita Kar, 2019]. Dynamic testing or automated testing "involves testing
[...] software for the input values and output values" [Nahid Anwar & Susmita Kar,
2019]. Here the dynamic behavior of the code is analyzed. Both static and dynamic
testing can improve the verification and validation of the software.

Functional testing analyzes whether the program meets the specified functionality. It
revolves around the workflow and can be performed at several test levels. Conven-
tional approaches include unit testing, integration testing and system testing [Ostrand
and Balcer, 1988]. Black box testing and white box testing are also well-known test
methods. The former is a technique where the knowledge about the internals is not

20

2.4. Introduction to Software Testing

visible to the test person. Thus the tester has no knowledge of the code or the internal
structure of the program [Nidhra, 2012]. It focuses on determining the requirements
of the system and whether the program is doing the intended. Black box testing is
particularly well suited when no knowledge of internal design nor code access is re-
quired and when inconsistencies in the requirement specifications need to be found
[Interview2, 2020, Interview4, 2020, Nahid Anwar & Susmita Kar, 2019]. Due to lim-
ited knowledge, testers may find it quite challenging to design test cases, respectively,
might not test some functionality at all [Nahid Anwar & Susmita Kar, 2019].

The opposite is white box testing. The tester has a detailed knowledge of internal
procedures as well as the code structure [Ehmer and Khan, 2012, Nidhra, 2012]. That
facilitates the creation of test cases, making them also less expensive since error-prone
segments can be addressed more explicitly, leveraging the knowledge of logic and code
[Software Testing, 2016, Nahid Anwar & Susmita Kar, 2019]. This approach allows
maximum test coverage and facilitates the detection of errors during the test process
[Nahid Anwar & Susmita Kar, 2019].

The test process of PSD2-compliant bank APIs can be mainly considered black box
testing [Interview2, 2020]. However, there is a vast amount of documentation that
provides information about the internal functionality and the intended behavior of the
respective API calls. This provides insight into the functionality of individual meth-
ods. The multitude of available manuals and technical specifications simplifies the test
process considerably. Error messages can be used to create specific test cases and to
check whether certain functionalities work correctly. Nonetheless, experienced testers
who are particularly familiar with the functionality of the interface are still required.
The testers must understand the various workflows that the API interface offers [Inter-
view2, 2020, Fundamentals, 2010].

Performance tests are often associated with stress testing and load testing of the sys-
tem [Ostrand and Balcer, 1988]. In this test process, the tester is particularly interested
in parameters such as load time, response time, access time or runtime [Ostrand and
Balcer, 1988]. These values are crucial and should not be neglected as they are respon-
sible for ensuring good quality, overall reliability and user acceptance of the software.
For meaningful and reliable performance testing, testers depend on tools that automate
these processes, as it may be necessary to send many different connection requests to
the appropriate API interface at once. The test tool that was developed in the context
of this thesis for illustrating and improving the test process of PSD2-compliant APIs
deals exclusively with functional testing.

Another essential test category that often remains in the background is security testing.
At a time when most failures are due to security problems, it is irresponsible to omit this
test category. Although it is still impossible to find all defects due to time constraints,
every tester should try in the best possible manner to identify problems at the design
level that lead to security issues [Nahid Anwar & Susmita Kar, 2019]. Services such as
authentication and authorization must be tested.

21

2. Theoretical Framework

For the practical part of this scientific work, it is necessary to understand the concept
of regression testing and API testing. Regression testing is used to perform tests of
PSD2-compliant interfaces efficiently during their continuous development.

2.4.3. Test Automation

Software testing makes up a large part of the entire development cycle and is quite
expensive. It is therefore not surprising that the idea of avoiding costly human error
through software testing or increasing the speed of development through faster test
processes and error correction methods is leading to a rethinking of how test processes
can be made more efficient [Kumar and Mishra, 2016]. In this context, automated
testing is often proposed as the most promising solution. It pledges for test quality,
shortened execution time and lower costs. Many facts must be taken into account
when deciding whether or not to implement test automation. The following is a short
introduction to the advantages and disadvantages of test automation.

"[In order] to work more efficiently and effectively, test engineers must be aware of
various automated testing strategies and tools that assist test activities", says Frank
Elberzhager from the Frauenhofer Institute for Experimental Software Engineering
[Garousi and Elberzhager, 2017]. Many test engineers consider test automation only
as a tool for executing test cases. However, this is not the only domain that can be
automated. The process of test automation goes far beyond this point. Activities such
as test case design, test evaluation or test management can be automated [Garousi
and Elberzhager, 2017]. Modern scientific studies show that sometimes it is possible
to generate test cases automatically, but this will not be discussed further in this the-
sis [Ed-douibi et al., 2018]. Automatic testing brings many advantages to the tester.
For example, it can increase test speed and reduce execution time [Garousi and El-
berzhager, 2017, Interview4, 2020]. Since no human interaction is required for the
individual execution of the test cases, the respective tests can be performed quickly.
As a result, the test process can be carried out more frequently [Interview4, 2020].
That brings advantages to modern software development since quick feedback enables
the creation of better products through faster error detection [Wiklund et al., 2017].
As a "core component in agile development", it is particularly useful in scenarios where
many small code changes occur regularly [Wiklund et al., 2017, Ropota, 2011]. Sup-
pose a data-driven test tool is developed for several bank interfaces. This tool allows
for the evaluation of many test cases. An automatic execution would be beneficial since
the manual execution of hundreds of test cases could easily cause some to be missed.
Automated testing can avoid errors, since repeated manual testing of test cases be-
comes tedious and thus increases the risk of errors [Ropota, 2011, Interview4, 2020].

Improving efficiency and optimizing the test process is the ultimate goal of test automa-
tion [Mahajan et al., 2016]. Since the process of test automation is quite complex and
time-consuming, certain conditions should be met to make it worthwhile [Kumar and
Mishra, 2016]. The first step is to check whether the types of tests to be performed can

22

2.4. Introduction to Software Testing

actually be automated. That is not always possible and is considered as a limitation of
the automated test processes. For example, a particular interaction may require man-
ual verification, such as the use of a TAN, a one-time password. Automating such a pro-
cess is often quite difficult or even impossible [Interview2, 2020, Interview3, 2020]. In
addition, test cases that are executed very rarely or where manual verification is much
easier than an automated solution should not be automated [Ropota, 2011]. In large
projects, tests that are repeated regularly or that are prone to human error should be
automated [Mahajan et al., 2016]. That improves the test’s quality and brings several
advantages for the product [Mahajan et al., 2016]. A high degree of automation can
reduce test costs and the associated test effort if implemented correctly [Interview4,
2020]. However, even this process, if not implemented carefully, can hinder success
and cost a lot of money [Mahajan et al., 2016].

A more cost-effective test procedure, higher efficiency and improved software quality
are just a few examples of the advantages of automating software testing. However,
there are also several disadvantages. Many people have unrealistic expectations of
software test automation [Ropota, 2011, Interview4, 2020]. They believe that it will
uncover many new errors and that, once in use, it will not require any further work.
Especially the maintenance of test cases in an automated test suite is essential to en-
sure consistent quality [Ropota, 2011, Interview4, 2020]. These investment costs are
also significantly higher than those for manual testing [Kumar and Mishra, 2016]. If
a test is performed only once, it is often cheaper and more convenient to test the
case manually, since the configuration of the test tool can be time-consuming [Ropota,
2011].

In the case of testing PSD2-compliant APIs, automation of the software testing process
brings many advantages. The test time and the costs for the test activity are reduced.
The EBA recommends the use of automated procedures for the test process of PSD2-
compliant APIs [European Banking Authority, 2019]. In particular, it enables the use
of automated test processes since each API call can be executed independently and a
simple comparison of the actual results with the required ones is possible. Since the
PSD2-compliant APIs are constantly being expanded, the overall effectiveness of test
repetitions is high. Here, test automation offers the possibility to serve as good control
and assurance of quality [Wiklund et al., 2017].

2.4.4. Regression Testing

For the software testing process to be successful, organizations must use efficient and
effective testing strategies [Interview3, 2020]. Regression testing is one such testing
techniques. It is the process of repeatedly testing an already validated piece of code/-
software after a modification in some other software segment has been made [Huizinga
and Kolawa, 2007, Ammann and Offutt, 2008].

There is a distinction between repeated execution and regression testing. The former is
the process of repeatedly testing software. A modification is not compelling. Retesting

23

2. Theoretical Framework

or repeated testing is, therefore, considered as planned testing for failed test cases.
We speak of regression testing when the application has been modified and there is a
need to verify that these changes do not affect other parts of the software [Huizinga
and Kolawa, 2007, Ammann and Offutt, 2008].

Regression testing is an essential part of a successful and meaningful test proce-
dure during software development [Interview3, 2020, Interview4, 2020]. Since small
changes in one part of the software can also lead to a change in the behavior in an
unchanged part of the software, it is particularly important to test the entire software
after every modification [Huizinga and Kolawa, 2007]. Many different programs are
available to automate this process.

In order to make this test process efficient, the tests must be executed automatically
[Bitbar, 2019]. In this case, it is particularly important to ensure that the test set is
well constructed. The selection of all test cases created for the software can lead to a
non-strategically defined regression test set. Such test sets are often very large so that
their execution takes longer than necessary and leads to fewer test runs [Huizinga and
Kolawa, 2007, Ammann and Offutt, 2008]. In general, it is almost always worthwhile
to build a regression test suite if test cases need to be executed frequently. Initially,
setting up such test suites usually takes more time than manual tests [Interview3,
2020]. However, during the development process, these tests are usually more prof-
itable, since they can be executed automatically and manual interactions are avoided
[Ammann and Offutt, 2008]. That means that as soon as a modification or a new com-
ponent of the program is developed, a corresponding test case is added to the test
suite. Like all other test cases in the test suite, it can then be executed quickly and
efficiently. It is also important to continuously adapt existing tests to the new require-
ments or changed functionality [Huizinga and Kolawa, 2007].

Of course, all test cases can be executed. However, as already mentioned, this is often
very time and resource-intensive. Therefore, it is often preferable to execute only a
certain part of the test-suite [Interview4, 2020]. This subset must be chosen carefully
so that both the area to be tested and the affected methods are thoroughly examined
[Ammann and Offutt, 2008, Interview4, 2020]. Another possibility is the prioritization
of test cases [Elbaum et al., 2002]. A well-thought-out strategy reduces the complexity
of the test suite considerably [Huizinga and Kolawa, 2007]. Minimizing a test suite
while maintaining the same test coverage is not easy, but if implemented well, it can
save a lot of time and money.

The initial test suite is created when the team starts with the black box testing. New
test cases are created for each new module. Consequently, the size of the test suite
increases as the program grows. The regression test set should be executed at least
once before each new build [Huizinga and Kolawa, 2007]. If an error is found during
the execution of the test cases, the developer can fix it immediately.

