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Zusammenfassung

Während die Menge an Dokumenten auch in der Rechtsbranche stetig steigt,
fehlt es an geeigneten Möglichkeiten, diese Vielzahl an Dokumenten effizient
nutzen zu können. Gerichtsentscheidungen, Fachliteratur der auch Gesetzestex-
te werden in fast ausschließlich in unstrukturierer Form veröffentlicht wie mei-
stens als PDF.

Im Rahmen dieser Arbeit, wird ein Ansatz entwickelt, um aus einem Urteil-
stext die involvierten Parteien sowie deren rechtliche Beziehungen untereinan-
der zu extrahieren und als Graph visuell darzustellen, um den Rechtsexperten
eine schnellere Analyse der Urteile zu ermöglichen. Um dies zu erreichen, wird
zu Beginn eine linguistische Analyse von Urteilsexten durchgeführt, um die
sprachlichen Besonderheiten von Urteilen zu erfassen. Hierbei steht vor allem
im Schwerpunkt, welche Schlüsselbegriffe gerichtlich verwendet werden, um be-
stimmte rechtliche Beziehungen auszudrücken und desweiteren, ob strukturelle
Ähnlichkeiten vorhanden sind in Bezug auf wie einzelne rechtliche Konzepte
dargestellt werden. Nachfolgend wird eine Ontologie entwickelt, deren Zweck
die Modellierung der definierten rechtlichen Beziehungen ist. Diese bildet im
Folgeden die Grundlage für die Annotation der semantischen Beziehungen im
Rahmen der Erstellung eines Trainingsdatensatzes für spaCy’s Dependency
Parsers. Anschließend werden Extraktionsregeln auf Quelltext-Ebene definiert,
um den Abhängigkeitsbaum zu traversieren und die erforderlichen Informatio-
nen zu extrahieren. Schließlich wird eine minimalistische Frontend-Applikation
implementiert, die illustrativ das Endergebnis einer Informationsextraktion auf
Grundlage des dargestellten Ansatzes darstellen wird.

Abstract

While the amount of documents is also continuously growing in the legal sector,
there are lacking possibilities for effectively using these resources compared to
other sectors like finance sector. Most legal documents like court decisions,

I



legal literature or the law texts itself are mostly published in plain text with
little or without any additional metadata that might enable a more efficient
usage.

Within the scope of this work, an approach is developed which extracts the
legal parties and their legal relations among them and finally displays the ex-
tracted data in a graph-like form enabling the legal professional to conduct a
more efficient research. In order to achieve this, at the beginning, a linguistic
analysis will be performed to elicitate judgment specific linguistic features and
subsequently to build a set of legal keywords indicating certain legal relations
like a specific contractual agreement between two parties. Following, an onto-
logy representing all the required semantic information within the sentences
containing these keywords is built. In order to do this, a broad literature rese-
arch is conducted and its results will be analyzed in the next. The developed
ontology will then be implemented on the basis of a NLP-Technique called
Dependency Parsing. For this, a model for spaCy’s neuronal-network based
dependency parser is trained which subsequently is applied to the respective
section of judgments. On the basis of the semantic dependency model, ex-
traction rules for every defined legal relation are implemented to enable the
extraction of the information once the annotations has been set correctly. Fi-
nally, a visual representation will be implemented providing a well-arranged
overview of the extracted semantic information.

The results of the evaluation show that this approach delivers remarkable high
precision results despite being based on a relatively small set of training data
with 38 training sentences and 25 sentences for evaluation.
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1 Introduction

1.1 Motivation

While the digitization has already transformed many sectors and industries,
the German legal sector is still working in a rather traditional, analog, way.
There are various reasons for this finding like little incentives for law firms to
make use of technological solutions to enhance the efficiency of their work pro-
cesses as their revenue model is based upon the principle of billable hours.12

Another reason is the lack of larger public data sources for legal documents.
For example court decisions are rarely published and if they are, they are
mostly published in an unstructured format like PDF or when published in
XML, the used XML scheme provides only very little structural elements. At
the same time, court decisions only consist of a limited variation regarding the
used syllabus and sentence structure in comparison to other legal documents
like contracts.[HSN04] One reason for this situation is that the structure and
content of court decisions are regulated by law, for civil judgments, these are
defined in § 313 ZPO (German Code of Civil Procedure). Based on these cir-
cumstances, the chances of a good suitability of court decisions to be used as
a data set for further analysis and the retrieval of semantic information seem
to be promising and form one of the reasons for using court decisions in this
thesis project. Independent of regarding the work of lawyers, judges or legal
scientists, a substantial part of legal work is research. Legal professionals have
to analyze contracts, law texts, court decisions and many other legal docu-
ments. From the perspective of a legal professional, it is very time consuming
to research and analyze judgments with regard to whether the judicial con-
stellation in the judgment matches the one of the current matter. Especially,
in more complicated cases with more than two or three parties and in which

1https://www.business.hsbc.uk\T1\guilsinglrightfinancing-investments-in-legal-tech-2018
2https://www.bucerius-education.de/fileadmin/content/pdf/studies_
publications/Legal_Tech_Report_2016.pdf
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1 Introduction

the validity of many legal actions is relevant for the solution of the case, it
often becomes challenging to keep track of the situation over a long judgment
text. Currently, there exists no solutions providing summarized or aggregated
versions of court decisions that could enable the legal professionals to conduct
a more efficient research. There only exists solutions publishing judgments in
full text with only basic keyword based search options.

When looking at the technical site, both the possibilities to extract relevant
semantic information and their quality have remarkably risen over the last few
years as Hirschberg et al.[HM15] only recently analyzed.

Facing an ever growing amount of data while at the same time, the tools
or the technical procedures to build them are already available, the clients
are currently putting more pressure on the law firms to make use of these
possibilities to provide more efficient - and hereby cheaper - legal services.2 As
especially legal research is very time consuming from the perspective of a legal
professional, further research in this area seems to be promising.

1.2 Structure

In this chapter, a short motivation was presentend. In chapter two, a desription
of related work about how to model semantic information and which techniques
are used for information extraction. In chapter three, the research method and
the research questions are layed out. Afterwards, the actual system design
is presented to be followed by the implementation in chapter 5. Finally, in
chapter 6 the evaluation results are provided before the thesis concludes with
a summary of the limitations and a look at future work.
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2 Related Work

This chapter summarizes the main research papers on which this work is based
on and refers to. Its structure follows the order of the research questions by
firstly presenting existing approaches regarding how a metamodel might look
like to enrich the content of unstructured legal documents with annotations to
provide structured semantic information. Afterwards, research follows on how
techniques of Natural Language Processing (NLP) in general can be used to
extract such semantic information before, finally, existing approaches on how
sorts of Dependency Parsing are used to extract semantic information.

2.1 Concepts for Modeling Semantic Metadata

in Legal Documents

Before it is possible to extract semantic information from unstructured legal
documents, one has to define a structured representation of the required seman-
tic metadata necessary to aggregate the demanded semantic information. This
structured representation is also called an ontology. According to Wyner, an
ontology is an ëxplicit, formal, and general specification of a conceptualization
of the properties of and relations between objects in a given domain".[Wy08]
This means it is necessary to define an abstract concept for a certain deman-
ded information within the application domain as well as necessary types of
metadata with which the raw text has to be annotated in the next step. Me-
tadata in general can be grouped in categories like administrative metadata,
provenance metadata, structural metadata or finally semantic metadata. [Sl]
For developing an approach to extract the involved parties and their legal
relations among each other, only semantic metadata is relevant within this
work.

3



2 Related Work

For developing domain specific concepts, there already exists a respective
amount of research with regard to the legal domain. The Nomos framework
extends GaiusT and its key concepts are shown in Fig. 2. Sleimi et al. [Sl]
developed a metadata model based on both frameworks for traffic laws of Lu-
xembourg. Since both, GaiusT and Nomos, are intended to serve for different
types of legal documents and even law systems, neither of them directly fits
as a basis for this work. Due to the lack of a fitting concept for German legal
documents, and especially court decisions, one goal of this work is to deve-
lop a metamodel for legal concepts fitting to the section Tatbestand"within
court decisions of the Federal Court of Justice in Germany making use of the
approaches followed by the mentioned existing solutions.

2.2 Semantic Information Extraction

The term Semantic Information Extraction describes a wide field of work and
can be divided in several categories. Jurafsky et al. [JM09] categorize the ex-
traction if semantic information in named entity recognition (NER), relation
extraction and event extraction while event extraction itself is further split in
the categories temporal expression, temporal normalization and template fil-
ling.

NER describes the process of annotating proper names with a term describing
the kind of the proper name. [RN203]. An example for these proper names
could be names of companies and persons or also domain specific terms like
protein names [BCDF14]. While NER is also actively used in the legal domain,
it will not be used for the research within this work. This thesis will only
concentrate on the categories of relation and event extraction.

The term relation extraction can either describe the extraction of semantic
relations between two named entities or also between two text tokens each
representing an entity from a domain specific ontology. [JM09] As described in
4.1, in this work a domain specific ontology is used to annotate certain entities.
For each of defined semantic relation, extraction rules are developed.

Within the field of NLP, implementing a structured way of extracting the
domain specific entities and the semantic relations among them requires a
certain sort of parsing method as a basis to develop a set of rules (grammar) for

4



2 Related Work

extracting semantic metadata like entities or relations. The two most common
ones are shortly explained in the following paragraphs, Constituency Parsing
and Dependency Parsing.

