[

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Using Multiteam Systems Theory and
Team Work Quality to Identify Influence
Factors for Measuring the Performance of

Agile Teams in Large-Scale Agile
Development

Maximilian Doepp

0






[

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Using Multiteam Systems Theory and Team
Work Quality to Identify Influence Factors
for Measuring the Performance of Agile
Teams in Large-Scale Agile Development

Nutzung der Theorie von Multiteam
Systems und Team Work Quality zur
Identifizierung von Einflussfaktoren fiir die
Bewertung der Leistung Agiler Teams im
Large-Scale Agile Development

Author: Maximilian Doepp
Supervisor: Prof. Dr. Florian Matthes
Advisor: Omer Uludag M. Sc.

Submission Date: 15.06.2019

D




I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.06.2019 Maximilian Doepp



Acknowledgments

First and foremost, I would like to thank my thesis advisor Omer Uludag for his great
support in every way during the whole process of the master thesis. You helped me a
lot even before the start of the thesis by finding a working tile until the end and also in
between over every stone in the way.

I would also like to thank Professor Dr. Florian Matthes, for providing me with the oppor-
tunity to write my thesis at his chair for Software Engineering for Business Information
Systems (SEBIS) and his valuable feedback during my first presentation.

Furthermore, I would like to thank Professor Dr. Ing Torgeir Dingsoyr and Finn Olav
Bjornson who always helped with ideas and advice based on their knowledge of TWQ
and large-scaled agile development in multiple meetings. Thank you for your time and
constant support at every step.

In addition, I would like to thank Sabrina Schweigardt and Christian Schmitz for the
close collaboration at the industry partner as well the people working there. Without the
chance to participate in the agile transformation at the industry partner this thesis would
not be possible. It was a pleasure to investigate the transformation of that scale with such
motivated people.

Most importantly, I would like to thank my family, including my better half Katja, who
helped with their unconditional and ongoing encouragement. Thank you for your kind
support and contribution.

Lastly, I am grateful to all the people from the case study partner who participated in
the survey. Only with survey results I was able to analyze the impact on the team and
program performance.






Abstract

Minimizing risks through intensive pre-planning, applying the rigid step-by-step pro-
cesses, and structures has traditionally been common practice for large software develop-
ment. The biggest influence factor on the overall result for this approach, is a mistake
that appears at the very beginning of the chain. A rule of thumb is that fixing one mistake
makes it ten times more expensive to fix per step. A missing point in the analysis phase
can be quickly added to the original requirements. If this first becomes apparent in the
testing phase though, than the entire process must be run again. Furthermore, these
projects are very time-consuming and not very flexible considering new requirements
from the market.

For this reason, in recent years companies have concentrated more and more on agile
development by structuring their organization into smaller units and implementing a
team-oriented organization. With more and more successfully finished projects, it became
the starting point for larger companies to adopt agile for their needs. However, millions
of lines of code cannot be written by only seven developers. This was the point where
large-scale agile became relevant to define methods that would, in turn, define light
weight processes in order to carefully coordinate such a combination of teams. The new
structures bring new challenges and new influence factors that effect the success of the
project.

At this point this master thesis starts analyzing the different influence factors on
large-scale agile teams and programs. The main goal is to identify models based on
the available literature from large-scale agile and other scientific areas concerning the
interaction of teams that have the same overall goal. To prove the influence in practice, the
influence factors are validated at a case study partner in the banking sector by conducting
a survey in a large-scaled agile program with almost 150 team members. The results and
findings should provide existing and new projects insights into ways to optimize their
performance.







Contents

Acknowledgments

Abstract

1

Introduction

1.1 Motivation . . . .
1.2 Researchobjectives . . .. . ... ... ... ... ... ... .. .. ...,
1.3 Research approach

Foundations

2.1 Agilesoftwaredevelopment . . . . . ... ... . o oL
21.1 Theagilemanifesto. ... ... ... ... .. .. ... ... .. ...
212 Scrum ...

2.2 Large-scale agile software development . . . .. ... ... ... .. ...
221 LargeScaleScrum . .. ... ....... ... .. .. ... ...,
222 Nexus . ... .o
223 Scaled Agile Framework . . . . .. ........... .. ......
224 Challenges and success and factors. . . . . ... ... ..... ...

23 Teamworkquality . . . . .. ... ... ... L

2.4 Multiteam systems MTS) . . .. ... ... ... ... o L.
241 Influence factorson MTS . . ... ... .. ... . ... ... ...

Related work

31 Intra-team . . . .. . . . e

32 Inter-team . . ... ... ..

Case study

41 Casestudydesign. .. ... .. ... ... ... .. .. ... ...

42 Casedescription. . . . ... ... .. L

4.3 Large-scaled agileadoption . . .. ... ... . ... ... . ... .....
431 Programsetup . ... ....... ... ... ... .
432 Teamsetup . ......... .. ... ... ... .
433 Architecture . . . .. ... Lo

Methodology

51 Questionnairedesign . . . . . ... ... ... L L
51.1 Participants . . ... ... ... ... .

iii

43
43
46

49
49
50
52
55
62
68

71
71
72

vii



Contents

512 Measures. . . . . o v v i e e e e 76

6 Data analysis and Processing 77
6.1 Modeling framework . . . . ... ... . Lo L Lo 77
6.2 Dataanalysis. . . . ... ... ... .. 78
6.3 Dataoverview . . . . . . . .. e 80
6.3.1 Modelfit . . . . . . .. 80

6.32 Teamleveldata . . .. .. . . . . . . . ... 81

6.3.3 Programleveldata . . ... ... ... ... .. .. .. ... .. ... 84

6.34 SEM model and factor loadings . . . . . . ... ... ... .. ..., 85

7 Evaluation and results 87
7.1 Isthe TWQmodel applicable . .. ... .. ... ............... 87

7.2 Additional influencing factors and their impacton TWQ . . . . ... ... 89

8 Discussion 101
81 Keyfindings . . .. ... ... .. ... 101
82 Limitations . . . . . . . . .. e 102

9 Conclusion and future work 105
91 Summary . . . . ... ... 105
92 Futurework . . . . . . . . 106

10 Appendix 109
10.1 Survey questionnaire . . . . . .. ... ... ..o 109
10.1.1 Questions based onthe TWQmodel . . . . . ... ... ....... 112
Bibliography 135

viii



1 Introduction

This chapter explains why the focus on influence factors for team and program perfor-
mance is relevant in the current software development period where agile development
has become state of the art. Furthermore, it presents the main goals and the research ques-
tions (see Section 1.2) that are addressed in the master’s thesis and what methodology is
applied to answer those research questions (see Section 1.3).

1.1 Motivation

Teamwork and the optimization of people is as old as the history of human cooperation.
Sally Bibb, author of "The Stone Age Company" illustrates, that stone age men had to
optimize their work (hunting) as opposed to the present-day man who has commitments
to other people, tasks, motivation, and the desire to take risks and encourage innovation
[8]. The Stone Age man lacked a computer, but today’s companies have two challenges in
software development that have changed and is still changing the software development
process and how it was developed in the last three decades.

Complexity of software

Software has become integral to our lives. Whether it be the software to edit spreadsheets
in the office and send them via e-mail, Facebook to check what our friends had for lunch
today, or the software in our cars that saves lives in emergency situations, everyone relies
on software to deliver its part.

To give an example of how complex software has become, the following comparison
shows the increasing number of lines of code throughout history. In 1969, the Apollo
11 flew to the moon and back with 140,000 lines of code [83]. Nowadays, the mobile
phone in your pocket will have over twelve million lines of code where you can browse
Facebook with fifty million lines in your Chrome browser with ten million lines of code
in the car with 100 million lines of code [32]. These numbers of code sound immense.
Just as an example, one million lines of code printed out, would cover 18,000 sheets of
paper which is the equivalent to fifteen copies of War and Peace.

To develop such examples of complex software in the past, one would have required
complex organizations and processes to analyze — design — implement — test and
maintain it (Royce and Winston (1987) [89]). A great deal of time and energy was invested
in the upfront planning and gate processes were introduced so that all eventualities were
taken into account to mitigate the risk of failures. But this approach led to a lengthy
time-to-market and an inflexible requirements management, which did not allow fast




1 Introduction

changes to customer wishes and needs. The introduction of agile development, that is
explained in more detail in Section 2.1, emerged as a lightweight development method in
the 1990s [6]. More and more people and companies became convinced in the need to
transition from the heavyweight approach to agile development.

Agile development emerged from the combination of a limited amount of developers and
the cooperation of a small team. Over the years, as more projects were successful, this
became the starting point for larger companies to adopt agile for their needs. However,
millions of lines of code cannot be written by only seven developers. This was the point
where large-scale agile became relevant to define methods that would, in turn, define
light weight processes in order to carefully coordinate such a combination of teams.

At this point a new field for software development emerged: the coordination of teams.
The old processes were mostly based on a top-down planning approach to coordinate
such large-scale settings. Yet, agile development focuses on a strong bottom-up approach
that is completely different to most management styles of multiple team coordination.
This setup is more similar to the definition of a multiteam system (MTS) from Hoegl and
Gemuenden, 2001 (see Section 2.3), which defines a setting of multiple interdependent
teams which are combined into one system to fulfill a shared goal [59].

This research area is particularly under developed as only a limited number of studies are
available and even less have focused on the performance outcome for an agile program.

Lack of resources

As easy as it may sound: What is needed to develop software? Qualified, available, and
affordable developers. However, this is a problem in most European and North-American
countries. Based on research from Bitkom in 2018, the lack of IT experts is a pressing
problem in Germany. There are more than 82,000 open positions and 81% of the asked
participants identify a lack of IT experts [105]. This means that it is nearly impossible
to begin a new project with 100 skilled developers in Germany. Each project has to
make trade-offs based on the resources that are available. Among the typical solutions
are the use of young junior developers and the geographical distribution of the team.
Most companies rely on developers in different locations or on freelancers, who usually
support the team for an extended period of time. If one does not find enough resources
in this way, most companies focus on a nearshoring or offshoring strategy. This strategy
increases the coordination effort for the teams, as factors such as language, time zone, or
cultural differences have an impact on the team.

Optimization of the outcome

Combining the two factors with time and money, it becomes clear that this is an optimiza-
tion problem: how does one manage to achieve the best result with the given setup of
persons and procedure model?

The goal of this thesis is to answer following question: what factors have an influence on
the team and program performance of a given Scaled Agile Framework (SAFe, details in




1.2 Research objectives

Section 2.2.3) program. The focus is not on which methodology would be better, since
there are already a number of studies (Aoyama (1998) [2], Vijayasarathy et al. (2012)
[112]) in this area and the agile approach is currently the most widely used. Additionally,
the management structures or other predetermined influences are not considered here.
The goal is rather to find a model that provides an indication for how each team works
together and what the expected performance is. Based on the factors it should be possible
to define actions which would have a positive effect on the performance.

1.2 Research objectives

Four questions shall be answered in this thesis in order to achieve the overall objective.
The research is divided into team and program levels, because there can be different
factors on each level. The questions are validated by the case study partner in order to
provide evidence.

Research question 1 (RQ1): What positive and negative influence factors
exist on team and program level in literature and which can be mapped to an
agile environment?

To answer the first research question, existing literature on challenges and success factors
for agile development and large-scaled agile transformations will be analyzed to provide
an overview of what factors and models exist in this area. These factors provide an
overview of which influences are known so far and therefore it should be clarified which
factors have been considered in the model in research question three and which are not.

Research question 2 (RQ2): Can the multi-team system (MTS) concept be
applied for large-scale agile programs in order to adapt the existing research
in this area?

Question two focuses on influencing factors at program level. Since there are very few
studies in the large-scale agile environment in this area, the MTS concept is used here
because it is a similar construct. Therefore it is answered whether the MTS studies can
also be applied to large-scale agile development or whether there are differences. If
the requirements for an MTS are fulfilled by an large-scale agile program, then existing
studies from MTS can also be applied to large-scale agile programs.

Research question 3 (RQ3): Can the teamwork quality (TWQ) model be ap-
plied by the case study partner on the team level and are there any additional
significant factors that can be added?

The third question will be illustrated through a survey at the case study partner that the
teamwork model of Hoegl and Gemuenden is applicable here. A survey was carried out
and the results compared with a study from Dingseyr (2018) in an agile environment.




1 Introduction

Additionally, further influencing factors were applied to the model, which had an influ-
ence on the performance. The (1) team size, (2) geographical distribution, (3) company
affiliation and (4) experience are regarded as additional factors, which are confirmed or
rejected in extra hypotheses.

Research question 4 (RQ4): Can the TWQ model be applied from the team
level to the program level?

Finally, based on the case study, the fourth research question clarifies how the TWQ
model can be applied at the program level. A second survey was used to prove this. It
is important to note that this is only one program and therefore only an indication is
delivered, since several programs are required to verify direct proof.

1.3 Research approach

The thesis is divided into a theoretical part with a literature review and a qualitative case
study approach [40] that uses a mixed methods exploratory research design (Creswell and
Clark (2011) [27]; Tashakkori and Teddlie (2010) [109]) to combine a literature review, a
case study, and a survey into the research approach. Mixing methods can give additional
insight which is not possible if only one method is used (Kaplan and Duchon (1988) [65]).
This combined approach has already been used and proven in multiple research papers
(e.g. Cyr et al. (2009) [29]; Turel and Bart (2014) [110]).

The mixed method approach helped to match the current literature with insights regard-
ing large-scaled agile development and multiteam systems in order to see if the results
applied to the case study partner. The case study results are then used and combined
with the survey results to analyze correlations between team setup and team performance.

In detail, to following approach was used:

The literature review was made to build the knowledge base for three topics, besides
the fundamental explanation of Agile, Scrum and SAFe. The following three literature
reviews are used for this theses:

Challenges and success factors for large-scale agile transformations In order to first
identify the overall challenges and success factors, a structured literature review
is done based on the recommendations of Brocke et al. [113]. Based on the mo-
tivation, scope, and research questions, a relevant search term is designed. The
following terms and their synonyms and abbreviations: "Title:(Performance OR
"Success factor" OR Challenge) AND Title:(Product OR Program OR Group OR
Teamwork OR Team) AND ("Software Development" OR "Software Engeneering"
OR "Large Scale Agile Development" OR "Extreme Programming" OR "Scrum"
) AND NOT(Manufacturing)" and later than 2010. Using these search terms in
ACM, Google scholar, Web of Science and IEEExplore, 351 initial results of relevant
literature were found in November 2018. The results were checked for duplicates




1.3 Research approach

and first filtered by the tile. The remaining were ordered by the number of cities in
order to find the most relevant results. The results are shown in Section 2.2.4.

Teamwork Quality (TWQ) Two required results are delivered by a forward and back-
ward search based on the initial TWQ paper. (1) What works already exist that
combine both TWQ and agile? (2) What other models are available that inves-
tigate team performance, especially with regard to team size and geographical
distribution?

Multiteam systems (MTS) Additionally, for the MTS a forward and backward search
was conducted to find existing MTS models in this research area. A focus was made
to identify models with relevant influence factors and how they are related to the
performance.

The single-case study was used to address research questions 3 and 4 with two online
surveys. Additionally, semi structured interviews and observations were done to under-
stand the program setup and the team dependencies in order to explain the results and
give insights into the program.

More details about the case study design are described in Section 4.1 by following the
guidelines from Runeson and Host [90] and in order to answer the elements of the plan
by Robson [88] about the objective, theory, research questions, methods and selection
strategy of the case study.