24

2.4. Introduction to Software Testing

2.4.5. Data-Driven Testing

In many cases, it is necessary to run the same test case with different input data,
since results can vary depending on the input [Stepien et al., 2018, Vijay, 2016]. High
test coverage for a test case can be achieved by covering all possible input data sets.
That should be done despite the same request. Our PSD2-compliant API is a perfect
example. In order to make a single API call, one first has to create a so-called consent.
The creation of the consent is done by executing a specific API call and specifying its
data object. This call is always the same and nothing changes except the data objects
[Interview2, 2020]. Creating a separate test case for each response would be time-
consuming and inefficient [Stepien et al., 2018, Vijay, 2016]. Therefore it makes sense
to separate the data from the actual test case [Interview2, 2020, Interview4, 2020].
Precisely this abstraction describes the goal of data-driven testing. A data-driven test
procedure tries to separate the test data from the actual test cases in the best possible
manner [Stepien et al., 2018].

At the start of the test run, the actual data sets are loaded from a file e.g., a Extensible
Markup Language (XML) or JavaScript Object Notation (JSON). That avoids hard-coded
values in the test cases and generally makes the test procedure more flexible [Stepien
et al., 2018, Interview2, 2020]. It also gives the tester the ability to make his test
cases clear and understandable. In addition, test duplicates can be avoided, so that
the tester now saves time in the otherwise time-consuming and costly creation of test
cases [Stepien et al., 2018].

The use of data objects with well-defined data models such as XML or JSON allows a
simple and relatively flexible separation between data and the test cases. A particular
advantage of data-driven testing is the possibility of having the test cases created by
experts in the relevant field [Interview4, 2020]. They do not need in-depth knowledge
of programming or the use of the test program [Stepien et al., 2018, Wu et al., 2009].
They are better suited to create the test cases. Their test cases are usually better and
more extensive, as they have more knowledge of the functional aspects of the interface.

Such an approach requires a suitable format to represent the test cases in a simple
way. This format is used to extract the necessary information for each test case [Stepien
et al., 2018, Wu et al., 2009]. The experts can use this structure to fill the individual test
cases with information, without knowing the technical implementation of the test case.
As a result, the programmers only have to concentrate on the technical implementation
of the test cases.

Another advantage is that the tool can process positive and negative tests more straight-
forward. When executing positive tests, the test result must be correct. A negative test
indicates that the tester expects the test case to fail. However, both test cases are still
marked as successfully, since they confirmed the desired event.

In general, individual test cases can be managed in a much easier fashion by abstract-
ing the data from the test cases [Interview3, 2020, Interview4, 2020]. Consequently,

25

2. Theoretical Framework

the test depends more on variables than on fixed values. Data-driven testing helps to
keep the test cases manageable and thus simplifies testing [Stepien et al., 2018].

2.4.6. API Testing

An Application Programming Interface (API) is used to explicitly expose a certain part
of a software system to a third party [Massé, 2012]. This third party can then use
the predefined structure of the API to communicate with the system. In general, a
distinction is made between two different types of web services: Representational State
Transfer (REST) and Simple Object Access Protocol (SOAP) [Inflectra, 2020]. In the
following, only REST is discussed. APIs allow TPPs to communicate with the server
via Hypertext Transfer Protocol (HTTP) and request customer data [Massé, 2012]. In
this case, the API acts as a translator between the application and the server. For a
smooth communication between both parties, every API must be tested. As explained
above, there are several ways to test. The interface must meet certain performance
and security requirements. However, the prototype of this thesis will only focus on
testing the functionality of the API. That means ensuring that the requested data is
returned correctly.

Testing is crucial, especially when it concerns the API development life cycle and veri-
fying the application logic [Soap UI, 2020, Broadcom, 2020]. It is crucial to certify that
the returned value matches the expected value and that the predefined format is fol-
lowed. Since the tester of the API interface usually has no knowledge of the underlying
code, it is often difficult to identify all individual test cases [Soap UI, 2020, Broadcom,
2020]. In such a situation, the documentation and specifications of the interface can
help to create test cases. The main difficulty in testing APIs is that one needs to under-
stand how the interface works [Interview2, 2020]. Often several API calls are required
to get the desired result [Soap UI, 2020]. In the example of our PSD2-compliant API,
five different requests are required to retrieve the account lists. In addition to the se-
quential order of the individual API calls, the combination of various input parameters,
such as header, play an important role. There are many different ways to set and select
these parameters. The tester needs a reasonable amount of knowledge to decide which
combinations are necessary and which do not fit together at all [Interview2, 2020].

Instead of testing software with its Graphical User Interface (GUI), it is preferable to do
this by using the API. This avoids the need for GUI testing [Inflectra, 2020]. Maintain-
ing these is generally quite difficult and error-prone due to the frequent changes and
resulting adjustments to tests [Inflectra, 2020]. Especially in a time when more and
more services are pushed towards cloud solutions, all API functionalities must work
properly. The failure of one service can lead to a complete breakdown of the entire
program.

26

2.5. Summary of the Theoretical Framework

2.5. Summary of the Theoretical Framework

The objective of the Theoretical Framework is to provide a general understanding of
the requirements for the test tool and the concepts used in its development. This
summary provides a general understanding of the problems of the current test process
of PSD2-compliant APIs. It also highlights the need for a new test tool specifically
designed for the evaluation of banking interfaces. The essence of the current situation
is outlined below to make the purpose of this thesis comprehensible.

EU banks had to provide interfaces for TPPs by September 2019. These interfaces al-
low TPPs to access the bank’s customer account information and to carry out transac-
tions. From a technical perspective, there is no clear definition of how these interfaces
should actually be implemented [European Parliament, 2015, Interview1, 2020]. This
means as long as these interfaces meet the requirements specified by the PSD2 and the
Regulatory Technical Standards (RTS), they can be implemented in any desired way.

To achieve the goal of PSD2, communication between TPPs and banks must be stan-
dardized [Interview1, 2020]. For this purpose, various organizations were founded that
work together on the definition of a standardized interface. One of them is the Berlin
Group, a consortium of multiple organizations that are developing a uniform interface
standard [Berlin Group, 2020].

If the assumption is made that there are just a few organizations that provide a stan-
dard which is then used by many different banks, the misleading conclusion might
be that one has to develop test cases only for the standards themselves [Interview1,
2020]. That would make the test process much easier, of course. However, this is
unfortunately far away from reality [Interview1, 2020].

Since the legal foundation of PSD2 does not specify the design and implementation
of the interface, banks do not have to comply with the standards defined by e.g. the
Berlin Group. As a result, many banks choose a standard on which they base their
interface, but then make changes to it. This allows them to adapt the interfaces to
their own requirements [Interview1, 2020, Interview2, 2020]. While this is logical for
the individual banks, it does not contribute to the goal of a uniform and consistent
communication between the TPPs and the banks.

Having to live with this status quo, the goal of this work is to develop a concept and a
test tool prototype with the ability to evaluate APIs independently of their interface im-
plementation. For efficiency and utility reasons, the used test set must also be equally
usable for all banks [Interview1, 2020]. Therefore, the assumption is made that the
banks have the possibility to use the same data set, meaning that they test with the
same accounts and users. That should not pose a significant problem, as banks can
create the necessary test accounts and users in their test environments.

Such a test tool also has to meet different requirements. The concepts introduced in the
Theoretical Framework, provide the rational behind the functionalities implemented in
the test tool.

27

2. Theoretical Framework

The evaluation of the various bank interfaces is a very repetitive task. Ideally, all
API endpoints should be tested at least once in each development cycle [Interview2,
2020, Interview3, 2020]. This ensures the correctness of the respective interface.
Since manual testing is by far to time-consuming, this process should be automated
[European Parliament, 2015]. The concept of test automation was also used in the test
tool, making the test process more efficient.

In order to ensure that unchanged, already existing functionalities were not affected
by a modification in the software, the test cases covering these functionalities should
be re-evaluated [Interview3, 2020, Interview4, 2020]. This concept is called regression
testing. It involves re-executing existing test cases that have already been successfully
carried out.

Another important point is the possibility to evaluate a large number of test cases. For
this purpose, simple integration of test cases is required. It is advantageous if the test
cases are separated from the actual test data. This enables the creation of generic test
cases which are then filled with the test data [Interview2, 2020]. This is the way to run
a data-driven test procedure.

All these concepts give an outlook which requirements must be met by a test tool for
PSD2-compliant bank interfaces. Furthermore, the knowledge about these concepts
facilitates the understanding of the functionalities presented in this thesis.

28

3. Related Work

Already several ready-to-use solutions for API testing are available today. Due to the
large number of different bank interface standards and the complexity of testing them,
it is beneficial to develop a new test tool that is designed specifically for testing PSD2-
compliant APIs. Such a test tool can also address potential difficulties in the current
test process, such as the complex adaptation of individual test cases to the specific
bank interface.

Before introducing the architecture and actual functionality of the prototype, several
existing API test tools are presented. These all have the functionality to test bank-
specific API implementations. Since there are many different ways to perform similar
operations within the XS2A interface, certain assumptions were made for the sake of
simplicity.

The following chapter introduces and compares some of the currently available API
test approaches and programs that are used to test bank interfaces. This comparison
is based on information from various scientific articles as well as field reports from ex-
pert interviews. The purpose of this overview is to understand the difference between
GUI-based and code-based test tools. In addition, an insight is given into various test
approaches and their benefits.

3.1. Test Approaches for PSD2-compliant Interfaces

In recent years, the significance of APIs has grown. That is reflected in the grow-
ing interest that companies are showing in suitable API processes, tools and solutions
[Benzell and van Alstyne, 2016]. Companies have recognized that they can offer their
end-users and partners better software solutions through APIs [Jacobson, 2011]. These
interfaces can be used to create new, innovative solutions and, most importantly, they
can easily be monetized.

In order to ensure that APIs meet expectations in terms of functionality and perfor-
mance, they must be tested [Bangare et al., 2012, Interview4, 2020]. This is an es-
sential part of the development process. Testing is performed to verify that both the
functional requirements and security aspects are fulfilled. Unfortunately, there is only
limited scientific work and few publications on how banks actually deal with this topic.
In the following, two existing approaches are presented.

In the paper "API Testing for Payment Service Directive2 and Open Banking", various

29

3. Related Work

workflows that can be performed using the API have been investigated [Coste and Mi-
clea, 2019]. For each of these workflows, test cases were developed to evaluate their
implementation. These test cases were executed with Swagger and stored in the test
management tool HP ALM [Coste and Miclea, 2019]. The results were displayed and
validated with a GUI. This approach’s target was to give an overview of the different
processes to be tested. In addition, these test cases aimed for a better customer ben-
efit and a cost-efficient adaptation through a correct PSD2 implementation [Coste and
Miclea, 2019]. However, this approach only considered the execution of individual API
calls. Standardization of the test process in order to create a more straightforward and
more efficient test procedure was not examined at all.