2.2.1 Constituency Parsing

According to Jurafsky et al. [JM09] the term Constituency Parsing describes
the task of recognizing a sentence and assigning a syntactic structure to itänd
is thereby also called Syntactical Parsing. This means the sentence is split in
several predefined units, the constituents. The definition of a sentence’s syntax
is done in a declarative formal way, mostly by using a Context-free Grammar
(CFG). CFGs represent a class of a formal grammar that is not only applied
within the field of NLP but also for modeling computer languages. [JLM] As
this set of formal rules only describe the structure a sentence might have, no
implications are made concerning in which order the rules have to be applied.
Therefor, constituency parsing is considered to be an intermediate step for a
later step, the Semantic Parsing. Bhatia et al. [Bh] describe in their research an
approach for extracting regulated information types from privacy policies based
on a domain specific ontology representing the constituents of the sentence. For
each of these constituents, a grammar for automatically finding and extracting
them in other privacy policies has been developed. The evaluation conducted
by Evans et al. [Ev] shows they reached, based on a data set of 30 policies,
an average precision of 0.72 and an average recall of 0.74 compared to the
pairs identified by analysts. Concerning court decisions, Wyner et al. [Wy10]
discussed approaches how to extract legal arguments from judgments of the the
European Court of Human Rights based on constituency parsing and a context-
free grammar in specific, and also in general, how ontologies and NLP might
be suitable to identify semantic information like case factors and participant
roles.

2.2.2 Dependency Parsing

Opposed to constituency parsing, syntactical structures do not play a role for
Dependency Parsing and so a sentence’s only syntactical structure is the order
of the single words itself. The formal grammar, dependeny parsing is based on,

5
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consists of a set of grammatical functions describing the directed binary gram-
matical relations among the words. [JM09, chapter 13 ] Today, there already
exists a de-facto standard for these grammatical annotations, the Universal
Dependencies project. [Nib] As explained more detailed in section 4.2.2, resul-
ting its benefits, dependency parsing brings with it [JM09], it is widely used
across several domains for relation extraction from natural language.[ZCL] Af-
zal et al. [AMF] use dependency trees to represent relations between named
entities and subsequently train a machine learning model based on these trees
for an unsupervised relation extraction enabling the automatic generaton of
multiple-choice questions. Especially, in the biotech domain extensive rese-
arch is conducted about that Shahab provides a compressed overview. [Sh17]
With regard to the legal domain, Dell’Orletta et al. [DF12] generally research
the need for an adaption of dependeny parsing approaches to the a specific
domain, like the legal domain is. Based on the findings Gildea presented in re-
search [Gi], according to which the quality of results dependency parsing brings
on texts different from the texts the dependency parser has been trained on,
Dell’Orletta et al. propose basic and consistent criteria in respect to task de-
finition and evalution. Sleimi et al. [Sl] developed a dependency grammar in
combination with a grammar for constiuents from which each of them repres-
ents a defined legal concept. The grammatical dependencies are customized to
the special legal language and is used to extract the found legal concepts witin
a statement of the traffic laws of Luxembourg.

6



3 Research Method

3.1 Research Questions

A first objective of this thesis is to investigate how an ontology might look
like that provides a structured representation for sentences within the section
Tatbestandöf judgments of the German Federal Court of Justice that describe
the undisputed legal relations among the involved parties. On the basis of
the developed ontology, research follows regarding how NLP-techniques can
be leveraged to automatically extract the necessary sentences as well as the
relevant parts of them. For testing the found concepts questions, a prototype
will be implemented based on the NLP library spaCy. All the used spacy
modules as well as all other technologies will be fully explained in chapter 4.

All the stated research goals are split into the following three research questi-
ons:

1. How an ontology for representing semantic information of court decisions
can look like?

2. How the key information of a court decision can automatically be ex-
tracted using NLP?

3. How a prototype for a semantic analysis of court decisions can be imple-
mented?

3.2 Research Method

At the beginning of the work, a broad literature review was performed covering
the following parts to obtain the theoretic concepts as these build the basis for
the following concept development and implementation:

7



3 Research Method

1. Linguistic Analysis of a set of German judgments of the FCJ concerning
potential linguistic specialties which might be valuable for developing an
ontology,

2. Literature review of existing research on metamodels and ontologies for
(German) legal documents,

3. Literature review of existing research on existing approaches for modeling
legal sentences,

4. Research on existing technical tools, libraries in the field of NLP which
might be used to implement a prototype.

The following evaluation of the prototype’s results consists of a qualitative
and quantitative part. For the qualitative evaluation, a legal expert manually
analyzed a set of court decisions with respect to the defined type of semantic
information to be automatically extracted. These results were consequently
compared with the results generated by the prototype. With regard to the
quantitative evaluation, the results of common statistical methods tailored to
the used NLP-techniques were produced and interpreted.

8



4 System Design

This chapter introduces important underlying concepts of the implementation
as well as an overview of the actual system architecture before the prototypical
implementation is explained in the next chapter. In section 4.1 different types of
ontologies are described which have already been used in related research work.
Next to this, also existing metamodels are shown which have been developed
with the intention to harmonize the field of legal ontologies. In section 4.2 useful
existing parsing methods are discussed which enable to extract the semantic
information described by the annotations that have been applied to the text
in accordance to the ontology. In the last part of this chapter, section 4.3, the
prototype’s architecture is layed out.

4.1 Types of Ontologies and Metamodels

In general, an ontology is an explicit, formal and general specification of a
concept describing the objects and structural relations between those objects in
a certain domain.[Wy08] As a result of this, ontologies used for specific solution
might largely differ from those used in other implementations, although there
might not be a reason for this. To prevent a too large variety among ontologies
used in the legal domain with the aim to reach a better comprehensibility and
quality for every of these ontologies, there exist solutions that are considered to
serve as a metamodel for developing legal ontologies. The three major ones are
described in the following sections. As commonly defined, a metamodel defines
the valid element types a model can consist of, and how the elements can be
related to each other.[Se03] In other words, metamodels provide a framework
for models with that a model can be prooved valid.

9



4 System Design

4.1.1 Types of Metamodels for Modeling Semantic

Metadata in the Legal Domain

4.1.1.1 GaiusT

One of the most sophisticated metamodels for models of semantic metada-
ta occuring within legal documents, is the GaiusT tool.[Ze15] It is based on
and enhances the Cerno information extraction framework developed by Kiya-
vitskaya et al..[Ki] The concepts used by GaiusT follow the approach of the
Deontoic Logic. According to the definition of the Stanford Encyclopedia of
Philosophy, deontic logic is a type of symbolic logic that consists of the noti-
ons shown in Table 4.1 which are describing "what follows from what".3

Concept Concept type and its indicators
Right May, can, could, permit, to have a right, should be able to
Anti-right Does not have a right to
Obligation Must, requires, should, will, would, which is charged with,

may not, can not, must not
Anti-obligation Is not required, does not restrict, does not require

Tabelle 4.1: Syntactic for deontic concepts[Ze15]

Based on this, GaiusT focuses on the following legal concepts: Actors, pres-
cribed behaviors, resources, actions and constraints. The complete conceptual
model can be seen in Fig. 4.1.

Looking at top left corner of Fig. 4.1, one can recognize, the concept "Goal".
GaiusT is one of a so called goal-oriented framework. A goal-oriented frame-
work takes a project’s goals and objectives as the focus of the whole model
and hereby enable a practice-oriented design method.[GAP]

4.1.1.2 Nomos

Nomos provides an even more goal-oriented approach that serves as a metamo-
del for models of semantic metadata within legal documents.[JM09] It focuses
on five main concepts: roles, duties, rights, situations and associations.[Si]

3https://plato.stanford.edu/entries/logic-deontic/

10
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4 System Design

Abbildung 4.1: The GaiusT conceptual model[Ze15]

Abbildung 4.2: The Nomos metamodel[Si]

Similiar to GaiusT, also with the Nomos framework, one can see "Goalïn the
upper left corner of Fig. 4.2 as the root of the entire metamodel. In additi-
on to GaiusT, several subtypes of rights were introduced next to the concept
ÄctionCharacterization". In its newest version, NomosT, that bases on both,
Nomos and GaiusT, introduces additional helper concepts to enable an auto-
matic extraction of the five key concepts.[Ze] These additional concepts are:
Actor, Resource, Exception, Antecedent, Consequent, PositiveVerb, Negative-
Verb, Holder and Beneficiary.

11



4 System Design

4.1.1.3 LegalGRL

In contrast to the both GaiusT-based metamodels mentioned before, the Legal
Goal-oriented Reuirements Langugage(LegalGRL), is based on the Hohfeldi-
an System. While Deontic Logic is tailored around two concepts, permissions
and obligations, the Hohfeldian System is built around eight types of legal
rights.[Ho17] These are rights (or claims), privileges, powers, immunities and
their respective opposites no-rights, duties, disabilities and liabilites. Now, for
developing a Legal GRL model, one has to categorize each statement of the
legal document based on these Hohfeldian concepts.[Ho17] Additionally, for
a Legal GRL model, also the concepts subject, verb, actions, preconditions,
exceptions and cross-references are introduced. Afterwards, these conducted
annotations have to be transformed into deontic goals of type Permission and
Obligation. Usually, these steps have to be applied iteratively.