1. Identify problem and motivate Chapter 1

Knowledge Base Chapter 2 & 3 Environment : Case Study
Intra-Team Inter-Team 2. Define research Explorative case study
objectives
* Semi-structured

Rine Agile Large-Scale Agile dev. interviews

§ * t + Observations (PI

S Challenges and success factors Planning) )

o « Data analysis

Teamwork Quality Multiteam systems Chapter 5 Chapter 4
wQ) (MTS) 3. Design questionnaires
- Survey
¢ |1 onsomzorazors) || | | g Memeutand |
'8 « TWQ survey on team
i 5 level

% e ‘ Scheerer (2017) ‘ + Adapted TWQ survey on
8 4. Conduct and analyze program level (PWQ)
< questionnaires

% Shuffler (2015-2018)

= Chapter 6 & 7

L

5. Communication Chapter 8 & 9

Figure 1.1: Research approach overview and mapping with thesis chapters

Figure 1.1 shows the structure of the thesis by clustering the knowledge base and envi-
ronment mapping them to the chapters. In Chapter 1 the topic and the motivation of the
thesis are defined along with the objectives that should be achieved and how it was done.




1 Introduction

Chapter 2 and 3 give an overview of the main knowledge that is required to understand
the case study in Chapter 4 and the survey from Chapter 5. Chapter 6 and 7 provide
insights about the survey methodology and the results from the two surveys. Chapters
8 and 9 summarize key findings, show limitations and provide an outlook for further
research and next steps.




2 Foundations

This chapter provides the theoretical foundation for the following chapters of this thesis
and shows how the different theoretical constructs map together. It is important to know
not only the fundamentals for scaling agile frameworks (see Section 2.2) and what values
and principles are being used for Agile (see Section 2.1) /Scrum (see Section 2.1.2), but
also how teams are working together in multiteam systems (see Section 2.4).

2.1 Agile software development

The increasing number of failed projects and adjustments to the requirements in IT
projects with traditional software development (e.g. waterfall model defined by Royce in
1970 [89]) in the 1970s to 1990s initiated the transition to agile development. The chal-
lenges in a plan-based approach are that the requirements must be clearly defined at the
beginning of the project, and that changes, undefined, as well as emerging requirements,
cannot be addressed [22].

Far from
Agreement

Complex

Requirements

Complicated

Close to
Agreement

Close to Technology Far from
Certainty Certainty

Figure 2.1: Usage of agile development in case of uncertainty with requirements or tech-
nology or both [66]

This is due to the growing software complexity over the years as a result of the growing
availability of PCs. Schwaber and Beedle prove that agile can be applied when there is




2 Foundations

uncertainty with requirements, technology, or both (see Figure 2.1). They call this the
"complex space" and include projects such as the development of brand new products or
knowledge work [66].

To address these challenges a number of software methods arose that follow an agile
approach. Some of the most popular methods are Scrum (Schwaber (2004) [95]), eXtreme
Programming XP (Beck and Gamma (2000) [7]), Crystal (Cockburn (2004) [23]) and
Feature Driven Design FDD (Coad et al. (1999) [21]).

Compared to traditional software development approaches, agile methods are more
adaptive than predictive. They focus on providing value to customers and supporting
the variability of requirements (Boehm (20002) [10]). They want to achieve these goals
with high customer involvement based on User Stories, as well as through customers
participating in discussions and therefore giving faster feedback for the development
team (Fraser et al. (2004) [47], Lohan et al. (2011) [76]). An additional difference is the
people-oriented approach rather than the process-related (Beck et al. (2001) [6]) one. It
has been proven that the human factor in agile projects is a critical component for the
project’s success. Subsequently, the agile methods promote team cohesion and interaction
between developers and customers (Ceschi et al. (2005) [19]).

2.1.1 The agile manifesto

Based on the new approach, in 2001 seventeen software developers analyzed the existing
solutions and published the Manifesto for Agile Software Development (Beck et al. (2001)
[6]). In it they combined ideas on how to make software development more agile. This is
mainly defined in four values and twelve principles.

The "Manifesto for Agile Software Development" posted on the Agile Alliance website !
contains the following statement:

"We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value"

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation

4. Responding to change over following a plan"

Figure 2.2: The four core values of the agile manifesto [6]

With its core values and twelve core principles, the Agile Manifesto provides a theoretical
basis for effective software development. However, in order to benefit from the agile

1http ://www.agilemanifesto.org



http://www.agilemanifesto.org

2.1 Agile software development

software development, companies must adapt the core values and principles to their own
organization and software development processes.

1.

10.

11.

12.

Our highest priority is to satisfy the Customer through early and continuous deliv-
ery of valuable software.

. Welcome changing requirements, even late in development. Agile processes harness

change for the Customer’s competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

. Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.
Simplicity-the art of maximizing the amount of work not done-is essential.

The best architectures, requirements, and designs emerge from self organizing
teams.

At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

Figure 2.3: The twelve principles behind the agile manifesto [6]

2.1.2 Scrum

The idea, originally presented at a conference in 1995 (Sutherland and Schwaber), is based
on research by Takeuchi and Nonaka (1986) who investigated the development of new
products in Japan and the United States. The companies followed a new approach for
product development called the rugby approach. Companies using this approach show
six characteristics of new product development: (1) built-in instability, (2) self-organizing
project teams, (3) overlapping development phases, (4) multilearning, (5) subtle control
and (6) organizational transfer of learning [108].




2 Foundations

Definition of scrum:

Scrum: A framework in which people can address complex adaptive problems, while
productively and creatively delivering products of the highest possible value [97].

Scrum is:
1. Lightweight
2. Simple to understand

3. Difficult to master

Scrum is a process framework that has been used to manage work on complex products
since the early 1990s. Scrum is not a process, technique, or definitive method. It is,
rather, a framework in which one can employ various processes and techniques. Scrum
highlights the relative efficacy of one’s product management and work techniques so that
one can continuously improve the product, the team, and the working environment.
The Scrum framework consists of Scrum teams and their associated roles, events, artifacts,
and rules. Each component within the framework serves a specific purpose and is
essential to Scrum’s success and usage.

The rules of Scrum bind together the roles, events, and artifacts, governing the relation-
ships and interaction between them. The rules of Scrum are described throughout the
body of this document.

Specific tactics for using the Scrum framework vary and are described in other scientific
works.

The Scrum process is iterative and incremental. A visual representation of the flow
can be seen in Figure 2.4. The Scrum Team consists of the Product Owner (PO), the
development team (dev. team), and the Scrum Master (SM). They are self-organizing and
cross-functional and the teams have all the skills needed to execute the job without being
dependent on others who are not part of the team. The Product Owner is responsible for
maximizing the value of the product resulting from the work of the development team.
The approach can vary significantly between companies, Scrum teams and individuals.
The Product Backlog is an ordered list of all things the product is currently required to
do; it is the central point of contact for all change requirements to the product. The
Product Owner is responsible for the Product Backlog, including its content, availability
and ordering. The expectations for the team are discussed in the Sprint Planning meeting
between the PO and the dev. team members. The scope that was part of the Product
Backlog will than be the Sprint Backlog for the Sprint. The core of Scrum is a Sprint. A
standard time line for a Sprint is between two weeks and one month. All Stories from
the Sprint Backlog that are completely finished become a release-ready Product Increment
(PI). Sprints have a constant duration throughout the development time that should not
be adapted too often. A new Sprint begins immediately after the previous Sprint has
been completed. The Sprint results are shown to the Product Owner by the Development

10



2.2 Large-scale agile software development

Team members. The Product Owner decides if all Acceptance Criteria have been fulfilled
so that the Story is "Done". All Stories that are not "Done" will be moved back to the
Product Backlog and are potential candidates for the next Sprint Planning meeting. The
Development Team consists of seven plus minus two people. They work cross-functionally
and are self-organizing. The Scrum Master is responsible for promoting and supporting
Scrum. The SM help everyone understand the Scrum theory, practices, rules, and values.
The Scrum Master (SM) helps the Team to archive goals and remove existing impediments.
Two additional meetings (Daily Scrum or Daily Stand-Up) are used to make the progress
more transparent to all development team members and to optimize the team and the
Scrum process (Sprint Retrospective) (Schwaber and Sutherland (2011) [96]), [97]).

Sprint
Retrospective

%
3§

Increment

B-EF~

Product Sprint
Backlog Backlog

7 Scrym Tea™

Figure 2.4: The Scrum Framework [99]

2.2 Large-scale agile software development

Originally agile methods were designed for single-team projects [11], but the success
and the easy structure of agile methods made them appealing for larger projects with
more than ten people [37]. It is worthwhile to note that one should not keep filling an
agile team with more and more team members, because then the Ringelmann effect
becomes bigger. This effect demonstrates that people become less productive when they
work with others; this loss in efficiency increases with group size, but with gradually
decreasing speed [86]. The effect is shown in Figure 2.5 that shows the effect investigated
by Steiner (2007) who determined that groups never perform at the productivity level
they could, because of process losses. Steiner (2007) summarizes all influencing factors
that occur when people work together as process losses. Such examples are coordination,
communication, challenges, and motivation issues. The peak productivity of a team is
four to five people according to Figure 2.5 and this is the same result that was investigated
by Hackman (2002) [54]. Therefore, in a large project, there is no alternative than to divide

11



2 Foundations

the team members into several teams in order to keep the process losses as low as possible.
However, a compromise has to be found between team size and overhead per team, as
each team needs a PO and SM. Additionally the coordination between a few teams is
easier than between many teams, therefore the recommended team size of Scrum is
slightly larger than the results of Steiner (2007) and Hackman (2002).

Productivity / Process loss

1 2 3 4 5 6 7 8
Group size

—Potential productivity of group Process losses
- - -Actual productivity of group Mean actual productivity per worker

Figure 2.5: Productivity development in correlation to the team size [106]

However, it should be noted that larger projects require additional coordination espe-
cially regarding the inter-team coordination, architectural guidance, and clearly defined
requirements outside of the team. Naturally, the additional effort brings advantages,
such as shorter time-to-market for new features and higher velocity [71]. Scaled frame-
works offer a solution for exactly this problem in order to use Scrum as a method on a
large-scale and for a large number of product teams. Companies can use different scaling
frameworks. These frameworks are usually developed on Scrum or other agile methods
as a foundation. This definition shows what must be taken into account by scaling agile:

"There are two fundamental visions on what it means to scale agile. The first,
tailoring agile solution delivery strategies to address scaling factors such as
geographic distribution, regulatory compliance, and large team size is referred
to as tactical scaling. The second, adopting agility across your IT department
and your organization as a whole, is referred to as strategic scaling. The good
news is that many organizations are tactically applying agile techniques at
scale and are succeeding in doing so." [1]

At the XP2014 conference, Dingsoyr and Moer and other participants determined what
defines large-scale agile development. The main criteria are size, code base size, project

12



2.2 Large-scale agile software development

duration and project budget; e.g., "Over 50 developers OR 1/2 million lines of code OR
more than 3 sites / time zones" [36]. Dingseyr and Moer defined it more precisely in
2018 with the following definition: it is large-scale development when more than two
teams work together and a very large-scale development when more than ten teams work
together [37].

Based on the growing demand, more and more scaling agile frameworks have appeared
over time, among them are: Spotify Model, Scaled Agile Framework (SAFe), Disciplined
Agile 2.0, Scrum of Scrums or Nexus. Uludag et al. compared twenty scaling agile
frameworks in their paper "Investigating the role of architects in scaling agile frameworks"
[111]. SAFe Essential will be described in more detail in Section 2.2.3. Besides SAFe, LeSS,
and Nexus are the two most common frameworks that could be compared to SAFe in
order to see the differences in framework.

2.2.1 Large Scale Scrum

The framework Large Scale Scrum (LeSS) is following the motto "LeSS is more". It stands
out due to its simple structure, as it is based on functioning Scrum teams. These teams
are responsible for agile product development under the control of a single PO. The LeSS
framework is characterized by three basic elements: Principles, Rules and Experiments. It
is an organizational framework that enables Scrum teams to work together as effectively
as possible. Figure 2.6 shows an overview of the process with a combined Sprint Planning
1 where the product backlog is defined and than the teams split up and define a Sprint
Backlog for each team. The self-organized coordination between the teams during the
Sprint is also a part of LeSS and can be done either independently or with a Scrum of
Scrums meeting. The final result is presented as a combined effort by all teams in the
Sprint Review.

o

ROnN

Z W WHY LeSS FRAMEWORK? B,

B SCRUMMASTER
e | & FEATURE TEAM
09 T 5

i 73933 Q ;
PREVIOUS ?ff'u"u'mu /0 0@@9 : Q s Q SPRINT REVIEW o

= RETROSPECTIVE
SPRINT SPRINT 0 g Q@p 3 Q % Qi staum SPRINT
PLANNING 2 COORPINATION 7 ,' OVERALL RETROSPECTIVE| |

SPRINT PROPUCT
BACKLOG BACKLOG
REFINEMENT

http://less.works [(c) AR
Figure 2.6: LeSS Framework Overview [15]

The comparatively low implementation costs and scaling possibilities of POs are certainly

13



2 Foundations

advantageous. On the other hand, there are certain disadvantages in comparison to
other scaling frameworks. Integration of LeSS into larger organizations is a difficult and
radical approach. Furthermore, scaling with Scrum teams is limited to a certain size and
is primarily suitable for medium-sized companies. An extension to LeSS is called LeSS
Huge and it allows the opportunity to include four to eight teams each working under an
area PO.

2.2.2 Nexus

The third most common scaling framework is Nexus, which is also an extension of
Scrum. There are a maximum of nine Scrum teams working in parallel and only one
Nexus integration team is integrated as an additional team. The main task of this team
is to ensure a universal understanding and use of the necessary practices and tools in
the Scrum teams. The clear advantage of Nexus over SAFe and LeSS is the minimalist
structure and low level of formality of Nexus. On the other hand, this means that a
high amount of personal contribution is required for the concrete design and transferal
into business practice. Compared to the other two industry leaders, Nexus is much
less widespread in practice. Although Nexus, like LeSS, does not provide the company
with any information on how the agile processes relate to strategy processes, portfolio
management or operations, applying Nexus makes it easier to scale from Scrum.

Nexus Sprint Retrospective

Nexus
Sprint Review

Integrated
Increment

Product Nexus Sprint Nexus Sprint
Backlog Planning Backlog

Figure 2.7: Nexus framework poster [98]

2.2.3 Scaled Agile Framework

The Scaled Agile Framework (SAFe) is based on the VersionOne 12th Annual State of Agile
Report [62], the most popular scaling method by 29% of the respondents, as compared to
Scrum of Scrum (19%), and with internally developed frameworks (10%). It was first pre-
sented and then continuously developed from version 1.0 in 2011, to the current version
4.6 by Dean Leffingwell (2018) [91]. SAFe is preferred especially by large companies that

14



2.2 Large-scale agile software development

have adapted large-scale agile for their companies [92]. The reasons for this preference
is that SAFe extends the Scrum (see Section 2.1.2) idea with XP and adds existing roles
in larger companies like architects or legal departments. Additionally, SAFe has four
types of adoptions that can be used (Essential, Large Solution, Portfolio, Full) with very
detailed documentation and training which makes the implementation easier. Essential
SAFe will be explained later in more detail, based on the use of the case study industry
partner.

Essential SAFe

Essential SAFe is the basis for all other SAFe configurations. Figure 2.8 shows the overall
picture of the Essential SAFe process with the foundation layer, the team level and the
program level. Together the team and program levels make up the Agile Release Train
(ART). The program level (upper part) focuses on the high-level Backlog Items (Epics)
from the portfolio level. Based on the Vision from the program level, the goals for the
team level and the next releases are planned as a road map. The Team level (bottom part)
consists of multiple teams that work together in Sprints to fulfill Stories like in Scrum (see
Section 2.1.2) [69].