The NextGenPSD2 Implementation Support Program (NISP) presents another approach
for testing PSD2-compliant interfaces. Its goal is to create a stable and sustainable
implementation of the respective interfaces through synergies in implementation and
test procedures [Dijkstra, 2009]. For this purpose, a test concept and a detailed test
case catalog was developed [Dijkstra, 2009, Interview2, 2020]. The test concept is
an interface description that explains what business processes are possible with the
interface [Interview2, 2020]. For each process, the possible flow of information was
analyzed. Based on this information, the individual test cases could be identified [In-
terview2, 2020]. All of this was documented in an Excel spreadsheet. If a member of
the organization wants to test their interface, they must enter the parameters corre-
sponding to their interface in the Excel document [Interview2, 2020]. The worksheet
then generates a human-readable test specification based on these parameters [Inter-
view2, 2020]. To execute the test cases programmatically, this test specification must
be enriched with information and adapted to the interface to be tested. Both compo-
nents may only be used by the members of this organization. The use of the test case
concept and the test case catalog helps members to reduce their test effort and to meet
the legal requirements [Interview2, 2020]. This approach is actively used by financial
institutions to evaluate their interfaces.

3.2. Test Tools for Evaluating PSD2-compliant Interfaces

There are many different tools and frameworks available for evaluating PSD2-compliant
interfaces. It is possible to choose from several options depending on the needs of the
tester [Interview4, 2020]. If the tester needs extensibility to integrate existing soft-
ware solutions, it is advantageous to choose a software testing framework instead of
an independent test tool. The later is often limited in its extensibility. However, such
a decision can also depend on the prerequisite of whether or not the test person can
program.

In practice, there are many different tools for testing interfaces. One of the simplest
and best known is Postman. This is a REST client that performs API tests using a sim-
ple and well-structured GUI [Interview2, 2020]. No programming skills are required.
All customization can be made using the GUI. That makes Postman very attractive for

30

3.2. Test Tools for Evaluating PSD2-compliant Interfaces

users/testers who are more familiar with the functional side of the interface. The nec-
essary data can be entered via the GUI quite easily. Of course, it is also possible to
perform data-driven tests, making the test process of a large number of test cases
straightforward [Postman, 2020]. Postman is well suited for a quick run through API
tests without much effort. That was confirmed during the conducted interviews. The
majority of respondents were familiar with the program and used it in their testing
process. However, it was also pointed out that Postman has limitations when it comes
to adding custom functionality [Interview2, 2020, Interview4, 2020, Interview3, 2020].
Unfortunately, this is a big problem, especially when an intelligent layer is needed to
adapt the test cases to the particular bank interfaces. Postman is not the only program
capable of performing such operations. Katalon Studio or SoapUI are alternatives to
Postman with similar functionalities.

As mentioned above, testing APIs with a GUI-based test tool works perfectly fine in
most cases. However, the integration of own products or third-party solutions with a
GUI-based test tool is quite challenging due to the limited possibilities to integrate new
[Interview2, 2020, Interview3, 2020, Interview4, 2020]. Using software test frame-
works is an alternative in this situation. A test framework can easily be integrated into
existing software and allows the inclusion of e.g., special reporting software or func-
tionality to revise data input. Of course, using a framework is a bit more complicated
than a GUI-based test tool, but it is more profitable in the long run because adjustments
and customization of the functionalities can quickly be made later. For the prototype
built in this scientific work, the Java-based test framework Rest Assured is used [REST
Assured, 2020a]. This framework provides a domain-specific language to simplify the
testing process of a REST service [REST Assured, 2020b]. It includes HTTP methods
such as POST or GET, making it easier to send requests or validate responses [REST
Assured, 2020b].

31

3. Related Work

32

Part II.

Design and Implementation

33

4. Test Tool for PSD2-compliant APIs

This chapter focuses on the design and implementation of the actual test tool. In previ-
ous sections, all the essential information and concepts needed to understand how this
prototype works have been explained. In the following, the test process of the program
and the test tool architecture are described in more detail. Furthermore, the concept
that enables the tool to address different bank interfaces and adapt the test data to
the respective interface requirements without having to write production-ready code
is presented. In order to understand how the mapping process works, a simple example
of a possible workflow from the user perspective is given. The correct configuration of
the test tool is crucial because if it is misconfigured, the tool will produce false results.

This test tool shows a straightforward and understandable way of addressing different
bank interfaces. To keep the project manageable, the scope was limited. These restric-
tions also facilitate to keep the concentration on special features such as the input and
output mapping. For the sake of simplicity, the scope of the PSD2-compliant interface
standards covered by the test tool is limited.

The prototype focuses particularly on the standard of the Berlin Group. This decision
was made due to the present market position of this organization and its broad accep-
tance in the market [Berlin Group, 2020]. The majority of German banks rely on the
Berlin Group standard. Thus, a large number of different financial institutions should
be able to be tested at once. However, this is not the only restriction that was made.
Since the interface description of the Berlin Group is very complex and contains many
methods, this test tool only examines a subset of the Account Information Service (AIS).
More precisely, eight different API calls from the AIS of the Berlin Group standard can
be evaluated with this test tool. Facilities such as the Payment Information Service
(PIS) are omitted for complexity reasons. To summarize, this test tool only considers
the AIS of the Berlin Group standard.

Since banks can choose between several authentication methods for their interfaces,
further restrictions were necessary. Banks can choose between the redirect, the decou-
pled and the embedded approach as well as mixtures of the aforementioned authenti-
cation methods [European Parliament, 2019, European Banking Authroity, 2018]. With
the redirect approach, customers are usually redirected to the bank’s website to per-
form a part of their authorization there [WSO2, 2019]. The decoupled method, on the
other hand, outsources the second factor of the authorization process [Kuang, 2018].
In this case, authorization must be carried out with an additional device, such as a
smartphone. One method that is particularly widespread in Germany is the embedded

35

4. Test Tool for PSD2-compliant APIs

approach. Here, the user passes his authorization data forward to the TPP. This TPP
then handles the authorization process for the user [Kuang, 2018]. The test tool uses
exactly this type of authorization. To make this test process efficient and to avoid com-
plications when authorizing the user, the required transfer of the TAN has been defined
statically in the bank environment.

Before the test tool process and the architecture of the actual tool are presented, the
list of constraints is summarized for clarity. The test tool deals with the test process
of PSD2-compliant interfaces, in particular the standard of the Berlin Group. To keep
the test process manageable, only a part of the AIS is tested. The actual authorization
process is accomplished by an embedded approach with a statically set TAN.

4.1. Summary of the Test Tool Requirements

Prior to examining the test tool, the requirements for a PSD2-compliant test tool are
summarized. The aim is to match the concepts presented in the theoretical framework
with the corresponding requirements. There are two types of requirements, namely
functional and non-functional. The functional requirements define what the test tool
has to do and the non-functional requirements describe how the application has to
provide these services [Scheler, 2018, Bobrica and Niemela, 2002]. The comprehensive
literature review of the concepts presented in the theoretical framework, as well as
the interviews, helped to elaborate the test tool requirements. In the following, both
the functional as well as the non-functional requirements are presented. How these
requirements are implemented in the test tool will be explained later.

The functional requirements mainly refer to the IPO model. [Bobrica and Niemela,
2002, Hawkey, 2013]. This model describes the possible data input, data processing
and the resulting data output [Bobrica and Niemela, 2002, Hawkey, 2013].

It must be easy to integrate different test cases into the test tool. It should be possible
to add new test cases at any time without having to change the program [Interview2,
2020, Interview4, 2020]. This allows non-static testing of the respective test cases.
Our first requirement for the test tool is, therefore, the simple and straightforward
integration and modification of test cases.

Another important requirement is the automated execution of test cases. It should
be possible to run the test cases without human interaction. This leads to a more
efficient execution of the test cases since, for example, it is possible to run the test set in
the background while working on other essential tasks [Interview2, 2020, Interview4,
2020]. This automated process also reduces the number of errors which could occur
when the test cases are executed manually. Our second requirement is, therefore, an
automated test procedure.

In addition to the automated execution of test cases, another important feature is the
reevaluation of already executed test cases. This allows previously evaluated, unmodi-

36

4.1. Summary of the Test Tool Requirements

fied parts of the interface to be retested. This ensures that the corresponding areas of
the software are not affected by changes and that everything still works [Interview3,
2020]. The test tool should, therefore, be able to perform regression tests, e.g. the
re-verification of successfully tested software modules.

As explained previously, it is useful to separate test cases from test data. This allows
the test data for the test case to be changed before the program is executed or at
runtime. The test tool imports the test data from a separate file and assigns it to the
relevant test case. Separating test cases and test data facilitates the creation of a
large amount of test data for one test case. This is particularly important because a
large number of different test situations can be covered, which are then processed by
only one test case [Interview3, 2020]. The fourth requirement for a PSD2-compliant
test tool is, therefore, a data-driven test approach. This separation also simplifies the
adaptation of test cases when changes are made to the interface.

After the bank interface has processed the request, the results must be evaluated to
see if everything functioned correctly and no errors occurred. Before the test run, the
tester had to define the expected results in the input data. The test tool now compares
these values with the attained results and can determine whether or not the request
was processed correctly. Thus, the test tool must also be able to verify the test results
simply and efficiently.

In addition to the functional requirements for a test tool of PSD2-compliant interfaces,
there are also non-functional requirements. The non-functional requirements reflect
the quality requirements and the usability of the test tool. For a program to be usable,
its performance and reliability are essential. Modifiability and portability must also not
be neglected.

The user guidance of a test tool is essential [Interview2, 2020, Interview4, 2020]. Man-
ual entry is quite error prone. Since many features and aspects affect user guidance,
just one example is considered. If the user wants to execute test cases, he must be
guided through this process in an intuitive way [Interview2, 2020]. It must be easy to
choose which test cases to execute. This is especially important when a particular test
case has failed, since it must be possible to execute this case again without having to
go through the entire test suite [Interview4, 2020]. If this is not possible, the usability
of the test tool becomes quite cumbersome. The primary non-functional requirement
for the test tool is therefore that it must provide a simple and intuitive user experience.

Another important aspect is the high-performance and reliable execution of the re-
spective test cases. The test tool should be more time efficient than manual testing.
It should also ensure that the test cases are executed in the same manner everytime
and that there are no unexpected changes in the test environment. The second non-
functional requirement is, therefore, to ensure that the test tool works correctly and
reliably.

Especially when testing different PSD2-compliant interfaces, it is important to be able

37

4. Test Tool for PSD2-compliant APIs

Figure 4.1.: Overview of Test Tool Process

to integrate new functions or even new interfaces [Interview1, 2020]. It must be
ensured that there is an easy way to integrate such functionalities. The third non-
functional requirement is that the test tool must be conveniently extendable.

Since the development of such a test tool is quite complex and the time available for
development was limited, the implementation of the test tool mainly focused on the
functional requirements. Aspects such as user guidance, for example, were left out
completely.