4.1.2 Types of Legal Ontologies

Building upon the ideas of the mentioned metamodels, also several legal ontolo-
gies exist.[BVW04] All of these ontologies served as general ideas for answering
the first research question of how an ontology for German court decisions might
look like. However, there will be no detailed discussion of these ontologies since
the scope of the thesis is limited and, hence, only a small part of judgments of
the German Federal Court of Justice can be considered as data set. Therefor,
the development of a complete ontology for German civil court decisions is not
a goal of this work.

4.1.2.1 OWL

The Ontology Web Language(OWL) is a machine-readable ontology developed
to serve as a common basis for ontologies within different application domains.4

It is part of the Semantic Web development. Wyner [Wy08] uses OWL to
implement an ontology for legal case-based reasoning. The ontology consists
of six main classes. All of them may have several subclasses. According to the

4https://www.w3.org/OWL/
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4 System Design

OWL definition, all classes also can be built of a sum of subclasses just as like
they may have specified conditions and properties that have to be set.

4.1.2.2 LKIF

LKIF5, the Legal Knowledge Interchange Format, has been developed as part of
the Estrella project with the goal to unify previously existing legal ontologies.[Ho]
By using the standards OWL-DL and SWRL, which are both part of the fami-
ly of Semantic Web standards, LKIF ensures to be also compliant to Semantic
Web standards. LKIF defines over 50 terms while its top structure is based
on the CYC6 ontology. At the very basic level, LKIF is separated by three
types of layers: the top level, the intentional level and the legal level. Fig. 4.3
shows the concepts defined by the top layer. While this top layer might appear
self-explaining, it is crucial for the fundamental parts of any legal concept like
the location, time, parthood or change.

Abbildung 4.3: The LKIF top layer[Ho]

Fig. 4.4 shows the part of the LKIF ontology concerning actions. This part is
particularly interesting as actions represent any legal transaction with all its
associations and serve either as the basis or are partly reused for the ontologies
described section 4.1.2.3 and 4.1.2.4.

Abbildung 4.4: The LKIF concepts: Actions, agents and organisations[Ho]

5http://www.estrellaproject.org/lkif-core/
6http://www.cyc.com
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4.1.2.3 LegalRuleML

Another major ontology for the legal domain is LegalRuleML7. LegalRuleML
is an extension of the general and widely known RuleML8 web-rule specifica-
tion. While incorporating the in section 4.1.1.1 explained deontic logic, Le-
galRuleML provides a set of formal descriptions for legal norms, policies or
reasoning.[At15] These provided structures are technically represented by a
XML-schema flavored with the XML-language RelaxNG9. As LegalRuleML
mainly focuses on modeling legal norms, its concept details are omitted. Ho-
wever, it should be noted that LegalRuleML is indeed one major player in
the field metamodels for legal documents. Due to its high detail grade and
extensiveness, it nonthelees provides one with useful ideas also for other types
of legal documents like its listing of a good metamodel’s characteristics which
is also one of the reasons it is mentioned in this section. So it is emphasized
to keep the number of defined legal concepts as low as possible and to try to
use pattern whenever it is possible to ensure the concepts are independent and
thereby can be combined to model larger concepts.

4.1.2.4 UFO-L

One of the most recent works is the one by Griffo et al.[GAG], that presents
an ontology specifically designed to model legal relations and by doing so,
improving one of the major impediments of former legal ontologies. The onto-
logy is based on the Unified Foundational Ontology (UFO) and thus is named
UFO-L(egal). UFO-L incorporates the in section 4.1.1.3 described Hohfeldian
System and combines these concepts with the one developed by Alexy’s[Al02],
the relational theory of constitutional rights. In addition to the Hohfeldian
System, Alexy’s theory provides the concept of a possibility to deny a legal
relation’s object, for example a right. Thus, the concept of an omission brings
a major benefit, especially for modeling legal relations. While Griffo et al. use
the specific example of e-mail service contracts which often contain a duty to
omit sending the same message to a large number of recipients, the general
thought beyond is also valid with regard to research within this work. Also in
the German civil law system exist duties to omit a certain action like within

7https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=legalruleml
8http://wiki.ruleml.org/index.php/RuleML_Home
9https://relaxng.org/
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the field of the German copyright law10 (UrhG), for example § 97 Sec. 1 UrhG
grants a person whose copyright was infringed a claim against the infringing
person to omit the action violating the copyright in the future. But of course,
this applies also to individual contracts signed under the German Civil Law
system as these contracts might also contain all different kinds of duties to
omit. One of UFO-L’s key elements is the use of a legal relator. A legal relator
aggregates externally dependent legal moments. A legal moment is the super
class for one of UFO-L’s legal core concepts, a right, duty, no-right, permission,
legal power, legal subjection, disability or immunity. Fig. 4.5 shows a part of
UFO-L. In this figure, one can also recognize that a legal relator is either a
simple or a complex one.

Abbildung 4.5: Main part of UFO-L[GAG]

4.1.3 Discussion

As the scope of this work is only about extracting involved parties and the
basic type of the legal relations among them from court decisions, all of the
mentioned ontologies are in fact too sohisticated for the limited application
area. However, these ontologies deliver useful ideas for the development of the
ontology used for the purpose of this work. So, the ontology of this work strives
to follow the principles of the existing ones, in particular of the ones based on
the Hohfeldian system of law and the ones based on OWL an there by also
UFO-L.

A general result is that metamodels and ontologies following the principle of
deontic logic fit more for tasks about modeling legal norms as deontic rules
10https://www.gesetze-im-internet.de/urhg/
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only consider rules and obligations but no external dependencies like actors,
in particular persons, but also deontic rules do not consider bilateral relations
like UFO-L does.

Sleimi et al. [JM09] developed a narrow metamodel for modeling traffic laws
of Luxembourg which can be seen in Fig. 4.6. They only distinguish between
models on a statement-level and such on a phrase-level. In this context, a
statement represents a group of sentences while a phrase in fact represents
one sentence. This work is highly oriented to the structure of this metamodel
and the subsequent ontologies. As for the scope of this work, only single phra-
ses describing a legal relation are considered, thus especially the phrase-level
metamodel serves as a reference for the model developed in this work.

Abbildung 4.6: Metamodel for luxembourgian traffic laws from: [JM09]

4.2 Underlying NLP-Concepts for Information

Extraction

When talking about information extraction, there exists a large variety of
technical methods to be distinguished. In fact, the term information extracti-
on itself is not a sharp technical definition but rather commonly describes a
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pipeline containing several steps to transform unstructured text into a struc-
tured representation of the text by applying NLP-techniques to finally be able
to filter out the required information. The most common NLP-techniques for
the purpose of information extraction are Named Entity Recognition, Part-of-
Speech Tagging and different parsing techniques like in particular Constituency
Parsing and Dependency Parsing. This work is solely focused on elaborating
parsing techniques, researching which one is the most suitable one for applying
the previously developed ontology for extracting the involved legal parties and
the legal relations among them.

4.2.1 Constituency Parsing

The current state of research mainly distinguishes between two large groups of
parsing techniques, Constituency Parsing nad Dependeny Parsing. Basically,
Constituency Parsing consists of two main parts. The first one is about de-
fining a grammar to define which syntactic components exist and also which
component consists of other syntactic components. The other main part of con-
stituency parsing is defining an algorithm to specify how, meaning in which
order, the syntactic components are processed. Hence, constituency parsing
gives an unstructured sentence a syntactic syntax and thereby is also often
called Syntactic Parsing.

Context-free grammar The most common grammar type used to define the
syntactic parts of a sentence is a context-free grammar(CFG). CFGs use de-
clarative rules to specify which words or symbols of the original text build a
certain syntactical compoment. Therefor, it necessary to define a fixed amount
of words that serves as a dictionary to look up the associated s yntactic com-
ponent. The symbols of CFG can be grouped in two types: Terminals and
Non-terminals. Terminals of the grammatic rules match the actual words used
in the original language of the text that is up to be analyzed. On the other
side, non-terminals are self-defined names for the syntactic components. After
a non-terminal, either a terminal may follow or another non-terminal. Thus,
a CFG is a type of grammar that allows components to be built out of other
components. Every CFG starts with a unique start symbol. While the syntac-
tical components defined by a CFG often represent grammatical structures of
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the respective text language, the concept of CFGs can also be used to formuate
custom components modeling sentence parts specific to a certain application
domain. Wyner et al.[Wy10] developed a CFG to provide a formal description
of the structure of a legal argument how it is mainly used court decisions of
the European Court of Human Rights (ECHR). The formal description of this
grammar and its explanation can be seen in Fig. 4.7.

(a) Formal CFG description

(b) Explanation of CFG

Abbildung 4.7: CFG describing structure of a legal argument: [Wy10, Fig. 1 of
]

While CFGs are the most used technique for defining syntactical structures
in sentences, the Cocke-Kasami-Younger (CKY) algorithm[Co69, Yo67] is the
standard method for creating a parsing tree out of the CFG, meaning the
CKY algorithm controls in which order the CFG rules are applied. But as
constituency parsing is only used as a related work useful to determine which
parsing technique is the most suitable one for this work, it will not be explained
in detail. While the quality and quantity of CFG rules can be quite high, a
grammar stays a finite set of rules. However, the structure of natural language
as it is used in practice also exceeds the scope of a complete CFG that models
a whole language grammar, a so called treebank [Sa03]. As a consequence, the
main painpoint of constituency parsing is ambiguity. In practice, it is possible
that a certain partial set of the CFG rules perfectly matches the syntax of two
sentences which semantic meaning, however, might be completely different.
This is the reason why often CFGs are used in combination with some sort
of a statistic method. Hence, for reducing the amount of ambiguity within a
CFG, the CFG mostly gets extended to a Probabilistic context-free grammar
(PCFG). In addition to a CFG, every rule is associated with a probability
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that has been calculated by determining the occurence of a certain syntactical
structure within an annotated training data set.[Xu11] At the end, the parse
tree to be used out of the matching ones, is determined by the probability of
the whole parse tree that was calculated by multiplying all the probabilities
from the rules which has been applied for reaching all the non-terminals in the
parse tree. But as PCFGs are not part of the chosen technical concept for the
implementation, the functioning of a PCFG will not be further explained in
greater detail.