SAFe" for Lean Enterprises Essential Configuration
.Jl D%II .0 Continuous Delivery Pipeline PROGRAM
Emerprise | Govamment Lina E
Business AGILE RELEASE TRAIN. ~
Owners
2 o =) t Conti el * Cultur DevOps and
] [ "] = E pl ratio Int n egratior Deployment « Automation Release on
(c,°) System  Product - pyssF Pl Objectives n Flow Demand
Vision Arch/Eng  Mgmt s = - - * Mea: ent
4 5 — =
LX) [ "] x >

Archllectural
Runway

RTE

Backlog

System
Team 3

) XP  «Plan

[

5} :&.‘.,’. V] + Execute

Lean UX Dev T Product /., *Review
eV e"‘"". Owner Scrum *Retro

lil

Scrum =t
FW oot =el=
w aster Te ]

TEAM

Team and
Technical
Agility

Q=

Built-In Quality

\/

~=
Program Increment

Kanban

4.6

etal. © Scaled Agile, Inc

Agile Teams

Leffingwell,

4/ SAFe

Lean-Agile Leadership SCALED AGILE

Figure 2.8: Essential SAFe Overview Version 4.6 [93]

SAFe sets the playground for multiple teams to work together by defining the roles,
events and artifacts on both team and program levels. It has additional highlights as
well. These can be understood as setup, definitions or preconditions which are necessary
for SAFe. The following list gives insights and details concerning the fundamental
knowledge of SAFe. The relevant details that must be understood about the roles, events
and artifacts, as well as how they act together in order to build an scaled agile framework,
which is the final set of rules of the game for all participants in the program.

15



2 Foundations

Important SAFe features

The SAFe features on the team and program levels are a combination of definitions that
are important for SAFe. For example, the use of integration and program increment
and how they are connected with each other. The highlights also describe common IT
techniques, such as build-in quality or DevOps, that help optimize the release train. SAFe
defines ScrumXP as a combination of Scrum and the XP framework that fit into the SAFe
overall process.

Team Level

Iterations is a defined timebox where the program will deliver features and components
as new functionality with a value.

Program Increments (PIs) is a fixed timebox for all the teams on the ART to synchro-
nize all teams and set boundaries.

Develop on Cadence is a key method for managing the inherent variability of sys-
tem development in a flow-based system by ensuring that important events and
activities take place on a regular schedule.

ScrumXP is a combination of a foundation of the Scrum framework for the project
management with XP framework for software engineering.

Team Kanban can be used either as an alternative or in combination with ScrumXP. It
should visualize the workload and the limits of the tasks in the team based on
Kanban and the lean principles.

Built-In Quality should ensure that the product has been produced according to the high
standard and is maintainable and ready to be used in the future. The assurance
that the product can be adapted and developed over multiple years without many
instances of re-factoring is a very important product feature. Otherwise the velocity
for the future PIs will be decreased if the number of BUGs is high or the code
must be completely changed for each new feature. This can be achieved with
good software architecture, pair programming, Unit Test or Test-Driven-Development
(TDD).

Program Level

Agile Teams is a program level feature that implies that each program should consist of
five to twelve teams resulting in roughly 50 to 125+ people. The responsibilities,
tasks, and the roles of the team members are described in the role definition on
team level.

Program Increment (PI) is, as a rule, an 8-12 week timebox where the ART team devel-
ops, in typically five iterations, new features according to the Program Backlog and
the PI Planning meeting.

16



2.2 Large-scale agile software development

Continuous Delivery Pipeline should ensure that the time to market for new features is
as short as possible for all features, which are combined by overlapping the required
steps that a feature should pass. Each feature should move from the continuous
exploration process (Funnel — Analyzing — Backlog) to the continuous integration
process (Backlog — Implementing — Validation on staging) to the continuous
deployment process (Validating on staging — Deploying to production) to the
final release product. This process can be visualized with the Kanban board as
shown in Figure 2.9. These steps should be done in parallel for multiple features by
separating the features as precisely as possible.

DevOps is an idea according to which, unlike the standard practice where the developers
are separated from each other, the developers work closely together enabling the
whole Release Train to work faster. According to the "The DevOps Handbook" the
deployment can be done 30 times more frequently and they have 60 times less
failures compared to traditional operation structures [68].

............ 3 SITITTRN ) >
........ :.'4‘." .."'s:" . —
A Continuous w Continuous { Continuous v
Exploration < Integration %+ Deployment
By e ’
............ P UL ILLTICRNY SRR RECTEN SR Release on
Demand
Funnel Analyzing Backlog Implementing Validating on | Deploying to Releasing Done

staging production

T
1
1

In In
. D progress, R progress, Rt
i i ..
r ’ r r | | ’
] ]
] ]
’ - ’ . | .
p .. ] ]
’ ‘ |
7 p 1 ] )
7! 7! 7
i
D ]
]

T
1
1

Figure 2.9: SAFe continuous delivery pipeline combined with a program Kanban [93]

Roles

The roles on the team level are similar to Scrum (see Section 2.1.2), whereas on the
program level new roles are defined to manage the dependency overhead and other
management tasks which are supposed to give guidance and direction to the Team level.
Additionally, these roles fulfill the agile manifest principles (see Section 2.3) so that the
ART teams are self-managing and self-organizing thus being able to plan and work
together.

17



2 Foundations

Team Level

Development Team (Dev Team) is an agile cross-functional development team that
consists of 3 to 9 (plus PO and SM) people and include developers, testers, and
other specialists.

Product Owner (PO) is responsible for the Backlog of the team regarding the Stories and
the priority. At the end of the Sprint the PO will approve the Stories based on the
acceptance criteria.

Scrum Master (SM) is the coach of the team and is responsible for promoting and
supporting the team. They help the team to archive the goals and to remove
existing impediments.

Program Level

Product Management is responsible for the Program Backlog by defining and under-
standing the customer needs. The management ensures communication between
the customer and the POs of the teams and partially checks the results.

System Architect/Engineer might, depending on the project, be represented by a cross-
discipline team or one person, who is responsible for the overview of the overall
system architecture by supporting or defining interfaces, or defining what frame-
works should be used. Their main attention is dedicated to the functionality of the
system as a whole.

Release Train Engineer (RTE) , in other words, the Chief Scrum Master for all the teams,
supports the teams and the SM by providing workshops or reports about the
progress of the program.

Business Owners represents the stakeholders who are responsible for the management
part of the project. During the PI they will present the Vision, as well as participate
in the Management Review, Solution Demo, and Post-PI Planning events by providing
feedback on the current solution.

Events

The events for the Team level are internal team meetings organized to plan and work on
the current iteration or meetings with the ART to synchronize and coordinate with the
other teams.

Team Level

Iteration Planning is a type of meeting where the PO and the dev. team decide what
Stories can be completed during the next iteration. It is the equivalent of the Sprint
Planning Meeting from Scrum with the difference that some of the planning can also

18



2.2 Large-scale agile software development

be completed during the PI Planning meeting. The SM must attend the meeting to
ensure the smooth and productive discussion; other stakeholders may attend as
well if they are interested in some of the Stories under discussion.

Iteration Review is the review that, together with the archived Stories, is being presented
by the Dev team to the PO and other stakeholders at the end of the iteration progress
in order to receive feedback concerning the results. This is the equivalent of the
Sprint Review from Scrum. Based on the status and the done Stories, the SM can plan
the upcoming Iteration Planning meeting.

Iteration Execution is the process of the agile team’s work and their tracking of the
progress during the iteration with the goal to fulfill the required Stories. A widely
used technique is the Daily Stand-up (DSU). In the Daily Stand-Up (DSU) each
team member will answer three simple questions: (1) What did you do yesterday?
(2) What will you do today? (3) Are there any impediments in your way? [103].
No detailed explanation is required and the SM is responsible for resolving the
impediments as quickly as possible.

Iteration Retrospective is the manifestation of the 12th principle of the agile maifesto
(see Figure 2.3) which claims that the team should reflect on how they can become
more effective. To fulfill this the dev. team will meet at the end of the iteration and
discuss the results and try to identify possible improvements. Quite a few ideas
on how to organize a Retrospective can be found in "Glad, Sad, Mad" and "The 4 L's
(Liked, Learned, Lacked, Longed for)" [72].

Backlog refinement is the meeting that should be done once or twice in an iteration
to help the Scrum Master prepare and estimate stories for the upcoming Iteration
Planning. This is facilitated by talking trough Story details and whether they are
clear and ready to be implemented, or if they have preconditions. This will help
optimize the Iteration Planning and avoid points or questions raised in the Iteration
Planning meeting that could make it impossible to plan the coming Sprint.

Innovation and Planning (IP) lteration is usually done after four iterations where Fea-
tures are being developed to complete the Program Increment. In this iteration the
teams are allowed to work on innovative features or solve complex problems. This
integration is also used to make final system checks or integration tasks, and to
verify or to write the documentation and other pending tasks remaining from the
previous four iterations. This period will help improve the team spirit.

Program Level

Pl Planning is the core event dedicated to setting the stage for the teams on the ART
mission. All team members meet face-to-face during a two day period of time and
make a rough plan for the next iterations for the whole increment. On day one,
the event starts with the Product Managements presenting a short overview of the

19



2 Foundations

current status, the customer’s needs, and the Vision with the top features for the
next increment. Then the Architecture Vision is refreshed or explained in more detail
to all participants. After the RTE explain the planning context, each team starts
with the first Team Breakout which is used to roughly plan the whole increment by
checking the team’s capacity and what Stories can be done in what iteration. During
this planning the teams must talk to the other teams to find dependencies between
teams and how these would effect the time-line. To make this more transparent,
a Program Board is used to show the iterations and the teams an the axes, as well
as the Stories with dependent Stories connected to another team with a red string
shown in Figure 2.10. After the Breakout each team presents the planning outputs,
dependencies, objectives, and risks. This helps the stakeholders and other teams
see a clear image of the last agenda item of the day. In the Management Review and
Problem-Solving Meeting the mentioned feedback is taken into account and solutions
are developed. On the second day, the managers present potential changes in
the planning, resources, or scope from the last Management Review to all team
members. This makes it clear for the second team breakout whether the plan will be
detailed or redefined. At the end of the second team breakout the Business Owners
give feedback about the business value for each team and team goal. After the
planning is done, the teams present the final plan to the audience. The risks are
discussed separately after the Review to make them transparent and to check if they
are resolved, owned, accepted, or mitigated. After the program risks have been
addressed, a Confidential Vote is organized for all team members in order to check
how everyone feels about the current plan. Based on the vote’s results, the plan
must be modified until a higher confidence level is reached. Once this has been
reached, the RTE leads finalize the PI by analyzing the discussed agenda of the
current PI and making points for improvement for the next one. All the results
will than be used by each team and the SM for their planing of the upcoming four
iterations.

System Demo is used to present the current fully integrated system to the ART stake-

holders to present an overview about the overall progress of the program. It forces
the teams to integrate the whole program to one artifact. This will mitigate problems
at the end of the PIL.

Inspect & Adapt is a type of meeting combining three other meetings in one at the end

of each PI. First a PI System Demo is presented to show the current status, then a
quantitative measurement is presented concerning the progress of the program
and each team. In the end the Retrospective and problem-solving workshops are
organized to help improve the program itself by identifying the root cause of
problems.

20



2.2 Large-scale agile software development

lteration 1.1 | lteration 1.2 | Iteration 1.3 | Iteration 1.4 Ltl‘;’,r)a“om's PI2>>>

Milestones /
Event

A
Unicorns w
AV NI

Eagles // / ({%ﬁ

NN = WEwANS
Needs UX Help Eﬁ; /'/@Eﬁ/ //

Needs Sys Arch
Help

\\\\N = Feature

7

.

Bears

"
7,
_

i
B

= Milestone/ Red String = A dependency
|:| Event f between issues

7,

Figure 2.10: SAFe program board [93]

Artifacts

In archaeology, the term ’artifact’ refers to an object/thing that was made by humans. In
agile development it is something that was used to develop products, track progress, and
make this transparent.

Team Level

Story is a description of a functionality from a user’s perspective and written in their
language. It should make the requirement and the value transparent to everyone in-
volved. Good stories are (1) independent, (2) negotiable, (3) valuable, (4) estimable,
(5) small and (6) testable [70]. Detailed information is given in the acceptance
criteria for each Story to define what should be implemented and which criteria will
allow a PO to accept the Story in the Iteration Review. They should be as simple as
possible, but also very detailed as they are required to fulfill the 2nd agile manifesto
value (see Section 2.1.1).

Enabler Stories . Not every task has an end user benefit that is required for a Story like
architecture or infrastructure tasks. To manage this in the Team Backlog the team can
use Enabler Stories. They can be described in technical terms, but they are handled
similarly to "normal" User Stories. They are the equivalent to re-factoring and Spikes
from XP.

Iteration goals are defined by the team in PI Planning and are business and technical
goals. They are used by the dev. team and the PO to have a mission and to show

21



2 Foundations

other teams the goals by cross-team dependencies.

Team backlog is an ordered list of User Stories and Enabler Stories managed by the PO.
The Stories are defined in the PI Planning or by the PO and discussed in the Backlog
Refinement Meeting. In the Iteration Planning Meeting the Backlog is used to select
Stories for the next iteration. Figure 2.11 shows the three primary factors that have
an impact on the Team Backlog.

£ —
= Sl
1. Program Backlog @ A"A (TN igi
) A

CaD A
2. Team Context 3. Other Stakeholders

* Refactors Other team dependencies

* Maintenance + Other commitments
+ Other technical debt + Spikes / research

]
Stories

<« Team'’s part of a feature/enabler

\

« Feature

NFRs

NFRs

Figure 2.11: SAFe team backlog [93]

Program Level

Features describe an assumption made with the goal of meeting the needs of stake-
holders. To make this understandable, each feature is given a name, one or more
benefits to fulfill, and acceptance criteria. They should be short enough that they
can be completed within one PI.

Program Backlog is the equivalent of the Team Backlog with the difference that Features
and not Stories constitute the program and the content.

Pl Objectives are the aggregation of all the goals from the agile teams and the train to
be achieved in the upcoming PIL.

Architectural Runway is the technique and the code that is used to implement the next
Features, without having to completely redesign the software which causes delays.
It is a combination of code, frameworks, and infrastructure that is required for the
implementation. It works hand in hand with the Continuous Delivery Pipeline.

22



2.2 Large-scale agile software development

Metrics

One important component in order to have a working program is not directly shown in
Figure 2.8. The metric is part of the "bigger" SAFe models (>= Large Solution SAFe). But
it is indirectly included in some of the meetings or it is a required tool for the SM, PO and
Product Management. It is the metric of each team and the program overall. The metrics
should give indications and KPIs as a tool, or clue, to "manage". Here are some reasons
why metrics are relevant in software development [81]:

¢ To make decisions in business

¢ To challenge team members

¢ Team members can be proud of the results

¢ To determine success

¢ The Agile system cannot easily be eliminated
¢ It increases satisfaction

¢ It helps to change the behaviour of teammates

¢ It supports the decision making process

It is, of course, known that metrics are also used in traditional software development
where most of the metrics can also be adapted for agile development. They can be
grouped into the following metric classes [81] : (1) product metrics: e.g., lines of code,
quality metrics (defects, reliability, maintainability); (2) process metrics: e.g., development
time, developer level of experience; (3) objective metrics: values obtained by observers; (4)
subjective metrics: personal feelings of different individuals about a metric; (5) resource
metrics: e.g., effort for one task, used computer resources; (6) project metrics: e.g., project
size, effort, resources, budget, time-line; (7) direct metrics: e.g., duration of testing; (8)
indirect metrics: e.g., productivity, requirement stability. All of these metrics could also
be used for agile development. In addition, some new metrics have emerged regarding
agile development based on the structuring in teams, Sprints, and Stories. The most
common metric is the velocity that shows the amount of work done during the Sprint
(usually, in Story Points). This is very important for the PO and the team for the next
Sprint’s Planning. Knowing the velocity, the number of available working days in a Sprint,
and the planned Story offers a clear possibility for the team’s optimization. For large-scale
agile development the metrics become even more important, because of the number of
people and the size of the project, it is mandatory to track the progress, as well as all
the other influence factors that are relevant for a solid software. SAFe described thirty
metrics for managing the program on the website, which are grouped into five clusters:
(1) enterprise, (2) portfolio, (3) program, (4) large solution and (5) team [104]. Most of
these clusters focus on a number of tasks, Stories, Features, bugs, ... done, as compared
to the amount of effort or the timeline. Others focus on the implementation of lean,
agile, operational, (DevOps) or SAFe principals. Both of the above mentioned metric

23



2 Foundations

approaches are very important for the management and control of a project as well as for
the reporting to the stakeholders. Figure 2.12 grouped the criteria in four clusters based
on Lean Portfolio Management. These clusters could be used based on other metrics to
determine whether the program is in balance and prevent an outcome where one reaches
extreme efficiency, but fails in quality.