4.2. Overview of Test Tool Process

This section describes the process of testing a PSD2-compliant interface with the test
tool presented in this thesis in more detail. The program consists of several compo-
nents. Each component is shown and explained in a high-level overview as shown in
the figure 4.1. The first component is the actual test tool, which is responsible for
processing the input data and evaluating the requests. For the test tool to work suc-
cessfully, input data such as the test certificate, the test cases and the corresponding
mapping structures must be provided.

The second component includes the API gateway and all of the interface standards.
This is essentially an intelligent layer that decides which API standard is used and how
the content of the request, namely header and body, must be changed to be compatible
with the respective bank interface. Once the transformation is complete, the altered
request is sent to the actual bank interface.

38

4.2. Overview of Test Tool Process

1 //file: input.json
2

3 {
4 "nameOfAPIEndpoint" : [
5 {
6 "testId" : " ",
7 "testName" : " ",
8 "testDescription" : " ",
9 "testConnectionId" : " ",

10 "header" : {
11

12 //add header information here e.g. tpp-qwac-certificate
13 },
14 "body" : {
15

16 //add body information here
17 }
18 "result" : {
19

20 //add expected results here
21 }
22 }
23]
24 }

Figure 4.2.: Basic Test Case Structure

The third component is the banking environment. It contains the addressed bank inter-
face that receives and processes the request. This is not part of the program developed
in this work. The bank to be tested must provide the tester with this environment.

The details of these components and the information that the user must provide during
the test process are explained below.

In general, each test case has a similar structure, as shown in figure 4.2. It is essen-
tial that the key names shown here always remain the same. These are used by the
program to extract the relevant values, such as header or body information.

Every test case is represented by a unique value. It is stored in the key testID. The
testName, testDescription and testConnectionID are not unique and may occur fre-
quently. To indicate that several test cases belong together the testConnectionID is
used. Here the user must specify a unique string and insert it in all relevant related
test cases. The header and body contain all the necessary information for the request.
The result contains the information that the tester has provided in order to evaluate

39

4. Test Tool for PSD2-compliant APIs

1 //file: input.json
2

3 {
4 "nameOfAPIEndpoint" : [
5 {
6 "header" : {
7 "tpp-qwac-certificate" : "<<< ADD CERTIFICATE HERE >>>"
8 }
9

10 //other values e.g. body, result
11 }
12]
13 }

Figure 4.3.: Example Certificate Header

the request. It is used to check whether the request has returned the expected values.
For example, this could be the status code of the HTTP response.

Before an organization or tester can access the bank interface to be evaluated, they
must obtain a specific certificate. This certificate can be acquired after a very complex
registration process with the national authorities [Barzachki, 2018, Interview1, 2020].
In Germany this registration must be done through the Bundesanstalt für Finanzdi-
enstleistungsaufsicht (BaFin) [Bundesdruckerei, 2019]. After successful completion,
the applicant obtains the Electronic Identification, Authentication and Trust Services
(eIDAS) certificate. This certificate must be included in the API request sent to the
bank interface. Banks use the certificate to verify the identity of the requester. The
test tool expects the tester to insert the certificate as a header in the respective test
case. A look at the test case structure will make it clear where the certificate must be
inserted see figure 4.3. The nameOfAPIEndpoint tells the program which API endpoint
will be called. This nameOfAPIEndpoint is a list containing all test cases that should be
sent to the defined API endpoint. In this example, a request with the header element
tpp-qwac-certificate is sent to the API endpoint nameOfAPIEndpoint of the specified
bank interface.

The header name, which in this case is tpp-qwac-certificate, is not fixed. This means
that any header name can be used as long as the mapping file contains the name
to which this header has to be translated. For example, the mapping contains the
entry "tpp-qwac-certificate" : "tpp-certificate". This tells the test tool that
the tpp-qwac-certificate must be translated into tpp-certificate before the actual
request can be sent to the bank interface.

Similar to the header, the body and result are filled with the necessary information
for the respective request. This is, of course, dependent on the API endpoint. How this

40

4.3. Test Case Mapping

is done can be seen in a later example.

The test certificate application and the creation of the test case structure is usually
done only once. That is because both of these components can be used for testing sev-
eral bank interfaces. The only prerequisite is that banks can import the test accounts
and test users specified in the test cases into their system.

To ensure that the communication between the test tool and the respective bank in-
terface works, two mapping files must be provided. These contain all information re-
garding how the interface can be accessed and how the test cases must be modified.
Relevant information such as the host and port are stored in the serverInformation
of the input mapping. They describe how the request and response have to be mapped
to the structure of the bank interface and vice versa. The exact procedure of this map-
ping is explained in a separate chapter. Once the tester has provided all necessary
data – the test certificate, the test cases and the two mapping files – the test tool can
be started. It will then import all provided information and execute the test case.

In the first step of the test case execution, all elements are sent to the container that
holds the "standard" used by the bank. There, the requests are processed and for-
warded to the respective banking interface. In the case of this test tool, all information
is sent to the Berlin Group Interface container shown in figure 4.1. The mapping file
defines to which standard the request is send. By extracting this information, the gate-
way knows to which service the information should be sent. Since the gateway does not
know the exact address of each service, it first sends a request to the Eureka Discovery
Server which manages the addresses of all containers. All individual services must reg-
ister with this service before they are started. Therefore, if the gateway requests the
address of the Berlin Group Interface container, the Eureka Discovery Server can pro-
vide this information immediately. Thus, enabling the gateway to send the information
to the specified address.

The respective bank interface container receives the request and translates it to the
target bank interface. Once the transformation is complete, the actual bank request
can be sent. The bank environment processes the request and returns a response.
Just like the request, the response must also be transformed. In this case, it has to be
mapped to the standard defined by the test tool. This is necessary to ensure that the
test tool knows exactly where the values are stored and how to interpret them. After
the translation, the response is sent back to the test tool, where it is evaluated.

4.3. Test Case Mapping

In order to be able to use the test cases from the test tool for different bank interfaces,
they have to be adjusted to the specified interface definitions. That means that the
test tool must know how to adapt the structure of its test cases so that they are under-
standable for the bank interfaces. Of course, there are several ways to implement such
a transformation from a technical point of view. One possibility is to write a separate

41

4. Test Tool for PSD2-compliant APIs

1 //file: input_mapping.json
2

3 {
4 "nameOfAPIEndpoint" : {
5 "header" : {
6 "x-request-id" : "y-request-id"
7

8 //add additional header information here
9 //the strucutre always looks like this:

10 //"header name test tool" : "header name bank interface"
11 }
12

13 //other values e.g. body
14 }
15 }

Figure 4.4.: Sample Header Mapping

module for each individual bank, which then performs the translation. However, for
reasons of efficiency and complexity, this is not possible because a specific translation
module must be written in advance for each bank. Moreover, this approach also has
certain limitations. For example, if a new bank is established and wants to use the test
tool, no module for translation will exist. It may also happen that an implemented mod-
ule is not used at all, a waste of resources. Although these modules can be changed
easily to adapt to updates, this is far more complex than necessary. The test tool pre-
sented in this thesis uses a different approach. In order to explain how this is done, it
is necessary to go back to the fundamental problem of why a translation is necessary.

Banks are legally not bound to follow a certain standard when they implement their
interfaces. The standardization of payment transactions and interfaces is one of the
fundamental goals of PSD2. Various organizations have been founded to address this
problem in a uniform manner e.g., via interface descriptions that banks can use. Banks
often change individual components making a uniform communication between these
interfaces difficult. That is of course a challenge when several interfaces should be
evaluated with the same test tool. In order to solve this problem, an intelligent layer
is needed that allows a translation between the individual requests and the bank inter-
faces. The concept of this intelligent layer is explained below.

Each request consists of two parts, a header and a body, although the body is not always
necessary. The translation is done in two steps. In the first stage, the header is adapted
to the respective specifications of the bank interface. That is essentially a one-to-one
translation. Figure 4.4 shows how this looks like. The test case contains the header
x-request-id. The bank interface does not understand this header. In its specification,
this header is called y-request-id. Therefore, it must be translated. Figure 4.4 shows

42

4.3. Test Case Mapping

1 //file: input.json
2

3 {
4 "nameOfAPIEndpoint" : [
5 {
6 "body" : {
7 "objectA" : {
8 "arrayB" : [
9 {

10 "keyC" : "valueC"
11 },
12 {
13 "keyC" : "valueC"
14 }
15],
16 "objectB" : {
17

18 },
19 "keyB" : "valueB"
20 },
21 "arrayA" : [
22

23],
24 "keyA" : "valueA"
25 }
26

27 //other values e.g. header, result
28 }
29]
30 }

Figure 4.5.: Sample Test Case Body

how such a translation must be addressed to be understood by the test tool. Essentially
what happens is that the test tool swaps the header names, enabling the bank interface
to process the header information.

The translation of the header is quite easy since only the header names have to be
swapped. Translating the body is a bit more complicated. For the sake of simplicity, the
only standard examined in this thesis is the one defined by the Berlin Group. Therefore,
only bodies with JavaScript Object Notation (JSON) are discussed in the following,
although there are several other ways to represent the information in a HTTP body.

The translation of the body is associated with some challenges. For example, not only

43

4. Test Tool for PSD2-compliant APIs

1 //file: input_mapping.json
2

3 {
4 "nameOfAPIEndpoint" : {
5 "body" : {
6 ".arrayA:" : ".arrayA.",
7 ".keyA" : ".objectA.objectB.keyC",
8 ".objectA.arrayB:0.keyC" : ".objectA.arrayB.keyC0",
9 ".objectA.arrayB:1.keyC" : ".objectA.arrayB.keyC1",

10 ".objectA.keyB" : ".objectA.keyB"
11 ".objectA.objectB." : ".objectA.objectB.",
12 }
13

14 //other values e.g. header
15 }
16 }

Figure 4.6.: Sample Body Mapping

key names can change. Theoretically, the whole structure of the body can change.
For this reason, it is important to understand the different ways JSON can look like.
There are two different data structures in JSON [JavaEE, 2014]. Firstly objects that are
characterized by curly brackets and secondly arrays that are defined by square brack-
ets. There are also different value types, such as objects, arrays, and strings [JavaEE,
2014]. These types are relevant for the translation. In each mapping file, the left side
describes the information to be translated. In the case of the test tool prototype, this
is the test case representation. The right side shows how this information must be
translated to be understood by the bank interface.

A simple way to visualize this translation is to think of it as a tree, starting at the root
and describing all possible occurrences up to a leaf. A more detailed explanation is
given on the basis of the JSON structure shown in figure 4.5. It shows the represen-
tation of a request body of a possible test case in the test tool. This body contains
various objects, arrays and values. The addressed bank interface cannot work with the
structure shown in figure 4.5. It requires a different format.