4.2.2 Dependency Parsing

Contrary to Constituency Parsing, developing descriptive rules to define which
group of words represent a certain syntax element is not a part of Dependency
Parsing at all. Dependency Parsers uses the individual words or even tokens of a
sentence itself and bases on directed, binary relations between two words. Every
sentence has exactly one root element. Starting from this root word, all other
relations are derived. These relations mostly describe a grammatical notion
between the two words. One of the most intuitive examples is the grammatical
subject of a sentence derived from the sentence’s root element. The de-facto
standard framework for syntactical dependency structures is called Universal
Dependencies11.

4.2.2.1 Semantic Role Labeling vs. Syntactical Grammar Functions

However, similiar to Constituency Parsing, it is possible to use domain spe-
cific semantic dependencies between the words instead of formal grammatical
functions of the language.[Ni05] This concept is known as Semantic Role Labe-
ling(SRL) and describes the process of finding and annotating so-called predi-
cate argument structures in sentences with a type of semantic frame and role
labels.[AL] As semantic annotations are modeling specific contextual relations,
they are by design highly dependent on domain the text is from. Generally,
one could validly argue that thereby using syntactic dependencies might be
more promising to be used as dependency grammar as it is more likely syntac-
tical relations can reused for several domains. To counter this disadvantage,

11https://universaldependencies.org/
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Palmer et al.[PGK05] developed PropositionBank(PropBank), an annotated
corpus of semantic roles that should serve as an additional layer of the Penn
Treebank 12. PropBank follows a verb-based approach, meaning it defines a set
of semantic roles for each verb of the Penn Treebank. While the Penn Tree-
bank is focused on the English language, the its backing general idea of being
verb-focused serves as the basis of the ontology developed within this work
and which explained in section 4.3.1.1. Additionally, while the less general
structure of semantic role labeling might lead to more effort on annotating a
larger amount of training sentences, this impediment does not directly apply
to domain specific sentences. Li et al.[LZY] summarized the characteristics of
domain specific sentences as follows:

1. a limited syllabus

2. word usage has patterns

3. little semantic ambiguities

4. frequently used domain jargon

Li et al. use these characteristics as the foundation for the development of a
machine-learning based approach to automatically annotate domain specific
sentences with semantic role labels. That these special features in particular
can also be found in German legal documents has been shown by Busse[Bu98]
and Hansen-Schirra et al.[HSN04]. More specifically, Hansen-Schirra et al. ana-
lyzed German court decisions. Concerning the sylabus used in court decisions,
they built a reference corpus with jargon found across different types of le-
gal documents and measures a value of 53.38%. With 38.70%, court decisions
interestingly reached the lowest value, meaning court decisions provided the
relatively smallest syllabus of all legal document types compared to the refe-
rence corpus. Basically one can say, by using semantic labels it is intended to
reach better precision results with a lower amount of training data. This is
further illustrated in section 5.1.2.1.

Although all of the following algorithms of dependency parsers originally were
designed focused on dependency grammars representing syntactical strucutu-
res, they can also be applied to work on semantic dependencies as long as the
following general formal requirements of a Dependency Grammar are met:

12https://catalog.ldc.upenn.edu/LDC99T42
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1. In every sentence is exactly one sentence token functioning as the single
root node, meaning a sentence token without any incoming arcs.

2. Besides the root node, each node has exactly one incoming arc.

3. There exists a unique path from the root token to each other token of
the sentence.

Every dependency grammar fulfilling these requirements, produces a connec-
ted and directed graph with one distinct root. Next to these requirements there
exists another constraint for dependency grammars that is not strictly a man-
datory one like three criteria mentioned before, but rather a fourth optional
one - the Projectivity criteria. A dependency tree is considered to be projective
when all its arcs are projective. An arc between the head node and its depen-
dent is projective when all the nodes between the head and its dependent also
can be reached from the head node. While also all non-projective trees can re-
present completely valid dependency trees, projective dependency trees enable
to formulate more efficient algorithms for information extraction on the basis
of context-free grammars. In the following two main concepts for dependency
parsers are introduced.

4.2.2.2 Arc-factored Dependency Parsing

Arc-factored dependency parsers are closely related to constituent parsers de-
spite both types largely differs in the information both parse trees do model.
As already shortly mentioned in 4.2.2, it is possible to develop a context-free
grammar for projective dependency trees. Arc-factored dependency parsers
make use of this rule and also bases on approaches following a dynamic pro-
gramming style. All algorithms of this family have in common that they all
implement bottom-up approaches to calculate the propability of a dependency
tree by building the sum of all the propabilities the individual arcs have. The
propability of an individual arc is calculated by building the sum of the weigh-
ted features of an arc. As an arc’s feature can be chosen the criteria whether
the head is a noun or also a combination like whether the head is a noun and
the dependent is a verb or also a criteria like the length of an arc. The following
formulas show the according formal mathematical definition for a tree t and
an arc a with its features f and related weight w.
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prob(t) = prob(a1) + ...+ prob(an)

prob(a) = f1w1 + ...+ fnwn

Collins Algorithm The Collins algorithm[Co03] is the first algorithm that is
based on the arc-factored scoring model. Making use of the similiarity between
finding the constituent parse tree with the hightest probability and finding the
most probable dependency tree, the Collins algorithm is in fact an extension of
the CYK-algorithm. Due to its complexity class of O(n5), the Collins algorithm
itself is not used in practice but only serves as the basis for more efficient algo-
rithms, today. As the algorithm is basically an adaption of the CYK algorithm
to dependency parsing and the CYK algorithm can be considered well-known,
for the sake of the brievity, the algorithm is not explained in further detail.

Eisner’s algorithm The most known and used algortihm for arc-factored
dependcy parsing is the one developed by Eisner[Ei]. The Eisner algorithm
improves the Collins algorithm by reducing its complexity to n3. This is ac-
complished on the back of this idea: For drawing a left-to-right arc - or in
other words - connecting two subtrees, the Collins algorithm uses five positi-
on variables to add this arc in one step - besides of the subtree’s heads, also
the start and end positions of the left subtree’s interval are considered. Now,
the Eisner’s algorithm only uses 3 position variables and splits adding an arc
in three steps. When thinking of a subtree as a triangle, in the first step the
Eisner algorithm both subtrees in half for now only working with right part of
the left subtree (LR) and left part of the right subtree (RL). By doing so, only
the both head positions and the end position l′ of the left subtree’s interval
needs to be known. This results of the fact that only projective dependency
trees are considered and, thus, the start position of the right subtree’s interval
is defined by the next position after l′, l′ + 1. Depending on which of both
subtrees functions as the head of the other one, only the remaining side of
the dependent subtree needs to be parsed if there are still missing dependents
within this subtree. Although the Eisner algorithm provides the basis for to-
day’s arc-factored oriented parsing solutions in practice, also the details of
this algorithm are omitted in this thesis since the implementation finally bases
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on a transition-based parser and the findings relating to arc-factored oriented
approaches only served as foundation for decision making.

4.2.2.3 Transition-based Dependency Parsing

Transition-based dependency parsers follow a different approach compared to
the ones based on an arc-factored model in order to reduce the runtime com-
plexity and thereby make algorithms usable for larger sentences and texts in
practice.

The arc-standard algorithm Since arc-factored algorithms calculate a tree’s
probability based on the arcs’ probabilities themselves, for determining the
most probable tree, each of these algorithms has to be applied simultaneously
on many different trees. Consequently, by applying an algorithm from the gree-
dy family (transition-based )only one tree needs to be built since the algorithm
determines the next arc with the highest probability based on a defined decisi-
on method. This leads by design to a linear runtime complexity within O(n).
For determining which transition follows, different machine-learning techni-
ques are considered. Such techniques are decision trees, support-vector machi-
nes (SVM) or memory-based learning. As only explaining this part would take
a large amount of space, the scope will be reduced to the ones actually used
by the implementation solution which will follow in the section XXX. One of
the main representatives of transition-based parsers for projective dependency
trees is the Arc-standard algorithm by Nivre[Nia]. As mentioned above, the
arc-standard algorithm is a greedy algorithm and is in fact a modification of
the well-known Shift-Reduce-algorithm for context-free grammars. This means,
it follows a simple left-to-right bottom-up strategy for parsing list of tokens as
input. As it is the case with the shift-reduce-algorithm, also the arc-standard
algorithms works with a buffer, a stack and a proper data structure to store
the current state of the so far constructed dependency graph. Next to this,
there exist three valid operations: Shift, Left-Reduce, Right-Reduce. The shift
operation pops the next input token from the buffer and pushes it to the stack.
A left-reduce operation takes the most top token t1 and second most top token
t2 of the stack, and adds an arc from t2 as the head to t1 as the dependent and
reduces both to t2. The right-reduce operation works accordingly with head
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and dependent element swapped. By adding the new relation to the dependen-
cy graph configuration, the graph is transisted to the next state. Within the
initial state, the stack and the current dependency graph are empty while all
the words are stored in the buffer. The parser terminates when the buffer is
empty and the stack only contains a single word. When the finally constructed
dependency graph meets the requirements defined in section 4.2.2 and thereby
is in fact a valid projective depedency tree, the algorith terminates successful-
ly, otherwise throws an error indicating an invalid string as input. For the
sake of brievity within this thesis, a formal description of the algorithm is
omitted at this part of the work as the arc-eager algorithm described in the
next paragraph isan extension of the arc-standard algorithm whose description
contains a formal writing of the algorithm that incorporates the arc-standard
algorithm.