Efficiency Value delivery
Sample Measures: Sample Measures:
» Contribution margin « Number of releases
» Organizational stability « Value feature points
» Team velocity vs. capacity delivered

« Release data percentage
< Architectural refactors

Quality Agility
Sample Measures: Sample Measures:
» Defects * Product ownership
» Support calls * Release planning and
» Support satisfaction tracking
» Product satisfaction « IP planning and tracking

» Escalation rate percentage |+ Teamwork
« Testing and dev parctices

Figure 2.12: SAFe: balanced scorecard [104]

Unfortunately, the metrics of SAFe do not pay much attention to such important factor
as the team spirit or the personal success, which might result in a negative outcome for
the team. Once a team member ceases feeling happy in their work environment, they
gradually become less efficient and their eventual withdrawal from the project will have
a large impact on the team and program. It might take up to three months to get a new
team member up to speed.

2.2.4 Challenges and success and factors

Understanding the challenges and success factors, especially for smaller teams, is essential
for the transition or the implementation of large-scale agile development. A poorly
performing team or a failed project is unfortunate for smaller teams, but the word "large"
indicates that many more people are involved which means that a team performance of
5% less than it could be is very likely to bring larger financial losses. Imagine the team
consists of 100 people with, on average, 100.000 Euro costs per year, than the 5% will be
half a million Euros a year. By identifying challenges and success factors and taking into
account possible risks, one can reduce the latter in advance.

Using the Critical Success Factor approach would be helpful in identifying success factors.
According to Bullen and Rockart (1981): “Critical Success Factors (CSF) are the limited

24



2.2 Large-scale agile software development

number of areas in which satisfactory results will ensure successful competitive perfor-
mance for the individual, department or organization.” [14]. This means that success
factors are the key areas in which a project must succeed to ensure the achievement of
the goals.

In literature research on challenges and successes in agile development, most research
is carried out by taking into account the change of working method from traditional
development to agile development, therefore these two different research directions must
be separated. Interestingly, some of the papers focus on the factors for agile development
only, whereas others investigate the large-scale agile development.

Solid on-side setup

Cockburn (2001) defined five factors for agile development which will ensure that the
project or program will be a success. The first factor is to have two to eight people in one
room working and communicating together, which should facilitate a fast information
exchange and direct feedback. The second factor is closely related to the first one and
is to have on-site experts enabling direct communication. A third point he proposes
is a one-month increment as the ideal time frame for the development process with
development, testing, and deployment. The next point is related to the fast release train
with a fully automated regression test to have a fast development process with a solid
quality. The last is to have experienced developers on the team [24].

A project is more than an agile approach

Chow and Cao (2008) grouped the challenges and failure factors into five categories:
organizational, people, process, technical and project, as shown in Figure 2.13. What
becomes visible here is that the agile and scaled agile frameworks focus on only a part of
the influence factors that have direct impact to the success. For example, a project needs
more than a SAFe process/program covers [20].

25



2 Foundations

Organization Factors

» Management Commitment
» Organizational Environment
* Team Environment

People Factors

* Team Capability
* Customer Involvement

Perceived success
of the agile software

Process Factors development project
« Project Management Process

* Project Definition Process ‘ gzuahty
* Scope
. * Time
Technical Factors . Cost

» Agile Software Techniques
» Delivery Strategy

Project Factors
» Project Nature
* Project Type
* Project Schedule

Figure 2.13: Research model for success factors in agile development [20]

The factors have a tremendous impact on the project success in terms of quality, scope,
time, and costs. They are used to define the success. Personal success factors e.g. the
leanings or the team member satisfaction, are not part of his model. What is missing
in the model is how big the impact is depending on the factors and how they could be
optimized to increase the outcome. However, the model allows new programs to check if
most of the relevant factors are taken into account.

People background and mindset

Cohen, Lindvall and Costa (2004) focus on the team as a whole and the individuals in the
team and determined three success factors. They determined that culture, people and
communication are the key values of success. Each team consists of team members and if
they have the same cultural background and the same mindset this will help to avoid
misunderstandings. These factors are also important for closer contact with the customer
[26].

Correct splitting of team

In addition to the success factors by Dikert, Kim & Paasivaara (2016), Chow & Cao (2008),
and the focus of the background and mindset by Cohen, Lindvall & Costa (2004), and the
team setup by Cockburn (2001), there are even more factors that have an impact. One
example is the approach by Maurya (2018) to classify the teams in four groups to reduce
the complexity of dependencies and make the whole process faster [80]. To achieve
this he classified the teams into 4 types with specific characteristics and responsibilities.

26



2.2 Large-scale agile software development

Figure 2.14 shows the interaction between the teams and how they work hand in hand
to create a final product. To result in less conflicts and to reduce the coordination effort,
he works with boundary control so that teams have independent components on which
they can work. The first teams are the feature team that represents basically a base Scrum
team with the focus on customer needs and to deliver end-to-end features. However, the
team has a lower focus on building backend services and flexible architecture, instead
they consume existing services. These services are the responsibility of the component
team. They build the core service stacks with a modern architecture and the minimum
number of dependencies that is maintainable and extendable. These two teams together
should be able to build a system. In addition, the setup is extended by two more teams,
which normally also belong to the tasks of a Scrum team. As a result of the division, the
responsibilities are clear and the experts are not distributed among several teams, even if
this contradicts the vertical approach of Scrum. The third team is the specialized team
that should be smaller with two to five experts who can help with complex tasks that
require a more developed knowledge in certain areas like Oracle DBAs, data security or
Center of Excellence (COE). Besides the support, they will provide training, setup policies
and procedures, or monitor the application. The last team is the support team, as the
name suggests the team takes care of the support processes of the application. The team
is optimized to analyze and locate incidents raised by the customers and stakeholders.
To fulfill the task it is important to understand the complete functionality of the product.
After a problem is found, the team will coordinate the fix process with the component
and feature teams and track the progress. This has two advantages that effect a agile
program: (1) the entrance point for problems are clearly defined and (2) the effort and the
first analysis will not effect an ongoing sprint.

Specialization Team .

ComponentA  FoF---r- Feature A

C) D //'
AR 7
NSO
S J
\, N
XY
’ N \\
Component B é:--/)x’\---, FB Feature B
o Y
wo
N
FIaN
1)7 \
4 AN
Componentc  f-|----r- FC Feature C

Components
(Core System Services)

Gomponent ature Team Product

Support Team

Figure 2.14: Team classification and collaboration process [80]

27



2 Foundations

This approach tries to define core areas for teams so that they can focus on certain tasks
while reducing overlap. Each team has a clear boundary area with defined characteristics
and a procedure of how to work together, thus reducing the complexity for a program
which only results in benefits.

Overview of common success factors and challenges

Besides the success and challenges that are mentioned in this section, that illustrates the
variety of factors, there are hundreds of papers and publications available regarding this
topic for Agile, Scrum, or scaled agile development on Sprinter, Google scholar and IEEE.
As an overview, without mentioning all of them, Dikert, Kim and Paasivaara (2016)
produced a systematic literature review of fifty-two papers that describe fort-two different
organizations in order to determine the challenges and success factors for large-scale
agile transformations [35].

Difficulties with the implementation and the integration of the non-developmental func-
tions based on the number of cases were mentioned among the most success-challenging
factors.

Change resistance was one of the most common mentioned challenge with a total of
38% . This is a very general point, but in many project and companies the general
resistance to change and the skepticism towards the new way of working is a
problem for many people. The top down mandate creates resistance that filters
down to the team. If even the management is unwilling to change why should the
rest change? When the agile change begins - the whole organization must change
the mindset to not only talk about agile and rename meetings.

Lack of investment means that a change will also cost money and effort. The people
need catch-up meetings and training to understand the new process for the future.
In this time the workload must be decreased to compensate for this added time.
This means that old commitments are not relevant anymore that will cost money.
Additionally, an investment in infrastructure is necessary so that a continuous
integration pipeline can be set up or more physical space, so that the people can sit
as a team in one place, while also having space for ad hoc meetings.

Agile is difficult to implement was mentioned by 48% in nearly every second paper.
The misunderstanding of the agile concepts combined with the lack of guidance
from literature or coaches result in misunderstandings of the agile approach. After
this, two things mostly happened in many teams: (1) The team adapt in their own
custom version of their poor understanding of agile or (2) they revert to the old
method of working, simply because this worked in the past. Both ways do not help
the success of the project.

Coordination challenges in multi-team environment are hard to handle due to the
complexity. The interfacing between teams is difficult and each autonomous team

28



2.2 Large-scale agile software development

has their own challenges that will impact related teams. In the worst case, this
is combined with global distributed teams in multiple time zones with different
languages.

Different approaches emerge in a multi-team environment is similar to "agile diffi-
cult to implement" however it means that the approaches are different in one project
between teams. The teams have a different interpretation of agile between teams or
they are using old and new approaches side by side. Both cases have only negative
effects.

Hierarchical management and organizational boundaries is a side effect if the agile
change is only partly done because of a focus on traditional organization with man-
agement hierarchies on teams and departments. As an effect the middle managers’
role in agile is unclear or the management still acts as in waterfall mode. None of
this is needed for agile development, but in many cases the management structure
stays the same based on roles and contracts, but this leads to old bureaucracy or
internal silos keeping.

Requirements engineering challenges is a challende in itself; a high-level require-
ment management is often missing in agile and there is a gap between long and
short term planning. Additionally, the creating and estimating of user stories is
harder than expected in reality and they must be continuously adapted.

Quality assurance challenges are mostly due to a need to accommodate non-functional
testing which is performed by specialized members in a separate team or even
department. Even if the Scrum idea is a completely different one. The same applies
to automated testing that normally does not exist or only covers parts.

Integrating non-development functions is difficult because roles are not directly de-
fined and so they are resistant to change.

A second research question they wanted to answer is what are the success factors for
large-scale agile transformations. The most frequently mentioned factors of a careful agile
approach will be described below with the mindset and alignment as the most relevant
ones. Other factors, like leadership, are only mentioned 17% of the time.

Management support must be ensured and the management support must be visible
for the teams. This is only possible if the management is well educated in agile
processes.

Commitment to change is non-negotiable and no one, and no team, must be left behind.

Leadership must recognize the importance of change leaders and place them into the
teams. The leaders should not consentrate on the past but look in the feature.

29



2 Foundations

Choosing and customizing the agile approach. Customize the agile approach care-
fully and map the transition from the old way of working to agile development
for a more smooth adaptation. Always conform to a single approach and most
importantly: keep it simple.

Start piloting to gain acceptance with a first version by the stakeholders and in the
project. Gather insights from a pilot and use the findings. However, one must build
a stable version that is not based on the pilot. One does not want to extend the pilot
until it is similar to Frankenstein’s monster that can not be maintained.

Training and coaching is essential for the project members. Even if they have used
Scrum before, a training of agile methods is very important. Additionally coach
teams over time, but also allow them to learn by doing.

Engaging people so that people bring ideas into the project/teams. Start with agile
supporters and include persons with previous agile experience. They will engage
everyone in the organization, then it is not only a management decision, it is
something the people in the projects want.

Communication and transparency make the change visible for the people. Make the
steps, timeline, training’s, executions etc. transparent. Create and communicate
positive experiences in the beginning.

Mindset and Alignment by arranging social events which cherish agile communities.
Always concentrate on agile values.

Team autonomy allows teams to self-organize so that the teams are in power, but feel a
sense of responsibility compared to traditional models. By supporting grass roots
level empowerment the teams are empowered to change by themselves.

Requirements management. Recognize the importance of the PO role with all its obli-
gations, but also its powers. Invest in learning to refine the requirements and use
backlog grooming to spend more time discussing the requirements in order to avoid
unexpected results and chaotic planning meetings.

Having these factors in mind and the selection of the correct scaled agile framework is
very important, however additional factors have a tremendous impact on the final project
success.

2.3 Teamwork quality

Based on the amount of challenges for large-scale agile development, understanding
how a team works and what influences the team performance is an important aspect that
contributes to a successful outcome. Poor performance of the team will make an impact
on the whole program, forcing it to perform worse than it could.

30



2.3 Teamwork quality

In 2001, Hoegl and Gemuenden presented the teamwork quality (TWQ) model and a
survey to increase the success of projects. They wanted to measure the teamwork quality
as a metric based on the results of the survey completed by 575 participants (developers,
team leaders, managers) out of 147 German software teams. To find the relevant factors
they completed a literature review concerning teamwork and crucial success factors [59].
Based on the literature and on Hackman’s "The design of work teams" model (1987) [55]
they presented six concepts they called TWQ facets. These facets are shown on the left
side of Figure 2.15 with a direct influence on the team performance and personal success.

Communication within a team is its fundamental component. However, communication
can be defined in a more detailed way, by analyzing its four measurements: (1)
frequency: how much time is spend in communicating, (2) formalization: are the
teams able to meet spontaneously or do they require planning, (3) structure: are
the team members able to exchange information in a structured way so that the
information is being communicated in a way that is understandable for the receiver,
(4) openness: is all information shared with the rest or is anything being held back.

Coordination defines how structured and synchronized the team is. Processing tasks in
parallel and finishing tasks in time without any gaps or overlaps, enabling other
team members to continue with their tasks, is extremely important for a team.
Other factors which influence the quality of the end result are the team product, the
budget, and the overall time line.

Balance of Member Contributions The balance between the effort, knowledge, and
the recognition of work has a high relevance for building team spirit. Not all team
members can contribute same as others based on their knowledge or a different
skill set. However, all team members must contribute to the furthest extent of their
abilities to the team and the other team members should recognize this.

Mutual Support The ability and willingness to help another team member is essential.
To be in one team should mean that one can achieve the best results and mutual
support to find solutions to the problems faster. Competitive behavior between
team members can lead to frustration, poor quality, and additional coordination
difficulties.

Effort Apart from the fact that the whole team must deliver the best results, it is also
essential that all team members deliver the highest possible results according to
their skill level. If one member delivers considerably less than what they are capable
of, and as compared to other members, this will lead to internal team problems.
All team members must push the project and make it their highest priority. If the
team members do not, this could create personal conflicts between team members
or lead to an overall bad performance and poor cohesion with the whole team if
this behavior is tolerated by the management.

31



2 Foundations

Cohesion can be understood as the team’s general feeling of togetherness or the so-
called "team spirit". It is difficult to be defined or measured, yet essential for a well
performing team. Mullen and Copper (1994) [82] distinguish between three forces
of cohesion: (1) interpersonal attraction of team members, (2) commitment to the
team task, (3) group pride-team spirit.