To perform a translation, the tester must specify the required format for the bank inter-
face. An example of such a format is shown in figure 4.6. Looking at .objectA.arrayB
:0.keyC will clarify how the program performs the translation. The . (DOT) shows
that objectA is located in a JSON object. The next element the . (DOT) indicates that
arrayB is also stored in an object. More interesting are arrays, which are represented
by a : (COLON). A subsequent number indicates that the next element is stored at the
position of this number in the array. The object containing keyC is thus at the first
position in the array of arrayB. This translation works the same way in the reverse

44

4.3. Test Case Mapping

1 //translated request for bank interface
2

3 {
4 "nameOfAPIEndpoint" : [
5 {
6 "body" : {
7 "objectA" : {
8 "arrayB" : {
9 "keyC0" : "valueC"

10 "keyC1" : "valueC"
11 },
12 "objectB" : {
13 "keyC" : "valueA"
14 },
15 "keyB" : "valueB"
16 },
17 "arrayA" : {
18

19 },
20 }
21

22 //other values e.g. header
23 }
24]
25 }

Figure 4.7.: Request For Bank Interface

direction.

Technically, this is accomplished by a tree, which represents the JSON body. This tree
is mapped to the representation shown in figure 4.6. The mapping file is the key for
the program to determine what the information for the other side must look like. In
our example this is .objectA.arrayB.keyC0. With this representation, a new tree can
be constructed. The complete translation can be seen in figure 4.7. Now the translated
request can be sent to the bank interface.

In general, the concept of translation makes it possible to map all test cases from the
test tool to any bank interface without changing the program itself. That allows a very
flexible test process. If the bank interface sends a response, the translation process is
performed the same way and therefore requires no further explanation.

45

4. Test Tool for PSD2-compliant APIs

BaseTest

Package Objects

ApiTests

DataProvider

CreateMappingHelper

<<create>>

Figure 4.8.: Architecture Extract of the testservice Module

HelperMethodsMappingHeader

Package Objects

BerlinGroupLogicController

HelperMethodsMappingBody <<Interface>>
IXS2A

Figure 4.9.: Architecture Extract of the berlingroupinterface Module

4.4. Test Tool Architecture

This section describes the architecture and technical implementation of the test tool.
It essentially consists of four different modules, the testservice, the apigateway,
the eurekadiscoveryserver and the berlingroupinterface. Since the testservice
module and the berlingroupinterface module contain all the crucial programming
work, figure 4.8 and figure 4.9 show a simplified picture of their architecture. A de-

46

4.4. Test Tool Architecture

tailed version of the entire test tool architecture is shown in figure 8.3 and 8.4 in the
appendix of this thesis. The following briefly describes each module and the relation-
ship between the individual components. This provides a basic understanding of the
system and therefore a better comprehension of the relationship between the deduced
requirements and the actual implementation of the test tool.

Each of these modules is a microservice. This allows each module to focus on just one
task. Microservices enable larger projects to be divided into smaller units [Redhat,
2020, Mak, 2017]. All of these modules can be used independently of each other. This
gives great flexibility during development, facilitates the modularization of the test
tool, and assures easy maintenance of the respective modules [Redhat, 2020, Open-
Source, 2020, Mak, 2017]. It also has significant advantages in terms of expandability,
e.g. not having to stop everything when adding something new [OpenSource, 2020].
The test tool presented here, was implemented with Spring, a Java-based framework
that allows microservices to be created easily [Spring, 2019]. The Spring framework
already offers its users a variety of different functionalities that facilitates the imple-
mentation of a project [Spring, 2019]. For example, a simple API gateway, as used in
the test tool, can be implemented relatively quickly. The Spring framework offers an
"out of the box" solution for this task.

The testservice module uses TestNG framework and RestAssured library to facilitate
the testing process of PSD2-compliant interfaces. TestNG allows a straightforward
way to perform data-driven testing and RestAssured provides an excellent method to
create simple test cases for RESTful APIs [TestNG, 2019, REST Assured, 2020a]. The
testservice module loads both the test cases and the two mapping files and processes
the execution of the test cases. The DataProvider extracts all necessary, test data and
sends them to the class ApiTests which then assigns them to the relevant test cases.
Afterwards the respective request is sent to the API gateway.

The apigateway module is based on the Spring Cloud Gateway. The task of this module
is to forward the individual requests to the correct PSD2-compliant standard. The
addresses of the individual services are not statically defined. This means prior to
the gateway forwarding something, the address must be requested from the Eureka
Discovery Server.

The task of the eurekadiscoveryserver is to collect information and to store the ad-
dresses of the individual services. A new service has to register with the Eureka Dis-
covery Server before it can start. Should the API gateway not know the destination
address of a service, it can ask the Eureka Discovery Server for the destination ad-
dress of the request.

The berlingroupinterface module represents the Berlin Group Standard. Each API
endpoint of the standard is implemented in the BerlinGroupLogicController. If a
specific API call is made, the test tool sends the request to this service. There the
respective request is translated and then forwarded to the actual bank interface.

47

4. Test Tool for PSD2-compliant APIs

4.5. Summary of the Design and Implementation

The aim of the Design and Implementation was to give an overview of the test tool
developed in this thesis. It illustrated how the process of evaluating an interface with
this test tool, gave both an insight and an overview of the input data needed to execute
the test tool and presented an mechanism which allows the translation of test cases
to the individual bank interfaces. With this approach a large number of different bank
interfaces can be evaluated with one test set. An insight into the architecture and the
technical implementation of the test tool prototype was also given. In the following,
difficulties and problems during the implementation are briefly discussed as well as if
and how they were solved.

In general there were several attempts to develop the prototype of this test tool. As
soon as the requirements for the test tool were identified, the implementation started.
For a test tool to be able to perform various operations, certain functionalities are re-
quired. However, it was not clear how automated testing or data-driven testing could
be technically implemented. For this reason, the development phase began with the
technical realization of these requirements. After a better understanding of the indi-
vidual functionalities was attained, a new project was started which resulted in the
current test tool.

The second challenge was the feasibility of evaluating different interfaces with only
one test set. In the first step, the test tool was built with the assumption to create a
separate module for each bank interface. Each standard should have had a separate
container. This container would have contained a single translation module for every
bank. However, this way forward would have only been possible with a great deal of
effort. Another solution had to be found in order to implement this in a more efficient
way. In the end, the translation of the test cases for the respective interfaces was
realized by the mapping process presented above.

A further obstacle was the implementation of the authorization process. Since there
are various ways to implement this, it was necessary to understand the functionality
of the particular methods first. Automating this process is not trivial. Currently this
is solved through the usage of a statically set TAN. It would be very interesting, to
implement this without a fixed value, however, this would be topic of another scientific
contribution.

In summary, it can be said that the implementation of such a test tool is relatively
complex. Many functionalities that initially appear quite simple are not as easy to
implement as expected. The prototype presented here shows a possible approach how
a large number of different PSD2-compliant interfaces could be evaluated with a single
test set.

48

Part III.

Appraisal and Conclusion

49

5. Test Tool Evaluation from a User
Perspective

For a tool to be successfully adopted by a user, several aspects need to be considered.
Apart from being feature-rich and extremely reliable, the user interface and usability
play a crucial role. There are several ways to evaluate the quality of software. The eval-
uation of the test tool presented in this thesis is based on the ISO 9126 and 25010:2011
standard [Liliana Bobrica, 2002, ISO, 2011, SQA, 2001]. This approach considers six
major aspects in order to make a statement about software quality. These include func-
tionality, reliability, usability, efficiency, maintainability and portability [Liliana Bobrica,
2002, SQA, 2001]. In the following, each of these factors is briefly discussed and the
test tool congruence to each factor will be appraised. This gives an overview of the
usability and practicability of the test tool from a user’s perspective and will contribute
to a better understanding of the test tool’s software quality.

The functionality aspect requires features that are necessary to ensure that the test
tool can meet the desired needs of the user [Liliana Bobrica, 2002]. Currently, the
prototype is capable of testing eight different API calls from the AIS of a bank interface
supporting the Berlin Group standard. The test tool uses an automated and data-driven
test procedure to evaluate these requests. This allows a large number of different test
cases to be evaluated. Regression tests, e.g. the re-execution of already correctly
evaluated test cases, are also possible. Such functions improve the efficiency of the
test process considerably and simplify the process to ensure that the individual API
calls function correctly.

Another aspect listed in the ISO standard deals with the reliability of the software
[Liliana Bobrica, 2002]. In this case, the test tool always ran smoothly during the test
process of the individual interfaces. The tests of both complete workflows, as well as
individual API calls, behaved correctly and without any problems during the execution.
However, only a small amount of test cases was executed never more than 20. How the
program behaves with a larger number of test cases was not examined.

The usability of a software program is another aspect that is considered in the ISO
standard [SQA, 2001]. Sufficient functionality as well as factors such as user guidance
and the user interface play an important role regarding usability. For this test tool,
only quite elementary functions of a test tool - the import and processing of test cases
- were implemented. The necessary simple and self-explanatory user interface is not
available in the test tool presented in this thesis. Unfortunately, the tool has no GUI at

51

5. Test Tool Evaluation from a User Perspective

all. Everything is controlled from the Integrated Development Environment (IDE) that
the tester uses. This makes the use of the test tool difficult. It is also expected, that a
user can use the test program without detailed knowledge of its implementation. The
tool must, therefore, support the user constructively in order to avoid mistakes during
use. The prototype lacks a mechanism that checks whether all necessary information
has been provided before starting the translation of a request. For example, if the
user forgot to define the bank interface standard in the request, or if the mapping
is incorrect, the program will fail. A mechanism that does not allow the program to
start until all the necessary information has been provided would avoid such errors
and contribute considerably to the user-friendliness of the program. Such a feature
needs to be added to optimize the use of the test tool. The way in which test cases are
imported into the test tool also plays an important role in terms of usability. Currently,
the test cases and mappings must be entered manually into the JSON file. Manual
input is always a very error-prone process, not only can mistakes be made, but it is
very likely that necessary information for the program will be forgotten. If an error
occurs, it is more likely to be caused by an incorrect input than by a malfunction of the
tested bank interface.

In terms of efficiency and maintainability, the test tool performs well [Liliana Bobrica,
2002]. The use of the latest technologies guarantees a resource-saving execution of
the test tool. This statement depends of course on the number of evaluated test cases.
More resources are required if several thousand test cases are evaluated, as opposed
to just 20 test cases. In general, however, it can be said that the test tool is relatively
resource-efficient. The use of the latest technologies also facilitates the maintainabil-
ity of the test tools. Especially the use of microservices allows good scalability and
expandability of the test tool. Therefore it can be said that due to the use of latest
technologies and a good software architecture, the test tool satisfied the criteria of
efficiency, extendability and maintainability.

The last point of the ISO standard deals with the portability of software [Liliana Bo-
brica, 2002, SQA, 2001]. In theory, the test tool can be transferred from one envi-
ronment to another in a very simple way. Since the test tool is written in Java, it can
be executed on any machine with a Java Virtual Machine. The Java Virtual Machine
ensures the interoperability of the individual Java programs on different machines.