The arc-eager algorithm [Nia] As mentioned above, the arc-standard algo-
rithm strictly follows a bottum-up strategy. While this might not be seen as
a problem when theoretically assuming that one intends to build a complete
dependency tree for a certain sentence at everytime, it however becomes one
when only some of the dependencies are sufficient for providing the wanted
semantic information. To resolve this issue in practice and provide a practi-
cally, not theoretically more efficient transition-based algorithm, Nivre[RN504]
combined this bottom-up approach with top-down concepts to reach a more
practicable variant of incrementality. In order to achieve this, preconditions
are added to the operations left-arc and reduce.

1. The next token from the buffer cannot already be a dependent, meaning
cannot already be in the stack

2. Tokens can be temporarly stored on the stack for later processing

The Left-Arc operation is basically the same as the left-reduce operation of the
arc-standard algorithm. However, instead of using the two tokens on top of the
stack only the first token on top of the stack and the next input token from the
buffer is used. A larger change occured from the former right-reduce operation
to the current right-arc operation. As illustrated in Fig. 4.8, the operation
for adding arcs to dependents on the right is the one that directly affects the
functioning for determining whether it is required to add the dependencies
for all the nodes on a lower level before adding the arc to the upper node. In
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order to allow such partially completed dependency trees, the reduce operation
is implemented in a standalone variant within the arc-eager algorithm. By
doing this, it is now possible to delay the reduce operation for arbitrary many
operations and thereby create long chains of right-dependent tokens.

Abbildung 4.8: Transitions of arc-eager dependency parsing: [RN504, Fig. 5 of
]

Enabling failure correction The above described concepts for arc-eager de-
pendency parsing only describe the fundamental basis. In addition to that,
there have been applied a number of modifications which finally lead to the
underlying concept of the dependency parser provided by spaCy13, the library
used to conduct the prototypical implementation.

On the way to the most recent used dependency parser the first modification
is the introduction of additional non-monotonic operations proposed by Hon-
nibal et al.[HGJ]. Non-monotonicity’s counterpart, monotonicity, refers to the
single head requirement explained in section 4.2.2. It describes the feature of
enforcing that once an action has been performed, all the following ones have
to be compliant with it.[HGJ] Making every head assignment binding might be
favorable with regard to the simplicity of an algorithm, however, this benefit
comes at the price of not being able to correct false assignments. Since even
the best machine learning technique cannot guarantee a 100 % correctness,
false head assignments at one place within the sentence will at least result in a
wrong annotation, in the worst case scenario, it will even result in an error as
the sentence might not be parsable at a later point anymore. By allowing also
some non-monotonic operations, the algorithm is potentially able to recover
from a previously conducted wrong dependency annotation. In order to be able
to recover from a failure, a set of possible wrong annotations must be provided

13https://spacy.io
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as part of the training data set for building the parser’s gold tree. Further
explaining these detailed adaptions would require a considerable amount of
space and thereby this is omitted and it is only refered to the original paper
[HGJ].

Nivre et al.[NFG14] go a step further by introducing the new operation Uns-
hift and are thereby developing a way to guarantee that the parser will always
terminate with a valid - not necessarly the gold standard fitting - projective
dependency tree. According to the general constraints of transition-based de-
pendency parsers, the parser terminates when the buffer is empty and there is
only one element left on the stack. So far, in other case the parser would not
terminate or finally propagate an error. Now, if the buffer is empty and there
is more than one element left on the stack, this parser variation deterministi-
cally chooses between a Reduce and the new Unshift operation. If the stack’s
top element already has a head, reduce is applied as usual. But once there is
an element left with a head the unshift operation is chosen. The rest equally
functions as the previous version. As long as there is at least one element in the
buffer, the same statistical model is used to make a non-deterministic choice
between Right-Arc and Left-Arc or Reduce.

Honnibal and Johnson[HJ] finally combines the two previously mentioned mo-
difications to build a non-monotonic dependency parser that guarantees for a
higher percentage of inputs to terminate with a valid projective dependency
tree. In comparison to the directed attachment accuracy of the base version of
a monotonic arc-eager parser, they reach with this combined approach 91.85%.
This result correlates with 6.25% of error reduction. At its core, the combina-
tion of the two approaches consists of integrating the Unshift operation into
the first non-monotonic dependency parser by Honnibal et al.[HGJ] which uses
a statistical model to determine the next operation while the original parser
by Nivre et al.[NFG14] makes use of a deterministic approach for the unshift
operation.

4.2.3 Discussion

When deciding between using constituency parsing and dependency parsing
for information extraction, formost, it is worth mentioning that there is no ex-
clusivity between both concepts in the first place. As done by Sleimi et al.[Sl],
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one can first define rules for constituents representing legal concepts and af-
terwards use a grammatical dependency parser to finally extract the semantic
information. With an overall precision value of 79.4% for automatically identi-
fied spans, the result is promising. However, as also stated in their evaluation,
defining rules for constituents is time-expensive and almost never can cover
all variatons occuring in practice. Thereby, errors during constituency parsing
propagates to the dependency parser leading more likely to false dependency
trees. Similiar results have been reached by Evans et al.[Ev] who developed a
constituency-based approach for extracting semantic information modeled in
the form of hyponoms from privacy policies. In their evaluation, they come to
the conclusion that using a dependeny parser would allow a deeper analysis of
the relationships between every single word. They are confident that using a
dependency parser in combination with a machine learning algorithm to train
dmaon specific models of hyponymy might be promising. On the basis of these
findings, it has been decided to focus within this thesis on developing a depen-
dency parser-only approach that instead of defining constituents to represent
legal concepts intends to directly use dependencies between two nodes to re-
present a certain legal concept within a sentence. This approach is explained
in full detail during the next section and chapter.

Regarding a decision between dependency parsers based on an arc-factored
model and the transition-based ones, it can be made relatively clear in favor
of the transition-based ones due to their significantly lower runtime comple-
xity class of O(n) compared to O(n3) of the Eisner algorithm. Hoewever, the
decision between the different variants of transition-based approaches is not
so evident. In the above section, the main variants for transition-based parsers
were described with regard to the kind of operations each of them supports
for adding new dependencies between two nodes. While these techniques can
be considered as common ground of transition-based parsers, the result of a
concrete implementation can still vary since the output also highly depends
on the technique used to determine the next operation. A common grouping
of all the possible concepts is the separation between so called static oracles
and dynamic oracles. The group of static oracles contains all the solutions that
relies on a gold tree, meaning on the basis of the current dependency graph’s
configuration and the next input token, the optimal next operation is looked
up in the gold tree. The biggest advantage of static oracles is clearly that they
are deterministic. On the other side however, static oracles are only able to
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provide a valid projective dependency tree for inputs that fit the gold tree
training set. Mostly, some kind of classifier is trained based on a treebank to
serve as static oracle but it also possible to use heuristic disambiguation rules
like the original arc-eager parser by [Nia] or a type of formal grammar like a
CFG.[Ni08] Particular to the legal domain, Wyner et al.[Wy10] used a CFG
for this purpose, but not a grammatical one but one specifically tailored to
court decisions of the ECHR as already shortly explained in section XXX. Ho-
wever, within their evaluation, they state that one of their approache’s major
impediment was that due to using a CFG based approach, their solution is
not able to properly extract legal arguments that are structured as defined.
As a potential solution for this, they explicitly suggest making use of machine-
learning techniques. SpaCy, the NLP-library used to implement the prototype
uses a dynamical oracle for that its basic functioning is explained in section
4.3.1.4.

4.3 Architecture

After laying out the theoretical concepts which back the prototypical imple-
mentation, its architecture is explained in this section. This will consist of a
general description of the processing pipeline for generating a graphical repre-
sentation of the judgment’s legal facts from the original publication format to
its final visual representation. As part of this, it will also be discussed which of
these steps can be performed automatically, semi-automatically or has to be
done manually. In the following, a technical description of the software archi-
tecture is been given as well as an explanation of how the semantic metamodel
looks like and which how the parsing of the annotated text has been conduc-
ted. Also this work follows the common architecture for NLP-based software
projects by modeling the different processing steps as components of a pipeli-
ne. As illustrated in Fig. 4.9, at the beginning of the processing pipeline the
original court decisions are taken to conduct a manual linguistic analysis on
them. Based on identified linguistic features, a customized data pre-processing
is performed which generates a data set of exemplary court decisions suita-
ble to be further used as foundation to annotate the text with the defined
dependency types during the linguistic analysis. Once the training data set
consisting of all the annotated sentences has been created, it is used to train
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the machine-learning based dependency parser upon. Once the depedency par-
ser model has been trained, it is applied on a test data set which results will
finally be visually presented as a graph by the frontend application.