To see if the TWQ facets have an impact on the team results Hoegl and Gemuenden
defined that effectiveness, efficiency, work satisfaction, and learning are the key factors
for a team success. They have a positive and direct relation factor from the TWQ facets
shown in Figure 2.15.

Team Performance

« Effectiveness (Quality)
« Efficiency (Schedule and Budget)

Teamwork Quality

* Communication

« Coordination

» Balance of Member Contributions
* Mutual Support

- Effort

+ Cohesion Personal Success

« Work Satisfaction
* Learning (Knowledge and Skills)

Figure 2.15: TWQ conceptual model [59]

The effectiveness and efficiency are grouped under team performance. They are what
constitutes a successful project in most people’s understanding. Most of the other SAFe
metrics (see Chapter 2.2.3) focus on velocity, performance of the teams, and the program,
to see if the project is on track. Efficiency and effectiveness are often considered synonyms,
however Drucker elaborates on their differences with this comparison [39]:

"Efficiency is doing the things right"
vs.
"Effectiveness is doing right things".

The second group is the personal success with work satisfaction and learning as metrics.
Satisfaction of the team members is a relevant point for the teamwork and the team
cohesion. If the work satisfaction is low, the risk is high that a team member will not do
this kind of work again. Learning is a personal benefit for the person and also a benefit

32



2.3 Teamwork quality

for the team, because the knowledge will help both the individual and the team perform
better in the future.

Survey

The model was confirmed by a survey in 2001 with 145 German software development
teams with, an average 6.3 members (median = 6, standard deviation = 3), and mainly
male participants. The sixty questions for the team members were Likert scaled (five-
point answer scale). Only team leaders and external managers were asked about the team
effectiveness and efficiency using the same measurement scales. The questions of the
survey are shown in Section 10.1.1.

Based on the aggregated team member response for TWQ facets, the data is analyzed with
a factor analyses (Principle Component Method) on the team level. The Kaiser criterion
[64] and latent construct assumption proves that all facets are loading high. Based on this
a Structural Equation Modeling (SEM) was done in AMOS to test the measurement and
create a structural model using the Unweighted-Least-Squares method (ULS). The results
are shown in Figure 2.16. They also compared the results between the team and team
managers, and team leaders. Both groups had more understanding of the effectiveness
and efficiency compared to the team members. Hoegl and Gemuende reflect that the
team leaders normally have a feeling concerning the performance and know more about
hidden problems when compared to the team members. The managers also have a higher
level view that is more reliant on a metric view based on schedule and budget.

Team Work satisfaction
members’

success

0.93

Learning

0.86

Performance Effectiveness_TM

. 064 (team 074
Communication [k gg member) Efficiency_TM
@ Coordination 071
Balance of member |, 0.89
contribution 0.34
0.89
@ Mutual support
0.82
@ Effort 0.89 0.26
Cohesion

Effectiveness_TL

Performance
(team leader)

Efficiency_TL

Effectiveness_PO

Performance
(manager)

S
N

Efficiency_PO

Figure 2.16: Standardized factor loadings and path coefficients for the investigated model
of the TWQ conceptual model [59].

The data could also prove that the hypotheses hold. Based on the model, including the

33



2 Foundations

factor loadings, standardized coefficients, variance explained, and goodness-of-fit mea-
sures [59], all values prove that there is a positive influence of TWQ on team performance
(Hypothesis 1). It also demonstrates that there is a very strong association with team
members’ personal success (Hypothesis 2). This means that the model from Figure 2.15 is
approved and can be used to calculate the TWQ for a team.

However, there is also other research conducted based on the model that proved that
there are other factors that are currently not in the model (see Figure 2.15) which can also
be proved and are valid. One example is the paper from Weimar et al. "The Influence of
Teamwork Quality on Software Team Performance.” (2017) [114]. They proved that the
six TWQ facets can be adopted by adding expertise to the coordination and they replace
Balance of Member Contributions and Effort with Value Sharing and Trust. They argue that
Trust is an important support mechanism and is essential for a team. It is the same for
Value Sharing. The team must have the same understanding of importance regarding the
same topics and task, to be efficient and reduce the conflicts inside the team. But it is
always possible to adapt the criteria and find a model. That is one reason why the model
from Hoegl and Gemuenden will be used as a base for the organisation’s own model.
The other reason is the the original paper was cited 1624 times [50].

TWQ model for multi-team-projects

Weinkauf and Gemuenden (2004) used the TWQ model that was co-developed by
Gemuenden and extended with positive and negative factors which influence the team
performance if the team must cooperate with other teams. They use the TWQ model in
the left bottom corner in Figure 2.17 and combine the team performance and personal
success factors in one overall team success on the right side in Figure 2.17 as the basis
of the model. Based on the simplified TWQ model their study added an inter-team
collaboration element which had an impact on the intra-team collaboration and the team
success. They prove that three factors must be added if the team must collaborate with
other teams: (1) integration (2) conflicts and (3) commitment. Integration and commit-
ment have a positive impact on the inter- and intra-team collaboration and the success.
Conflicts have a negative effect on both.

34



2.4 Multiteam systems (MTS)

H1a(+): Integration with other teams has a positive effect on the success

Inter-Team H1b(-): Conflicts with other teams have a negative effect on the success
collaboration H1c(+): Commitment to the project has a positive effect on the success
« Integration

« Conflicts
«  Commitment

Team success
« Overall success

« Timekeeping

« Cost compliance

*  Quality

« Job satisfaction

+ Learnings

H3a(+): There is a positive correlation between integration
with other teams and the quality of the team's internal cooperation
H3b(-): There is a negative correlation between conflicts with

other teams and the quality of internal team collaboration

H3c(+): There is a positive correlation between the commitment to the
project and the quality of the team's internal cooperation.

Intra-Team

collaboration
« Teamwork Quality

H2(+): The quality of internal teamwork has a positive effect on the success

Figure 2.17: Extension of the TWQ model for multi-team-projects [115]

One of the key findings of the study is that the collaboration within and between teams
should be actively challenged, encouraged, or managed in order to ensure high perfor-
mance. They prove, with 407 interviews, not only that the hypotheses from Figure 2.17
are correct, but also that it is not a final model with all the factors. It is only a starting
point to find additional performance factors for multi-team projects.

2.4 Multiteam systems (MTS)

During the last decades, the topic of work organizations and structure between teams and
companies have been researched by sociologists and other scientists to find connections
and influence factors (Gerth (1952) [49], Stinchcombe (1952) [107], Blau and Scott (1962)
[9] or Devine et al. (1999) [33]). But not all organizational setups are the same. In the past
most of the bigger organizations were set up as matrix organizations [48] where a defined
task and management structure will control inter-team communication. Large agile teams
act like independent units which must work together to fulfill a task that is necessary so
that the whole program works in the end. It is not defined at the beginning who has the
lead and what exactly has to be done. This will be decided depending on the task and
who can provide the best solution. Based on this structure, the inter-team connections
for agile teams are more like police forces, firefighters, emergency medical services, and
recovery teams in which each team had to do their own job, but they have to work hand
in hand to rescue as many people as possible in an accident. This collaboration model
was analyzed by Mathieu et al. (2001): multiteam systems (MTS) [79]. They defined MTS
as:

35



2 Foundations

"two or more teams that interface directly and interdependently in response to
environmental contingencies toward the accomplishment of collective goals.
MTS boundaries are defined by virtue of the fact that all teams within the sys-
tem, while pursuing different proximal goals, share at least one common distal
goal; and in so doing exhibit input, process, and outcome interdependence

with at least one other team in the system" [79].

Each team inside of an MTS (component teams) can have a different goal at the same
time, but they have to come together and work together to fulfill the higher level goal
that exists for the MTS [5]. A good comparison of who are members of the MTS and who
are not is the comparison of an accident. Figure 2.18 shows typical inter-team setup for
an accident where four teams (fire fighters, emergency medical technicians (EMTs), an
emergency room surgery team and a recovery team) are included inside of the MTS. They
all share the overall goal to save as many victims as possible, but each team has their
own goal in order to make this happen. For example: the fire fighters want to extinguish
the fire as fast as possible and the objective of the EMTs is to bring the injured people to

the hospital as fast as possible.

MTS
Fire @
fighters

Country
Government

Recovery
team
Surgical
team

Hospital

Dispatch
center

Administ-
ration

Figure 2.18: Multiteam system for handling severely injured accident victims [79]

Characteristics

Mathieu et al. defined the characteristics of an MTS with five characteristics that must be
fulfilled to be a MTS. A large agile development program must fulfill these characteristics

so that the MTS model can be applied [79].

36



2.4 Multiteam systems (MTS)

MTS are composed of two or more teams that are unreducible, distinguishable, and
complete with interdependent members and proximal goals (short-term goals that

can be achieved sooner rather than later)
This definition fits for large-scale agile teams. A large-scale agile team must have

more than two teams based on the definition by Dingseyr and Moer [37]. The teams
have interdependencies that should be identified during the PI Plannings in SAFe
to fulfill the proximal goals.

MTS are unique entities that are larger than teams yet typically smaller than the

larger organization(s) within which they are embedded
It is important to differentiate a MTS against other team-based organizational forms

like a matrix organization, a task force, and an ad-hoc group. All of them define a
group of people to perform a job and fulfill a task, but in a matrix organization not
all members are connected to each other. So a MTS could be a subset of a matrix
organization, but it could also consist of more than one organization. A task force
or an ad-hoc group are very similar to an MTS, but by the definition from Hackman
(1990) [53] they have to fulfill the following requirements: (1) do not work closely
together in their permanent jobs, (2) come together to perform a team task, (3)
perform a one-of-a-kind task or create a unique project, (4) have an unusual amount
of autonomy of operation, (5) are dependent on external constraints that exist (e.g.,
clients), (6) are temporary groups given a specific deadline for accomplishing their
objectives [53]. A MTS could also fulfill the six points, but unlike MTS, task forces
are typically designed to respond to a specific need or project and then disbanded.
MTS usually have a much more permanent character. A large-scale agile project
has a more permanent nature. Additionally an ad-hoc group normally consists of
four to twenty members. Twenty would be the minimum for a large-scaled agile
program.

All component teams exhibit input, process, and outcome interdependence with at

least one other team in the system
Mathieu et al. grouped the interdependencies in their paper in tree groups based on

the research by Hitt et al. (1998) [57]: (1) outcome interdependence: They connect
two or more teams to join activities together to achieve a goal at lower level in
the goal hierarchy (sub goals) than the overall goal. (2) process interdependence:
Describes situations when teams must collaborate simultaneously and collectively
together, in the situation when one team’s task depends on the result of another
team so that the process can work hand in hand (e.g., the EMT achieved to goal to
stabilize a victim. After this goal was achieved, to victim must be transported to the
hospital.). (3) input interdependence: the inputs (people, facilities, environmental
constraints, equipment, ...) necessary to accomplish a goal that are being shared
between two or more teams (e.g., the EMTs and the firefighters use the same rescue
equipment at the accident). The police and the hospital administration in Figure
2.18 do not share all three forms of interdependence with the teams in the system,
which is why they are not part of the MTS network. The interdependence also

37



2 Foundations

matches the large-scale agile program idea. For example, Enabler Stories used to
have a defined process for process interdependence if one team task required a task
from another team to start the following Sprint.

MTS are open systems, which particular configuration system shapes the perfor-
mance requirements of environment that they confront and the technologies that

they adopt.
To do this it is important to have a flat hierarchy in order to adapt quickly to new

situations and how well the individual teams coordinate their activities. This is
one point where most of the MTS research differ compared to the large-scaled
agile approach, because they are focused on public teams or the military where the
leadership is strictly defined and must be followed. However, Firth et al. (2015)
demonstrated that well trained professional teams are more efficient if they are
only partially guided [45], which applies to agile teams. The second point where
large-scale agile teams are different as compared to a "normal” MTS team is that
each team should have one central role of leadership to facilitate horizontal and
vertical integration of related activities. Though in case of a Scrum team the leader’s
position is being shared between two roles, which cover three major tasks that must
be fulfilled by a team leader: (1) identify key individual resources and plan the
correct timing, sequence, and level of tasks based on the resources (this is done by
the PO of the Scrum team) (2) coordinate inter team dependencies and (3) adapt
or reconsider the team resources to optimize the team. Points two and three are
performed by the SM of the team.

Although MTS component teams may not share proximal goals, they share a com-
mon distal goal or set of goals. Furthermore, MTS have a single superordinate

goal, in which all component teams have a vested interest
According to Locke and Latham (1990) [75], goals are "desired outcomes in terms of

level of performance to be attained on a task". In MTS the teams have their own
goals, but they all will contribute to the overall goal. This can be presented in a
network where short term goals are at a low level and connect to midterm goals,
and at the top there is the long-term goal. All MTS have at least two levels of goal
hierarchy. The comparison to large-scaled agile development is that each Story is a
short term goal. Multiple Stories combined are a feature and they combine to form
an Epic. The priority is to have not only the hierarchy defined, but also the second
factor which is defined by the PO and the product management in SAFe. This is
combined with the teams in order to have iteration goals and PI Objectives. These
artifacts help the teams adapt the performance requirements as an open system.
Marks et al. (2005) demonstrated that cross-team processes had their biggest value
in MTS with a highly independent goal hierarchy [78]. This also makes sense for
large-scale agile development. The fewer dependencies between teams, the less
communication and administration overhead will be created. This must be done by
the POs to cut the Stories to the best of their ability to result in fewer dependencies
between teams.

38



2.4 Multiteam systems (MTS)

Based on the characteristics of MTS, compared to the implementation of SAFe as a scaling
agile framework, both match so that the the MTS theory can be used for large-scaled agile
programs. This means that SAFe program = one MTS.

2.4.1 Influence factors on MTS

As the characteristics of MTS and SAFe match, the research and results of the MTS area
from the last 18 years can also be used. For an overview, the work of Shuffler et. al. will
be shown in this section. They have investigated the existing MTS literature for common
influencing factors and developed models based on it.

Influences and interactions of MTS attributes

To get an overview of existing influencing factors for MTS, the work of Shulffler is a good
starting point. Shuffler is researching the MTS with a psychology point of view, not an IT
background. However, there are still interesting conclusions about how the MTS can be
used for large-scaled agile development. A cancer care MTS that consists of three teams:
(1) day-to-day patient care team (2) oncology team (3) palliative care team are comprised
of completely different persons with different backgrounds and different goals, but the
process model of the intra-team from Figure 2.19 can be easily adapted to a SAFe project.

—————————————————————————————————————————————————

System
Outcomes

System
Attributes

Intrateam
Emergent

State Profiles Interteam

Component Outcomes
Team

Attributes Interteam Intrateam

Emergent
Properties

Outcomes

Individual
Attributes

Individual
Outcomes

Interteam &
Intrateam
Interventions

Situational / Environmental Characteristics

Figure 2.19: Shuffler: MTS - Process model of intra-team state profiles and outcomes [102]

A SAFe program also consists of individuals with attributes that make one team. Together
they are the program (system) on the input side. On the outcome side each individual
has their own outcome. The whole team outcome is the intra-team outcome which is also
a key KPI in SAFe and one performance part from the TWQ model where effectiveness

39



2 Foundations

and efficiency for each team is tracked. The inter-team outcome is the outcome that two
or more teams perform to fulfill a task. If this is mapped to SAFe metrics, this is normally
not tracked in the standard KPIs, because it is not the outcome from a team that used the
Scrum metrics or the program metrics. It is only reflected in the dependencies that teams
have to work together. However the negative outcome for interteam issues is normally a
problem that has a large impact on the team and program level. If a task is not done in
time it will affect the overall timeline of the dependent team that will again effect the rest
of the PIL.