The test tool presented in this paper scores quite well when evaluated against the ISO
standard. From a functional point of view, many features are covered. Additionally, the
test tool is extensible and maintainable. The non-functional requirements, which are
covered in the usability aspect of the ISO standard, are not satisfied. A GUI as well as a
simpler way to add new test cases would be desirable. Such features would contribute
substantially to the handling of the test tool. However, the non-functional requirements
were not the focus of the test tool prototype presented in this thesis. Decisive for this
thesis is the newly gained scientific contribution. The thesis’s goal was to provide a
method to evaluate different PSD2-compliant API interfaces with a single test data set.
Through intelligent mapping, the test tool presented in this thesis can easily translate

52

requests and responses enabling the communication with a variety of bank interfaces.

53

5. Test Tool Evaluation from a User Perspective

54

Figure 6.1.: Overview of Test Tool Process - Extendable Parts

6. Extensibility Analysis of the Test Tool

One of the main topics of this thesis is the evaluation of the extensibility of the test
tool. It is, therefore, essential to distinguish between different types of program ex-
tensibility. Figure 6.1 highlights the different ways of enhancing the program. These
three possibilities are illustrated in the following.

The first is to create new test cases, the second is to add new API calls to extend the
functionality of the tool and the third is the possibility of adding additional interface
standards. Of course, there are other ways to extend the application as well, such
as allowing new authorization methods. Since the goal of this evaluation is to assess
the general extensibility of the tool, small and really specific functionalities like adding
new authorization methods are not examined.

The test tool can evaluate eight different API calls of the AIS of the Berlin Group stan-
dard. The particular test cases are stored in a JSON file. Of course, this file can be
supplemented with further test cases at any time. The tester only has to add them to the
list of the corresponding API calls. Depending on whether the examiner wants to eval-
uate a complete workflow, meaning the execution of several dependent API requests,
or only a single request, the corresponding parameters have to be set. If several test

55

6. Extensibility Analysis of the Test Tool

cases belong together, the testConnectionID specifies the link between them. It is not
possible to add test cases that attempt to access unimplemented API calls. Such API
calls are not recognized by the test tool because it does not know their structure and
test names. Therefore the tool can not process the request. In general, it is possible to
extend the program by adding new test cases for all implemented API interface calls.
This also happened repeatedly during the evaluation of each individual API call.

The second alternative, the implementation of new API calls, is explained. Every API
call is part of a standard that has its own container in the program. For the sake of
simplicity, only the standard of the Berlin Group is considered. A standard provides
the interface description for a possible realization of a PSD2-compliant API. The infor-
mation from this interface description was used to create the Berlin Group container
utilized in the test tool. It contains a Java interface that defines abstract methods for
all available API calls. To enable a unique identification, these methods are named
corresponding to the operationIDs specified in the interface description of the Berlin
Group standard. Each individual method is implemented in a controller. Here the
headers and bodies are translated to ensure a smooth communication between the
test tool and the bank interface. So if more API calls are added, the following steps
must be performed. The new API calls must be defined as abstract methods in the
Java interface. In the berlingroupinterface module these are added in the IXS2A.
Then they can be implemented in the designated controller. In our case this is the
BerlinGroupLogicController class. Once these are implemented, the program can
call them. However, before the actual test case can be created in the test tool, the
Plain Old Java Object (POJO) containing the test data must be updated. POJOs are used
to display data in a readable and more explicit format. In the berlingroupinterface
module they are stored in the Objects package. Once these steps are completed, it is
possible to create a new data-driven test case for the newly added API call. The last
step is to add the test case information to the JSON file with the test cases. Now the
test tool can evaluate the newly added API call. Although this process of adding new
API calls is not as easy as adding new test cases, it is very flexible and still manage-
able. Nevertheless, the integration of new API calls requires a good understanding of
the architecture and functionality of the tool.

Adding a new standard to the test tool is the third aspect to be evaluated. That is def-
initely more complex than adding new test cases or API calls. As seen in the overview
of the test tool shown in figure 4.1, a new container for another standard can be built
in the same manner as the existing Berlin Group container. First of all, the individual
methods have to be specified in the Java interface. Afterwards, they can be imple-
mented in the respective container. Everything is basically done in the same way as
when adding a new API call, which is described above. Once this is done, the API gate-
way must be extended with the new standard to allow the transfer of information to the
corresponding service. Adding a new standard requires some effort, but if an organiza-
tion wants to test multiple standards with the same test set, this effort is manageable.
For time reasons and to keep the implementation of the test tool as simple as possible,

56

only one standard was integrated into the test tool.

With these three options for extending the test tool, an extensive, flexible, efficient test
process for PSD2-compliant interfaces can be created.

57

6. Extensibility Analysis of the Test Tool

58

7. Conclusion

"Open Banking is a ten-year project", this is how Andreas Pratz from STRATEGY& de-
scribed the current status of Open Banking in an interview with the Börsen Zeitung.
[Börsen Zeitung, 2020] There are still many challenges to be overcome in the next
years. Nevertheless, OpenBanking and PSD2 have already laid a very important foun-
dation for the standardization of payment markets in Europe. It is unclear whether
there will be changes to the current directive or even a new one in the future. Maybe
a uniform standard will be introduced. What is certain, however, is that many of these
problems could have been avoided if the Directive had prescribed a uniform standard
instead of each bank bringing its own tailor-made solution to the market [Interview1,
2020]. Pratz also explained in his interview that for many banks the so-called multi-
banking, where several accounts are integrated into one account, is not manageable
from a purely technical point of view [Börsen Zeitung, 2020]. He does not say what
exactly the reason for this is, but the variety of standards offered is certainly a deci-
sive factor. One of the key learnings, while working on this thesis was the realization
that a uniform standard would have had considerable advantages. A test procedure
for PSD2-compliant interfaces with a standardized interface would have made testing
much easier. Since this is not the case, the question was raised whether there is a
simple way to evaluate several bank interfaces with only one test data set. At the end
of this thesis, the most important results, as well as the problems and limitations that
arose during the work on this topic, are summarized. Finally, a short outlook on what
could be done in the future is given.

7.1. Key Findings

This thesis deals with the requirements, the implementation and the extensibility of a
test tool for PSD2-compliant bank interfaces.

The test process for PSD2-compliant APIs is not trivial. Additionally, it is required that
certain prerequisites need to be observed, when evaluating such interfaces using a
test tool. The test tool must also provide an easy way to evaluate a large number of
different PSD2-compliant interfaces. The test process must be automated and data-
driven to allow for efficient testing of a large number of test cases. Of course, the
test tool should be able to re-execute already successfully evaluated test cases, i.e.
perform regression testing. A test tool that is specifically designed for testing different
bank interfaces should also have the possibility to add functionality on the fly. For

59

7. Conclusion

example, a specialized reporting system or an exclusive type of authentication method
could be integrated into the test tool to allow a simpler test approach. Besides the
functional aspects, considerations regarding the user guidance and the user interface
must not be omitted. Due to the complexity and time constraints of this thesis, the last
two points were not take into account when implementing the test tool.

Besides the research inquiry of functional and non-functional requirements for a PSD2-
compliant test tool, a prototype was developed based on these research results. This
prototype is capable of evaluating eight different API endpoints from a bank interface
that is compliant with the Berlin Group standard. The test cases are imported from a
file provided by the tester. These test cases are then transformed via a user defined
mapping into a structure which the addressed interface is able to process. This is
exceptionally difficult if several interfaces are to be tested with a single test tool. The
challenge here lies in the variations of the individual interfaces. Although many APIs
have a very similar structure, individual providers usually add minor changes such as
changed header names or different body structures. The mapping mechanism used
allows the test tool to address a large number of different interfaces and evaluate
them with one test set. This simplifies the test process for PSD2-compliant interfaces
considerably.

Besides the technical aspects of the test process, the functional understanding of the
individual components plays an important role. For example, the tester must know how
the individual headers have to be set up and what options are available for the different
bodies of the request. If these are not set correctly, the request may not work at all.
It is also very important to have a good understanding of the individual processes that
can be implemented with a PSD2-compliant interface. This knowledge is necessary in
order to be able to use the test tool. Nevertheless, financial institutions can save a lot
of time and effort during the test process if they use the concepts and leverage the test
tool prototype developed in this thesis. Especially since the tool offers the functionality
to process a test case catalog defined together with other financial institutions for the
evaluation of the bank specific APIs.

The third part of this thesis focused on the extensibility of the test tool. A differenti-
ation was made between three different extensibility types. The first considered the
addition of new test cases. Since the test tool imports test cases from a file, it is pos-
sible to add new test cases at any point in time. The second factor dealt with the
extensibility in regard to adding new API calls. This requires a bit more effort than
that of adding new test cases, but is also possible. The third and probably the most
critical point in extending this test tool is the integration of a new standard. Since the
test tool consists of individual microservices and each standard is a separate container,
meaning a separate microservice, new standards can be merged smoothly into the ex-
isting test program. During the development of the prototype, certain design decisions
were made to facilitate the implementation of the adaptation and modification of re-
quirements and the updating of interface standards. Therefore, special attention was
paid to the extensibility of the test tool. In general, the architecture of the test tool

60

7.2. Problems and Limitations

allows a flexible integration of different interfaces and new API calls.

In summary, the test process was simplified by providing a data-driven, vendor-independent
test tool for different bank interfaces. Currently, the developed prototype is limited in
its functionality and can only evaluate eight different API calls from the AIS of the
Berlin Group standard. However, the test tool contains an intelligent layer that allows
the transformation of test cases to different interfaces via a predefined mapping. This
mapping mechanism allows the test tool to address a large number of interfaces. The
concept of this mapping process is the major insight and scientific contribution of this
thesis. It provides a transparent solution to simplify the current test process for several
different PSD2-compliant API interfaces.

7.2. Problems and Limitations

As in every project, this thesis and the development of the test tool prototype were also
confronted with several obstacles as well as some unexpected results and situations.

The initial idea was to test the tool with the bank’s test environment, the so-called
sandbox. According to PSD2, the banks must make these sandboxes available to TPPs
for testing purposes. In principle, this is a very convenient concept, as these sandboxes
already contain test data in form of user accounts and transactions. They also allow a
TAN to be set statically, which simplifies the test process considerably. However, when
confronted with this topic for the first time, it became obvious that a "simple devel-
oper" would not be able to access these sandboxes, since they require an Electronic
Identification, Authentication and Trust Services (eIDAS) certificate. With such a cer-
tificate, a third party can prove its identity to another party. The TPP can only obtain
such a certificate if they are registered with a corresponding national authority. In
Germany, this function is carried out by the BaFin. During the interview process of this
thesis, it was also confirmed that this registration could take several months and that
an individual has no possibility to obtain such a certificate [Interview1, 2020]. Even
if this dilemma could have been solved, the next challenge that the sandboxes do not
allow the replication of a business case would have led to a dead end. This means, that
although it is possible to access the bank interfaces, it is not possible to test them with
the test tool, because the interface always returns the same static information. How-
ever, there is a sandbox that can be configured and run locally on a machine [Adorsys,
2018]. Additionally, this sandbox provides a test certificate for accessing the PSD2-
compliant interface and allows a business case to be executed. With this sandbox, it
was possible to test the prototype.