Abbildung 4.9: Complete processing pipeline of the information extraction

Source: Own illustration

4.3.1 Mapping NLP-pipeline steps to software

components

4.3.1.1 Linguistic Analysis and Ontology Development

The linguistic analysis conducted as part of this work were focused on a defined
set of 15 types of legal relations to keep the scope managable. The considered
legal relations can be seen in Table 4.2 together with their keywords whose roles
is also explained in this section. When speaking of analyzing court decisions, as
for the purpose of this work, it is meant as analyzing the section Tatbestandöf
judgments. This can be taken as granted due to the fact that § 313 ZPO regu-
lates that this specific section contains all the required information to rertrieve
the involved legal parties and the legal relations among them. For determining
which legal relations should be considered for this thesis, two basic thoughts
were most important. First, to be as comprehensible as possible, it is intended
to support well known relations like a sales or a rental agreement. But second,
with regard to the use case of such an application in practice, also legal relati-
ons which involve companies or more than two persons in general are part of
the set as a graphical representation of a case’s underlying legal facts has the
more value for the legal professional the more parties and relations play a role
and by that the more challenging it gets to keep track of the legal situation.
Therefor, also shareholder relations and assignments of claims are covered by
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the research. For each of the relation types, it was researched, first, which in-
formation actually needs to be extracted to enable a graphical representation
and send, how this information is described within a sentence. Referring back
to section 4.2.2.1 in which the linguistic characteristics of court decisions were
described, the most notable one for this work is the limited syllabus used in
court decisions. A concrete result of this specialty is the fact, one can identify
keywords for each legal relation. Concerning this work, the availability of key-
words had to major implications. First, these keywords helped to reduce the
effort finding sentences which describe a legal relation so they can be further
analyzed to be used to train the dependency parser model in a following step.
Second, concerning the ontology development itself, these keywords could also
be used as aggregation points for modeling a legal relation with all its subparts
which are technically represented by semantic dependencies annotated to the
text. The entire ontology is based on the idea of a Legal Root. This is a result
of the existing concept used when working with syntactical dependencies that
is also used by the spaCy dependency parser. This concept is a verb-centric
one, meaning the root element of a sentence’s dependency tree is always either
the main verb or the auxiliary verb of the sentence. While defining such a ge-
neral rule for which words represents a sentence’s root is possible for syntactial
dependencies, this approach does not work anymore for semantic dependen-
cies, at least not for those whose semantic roots are not the tense indicating
verb at the same time. One major finding of this linguistic analysis is that with
one sentence of a judgment more than one legal relations can be and actually
are described. This finding also relates to the general characteristics of legal
texts, from which one of them is above-average usage of longer relative clauses.
Therefor, a special dependeny was added to the ontology, the legalroot depen-
dency label. This dependency is used when the syntactial root of the sentence
is not also the only legal root of the sentence. One often occuring example is
the one when the sentence’s syntactial root would be the auxiliary verb. In
this a legalroot arc goes from the auxiliary verb to the corresponding full verb
if it is one of the keywords.

All the cases in which the previously mentioned legal relations mostly occur
are assigned to the second, seventh and eighth civile senate of the Federal
Court of Justice in Germany according to the court’s current organizational
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chart.14 The linguistic analysis and thereby also the following steps of the
implementation is limited to judgments assigned to these senates.

Legal Concept Keywords
Abtretung abtreten, treten (ab), Abtretung, Abtretung-

vertrag
Darlehen aufnehmen, Darlehen, Darlehensvertrag
Gesellschaftsgründung gründen, errichten, Gründungsgesellschaft,

Gründungskommanditist, Gründungs- und
Treuhandkommanditist

Gesellschaftsbeteiligung beteiligen, Kommanditbeteiligung, Kapitaler-
höhung, Anteil, Gesellschafter

Insolvenzverwaltung Insolvenzverwalter, Insolvenzantrag
Kaufvertrag verkaufen, veräußern, Verkauf, Veräußerung,

Kaufvertrag, kaufen, erwerweben, Kauf, Er-
werb

Klagebegehren begehren, fordern, nehmen (in Anspruch)
Kündigung kündigen, Kündigung
Mietvertrag mieten, vermieten, Mietvertrag, Mieter
Rechtsnachfolger Rechtsnachfolger
Schadensersatz Schadenseratz
Stellvertretung Stellvertreter, Bevollmächtigter, Geschäfts-

führer, Prokurist
Widerruf widerrufen, Widerruf

Generic Auxiliary Concept Keywords
Erklärung erklären
Vereinbarung vereinbaren, schließen, Vereinbarung, erklären

Tabelle 4.2: Concepts of the legal ontology with their keywords

At the top, concepts representing legal relations indicated by specific legal
terms. At the bottom concepts, describing a generic relation indicated by a
generic keyword. These are words from which legalroot dependencies might go
to children words.

4.3.1.2 Pre-processing

Before being able to search for and annotate key sentences based on the de-
veloped ontology, there had to be done a significant amount of pre-processing
to get the sentences in a format spaCy is able to process. The lack of not
14https://www.bundesgerichtshof.de/DE/DasGericht/Geschaeftsverteilung/

Geschaeftsverteilungsplan2019/Zivilsenate2019/zivilsenate2019_node.html
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only machine-readable data sets for legal documents but also the general lack
available resources is a well-known impediment of using NLP in the legal sec-
tor. The official bodies, the FCJ15 itself or the German Federal Ministry of
Justice16, only publish court decisions either in the completely unstructured
format PDF17 or in a very limited structured XML18 format. Although mean-
while, there exists a private open legal data platform19, also the data within
the used JSON20 format incorporates additional characters like HTML21 syn-
tax. While non of these available sources provide court decisions in a clean
machine-readable format, the Open Legal Data platform comes close and for-
most is the only one providing an API and also possibility to download the
whole set of available court decisions in their database at once. Hence, this
platform is used the data source for court decisions.

As base data, the dump with all decisions from the Open Legal Data platform
was downloaded.22 After that, all the decisions were imported as a database
in the MongoDB instance to allow faster processing than working with JSON-
files. For a description of the actual pre-processing implementation, please refer
to section 5.1.1.

4.3.1.3 Annotation of court decisions

Once the pre-processing has been finished, one can finally start to annotate the
key sentences of the training data set with the dependencies. While a sentence
itself represents the type of legal relation accordingly to the keyword it con-
tains, the dependencies represent either a relation to an involved legal party or
to a certain type of information which specifies the legal relation, e.g. a date.
For the annotaton process, a tool was used, named INCEpTION 23. INCEp-
TON is a tool developed by Technical University Darmstadt24 that intends to

15https://www.bundesgerichtshof.de/DE/Home/home_node.html
16https://www.rechtsprechung-im-internet.de/jportal/portal/page/bsjrsprod.

psml
17http://wwwimages.adobe.com/www.adobe.com/content/dam/acom/en/devnet/pdf/

pdfs/PDF32000_2008.pdf
18https://www.w3.org/standards/xml/schema
19http://openlegaldata.io/
20https://tools.ietf.org/html/rfc8259
21https://html.spec.whatwg.org/multipage/
22https://static.openlegaldata.io/dumps/de/2019-02-19_oldp_cases.json.gz
23https://inception-project.github.io/
24https://www.tu-darmstadt.de/
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ease the process of annotating not only dependencies but various types. For
any details, it is refered to the extensive documentation of the tool which con-
sists of a user documentation25, an administrator documentation26 as well as
a research paper[Kl].

While the INCEpTION tool works with numerous input formats, spaCy requi-
res a special json format to train its machine-learning based model. To keep
the implementation as close as possible to existing standards, the CoNLL-
U 27 format is used. The CoNLL-U format is the successor of the CoNLL-X
format[RN606] that was a first approach towards a unified framework of an-
notations for multilingual dependency parsing. As a CoNLL format also the
CoNLL-U format is part of the Universal Dependencies28 framework that in-
tends to provide a consistent scheme to annotate grammatical structures. Whi-
le the developed model of the dependency parser is indeed not grammar-based,
one can still use the common CoNLL-U format as input format.

As the INCEpTION tool is only an external helper tool and the focus of this
work is on the underlying ontology itself and on methods how for extracting
semantic information modeled by the ontology, the INCEpTION specific anno-
tation process is only shortly described by its main steps. For further details,
it is refered to the official documentation.

First, the previously extracted and selected sentences for training the depen-
dency parser model are converted from a line-separated text file to the men-
tioned CoNLL-U format by using the a from the spaCy ecosystem, called
spacy_conll.29 The CoNLL file is afterwards imported to the INCEpTION
tool to conduct the actual annotation. Once the annotation is finished, the
exported CoNLL file now containing the semantic dependency annotations is
converted to the JSON training format used by the spaCy.30 For the conversi-
on, spaCy’s built-in converter is used.31

25https://inception-project.github.io//releases/0.11.0/docs/user-guide.html
26https://inception-project.github.io//releases/0.11.0/docs/admin-guide.

html
27https://universaldependencies.org/format.html
28https://universaldependencies.org/
29https://spacy.io/universe/project/spacy-conll
30https://spacy.io/api/annotation#json-input
31https://spacy.io/api/cli#convert
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4.3.1.4 Training of Dependency Parser Model

SpaCy’s dependency parser is built on the concept of a transition-based parser
explained in section 4.2.2.3. However, this concept is extended by combining
it with bidirectional long short-term memory (BiLSTMs)[KG16], a technique
incorporating neural-networks (Deep Learning). BiLSTM takes a token’s con-
text into consideration for calculating its vector which is then used to make
a prediction about the next parsing step. Referring back to what was said
in the discussion about the different dependeny parser concepts and here in
particular regarding the characteristics of static and dynamic oracles for de-
ciding which dependency should be added next and with which label, this
BiLSTM-technique functions as the dynamic oracle of spaCy’s statistical mo-
del. BiLSTM is an extension of LSTM which itself is a special variant of
RNN.