Shuffler conducted a review of existing studies about MTS to assess intra- and inter-
team factors for the outcome [101]. She created a model (see Figure 2.20) based on the
literature where the factors are grouped and mapped together depending on how they
interact with each other. They are grouped based on the input-mediator-output model by
Ilgen et al. (2005) [61] into composition, linkage, and developmental attributes on the left
side. These attributes interact as inputs by influencing the inter- and intra-team processes
(mediator). The processes use the attributes to provide an outcome in the end. The bold
terms in Figure 2.20 refer to constructs that have received significant empirical-theoretical
attention, while the italic terms are constructs that require future research. The research
focused on the MTS attributes and how they impact the outcome based on the research.
Just to highlight some of these factors based on the hypotheses of this master theses they
could be grouped in relevant attributes, such as the size and number of teams, but also in
attributes that are relevant in MTS, but not for this study, such as the timezone the teams
must work together.

Environmental Context

MTS Attributes | | Inter- & Intra-Team Mediators
Composition b Functional/
Boundary Status H | i i
Functional Diversity : : Dysfunctional Affective
Geographic Dispersion : : / Emergent States
Motive Structure H 1 «  Social Identity '
?ultural IIJigersity 1 1 Functional/ «  Psychological Safety ; Inter- & Intra-Team
'emporal Orientation ' ' . « Cohesion 1
Number | : Dys_func"onal «  Perceived/Felt Stress 3 Outcomes
Size ' ! Behavior Processes .+ Efficacy : _
: i |+ Coordination «  Motivation | Objective
H : + Communication «  Trust/Distrust ! . Goa_l Attalnme_}nt
- »4—»1 +  Leadership .« Resilience F_’ « Decision Making
Linkage i1 |+ Action/Transiti : * Innovation
Interdependence ! : Processes I | +  Performance Breakdowns
Hierarchical Arrangement | : «  Adaptation/Maladaptation ! +  Learning
Power Distribution {1 |+ Boundary Spanning Functional/ | Subjecti
Communication Structure i1 |+ Confliot i : ubjective
: | «  Counterproductive/Deviant Dy_s_functlonal ! *  Visibility
I P Bohaviors Cognitive Emergent | : . Satisfaction
{1 |+ Planning States
Development 1 : *  Risk Mitigation + Transactive Memory
Genesis ' ! +  System Monitoring Systems
Tenure 1 : «  Shared Mental Models
Stage | ; \ «  Shared Situation Awareness
Membership Constancy ' H +  Information Withholding
Linkage Constancy i : «  Shared Information Bias

Figure 2.20: Influences and interactions of MTS attributes model [101]

40



2.4 Multiteam systems (MTS)

Geographic Dispersion If a Component team is spread across more than one location
then the team is geographically dispersed [31]. This has negative consequences for
information exchange and synchronicity. The impact is higher the more complex
the tasks are. To reduce this impact the team must be (1) highly trained at the
beginning so that less coordination is required, (2) the leadership can compensate
the impact by distributing the tasks across the members or (3) the team can use
modern tools and video conferencing solutions to receive updates if the team is

geographically dispersed.

Motive Structure It is important for a team to have an unique goal on the team level.
If a team has a mixed-motive, then the team does not share the same level of
interdependence. This will lead to a lower outcome [34]. A mixed-motive, in
many cases, occurs due to bad leadership. A team needs a defined goal and a clear
sense of prioritization regarding what must be achieved next, otherwise each team
member will decide by themselves.

Size and Number of teams If the MTS size increases this will have two characteristics:
(1) the team size increases or (2) the number of teams increases. Both characteristics
will have an impact on the complexity, but on a different level (coordination, com-
munication, ...). The bigger the MTS becomes the more important is the leadership,
the exact goal definition, and good training to compensate the new environment.
Firth et al. compared the outcome between two teams (249 participants). All
received an introduction training of forty-five minutes. Half of the teams (119 par-
ticipants) received an extra frame of reference training (fifteen minutes) concerning
quality. Defining the same standards for performance helps coordination between
teams in MTS [45].

Hierarchical Arrangement and Power Distribution This attribute depends on two fac-
tors: (1) is the team a support team (many external dependencies) or not. For
support teams the performance increased with horizontal coordination compared
to vertical coordination. Teams with less “outgoing” dependencies have nearly the
same performance for vertical and horizontal coordination [30]. (2) Is the team lead
prepared and enabled to lead the team. If a team lead is competent and knows
the skills of the team members, than they should take full control and have the
last decision on the topics. If the team lead has only a rough knowledge and no
management skills than they should only coordinate and let the team members
devise by themselves.

Dependence between Team and MTS goals

This MTS model (see Figure 2.21) was developed by Guthrie et al. (2005) and it uses the
common factors that are mostly mentioned in other models and papers [52]. However, it
makes one very important point clear: there is a direct connection, with a positive and/or
negative impact, between the team and the MTS performance. If a MTS team is focused

41



2 Foundations

on the more global MTS goal, individual team processes will be worse. And if a team is
focused on the team goals then the overall MTS goals will be worse. So it is important that
both goals keep the balance. The research focused on two primary processes: (1) Team
processes (i.e. communication, coordination, leadership, conflict resolution, decision
making etc.) are important for effective performance. (2) Communication and leadership
are more relevant the more teams are involved. An additional research result was
that a MTS with a lack of sharing mental models will likely perform poorly because
communication will be less effective. However, as the teams communicate, shared mental
models can be developed increasing the effectiveness of communication and improving
performance.

!

Cognitive Constructs
+  Situation assessment
Team situational awareness
Mental models
Shared mental models
Metacognition
Collective orientation
Collective efficacy

i

MTS Processes
Communication
Leadership
Coordination

Team Processes
Communication
Coordination
Leadership
Decision-making
Adaptability

Team Learning
Teamwork

Back-Up

Conflict resolution

O—

Decision-making
Teamwork
Adaptability
Back-Up

Conflict resolution
Team Learning

—

Team Performance

Team Processes
Communication
Coordination
Leadership
Decision-making
Adaptability

Team Learning
Teamwork

Back-Up

Conflict resolution

v

MTS Performance

Team Performance

Figure 2.21: Performance in MTS - effectiveness model [52]

42




3 Related work

This chapter details the related publications of influence factors for the team and program
performance for agile development. Some of the publications have an own model that
can be compared to the model from TWQ in Section 2.3. The related research is split in
two parts. The first part lists relevant research, with a focus on intra-team performance,
and the second part mainly focuses on inter-team performance models for large-scale
agile development.

3.1 Intra-team

Since agile methods (see Section 2.1) have been around for several years, research has
already been conducted in this area. Various influencing factors have been compared
at a team level to see how they impact success. In this paper, the focus will remain on
the factors that are easier to change in an ongoing project, rather than the underlying
decisions and management.

Dingseyr (2014-2019)

Dingseyr is one of the most known researchers focusing on large-scaled agile develop-
ment in the last years. He was one of the participants who created a definition for team
sizes in large-scale agile development [37], coordination of large numbers of teams which
had an impact on inter-team coordination in large-scale agile development [36] [38] and
based on the TWQ model, he compared the factors and the performance between agile
and traditional development. To achieve these results he conducted a survey with 477
respondents in 71 agile software teams to determine how the TWQ performance and team
members’ success is effected for agile software teams. He also wanted to determine how
they can be compared to traditional development teams by using the same questionnaire
(see Section 2.3) that was used by Hoegl and Gemuenden. They found out that TWQ
is more important in traditional teams for the team performance than for agile teams,
but only with a marginal difference. The mean values of the factors are also very similar
compared to the other model shown in Figure 3.1. One explanation could be that TWQ
increased in implementation over the years, but the expectation of agile teams are higher
now compared to before. Based on the similar results, the TWQ also influences the team
performance for agile teams for the team members. On the other hand the team leader’s
perception only has a medium correlation to the team performance and the product
owner has no impact on the team performance. Their suggestion for future work is that
additional factors could be taken into account to see if they have an impact on the team

43



3 Related work

performance such as the effect of offshore vs. local teams, public vs. private sector or the
level of team interactions with the PO [74].

Work satisfaction

members'
success

Learning

0.30 1.00

0.09

Communication [k g g4 Effectiveness_TM

o o
w S
hS ©

Performance
(team
member)

078 —
Coordination 047 0.68

047 | Balance of member |, 0.73
contribution

0.24 0.87

M | 0.32
utual support 074

Efficiency TM 2%

20

0.
00 Effectiveness_TM

Performance
(team leader)

0.46

0.70
Effort 0.90 0.06 Efficiency_TM ¢

0.20

Cohesion

.08

0.
Performance Effectiveness_TM

(product
owner)

0.59

Efficiency_TM

Figure 3.1: TWQ Model with standardized factor loadings, path coefficients and error
variances [74]

Espinosa et al. (2007)

Due to the high demand for skilled developers in the world and especially in metropoli-
tan areas it is very hard to find enough team members in one location. As a result, bigger
teams normally have team members that work from different locations. With geograph-
ical distribution many additional challenges arise for the teams, such as geographical
distance, different time zones, cultural differences, and different language skills.
Espinosa et al. conducted a questionnaire and interviews to determine the impacts of
geographical distribution in large-scaled agile development. He wanted to determine:

"How do various types of team knowledge affect coordination in software
development? And, how do these effects vary with geographic dispersion?"
[44]

The overall result is straightforward: It is more difficult to coordinate tasks across sites
compared to coordination within a single site. The distance causes all sorts of problems
associated with the distance. However, two fundamental impacts can be distinguished:
(1) The communication frequency. This could include discussions in the background
surrounding some team members or a short chat about one topic next the coffee machine
that improves the team knowledge as opposed to scheduled meetings. (2) The loss of

44



3.1 Intra-team

information through digital communication. Video conferencing is state of the art in geo-
graphically distributed teams and they help with communication, but some contextual
references are lost through this type of communication. As a result the shared knowledge
is different. Based on the interviews it was found out that coordination consists of tree
components (1) technical, (2) temporal (e.g. delay) and (3) process. Typically a developer
has technical coordination problems. The management normally has temporal or process
coordination problems with distributed teams. One way to address these problems are a
shared knowledge of tasks, and the team members for the developers, and better task
and presence awareness for the management. One way to implement this solution is to
increase the use of tools where the knowledge is documented for everyone and direct
communication tools with video in order to lose as little information as possible. During
the interviews it was discovered that members were less inclined to discuss problems if
the other members were distributed geographically and that shared knowledge of the
team is more important for team members that are distributed geographically, but that
shared knowledge of tasks is more important for co-located team members.

Other researches have come to the same conclusion that geographic distribution in
software development has a negative impact (e.g.: Erran (1999) [17], Espinosa et al. (2007)
[43], Herbsleb et al. (2003) [56], Ramasubbu et al. (2007) [85]). Physical distance creates
barriers that make coordination, communication, and awareness (Cummings et al. (2009)
[28]) lead to a longer time to finish a task (Herbsleb et al. (2003) [56]) and to more bugs
(Espinosa et al. (2007) [41]). This, in turn, results in worse software with higher costs than
normal which cannot compensate with the lower daily rate.

Espinosa (2015-2019)

Espinosa analyzes the impact of distributed teams in different areas such as the temporal
distance [42], teams in different time zones [18], and virtual teams [25]. One of his
findings is that team members that have worked together in the past know each other
and have a relational resource that, in general, improves the team performance, even if the
relationship is negative. In 2007, he conducted a field study of geographically distributed
software teams to discover the impacts of changed based on the task familiarity and team
familiarity on team performance in such an environment [43]. As shown in Figure 3.2
they focused on five hypotheses that have an impact on the team performance.

45



3 Related work

Task . Task size Structurgl
complexity complexity
H1 (+) (ns) H2 (+) (op)
Task familiarity i
H5 (+) (o
(+) (op) Team performance
Team familiarity I
H3 (+) (sup) H4 (+) (sup)
Team - ns: not supported
coordination Ggograph|c Team size op: opposite effect
: dispersion .
complexity sup: supported

Figure 3.2: Espinosa et al. - Team Performance Model [43]

The results show that, in general, the familiarity is positive for the performance of the
team. The second finding was that more complexity (bigger tasks, structural complexity,
geographical distribution and bigger teams) had a negative impact on the performance.
The more interesting results are: (1) Task familiarity is more beneficial than team famil-
iarity for less structurally complex tasks. (2) The size of tasks are not related to team
and task familiarity. Bigger tasks will take longer even if the team is familiar with the
task. (3) Team familiarity helps teams to reduce the negative effect of bigger teams. Team
building events can help to create a sense of team familiarity. (4) The same counts for
geographical distribution. A video conferencing system can help to increase the team
familiarity. The final finding is that task familiarity improves team performance more
strongly even when team familiarity is poor and vice versa [43].

3.2 Inter-team

Lindsjern et al. (2018)

Lindsjorn et al. analyzed the influence of small and large agile projects on TWQ. An
exploitative survey was conducted with 64 agile teams (31 teams in small projects and 33
teams from large projects) and 320 team members and team leaders. They defined that
small projects consist of one or two teams and a large project consists of 10 or more teams
[73].

Figure 3.3 shows the relationships between six TWQ facets in grey and team perfor-
mance in blue and red. In small projects the product quality (ProdQ) correlates more
closely with TWQ for team members in blue and team leaders in red than project quality

46



3.2 Inter-team

(ProjQ). Product quality is more central and closer to the quality of teamwork. Project
quality is further away and has weaker correlations to TWQ. The same result exists for
large projects between the facets and team performance for the team members, but the
team leaders product quality has a negative correlation to several facets. TWQ may
influence product quality more than project quality in small projects, as team members
and team leaders work closely together in small projects with little need to plan ahead,
compared to larger teams that need stronger mechanisms to control costs and schedules.

Correlations for small projects (n=31) Correlations large projects (n=23)
N TN

Figure 3.3: TWQ correlations for small and large projects. (Com = Communication, Coo
= Coordination, MS = Mutual support, Eff = Effort, Coh = Cohesion, BOC =
Balance of member contribution, ProdQ = Product quality and ProjQ = project

Quality) [73]

The six facets also have different correlations between small and large projects in some
factors. The coordination (Coo) is more positively associated with all other five factors,
probably because the larger the project is the more important the coordination for the
overall TWQ. The other factors of the six facets change marginally between small and
large projects. This is slightly surprising as the authors have assumed that the motivation
teamwork aspects (effort, cohesion and balance of member contribution) have a greater
influence on smaller projects and the three interaction aspects (communication, coordi-
nation and mutual support) have a greater influence on large projects. Unfortunately,
there is no explanation for this and further research and more data are needed to make a
definitive conclusion.

Scheerer (2017)

SAP SE is, with 96.000 employees [100], one of the biggest software development com-
panies in the world. This is a very competitive industry field with many big customers
with special needs where they must adapt their solutions. Scheerer is the Agile Coach and
Scrum Master at SAP where they adapt large-scale agile development. He determined
that with agile development there must be a fundamental shift in companies in how they
solve complex issues, especially in terms of coordination between teams. He uses the
MTS (see Section 2.4) from Mathieu et al. (2001) to find strategies for team coordination in

47



3 Related work

order to optimize the program performance [94]. This is the only research that could be
found which combines large-scale agile development with the MTS. Even if he focused
on coordination, the results are still quite interesting. In the paper he discovered a contra-
diction between the agile policies and key requirements for good communication and
coordination. He conducted a case study in a real-life industry setting at SAP SE with
~140 employees in thirteen teams at four locations. He grouped the forms of coordination
in three groups: (1) Mechanical coordination - Scheduled or regular coordination with
little communication (2) Organic coordination - Coordination through mutual adaptation
or feedback through interaction, which can be formal and planned, or informal and
spontaneous (3) Cognitive coordination - based on explicit and tacit knowledge of each
other. Organic and cognitive coordination between Scrum teams is hardly present due
to the explicit Scrum guidelines, such as focusing on the team-related backlog, fixed
sprint cycles, and predefined roles. Mechanical coordination is quite limited in agile
development, based on the definition of the SM and PO. Both roles have a very limited
mandate to control the team. He proposed to change the guidelines and adopt them so
that deeper coordination could be established over the teams. This will have a positive
impact about the delivery predictability.