The second major obstacle was the authentication process of the individual users. As
already mentioned, there are several ways to do this. In most cases, the user gets
an One Time Password (OTP) after entering his credentials. The TAN is then used
to finalize the authentication. From a theoretical point of view, this seems relatively
easy to automate. In reality, however, this is a complex process. Several solutions to

61

7. Conclusion

this problem were discussed during the interviews. If the banking environment has
the ability to set a static TAN, the test process of the authentication can be automated
easily. Otherwise, a bank can offer a service that always sends the correct TAN when
requested. The sandbox used for this test tool prototype can set a static TAN for every
user.

In addition to the challenges listed above, some restrictions had to be made. Currently,
the test tool can only evaluate eight different API calls from the AIS of the Berlin
Group standard. Although this limits the conclusion about the overall functionality of
the test tool, a thorough insight into its concept, architecture and functionality can be
conceived. The Berlin Group standard was chosen because of its high market position.
That gives the program the ability to cover a particularly broad spectrum of different
bank interfaces. Since the interface description of the Berlin Group standard is very
extensive, the test tool only evaluates a few API calls from the AIS. That is acceptable
since it allows this work to concentrate on scientific contributions such as the mapping
of test cases.

7.3. Future Work

Due to the time constraints of this thesis, several aspects had to be simplified and
limited.

The test tool covers only a fraction of the functionality defined in the specification of the
Berlin Group standard. This restricts the evaluation of the functionality of the entire
test tool somewhat. It would, therefore, be interesting to take a closer look at more
difficult and complex API requests. The inclusion of such API requests would certainly
broaden the picture of the capabilities of the test tool.

Another relevant consideration would be to evaluate the tool using a different banking
interface. So far, this test tool has only been evaluated using one sandbox, the reason
being that no official eIDAS certificate was available. Such an option would determine
how well an adaptation of the test tool to another interface really works. This would
also verify how promising this test approach really is.

Finally, it should be noted that this test tool has no GUI. Not only would a GUI simplify
the test process, it would also provide an elegant and clear way to integrate new test
cases and mappings. If the tester could enter these directly to the application only an
understanding of the functionality of the test cases and interfaces would be necessary.
Currently knowledge of the workings of the underlying tool is necessary in order to
make such changes.

Of course, these are just a few possibilities that could be considered when further
researching this project.

62

Appendix

63

Interview Partner and Questions

ID

Interview5

Interview4

Interview3

Interview2

Interview1

Role

Managing Director
Financial Startup

Process Analyst and Project
Management, Test Management

Head of Software Engineering
& Application Management

Head of Test and Quality
Assurance Department

Vice President Marketing /
Sales

Duration [hh:mm]

0:17

0:54

2:44

0:44

0:45

Figure 8.1.: Interview Participants

1. Wie sieht der aktuelle Testprozess für PSD2-konforme APIs aus?
a) Was sind die Anforderungen und Merkmale für das Testen von PSD2-

konformen APIs?
b) Verlassen Sie sich auf API-Testwerkzeuge wie Postman, SOAPUI, etc.?

Warum haben Sie sich für dieses spezielle Tool entschieden? Was spricht
dagegen?

c) Spielen Regressionstests eine wichtige Rolle in diesem Prozess? Wie würden
Sie die Relevanz und Anwendbarkeit von Regressionstests einordnen?

2. Wie könnte ein automatisiertes Testwerkzeug beim Testen von PSD2-
konformen APIs helfen?

a) Welche Herausforderungen und Möglichkeiten sehen Sie in einem solchen
Testwerkzeug?

b) Inwieweit halten Sie es für sinnvoll, den Testprozess von PSD2-konformen
APIs zu automatisieren?

c) Wie stellen Sie sicher, dass Sie alle für die Testautomatisierung geeigneten
Testfälle finden?

3. Welche Funktionalitäten werden für ein solches Testwerkzeug benötigt?
a) Was sind typische Probleme bei der Einrichtung und Durchführung von Tes-

tautomatisierung? Wie könnte man diese Probleme einfach lösen?

65

Interview Partner and Questions

b) Glauben Sie, dass ein datengetriebenes und verhaltens-getriebenes Test-
werkzeug den Testprozess verbessert? Was genau kann dies Ihrer Meinung
nach verbessern?

c) Welche Testframeworks würden Sie für ein solches Projekt verwenden? Was
halten Sie von Rest Assured?

4. Wie können Regressionstests bei diesem Problem helfen?
a) Welche Strategie verfolgen Sie bei der Erstellung von Regressionstests für

APIs?
b) Was denken Sie über die Verwendung von Heuristiken für die Generierung

von Testfällen?
c) Würden Sie Ihre Regressionstestfälle manuell oder automatisch erstellen

und wie würden Sie sicherstellen, dass Sie eine hohe Testfallabdeckung er-
halten?

5. Wie hoch ist der Nutzen einer automatisierten Testfallgenerierung wirk-
lich?

a) Kann eine rein randomisierte Generierung von Testfällen überhaupt gute
und qualitativ hochwertige Testfalle erstellen? Was verbessert eine ran-
domisierte Generierung von Testfällen Ihrer Meinung nach genau am Test-
prozess?

b) Inwieweit halten Sie es für sinnvoll Testfälle von einem Modell automatisiert
generieren zu lassen?

c) Welche Methoden zur Testfallgenerierung für eine OpenAPI Spezifikation
würden Sie empfehlen?

6. Wie würden Sie die Erweiterbarkeit eines solchen Tools sicherstellen?

Enumeration 8.2.: Interview Questions

66

Test Tool Architecture

Figure 8.3.: Architecture of the testservice Module

67

Test Tool Architecture

Figure 8.4.: Architecture of berlingroupinterface, apigateway, eurekadiscoveryserver
Module

68

List of Figures

1.1. Comparison of Current and Proposed Test Approach 6
1.2. Information Systems Research Approach - Test Tool for Banking APIs . . . 8

4.1. Overview of Test Tool Process . 38
4.2. Basic Test Case Structure . 39
4.3. Example Certificate Header . 40
4.4. Sample Header Mapping . 42
4.5. Sample Test Case Body . 43
4.6. Sample Body Mapping . 44
4.7. Request For Bank Interface . 45
4.8. Architecture Extract of the testservice Module 46
4.9. Architecture Extract of the berlingroupinterface Module 46

6.1. Overview of Test Tool Process - Extendable Parts 55

8.1. Interview Participants . 65
8.2. Interview Questions . 66

8.3. Architecture of the testservice Module . 67
8.4. Architecture of berlingroupinterface, apigateway, eurekadiscoveryserver

Module . 68

69

List of Figures

70

Acronyms

AIS Account Information Service.

AISPs Account Information Service Providers.

API Application Programming Interface.

APIs Application Programming Interfaces.

BaFin Bundesanstalt für Finanzdienstleistungsaufsicht.

CMA British Competition and Markets Authority.

EBA European Banking Authority.

ECB European Central Bank.

eIDAS Electronic Identification, Authentication and Trust Services.

EU European Union.

GUI Graphical User Interface.

HTTP Hypertext Transfer Protocol.

IDE Integrated Development Environment.

IEEE The Institute of Electrical and Electronics Engineers.

ISR Information Systems Research.

JSON JavaScript Object Notation.

NISP NextGenPSD2 Implementation Support Program.

OBI Open Banking Initiative.

OTP One Time Password.

PIS Payment Information Service.

71

Acronyms

PISPs Payment Initiation Service Providers.

POJO Plain Old Java Object.

POJOs Plain Old Java Objects.

PSD2 Second Payment Service Directive.

PSPs Payment Service Providers.

REST Representational State Transfer.

RTS Regulatory Technical Standards.

SOAP Simple Object Access Protocol.

TPP Third Party Provider.

TPPs Third Party Providers.

TPPSPs Third Party Payment Service Providers.

XML Extensible Markup Language.

XS2A Access to Account.

72

Bibliography

[Accenture, 2016] Accenture (2016). Seizing the opportunities unlocked by eu’s re-
vised payment services directive.

[Adorsys, 2018] Adorsys (2018). Xs2a-sandbox.

[Alan R. Hevner et al., 2004] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and
Sudha Ram (2004). Design science in information systems research.

[Ammann and Offutt, 2008] Ammann, P. and Offutt, J. (2008). Introduction to software
testing. Cambridge Univ. Press, Cambridge, 1. publ edition.

[Balaban, 2011] Balaban, M. (2011). Software testing.

[Bangare et al., 2012] Bangare, S., Borse, S., Bangare, P., and Nandedkar, S. (2012).
Automated api testing approach. International Journal of Engineering Science and
Technology, 4.

[Barzachki, 2018] Barzachki, A. (2018). Eba draft opinion on the use of eidas certifi-
cates under the rts on scacsc.

[Benzell and van Alstyne, 2016] Benzell, S. G. and van Alstyne, M. W. (2016). The role
of apis in firm performance. SSRN Electronic Journal.

[Berlin Group, 2020] Berlin Group (2020). Berlin group.

[Bitbar, 2019] Bitbar (2019). How can regression testing benefit banks?

[Bobrica and Niemela, 2002] Bobrica, L. and Niemela, E. (2002). A survey on software
architecture analysis methods.

[Börsen Zeitung, 2020] Börsen Zeitung (2020). Open banking ist ein zehnjahrespro-
jekt.

[Bramberger, 2019] Bramberger, M. (2019). Open Banking: Neupositionierung
europäischer Finanzinstitute. essentials. Springer Fachmedien Wiesbaden and
Springer Gabler, Wiesbaden.

[Broadcom, 2020] Broadcom (2020). Api testing guide: An automated approach to api
testing transformation.

[Bundesdruckerei, 2019] Bundesdruckerei (2019). Zertifikate für psd2.

[Chaib, 2017] Chaib, I. (2017). Regulating open banking - how regulators around the
world are shaping the future of financial services.

73

Bibliography

[Competition and Markets Authority, 2016] Competition and Markets Authority
(2016). Retail banking market investigation: Overview of final report.

[Coste and Miclea, 2019] Coste, R. and Miclea, L. (2019). Api testing for payment ser-
vice directive2 and open banking. International Journal of Modeling and Optimiza-
tion, 9(1):7–11.

[Daniel Gozman, Jonas Hedman, and Kasper Sylvest Olsen, 2018] Daniel Gozman,
Jonas Hedman, and Kasper Sylvest Olsen (2018). Open banking: Emergent roles,
risks and opportunities.

[Deloitte, 2017a] Deloitte (2017a). Open banking and psd2.

[Deloitte, 2017b] Deloitte (2017b). Payment service directive 2.

[Dijkstra, 2009] Dijkstra, P. (2009). Anforderungsanalyse.

[Economic Times, 2000] Economic Times (2000). What is software testing? definition
of software testing, software testing meaning - the economic times.

[Ed-douibi et al., 2018] Ed-douibi, H., Canovas Izquierdo, J., and Cabot, J. (2018). Au-
tomatic generation of test cases for rest apis: A specification-based approach.