RNN stands for recurrent neural networks and represents a statistical method
for learning how to model sequential data. While RNN calculates a token’s
vector by using the ones of all its pre-successors, BiRNN also incorporates
the following tokens. For calculating a token’s individual vector, RNN-based
approaches use a manually defined set of so called feature functions. Common
features used by transition-based parsers are lexical characteristics like a to-
ken’s lemma value next to part-of-speech (POS) tags of a certain number of
words in the buffer (the following tokens"), the left-most and right-most tokens
on the buffer and the stack (which are mostly the syntactical modifiers32), the
number of modifiers’ modifiers, the parents of the words on the stack and the
length of the spans built by the stack tokens.[KG16, p. 3] Now, instead of using
manually defined feature functions, LSTM-based approaches only minimally
define feature functions, in specific, only the POS-tags and as an extension also
the left- and right-most modifiers of the three top-most tokens on the stack
next to the left-most modifier of the next token in the buffer. [KG16, p. 7]

4.3.1.5 Extraction of Semantic Legal Information

Once the dependency parser model has been trained and has been applied to
a sentence, the necessary semantic information for the visual presentation has

32seehttps://universaldependencies.org/u/dep/index.html
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to be extracted and stored properly. For extracting information, the generated
dependency tree for a key sentence is parsed by source code based logic. For
details please refer to section 5.1.2.2.
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Legal Concept Dependencies
Abtretung zed (Zedent), zes(Zessionar), an-

spr(Anspruch), ansprattr(Anspruch-Attribut)
Darlehen dnehmer (Darlehensnehmer), dgeber (Darle-

hensgeber), darlattr (Darlehensattribut)
Gesellschaftsgründung ae (Anteilgseigner), aeattr (Anteilseigner-

Attribut), ges (Gesellschaft),
gesattr(Gesellschaft-Attribut), bform (Betei-
ligungsform), bformattr (Beteiligungsform-
Attr), bsum (Beteiligungssumme), bsumattr
(Beteiligungssumme-Attribut)

Gesellschaftsbeteiligung ae (Anteilgseigner), aeattr (Anteilseigner-
Attribut), ges (Gesellschaft),
gesattr(Gesellschaft-Attribut), bform (Betei-
ligungsform), bformattr (Beteiligungsform-
Attr), bsum (Beteiligungssumme), bsumattr
(Beteiligungssumme-Attribut), treuh (Treu-
händer), treug (Treugeber)

Insolvenzverwaltung insverw (Insolvenzverwalter), insschu (Insol-
venzschuldner)

Kaufvertrag kaeufer, verkaeufer, kpreis (Kaufpreis), ksache
(Kaufsache)

Klagebegehren sbeteil (Streitbeteiligter), kbeg (Klagebegeh-
ren), rgrund (Rechtsgrund)

Kündigung kuendigender, kuendgeg (Kündigungsgegner),
kuendgrund (Kündigungsgrund), kuendattr
(Kündigung-Attribut)

Mietvertrag vmieter (Vermieter), mieter, mieth (Miethö-
he)

Rechtsnachfolger rnach (Rechtsnachfolger), rvor (Rechtsvorgän-
ger)

Schadensersatz setyp (Schadenseratz-Typ), rgrund (Rechts-
grund), schuldv (Schuldverhältnis)

Stellvertretung Stellvertreter, Bevollmächtigter, Geschäfts-
führer, Prokurist

Widerruf wirufndr (Widerrufender), wirufgeg (Wi-
derrufsgegner), wirufgstand (Widerrufsgegen-
stand)

Generic Auxiliary Concept Dependencies
Erklärung erkl (Erklärender), erklempf (Erklärungsemp-

fänger), erklgrund (Erklärungsgrund), legal-
root

Vereinbarung vpartner (Vereinbarungspartner), legalroot

Tabelle 4.3: Legal concepts and their dependencies
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As a complete description of the implementation specifics would by far exceed
the scope of the thesis, and is in fact also not neccessary for understanding,
only the main parts (NLP) are described and regarding the other parts, it is
referred to the source code.

5.1 Backend

5.1.1 Data Set and Pre-processing

As already mentioned, due to the lack of data sources that provide legal do-
cuments as raw data in a machine-readable format, pre-processing must not
be underestimated when one intends to apply NLP-techniques on judgments.
Specific for the used data source, the first step was to erase all the HTML-tags
from the downloaded base data as no raw data-only data dump was available.
For this task, the source code of an existing implementation provided by a tool
from the Open Legal Data initiative’s ecosystem is used.33 This implementation
is extended by customized Regex-based cleaning routines. As this step is spe-
cific to the used data set, its details are omitted within this thesis. For details,
pleaser refer to the source coude. Afterwards, the required section Tatbestan-
dïs extracted from the judgment together with the judgment’s docket number
since only this part is relevant. In order to do so, spaCy’s Token Matcher 34 is
used, a rule-based matching technique to extract text based on defined text
patterns. As patterns were defined, first, the expression Tatbestandänd second,
the expression Ëntscheidungsgründe". Here, Ëntscheidungsgründeïs the name
of the section following the Tatbestandßection. Both expressions are uniquely

33https://github.com/openlegaldata/legal-ner/blob/master/legal_ner/
preprocessing.py

34https://spacy.io/usage/rule-based-matching#matcher

37

https://github.com/openlegaldata/legal-ner/blob/master/legal_ner/preprocessing.py
https://github.com/openlegaldata/legal-ner/blob/master/legal_ner/preprocessing.py
https://spacy.io/usage/rule-based-matching#matcher


5 Implementation

used within a judgment so there is no risk to find duplicates. The matcher
returns the integer position of both terms wihin the text. Afterwards a new
Doc35-element is created with the span in between representing the Tatbe-
standßection. A Doc-element is spaCy’s wrapper implementation to model a
document’s text as a sequence of tokens and also sentences.

The initialization of the Doc-element is a major point when using spaCy. It
is here, where all the steps of the general well-known pre-processing tasks
within the field of NLP are applied.36 Fig. 5.1 shows the entire pre-processing
pipeline for transforming an unstructured text to one with structured lexical,
morphological, syntactic and semantic information. Below each phase, its single
subtasks are written. Those marked bold and in red are the ones used within
this work. As one can see, the parts of the syntactic and semantic phase like in
particular dependency parsing are already included. However, concerning the
current section of the thesis, the first two phases are relevant for the extraction
of key sentences suitable for being annotated and used as training data.

Abbildung 5.1: Pre-processing pipeline with used components bold and in red

Source: Own illustration based on [VGN]

Now that we can work only on the required part of a judgment, all judgments
ruled by one of the considered senates are searched for the defined keywords
of which each represents one of the legal concepts thas has previously been
defined. Also for this task, spaCy’s token matcher is used. For the matching,
not the actual textual representation of a word is used by the lemmatized one.
By using the word’s, or more precisly, token’s lemma, we actually compare a
word’s base form and thereby are able to cover a larger variety of sentences.
For example, the lemma of both words, "kaufen" and "kaufte", is "kaufen".
(German for to sell)

35https://spacy.io/api/doc
36https://spacy.io/usage/linguistic-features#tokenization
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During pre-processing several issues came up which results in the fact that
this used pre-processing procedure can not be conducted automatically but
rather requires a manual control at the end. For once, this is caused by the
fact that this implementation only is considered to be a prototypical one.
But the issues’ remaining reasons one also faces when implementing a more
sophisticated NLP-pipeline, arise from the text’s characteristic itself. Table 5.1
provides a summarized overview of two major constraints.

Issue Description Examples
Abbreviations of le-
gal parties’ names
(especially company
names)

The spaCy tokenizer
splits these space-
separated abbreviations
in individual tokes. Due
to the large variety of
abbrevation types, it
is difficult to find an
exhaustive set of rules
to properly merge them
to one token which is
mandatory to apply
correct dependency
annotations

Examples: A. B. C.
GmbH & Co. KG, Herr
A. B.

References to legal
documents introdu-
ced by one of the
parties (mostly re-
ferenced and quoted
contracts)

Due to the variety, it
is difficult to find rules
to automatically ignore
these parts for finding
key sentences for trai-
ning data.

Example: ..., was die
Parteien vertraglich auf
Seite 10 des Vertra-
ges vereinbart haben: ...
VERTRAGSTEXT...

Tabelle 5.1: Summary of arised issues during pre-processing and the resultung
constraints

At the end of this pre-processing, the sentences are tokenized in a way so they
can further be processed to the annotation phase.