48



4 Case study

This chapter will provide insights into the case study partner in Section 4.2 to answer
why and how the case study adapted with nearly 150 people from a mix of waterfall
model and Scrum with a big bang to SAFe. The Section 4.3.2 and Section 4.3.1 provide an
overview about the team and program setup of the partner and explain why this partner
is interesting to analyze. It also describes why the additional factors that are added to the
TWQ model are chosen. The information will be than used in the survey evaluation in
Section 7.

4.1 Case study design

The case study must provide as much relevant background to the reader as possible to
understand the environment and the decisions that are made by the case study partner.
To fulfill this, the case study is conducted using the guidelines from Runeson and Host
(2009) [90] and by following and answering the elements of the plan by Robson (2002)
[88].

Objective — what to achieve? The case study is an exploratory study that wants to
achieve two goals. (1) Get all relevant background information regarding how the
large-scale agile transformation was done and worked for the case study partner
to document how it could work, what worked well, and what could have been
improved. (2) Analyze the team setup and team structure to find relevant KPIs for
each team concerning the team members and team performance that will be used
as a base for the survey and which can be compared to the survey performance
results.

The case — what is studied? The case study partner is described in more detail in
Section 4.2. It was observed between September 2018 and March 2019. This was the
time shortly before the first PI-Planning until the beginning of the third PI.

Theory — frame of reference To understand the goal of the expiration case study; it is
important to have a basic knowledge about agile and Scrum in general and for SAFe
Essential in more detail. The relevant theory about agile, Scrum, SAFe is described
in the Chapters 2 and 3.

Research questions — what to know? From the four research questions that should
be answered in the thesis (see Section 1.2) two are based on the case study, especially
on the survey.

49



4 Case study

(1) Research question 3: Can the teamwork quality (TWQ) model be applied by
the case study partner on the team level and are there any additional significant
factors that can be added?
(2) Research question 4: Can an influence factor model be applied by the case study
partner on program level?

Methods — how to collect data? The data is collected in different ways. Observations
and unstructured interviews were conducted during the PI-Plannings where the
whole program came together and the transformation could be compared for each
team. Additionally there were semi-structured interviews with the main roles
(Business Owners, System Architect, Release Train Engineer). The historical view of
the partner, the team setup, and the performance were done by document analysis
that was provided by the partner.

Selection strategy — where to seek data? The information was researched by a case
study in this Chapter. To answer the research questions concerning influence factors
for team and program performance, a survey was done encompassing the whole
program based on the TWQ model, which is described in Section 2.3. The survey
questions and the results are presented in Chapter 5.

4.2 Case description

The case study partner: EGP 2 is a German software developing company with nearly
150 employees with offices in different locations in Germany. The partner is developing
a software solution based on modern standards. To give an example, some buzzwords
include: docker, cloud ready, DDD, progressive HTML5 web-page and microservice
architecture.

The reasons why this partner is interesting to analyze and use as a base for the research
are:

Timing The research started shortly before the large-scaled agile transformation started
for the teams of the partner. This gave a direct and unmodified impression of the
implementation of SAFe and not a historical retrospect with information loss.

Size With more than 10 teams and 150 people it counts as very-large scale agile develop-
ment [37].

Setup There are enough factors that can be analyzed, but not too many that makes it
difficult to draw conclusions based on the data. This results in many distributed
and non-distributed teams in different sizes. At the same time, most team members
have the same background and speak German as their first language.

2EGP Gesamtbanksteuerungssysteme GmbH & Co. KG https://www.egp.finance

50


https://www.egp.finance

4.2 Case description

History

After the financial crisis of 2008, many banks were rescued by the government. To ensure
that this will not happen again, many new German and European Union regulations
were created. The problem that banks face is that the government and the EU require
more data from the banks to observe a health indication. At this point two companies,
that were partly competitors in some areas, joined together to build a new company in
the financial industry to provide a solution for banks. This is a very complex task, based
on the many different bank products and the necessity that the calculated numbers must
be correct, otherwise they would fail to meet legal requirements.

The company was founded in 2016 by two big players in the German software industry.
Each of the two companies counts nearly 7,000 employees. However, one of the com-
panies is more focused on infrastructure and IT operations, while the other company is
more of a software consulting or solution provider. The benefit for the new company was
that they had access to skilled developers and a running and maintained data center.

Between 2016 and 2018, the first version of the software was developed based on
the requirement document and mostly by using the waterfall model. Only some teams
started to work independently after the Scrum framework. The whole company started
with roughly twenty developers in the initialization phase, but quickly grew to sixty
developers. At the end of 2016, they had nearly 100 developers working on the software.

Based on the results in the first two years, the management and stakeholders decided
to change to large-scale agile development (SAFe Essential). They decided to do this with
a big bang approach by completely transitioning all teams to SAFe Essential with their
first PI Planning in September 2018.

This quote explains the challenge and the timeline quite well:

"We have started as a speedboat to fulfill a legal requirement and managed it.
But at the same time we stared to build a supertanker and tried to overtake
the speedboat. Now we are nearly even, but to achieve this we had to drive
the supertanker at full speed.”

Through the agile approach they wanted to achieve the following benefits:

More flexibility with requirements This is an obvious benefit to change to agile devel-
opment. This could be bigger requirements that are legal changes that have a bigger
impact, but also very small things such as text changes in the Ul or reports that
should not take months until they are delivered to the end user.

More transparency between the teams With the high number of developers that are
working on the same software, that was created in such a short time, a large problem
appeared: the dependencies between teams were not clear to everyone based on
the requirements definition document and so each team tried to build a component
on its own without knowing what must be done in what time frame so that other
teams are not blocked. This became clearly crystal in the first PI Planning, when, for

51



4 Case study

the first time, all teams had to identify with each other which dependencies exist to
place them on the dependency board (see Figure 4.6).

More transparency for the management and stakeholder In the traditional project
flow the requirements were written down and then developed based on the doc-
ument. There is normally a project controlling what should be taken care of in
the progress. In the end the final product is only presented after all teams have
developed their requirements and then the management will see the results. This
has two very hard impacts that cost money and time to solve. (1) If the developers
understand something differently in the written words it is nearly impossible to
make it clear until it is finished. (2) The teams normally do not integrate their
components with the other components until the end (in between the mock the
interfaces) and then it results in additional work to do it. Both challenges could be
solved in the traditional development process, but they got automatically solved by
implementing SAFe. The current progress and status is transparent in the boards
of the teams and shown to the stakeholder in a system demo. With an automated
CI/CD pipeline and automated testing there should always be an integrated and
running product.

4.3 Large-scaled agile adoption

As scaled agile framework they have chosen SAFe Essential because of the market share,
compared to other frameworks that bring some benefits with it. The most important
criteria for the selection of SAFe was the documentation for the case study partner. This
focused especially on the implementation effort and what is documented and already
prepared and available, so that all team members can find the most relevant information
quite easily. If this is not the case, then all the descriptions for the teams, PO, and SM
must be contacted by the case study partner that would be a big effort. This is relevant
not only in the initial effort, but also the long term effort and should not be ignored.
There will always be change in the program with new developers and if a lesser known
or badly documented framework is used it will take longer to onboard the new people.
The second plus point of SAFe is the adoption of Scrum inside of SAFe so that teams that
have already used Scrum and other team members who are also familiar with Scrum
from other projects or the university can easily adopt it. The second point also fits to other
models like Large Scale Scrum (LeSS), but they are less documented. The comparison and
the decision for SAFe was chosen based on the internet research and a small literature
research for most decisions. In the beginning LeSS and Essence were compared, but in
the very early stage they focused on SAFe. One important point is that the decision was
done completely based on their own environment and not on already used large-scale
agile frameworks that are used in the company. This is interesting because one of the
two owners develops software in the automotive industry, or in the public sector where
large-scale agile is used. However, they decided to use SAFe due to some experience
exchanged with another subsidiary company in the banking industry that also uses SAFe.

52



4.3 Large-scaled agile adoption

Based on the criteria, the System Architects and RTE made decision documents for the
management that approved the decision for SAFe. This is also mentioned in many
research papers [35] that the decision must come from the top and management commit-
ment and support is required for such large change in the company. The research work
was conducted between April 2018 and June 2018. After the final decision, the whole
transformation and training was conducted until the first PI Planning in September 2018.
This is a very short time frame for a full transformation. The time was mainly used to
train the SM, PO, and Solution Product Owner in Scrum and SAFe theory so that they
would know exactly how the process works. They should be the first contact point for
the team if they have any questions about the process. The team members only received
a crash core with half a day for one day before the first PI Planning. If there were specific
questions or different understandings, then the team members could contact the RTE for
help. If they were not completely sure they could contact an external agile coach that can
consult in hard questions or misunderstandings.

Challenges during the large-scale agile adoption:

Make the transition and start working The teams worked during the transition on new
features and bugs in the first version of the software and the other parts of the
team started to work on the second version. This mix resulted in the fact that the
transition caused many problems that could have been minimized if they would
have defined an end date where all the tasks must be done, then start the transition,
and then start working in an agile world. This also applies to the tasks. Some teams
worked until the end with a requirements document in waterfall and at the same
time the Stories had to be prepared for the first PI Planning. This lead to Stories
that were either wrong or already partially done. This tied up many capacities that
could have been invested better.

Different knowledge about Scrum and SAFe Some team members had only heard of
Scrum, but never participated in an agile team. They all received the half day agile
crash course. In retrospect, the half day was not enough for many team members to
understand the whole SAFe process. There are basic questions that must be clear to
everyone, such as how Story Points are estimated (Complexity # working days).
All this must be recapped by the SM and PO during the first Sprints which cost time
and effort.

Measurement of performance The management must be able to get an answer if the
progress fits the time line. This is always a very complex task, because not all
Stories are estimated and Story Points are not equal to working days. However, the
management only has the funds to pay for a certain amount of working days, so an
understanding mus be achieved on whether a finished and running system can be
delivered in time and within budget. The RTE role has the responsibility to track
the progress and report it to the stakeholders.

53



4 Case study

Adopt the old organization structure As in most typical organizations, the case study
partner had some management and middle management roles that did not fit the
SAFe roles. They started by moving the roles from the management role to the
Scrum role. Most of the sub project managers became PO or SM but there were
also some people who could not handle the "degradation" from their point of view
and left the program. However, this was only a small group. The overall project
leaders remained based on the ownership of the company. One way or another, the
organisation must adopt to SAFe and not the other way around.

Operation, maintenance and problem management The focus of SAFe is to develop
new features that extend the software and they have highlights that come with
SAFe like Test-Driven-Development with build-in quality. But a software is a living
system and it is unreasonable to expect a software without any bugs or problems.
The question is: how do you handle the incident and problem management. Do
you expect a defined number of incidents in each Sprint? If there appear less, then
originally expected, than you can add an additional Story at the end. What if you
have a major incident of a high severity for the end users? Would you stop the
Sprint for one team or for the whole PI? Those are all difficult questions to answer.
They used an initiative for maintenance to at least track the effort and get a feeling
how much effort it is.

Overall they are very proud of their transformation. There will always be things that
could have been done better, but in the end the transition was done with a big bang and
this worked for the teams. They have completely implemented SAFe and will stick to it.
The only thing is that they will include the Portfolio Level from SAFe in the future to have
a better overview. However, it was a good decision to start small and gradually extend.

What they missed in the surroundings of SAFe is a good case study which describes how
a transformation really works and what best practices should be used to increase the
acceptance of the adoption. The process, the roles, the artifacts, and the meetings are
well documented, but how do you get people together and how do you train them is not
completely clear. Pictures and texts are impotent, but to get it on the road is a completely
different thing. Even in the trainings that are being offered at the SAFe website only very
few insights in the real transformation are given. For example: "How do you transform a
group of heterogeneous developers that have developed decades in a given and steady
waterfall environment?". They have increased the training for this group of people for
them to be able catch up with the rest of the program, greatly focusing on the mind.
The second point they miss is a more detailed explanation and tooling on how to control
the teams and what KPIs are relevant to make a forecast. They use the current team sizes
and the Solution Product Owners as expert estimation to estimate complete Features or
Epics in working days.

The fact that SAFe is more of a commercial product than an organization that wants to

54



4.3 Large-scaled agile adoption

help people is not a bad thing. This has the benefit of the focus being to optimize the
product and provide enough information that is needed.

For them the most important criteria, if they had to choose a large-scale agile framework
again, would be the initial situation. How many developers do you have at what skill
level and in what locations? In many cases Scrum would be enough or a small Scrum of
Scrum will be enough for smaller programs. If necessary, a bigger scaled agile framework
should be used, because it brings structure, but it will also bring more complexity which
will lead to problems.

4.3.1 Program setup

This section describes the program setup in more detail. It will explain how SAFe Essential
is implemented and how the teams are located, split, and sized. This information is
important to have a better understanding of the case study partner. The team size and the
team distribution are used to find out if they have an impact on the TWQ. All numbers
and the figures are based on the data of March 2019 at the beginning of PI3. How the
teams change between the beginning of PI1 in September 2018 and PI3 in March 2019 is
explained in Section 4.3.2.

The case study partner has tried to adopt, as close as possible, SAFe Essential, but based
on the setup they had and the challenges described in Section 4.2. The result is shown in
Figure 4.1 on high level. In total, the whole program consists of 148 people of which 111
(75%) are developers or testers and the other thirty-seven (25%) are management, SM, or
PO.

‘ GPL (2 member)

Solution Product Owner (5 member)
ART Solution Architect (2 member)
9 member
Release Train Engineer (2 member)
63 member 25 member 49 member
CRA (7.5 member) ACC (7 member) ANA (6 member)
4 Shardd SM
JShargd
MET (8.5 member) FRM (8 member) CRE (28 member)
MDA (15 member) PST (10 member) CRP (9 member)
REP (8 member) SR (6 member)
FWK (7 member)
1 Sherdd SM and PO
SYS (10 member)
UIF (7 member)

Figure 4.1: Program overview of the case study partner

The overall project lead (GPL stands for "Gesamtprojektleitung" in German) are com-

55



4 Case study

prised of two people. This is due to the fact that the company is owned by two companies,
each being represented by one individual. They are responsible for the business decisions
and how the money is spent. Compared to the SAFe roles they are the Business Owners.
Under the GPL there are three teams that are adopted to the SAFe model. How they
are integrated into the program is shown and explained in Figure 4.2. Fourteen teams
are combined into three clusters that match from a business point of view. Overall the
three clusters are only a virtual split over the teams. There are no borders between the
three clusters so that connections and dependencies exist over the whole program. The
PI Planning is completed with all teams at once. Detailed information about the team size
is explained in Section 4.3.2.