[Edgescan, 2018] Edgescan (2018). Payment services directive (psd2) - opening the
doors to a secure business.

[Ehmer and Khan, 2012] Ehmer, M. and Khan, F. (2012). A comparative study of white
box, black box and grey box testing techniques.

[Elbaum et al., 2002] Elbaum, S., Malishevsky, A. G., and Rothermel, G. (2002). Test
case prioritization: a family of empirical studies. IEEE Transactions on Software
Engineering, 28(2):159–182.

[European Banking Authority, 2017] European Banking Authority (2017). Final report
on strong customer authentication and common and secure communication under
article 98 of directive 2015/2366 (psd2).

[European Banking Authority, 2019] European Banking Authority (2019). Eba pub-
lishes clarifications to the first set of issues raised by its working group on apis
under psd2.

[European Banking Authroity, 2018] European Banking Authroity (2018). Opinion on
the implementation of the rts on sca and csc (eba-2018-op-04).

[European Central Bank, 2018] European Central Bank (2018). The revised payment
services directive (psd2).

[European Commission, 2016] European Commission (2016). Payment services.

[European Commission, 2018] European Commission (2018). Payment services direc-
tive: frequently asked questions.

74

Bibliography

[European Parliament, 2015] European Parliament (2015). Directive (eu) 2015/ of the
european parliament and of the council of 25 november 2015 on payment services in
the internal market, amending directives 2002/65/ec, 2009/110/ec and 2013/36/eu
and regulation (eu) no 1093/2010, and repealing directive 2007/64/ec.

[European Parliament, 2019] European Parliament (2019). Commission implementing
regulation (eu) 2019/ 410 - of 29 november 2018 - laying down implementing tech-
nical standards with regard to the details and structure of the information to be
notified, in the field of payment services, by competent authorities to the european
banking authority pursuant to directive (eu) 2015/ 2366 of the european parliament
and of the council.

[European Union, 2016] European Union (2016). Revised rules for payment services
in the eu - eur-lex.

[European Union, 2018] European Union (2018). supplementing directive (eu)
2015/2366 of the european parliament and of the council with regard to regula-
tory technical standards for strong customer authentication and common and secure
open standards of communication.

[Fundamentals, 2010] Fundamentals, S. T. (2010). Software testing fundamentals.

[Garousi and Elberzhager, 2017] Garousi, V. and Elberzhager, F. (2017). Test automa-
tion: Not just for test execution.

[Hawkey, 2013] Hawkey, K. (2013). Overview of software processes.

[Huizinga and Kolawa, 2007] Huizinga, D. and Kolawa, A. (2007). Automated defect
prevention: Best practices in software management. IEEE Computer Society Wiley-
Interscience a John Wiley & Sons Inc. Publication, Hoboken, New Jersey.

[IEEE Standard, 1998] IEEE Standard (1998). Ieee standard for software test docu-
mentation.

[Inflectra, 2020] Inflectra (2020). What is api testing?

[Innopay DB, 2017] Innopay DB (2017). Psd2 open banking ecosystems.

[Interview1, 2020] Interview1 (2020). Interview 1 - vice president marketing / sales.

[Interview2, 2020] Interview2 (2020). Interview 2 - head of test and quality assurance
department.

[Interview3, 2020] Interview3 (2020). Interview 3 - process analyst and project man-
agement, test management.

[Interview4, 2020] Interview4 (2020). Interview 4 - head of software engineering and
application management.

[ISO, 2011] ISO (2011). Iso/iec 25010:2011.

[Jacobson, 2011] Jacobson, D. (2011). APIs. O’Reilly Media Inc, Sebastopol.

75

Bibliography

[JavaEE, 2014] JavaEE (2014). Introduction to json.

[Jeff Offutt, 2018] Jeff Offutt, P. A. (2018). Why do we test software?

[Kirchmann, 2017] Kirchmann, A. (2017). Overview of psd2 - related market initia-
tives.

[KPMG, 2019] KPMG (2019). Psd2 testing considerations.

[Kuang, 2018] Kuang, H. (2018). Api eg authentication.

[Kumar and Mishra, 2016] Kumar, D. and Mishra, K. K. (2016). The impacts of test au-
tomation on software’s cost, quality and time to market. Procedia Computer Science,
79:8–15.

[Liliana Bobrica, 2002] Liliana Bobrica, E. N. (2002). Survey software architecture.

[Lingard, 2011] Lingard, B. (2011). Software testing.

[Lynn et al., 2019] Lynn, T., Mooney, J. G., Rosati, P., and Cummins, M. (2019). Dis-
rupting finance: FinTech and strategy in the 21st century. Palgrave Pivot. Palgrave
Macmillan, Cham.

[Mahajan et al., 2016] Mahajan, P., Shedge, H., and Patkar, U. (2016). Automation
testing in software organization. International Journal of Computer Applications
Technology and Research, 5(4):198–201.

[Mak, 2017] Mak, S. (2017). Modules vs. microservices.

[Marvin Zelkowitz, 2009] Marvin Zelkowitz, Manav Desai, T. (2009). Cmsc 435: Soft-
ware engineering - software testing.

[Massé, 2012] Massé, M. (2012). REST API design rulebook: Designing consistent
RESTful Web Service Interfaces. O’Reilly, Beijing.

[Mbama and Ezepue, 2018] Mbama, C. and Ezepue, P. (2018). Digital banking, cus-
tomer experience and bank financial performance: Uk customers perceptions. In-
ternational Journal of Bank Marketing, 36:00–00.

[Meng et al., 2018] Meng, M., Steinhardt, S., and Schubert, A. (2018). Application
programming interface documentation: What do software developers want? Journal
of Technical Writing and Communication, 48(3):295–330.

[Mohanty et al., 2017] Mohanty, H., Mohanty, J. R., and Balakrishnan, A., editors
(2017). Trends in Software Testing. Springer Singapore, Singapore and s.l.

[MuleSoft, 2020] MuleSoft (2020). What is an api?

[Nahid Anwar & Susmita Kar, 2019] Nahid Anwar & Susmita Kar (2019). Review pa-
per on various software testing techniques & strategies.

[Nguyen, 2008] Nguyen, C. D. (2008). Testing techniques for software agents.

76

Bibliography

[Nidhra, 2012] Nidhra, S. (2012). Black box and white box testing techniques - a liter-
ature review. International Journal of Embedded Systems and Applications, 2:29–50.

[NISP, 2019] NISP (2019). Nisp.

[Open Banking Limited, 2016] Open Banking Limited (2016). Open banking.

[OpenSource, 2020] OpenSource (2020). What are microservices?

[Ostrand and Balcer, 1988] Ostrand, T. J. and Balcer, M. J. (1988). The category-
partition method for specifying and generating fuctional tests. Communications of
the ACM, 31(6):676–686.

[Oxford Learners Dictionaries, 2018] Oxford Learners Dictionaries (2018). Api noun -
oxford advanced learner’s dictionary.

[Postman, 2020] Postman (2020). Postman - working with data files.

[PWC, 2018] PWC (2018). Customer experience and payment behaviours in the psd2.

[Qa, 2019] Qa, P. (2019). Testing objectives.

[Redhat, 2020] Redhat (2020). What are microservices?

[REST Assured, 2020a] REST Assured (2020a). Rest assured.

[REST Assured, 2020b] REST Assured (2020b). Rest assured github.

[Romanova et al., 2018] Romanova, I., Grima, S., Spiteri, J., and Kudinska, M. (2018).
The payment services directive 2 and competitiveness: The perspective of european
fintech companies.

[Ropota, 2011] Ropota, A. (2011). Automated testing.

[Scheler, 2018] Scheler, F. (2018). Anforderungsanalyse.

[Schwertner, 2019] Schwertner, C. (2019). In 6 monaten sind psd2 apis realität: De-
veloper sind jetzt unsere hoffnung!

[Smith et al., 2016] Smith, A., Hoehn, T., Marsden, P., May, J., and Smith, E. (2016).
Retail banking market investigation - final report.

[Soap UI, 2020] Soap UI (18.3.2020). Api testing guide: An automated approach to api
testing transformation: Broadcom inc. | connecting everything.

[Soap UI, 2019] Soap UI (2019). Why your api testing goals are missing the mark.

[Software Testing, 2016] Software Testing (2016). Learn software testing.

[Software Testing Help, 2020] Software Testing Help (2020). When to stop testing
(exit criteria in software testing).

[Spring, 2019] Spring (2019). Spring.

[SQA, 2001] SQA (2001). Iso9126 - software quality characteristics.

77

Bibliography

[Stepien et al., 2018] Stepien, B., Peyton, L., and Alhaj, M. (2018). Data-driven testing
using ttcn-3.

[TestNG, 2019] TestNG (2019). Testng.

[Try Qa, 2018] Try Qa (2018). What are software testing objectives and purpose?

[Vijay, 2016] Vijay (30.5.2016). How data driven testing works (examples of qtp and
selenium). Vijay.

[Warsi, 2016] Warsi, T. (2016). Why is it important to use regression testing?

[Wessing, 2017] Wessing, T. (2017). Security vs. convenience: strong customer au-
thentication under psd2.

[Wiklund et al., 2017] Wiklund, K., Eldh, S., Sundmark, D., and Lundqvist, K. (2017).
Impediments for software test automation: A systematic literature review. Software
Testing, Verification and Reliability, 27(8):e1639.

[WSO2, 2019] WSO2 (2019). Strong customer authentication and dynamic linking for
psd2: Strong customer authentication and dynamic linking for psd2.

[Wu et al., 2009] Wu, T., Wan, Y., Xi, Y., and Chen, C. (2009). Study on the auto-
matic test framework based on three-tier data driven mechanism. In 2009 Eighth
IEEE/ACIS International Conference on Computer and Information Science, pages
996–1001.

78

	Acknowledgements
	Abstract
	Outline of the Thesis
	Introduction and Theoretical Framework
	Introduction
	Motivation
	Problem Statement
	Research Questions and Objectives
	Research Approach

	Theoretical Framework
	Foundations of Application Programming Interfaces
	Origin and Anticipated Potential of Open Banking
	The Second Payment Service Directive
	Key Points
	Challenges and Opportunities

	Introduction to Software Testing
	Goals of Software Testing
	Basics of Software Testing
	Test Automation
	Regression Testing
	Data-Driven Testing
	API Testing

	Summary of the Theoretical Framework

	Related Work
	Test Approaches for PSD2-compliant Interfaces
	Test Tools for Evaluating PSD2-compliant Interfaces

	Design and Implementation
	Test Tool for PSD2-compliant APIs
	Summary of the Test Tool Requirements
	Overview of Test Tool Process
	Test Case Mapping
	Test Tool Architecture
	Summary of the Design and Implementation

	Appraisal and Conclusion
	Test Tool Evaluation from a User Perspective
	Extensibility Analysis of the Test Tool
	Conclusion
	Key Findings
	Problems and Limitations
	Future Work

	Appendix
	Interview Partner and Questions
	Test Tool Architecture
	Bibliography