5.1.2 Dependency Parser

Describe the parameters of spaCy’s dependency parser
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5.1.2.1 Annotation and Training of the dependency parser model

The pre-processed sentences have been pre-annotated with syntactical depen-
dencies based on the TIGER corpus.37 The developed dependencies of every
legal concept are not designed to annotate a whole sentence with only seman-
tic legal dependencies but rather just use semantic label for the dependencies
to tokens which actually have some sort of legal semantic meaning. While the
remaining dependencies do not get semantic labels, these non-semantic ones
still need to be rearranged so the new semantic structure actually builds a va-
lid dependency tree again. Concerning this work, the developed ontology was
designed in a way to allow the new semantic dependency structure to also be
projective.

Concerning the exisiting syntactic labels, by theory, one possibility could have
been to completely delete all non-semantic label and replace them just with
one like ”. But instead of choosing this way, it was decided to use the existing
syntactical labels and limit the refactoring scope of the syntactial relations to
only adjusting the arcs direction and heads. Fig. 5.2 illustrates this tranforma-
tion process by first showing the pre-annotated sentence with its syntactical
dependencies and afterwards the sentence with semantic dependencies and the
adjusted syntactical ones. When looking at the area within the left red rec-
tangle one can see that the syntactic aggregation point for the part that is
describing the date when the rental agreement has been signed, is the word
ïm". As defined by the German grammar, this word in its here used function
represents a modifier annotated with mo. The same is true for the right rec-
tangle, the part that states who the landlord. Now within our semantic model,
these high level nodes in the dependency tree are represented by the actual
semantic legal concept. So the left modifier dependency is transformed to a
dependency labeled with "datumänd the right one respectively to one labeled
with "vmieter". Thinking back to what was said in section 4.3.1.4 about the
underlying concept of spaCy’s implementation of its dynamic oracle for how
to decide which label is used to annotate the next arc, better results can be
expected when also the non-semantic arcs are labeled and the node represen-
ting the upper semantic legal dependant is chosen as the head element. As
we are not interested in extracting these non-semantic parts, the actual label
name is not as important as it is to use the same labels no matter which type

37https://spacy.io/models/de
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of legal concept the head node specifies. For the same reason, spaCy’s default
POS component of its German language model is used as the base model to
train the model’s dependency parser component from scratch. By doing that,
one can leverage the neural-network features of spaCy’s dependency parser
training method.

(a) Sentence with semantic dependencies

(b) Sentence with semantic dependencies

Abbildung 5.2: Transformation of syntactic to semantic dependencies

Source: Screenshot INCEpTION annotation tool

Regarding the actual technical procedure to train the dependency parser mo-
del, the spaCy built-in command-line interface (CLI) was used.38 In order to
provide the training data in the required JSON-format, spaCy’s built-in CLI-
based converter functionality was used.39 After the CONLL-file that had been
exported from the INCEpTION tool was converted to spaCy’s training JSON-
format, the model’s dependency parser component was trained by using the
CLI-based training functionality with its default settings. Hence, these specific
settings are not presented here.

5.1.2.2 Extraction Rules

The file sentence_analyzer.py contains all the routines for parsing a sentence’s
dependency tree and extracting the semantic information. As the file is a few
hundred lines long and therefor looking at excerpts can not be considered
useful. Please, directly refer to the source code.

Generally, the suggested bottom-up approach is used40, meaning the tree is
parsed by directly iterating over the root’s children elements. As we are using
semantic dependency labels, the logic for extracting a certain type of informa-
tion completely is the direct technical representation of the logic the semantic
ontology is built upon.
38https://spacy.io/api/cli#train
39https://spacy.io/api/cli#convert
40https://spacy.io/usage/linguistic-features#navigating
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As it will be presented in chapter 6, compared to the small training data set,
the results can be considered as good. Nevertheless, the quality is not high
enough to build dependency trees with a high enough correctness of the arc la-
bels so the exception handling of the theoretically straight-forward logic would
be possible. As this implementation intends to only be prototypical one and
not one on production level, the functionality of the implemented sentence
analyzer is limited to sentences with a high level of label correctness. Ano-
ther constraint is the storing of the extraction results. Since an automatic-like
extraction is not possible, the implementation of a sophisticated solution for
storing documents together with the semantic information like Elasticsearch41

has not been done.

5.2 Frontend

The frontend is implemented using the JavaScript library React.42 To actually
being able to show a graph-based representation of a judgment’s legal facts, the
additional library react-d3-graph is used. Refering to what was said regarding
the quality of the final extracted information, a dynamic implementation that
instantly fetches data from the backend’s API seemed not to make any sense.
While the API has been setup in the backend, for the purpose of this work the
frontend uses manually prepared data to illustrate the result of the analysis of
a judgment’s legal facts section.

41https://www.elastic.co/products/elasticsearch
42https://reactjs.org/
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6 Evaluation

The evaluation of this work is split into two parts - a quantitative evaluation
and a qualitative evaluation.

6.1 Quantitative Evaluation

For the quantitative evaluation, two different trained dependency parser mo-
dels are compared. The first model was trained without spaCy’s machine-
learning capabilities regarding the in section 4.3.1.4 described implementation
of a dynamic oracle for determining how the dependency arc is labeled. The
other model contained spaCy’s default pre-trained POS-component that pro-
vides the POS-tags for the training of the dependency parser component. Both
models are compared by their respective Unlabeled Attachment Score (UAS)
and the Labeled Attachment Score (LAS). The training data set consisted of
different 38 sentences distributed over all types of supported legal relations.
The evaluation data set consists of 25 sentences. The results can be seen in
Table 6.1.

Without POS-
component

With POS-
Component

UAS 79.46 80.10
LAS 42.94 68.37

Tabelle 6.1: Results

Remarkably, the model with the POS-component integrated, reached a LAS
score over 25 points higher than the one of the other model. The probably
most important result of this work is thereby that by using neuronal-network
capacities for determining the next arc label, one does not need to fully anno-
tate the sentence with semantic labels as long as the labels for the relations to
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6 Evaluation

the surrounding tokens are consistently used one with respect to their naming
and second regarding their head-child direction.

6.2 Qualitative Evaluation

Concerning the qualitative evaluation, Mr. Schaper, a lawyer of Verlag Dr.
Otto Schmidt KG manually drawed graphical representations consisting of the
involved parties and the legal relations among them. While the LAS score
of 68.37 % can be considered relative high compared to the small amount of
training data, the value turned out to be too low to actually reliable extract
the information in a degree with that a qualitative evaluation would have made
sense.
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7 Summary and Discussion

7.1 Summary

With the existing potential regarding the use of semantic information retrieval
solutions that has been shown within the introduction, the following section
presented a short overview of the ongoing research of using NLP-techniques
to extract semantic information from legal documents. During the following
system design chapter, existing frameworks for legal metamodels and ontologies
were shown alongside with an explanation of the NLP-techniques used for the
implementation within this work. After the description of the prototypical
implementation of the developed concept, an evaluation concluded the work.
All of these parts were shaped around the three research questions defined in
chapter 3. For each of them a conclusion is drawn in the following section.

7.2 Conclusion

How an ontology for representing semantic information of court decisi-
ons can look like? Although there is a lot of research on developing legal
metamodels and ontologies in general, there is less research on how to specifi-
cally model information within court decisions and even less for German court
decisions. Nevertheless it was accomplished to develop an ontology with that
it was possible to construct valid projective dependency trees to structure the
information within a sentence.

How the key information of a court decision can automatically be extrac-
ted using NLP? While defining extraction rules when one uses constituency
parsing takes a lot of effort since all possible syntactic combinations must be
considered to ensure a certain type of information is found regardless of its
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7 Summary and Discussion

grammatical representation, this does not apply to dependency parsing in this
extent. The implemented extraction rules are quite simple as they directly fol-
low the ontology’s structure.This can be considered an advantage compared
to syntactic dependencies. The reason why the extraction results are not so
high is the relative small amount of training data which did not allow higher
LAS scores. As the defined legal relations can be composites of each other
thereby are also so annotated, incorrect dependency arcs consequently invalid
the extraction rules and thereby lowering the overal result. Compared to the
amount of training data used in other NLP projects, it can be expected that
once more annotated training data is available, the results will rise.

How a prototype for a semantic analysis of court decisions can be im-
plemented? A basic version of a prototype could be implemented. Of course
the main focus of the implementation layed on the NLP-part. Regarding the
API and the frontend, it has to be noted that this is intentially kept at the
bare minimum.

7.3 Limitations and Future Work

Conclusively, we can summarize that the developed approach seems to be
promising to be further developed. However concerning the current state, there
exist some limitations to be named.

1. No real support of annotating and extracting information from relative
clauses

2. Due to the too low LAS score to test proper extraction rules, limited
support of extracting hierarchically wrapped legal concepts

3. Necessity of manually defining which party is the plaintiff and which is
the defendant since not all judgments explicitly name it

4. Limited preprocessing quality

In the future, the major task will certainly be to create more training data.
With the current result in mind, the expectations to finally reach practice sui-
table values with sufficient training data can be considered as high. Having a
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7 Summary and Discussion

solid foundation of training data available, one will able to improve the extrac-
tion logic and thereby also enable a proper visual representation. Regarding
the before mentioned limitations, one task should be researching on the topic
coreferencing to enable the handling of relative clauses. Next to this, also the
improvement of the preprocessing is necessary in the future since implementing
proper rules is time intensive and the scope was limited due the fixed amount
of time available. All in all, the results are promising and once the concepts
are consequently further developed, the chances are high to be able to provide
extensive solutions for extracting semantic information.
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