5 Solution
Product Owner

Bank Experts

/ “%‘-’d 2 Solution
Archltects \

Figure 4.2: Relation between the program members based on the rolls of the case study
partner

In Figure 4.2 the program setup is shown again on a different level. The green circle on
the left represents the teams. A Scrum (see Section 2.1.2) defined team consists of a Scrum
Master, a Product Owner, and the team members (developers). One or two team members
also have the role of a Tech Lead. The Tech Leads work together with the two Solution
Architects (in SAFe: System Architect/Engineer, Section 2.2.3) to define interfaces and
frameworks. More about the Tech Leads, the Solution Architects, and architecture process is
described in Section 4.3.3. The five Solution Product Owners (SAFe: Product and Solution
Management) build the bridge between the the customer needs, the legal requirements,
and the teams in the three clusters. They also establish the contact between the Scrum
teams and the external bank experts if specific explanations or details are needed. This
means that direct communication is allowed between the teams and these experts. This
differs depending on the team and the Solution Product Owner. To support the program,
two Release Train Engineers (RTE) help the teams in any required way. Additionally they

56



4.3 Large-scaled agile adoption

have the important task to track the progress and the results. These are required by
the GPL and the stakeholders to see if the program can be completed in the expected
timeline. Besides the shown roles, there are two participants whose task is support the
program. The owners support the program with an existing team of Project Management
Office (PMO) to organize all kinds of tasks such as the PI Planning with hotels, rooms, and
food. The second thing which is provided by the owners who are experts or colleagues
not part of the program, but still help with advice or server management and tools. The
tools that are used are industry standard with Jira as an issue tracker with the portfolio
plug-in, Confuence as documentation, and the knowledge system from Atlassian. As a
software repository and build system they are using git with Jenkins. To communicate
inside the program with team members they use Skype or zoom.us for video conferencing.

Since September 2018, they have finished three Program Increments. Each of the PIs took 3
months which each had six Sprints with a length of two weeks each. The last Sprint is
the IP Sprint that not only allowed the team to finish and document, but also to work
on innovation and exploration tasks. Some of the Sprints differed depending on the
holidays in Germany which made it quite hard to coordinate. At the beginning of each
PI they had a PI Planning meeting, as defined in SAFe where all teams meet together in
one location. During these two days the main scope should be defined and specially the
dependencies between the teams must be made visible for all teams that are related. This
meeting should give a short overview over the PI Planning and what the main findings
from this event are. Figure 4.3 shows the meeting room after the first PI Planning day
with the team workspaces and their planning process an the walls.

Figure 4.3: PI planning room

They used the agenda schedule plan from SAFe. This means that the GPL presented the
current market situation of the product, followed by a presentation of the Vision, road
map, and goals from the SPO. The next agenda point was the current situation and the
goals from the solution architect. All these points were more or less presentations without
any real feedback. This changed in the first PI planning for the agenda point "Planning
context and lunch" where many questions were asked about the process. This is due to the
fact that only three team members had participated in a large-scale agile project so far and
that the half day training was not enough for most of the developers. All the questions

57



4 Case study

were answered by an external consultant who was an expert in agile transformation. In
the first Team Breakouts, all teams estimate their velocity in total and for each Sprint. They
also started to plan the goals they want to achieve with the defined Stories. In this step,
the preparation of the PO makes a big difference if they have prepared the vacation plan
for their team, Stories, and a rough timeline. Figure 4.4 shows an empty workspace for
a team with sheets on the wall for each Sprint, the goals and risks, and what cannot be
done in the PI. They differentiated Stories, Enabler, risks, and goals with different colors.
This technique helps to see how much time a team spends with preparation or final end
to end Stories.

Figure 4.4: Prepared team workspace for a PI planning

During the Team Breakouts the SM meet twice to check, in a short Scrum of Scrums, if all
things are done and what tasks are open for the team. In this case the Stories are not the
focus. The idea is to check all organizational tasks, such as if the definition of done is
taken into account or if the team has started to define dependencies. This is checked with
a sheet that is shown in Figure 4.5 where all tasks are listed on the left and all teams on
the top. This helps the SM to see the progress of each other.

58



4.3 Large-scaled agile adoption

Figure 4.5: Scrum of Scrum status board

In the Draft Plan Review, all teams presented their results and a short status. This is
the base line for the Management Review and Problem-Solving Meeting where open points
and possible problems are discussed and solutions should be worked out. The first PI
Planning leads to some shifts between team members, because of a lack of knowledge in
some teams.

All management decisions were presented the next morning to the program so that the
participants were all up to date. Based on the adjustments the second Team Breakout
should give the teams the time to finalize their planning. If this is done properly, the
team will not need a Sprint Planning meeting for the first Sprint. With the final objectives,
the Business Owners assign a Business Value for each team objective they can adopt if the
time gets short at the end of the PI. Additionally, what should be visible at the end of
the meeting are all dependencies between the teams on the Program Board. Figure 4.6
shows the comparison between the dependencies after the first Team Breakout and after
the second one. This figure makes it extremely visible why an on site meeting with all
teams makes sense. At this point, it is even more interesting, because the teams already
had most dependencies before the start of the first PI. The system team especially had to
do a lot of preliminary work for the other teams, because otherwise they are blocked. The
board is essential to reduce the complexity between dependencies. Steiner (1972) was one
of the first to describe in detail which characteristics of the task structure must be seen as
essential conditions for the provision of services in the social context of the group [106].
He has divided the degrees of task complexity and dependencies based on processing
into four groups. From (1) additive (parallel and independent) to (2) sequential to (3)
reciprocal (sequential with reverse direction) to (4) intensive (all directions). Without

59



4 Case study

planning the dependencies would be intensive, but with the Program Board they are
structured and reduced to sequential.

Figure 4.6: Program board with dependencies between the teams at the end of the first
day on the left and the second day on the right.

The final plan review and program risks meeting will give an overview about the status
of each time. Based on this information and after the program risks have been addressed
the teams vote in the Confidence Vote if the current PI plan will work out.

If one keeps in mind that many team members had no experience with agile development
than overall the PI Planning worked very well for the case study partner. This is due to
the good preparation of the meeting, the engagement of the team members, and constant
help of an external consultant.

SAFe events and artifacts

Tables 4.1 and 4.2 show the artifacts and events that are used by the case study partner
according to the definition of SAFe and the different levels. The percentage values show
how many of the Product Owners and Scrum Masters answered in the first survey on the
team level with "exists" or "not exists". It is clear that all teams use stories for the Sprints
to plan the tasks, based on the Team Backlog. With the other artifacts at team level, the
answers differ. Iteration Goals are being used by almost 50% of the teams. Interestingly,
not all teams agree on enablers and PI objectives, whether they use them or not. On the
program level the answers are different depending on the teams. All teams, except CRP,
reported that Features are used. For the remaining artifacts, it is a mix of answers inside
the teams if they exist or not. One reason could be that the wording is not clear to all
team members. This is why some believe that the program has a Program Backlog and the
others think that it is a Solution Backlog or Portfolio Backlog. Another area where the teams
are not in agreement is whether there is a Vision or not. They answered either yes or no.

60



4.3 Large-scaled agile adoption

The same applies to the non-functional requirements, although there are other teams in this
case.

Artifact Level Existing Not Existing
Stories Team Level 100% 0%
Enabler Team Level 73% 27%
Iteration Goals Team Level 47% 53%
Team Backlog Team Level 100% 0%
Team PI Objectives Team Level 60% 40%
Features Program Level 93% 7%
Enabler Program Level 67% 33%
Program Backlog Program Level 67% 33%
Program Kanban Program Level 47% 53%
PI Objectives Program Level 67% 33%
Architectural Runway Program Level 47% 53%
Continuous Delivery Pipeline Program Level 67% 33%
Capabilities Large Solution Level 27% 73%
Solution Backlog Large Solution Level  60% 40%
Solution Kanban Large Solution Level 33% 67%
Epics Portfolio Level 73% 27%
Strategic themes Portfolio Level 20% 80%
Portfolio Backlog Portfolio Level 33% 67%
Nonfunctional Requirements  All Levels 40% 60%
Vision All Levels 53% 47%

Table 4.1: Adopted SAFe artifacts

All teams agree that their events include: Iteration Planning, daily Stand-up, Review, and
Retrospective. These are also the typical events organized by every Scrum team. The team
responses differ in relation to the Iteration Execution, the Backlog Refinement and Innovation,
and Planning Iteration. Here there are teams that have events and some that do not. At
the program level, the teams have mostly the same opinion regarding which events exist.
Only the answers for the PO Synch and the Community of Practice are different. For Inspect
and Adapt, only the GPL thinks that this is part of the program compared to all other
teams. Here different viewpoints between the management and the developer teams are
to be expected.

61



4 Case study

Event Level Existing Not Existing
Iteration Planning Team Level 100% 0%
Iteration Execution Team Level 67% 33%
Daily Stand-Up Team Level 100% 0%
Iteration Review Team Level 93% 7%
Iteration Retrospective Team Level 93% 7%
Backlog Refinement Team Level 80% 20%
Innovation and Planning Iteration Team Level 73% 27%
PI Planning Program Level 93% 7%
System Demo Program Level ~ 93% 7%
Scrum of Scrums Program Level ~ 100% 0%
PO Synch Program Level 73% 27%
Community of Practice Program Level  47% 53%
Inspect & Adapt Program Level 7% 93%

Table 4.2: Adopted SAFe events

All in all many events and artifacts are used in the program of the case study partner.
The fact that some artifacts from the Large Solution or Portfolio category are only partially
used or not at all is due to the fact that SAFe Essential is used.

4.3.2 Team setup

To interpret the results of the survey correctly, it is important to know the distribution
and the team structures. The focus lies on three influencing factors: (1) the team size, (2)
the background of the team members in relation to the company affiliation and (3) the
geographical distribution of the teams.

Team size

In total the 137 dev. teams are split in 14 teams. The teams are split based on business
context which is very near to the bounded context. Some teams have up to two bounded
contexts, but most of the teams focus on one. This is one reason why the team size has
such a wide spread between the smallest team with 6 members (incl. SM and PO) and the
biggest one with 28 members. The average team size is 9.8 which is a little higher than
the proposed team size which should be around seven plus or minus two. As shown
in Table 4.3 the spread presents with a standard deviation of 5 which is extremely high.
This high number is caused by the CRE and the MDA teams. The CRE team would be
big enough for three teams and the MDA team has twice the size of a proposed team size.
This size was not historically established. At the beginning of the agile transformation
there were eighteen teams, which were reduced to the current fourteen teams. There
were several reasons for this. At the beginning there was a dedicated test team, which

62



4.3 Large-scaled agile adoption

of course was divided among the individual teams, so that there was an end-to-end
responsibility within the teams. There was also a team for parameters and translations,
which was also integrated, as both teams performed support tasks. But two other teams,
that also tend to perform support tasks, remain in place. There is a team that provides a
consistent Ul and UI frameworks for other teams. There is also a system team that takes
care of the infrastructure, databases, and the CI/CD pipeline. Both teams remained the
same over the last six months. This is also true for the MDA team, which started with
16 team members. The team could also be described as an enabler team, as this team
works on data modelling and data delivery for the other teams. The central knowledge
in a team and the uniform data model are the reasons why the team was not integrated
into the other teams. The increased coordination effort between the team for model
development and the risk of mistakes, due to lack of overall knowledge, is too high a
trade off compared to this team size.

Team Developers  Tech-Lead PO SM SUM (Members)
ACC 5 1 1 7
FRM 5 1 1 1 8
PST 7 1 1 1 10
ANA 3.5 0.5 1 1 6
CRE 24.5 1.5 1 1 28
CRP 6 1 1 1 9
SR 4 1 1 6
CRA 4 1 1 1.5 7.5
FWK 5 1 0.5 0.5 7
MDA 12 1 1 1 15
MET 6 1 1 0.5 8.5
REP 5 1 1 1 8
SYS 8 1 0.5 0.5 10
UIF 4 1 1 1 7
SUM: 99 12 13 13 137

Table 4.3: Team structure with the number of team members based on the role (March
2019)

On the other hand, the CRE team has grown extremely over this period. In the beginning,
the team had only 13 team members, which is already a relatively large team. Never-
theless, the team expanded with resources from other teams, because this is a central
module and is essential for the upcoming version which has to handle the large number
of still open tasks. Here the trade off is accepted, which brings a large team with it. The
big question is: how this team size effects the TWQ and if the investigations of Espinosa
et al. (see Chapter 3.1) regarding Task familiarity vs. Team familiarity apply here.

63



4 Case study

Company affiliation

The second factor that could be relevant for the performance is the background of the
team members focused on the company to which they belong. As described in Section
4.2 the company was founded and is owned by two IT companies, but with a completely
different focus. As already described, the one owner (following: owner 1) comes from the
software consulting and development sector, with activities in various industries. The
other owner (following: owner 2) started from the operation of computer centers in the
financial sector and in the development of banking software. Depending on the company
of the employees different backgrounds arise, which can affect the team performance.

Figure 4.7: Sunburst diagram of all teams based on the number of members that are
provided by the two owners (March 2019). The data is available in Table 10.2.

The sunburst diagram (see Figure 4.7) shows, in the inner circle, the teams with the
number of team members signalling the size. The middle circle and the color of the
circle represents how many team members come from the founding-company or owner
one or two. The outer circle adds an additional layer of information. Each owner has
multiple sub-companies with different focuses. The hypothesis in this case is based on
the differences between the two owners. It is assumed that the employees of the first

64



4.3 Large-scaled agile adoption

owner have a different work flow and approach due to the consulting background as
compared to the employees with a focus on operations. This approach is partly based on
stereotypes, which always contain some truth. The question here is to analyze whether
teams with a mix of both companies have a different team performance than teams from
only one company. As shown in the sunburst diagram (see Figure 4.7) most of the teams
have a team member mix of both owners, but some teams like the FRM, PST, SYS, and
ACC mainly consist of members from one owner.

Geographical dispersion

The geographical dispersion is an additional factor that is relevant for the team perfor-
mance according to Espinosa et al. (see Chapter 3.1) effecting the team familiarity and a
MTS with a negative consequence for information exchange and synchronicity.

Ismaning TS

UIF

Ka\'\S\'Uhe

&

X
';§‘°}0
N

<
()
&
(S
Q

aynispey|

Figure 4.8: Sunburst diagram of all teams based and were the team members located
(March 2019). The data is available in Table 10.1.

The sunburst diagram (see Figure 4.8) shows the geographical distribution of the teams.
In the inner circle the teams are represented and the size represents the number of team
members. The outer circle shows the different locations for each team. We assume

65



4 Case study

that the distance between the locations is irrelevant, since a small distance, for example
between Munich and Ismaning (10km), has the same negative effect on communication
and cooperation as a large distance. In both cases, it is impossible for the team members
to communicate without an additional communication medium or even talk about other
topics during the lunch. It can be assumed that the team members only sit together if the
location is the same.

The locations with the highest number of team members are Miinster with 64 members,
Karlsruhe with 21 members, Ismaning with 19 members and Bretten and Frankfurt with
each 14 members. The other seven locations have less than 10 team members. Only two
teams (FRM and PST) have all team members at the same location. Other teams like
the ACC, SR and CRA are mostly located at the same place. However, it is not helpful
for the team spirit if all team members besides one are located in one place. Even if one
team member can participate only remotely, the whole effort for a video conferencing
and screen sharing is inevitable. The teams with the most distribution are the MDA team
where the 15 team members are located at 8 different places (max. 4 at one location) and
the UIF and SPO teams.

Team dependencies

The last relevant piece of information, besides the company affiliation and the geograph-
ical dispersion, is the dependency between the teams. The dependencies between the
teams have a large impact on how they are integrated into the program. Figure 4.9 shows
the dependencies between the teams in a graph which is based on the survey results (see
Section 10.1 Q9). The graph is based on the team member perspective and not enhanced
with additional data that also represents the team dependencies such as the dependency
board or the code dependencies in the software. The teams: GPL, SPO, SA, and RTE
teams are filtered out, because all of them have dependencies to all other teams and the
number of connections makes the graph harder to read. The node’s color shows the
three clusters from Figure 4.1, the node’s size is related to the number of indegree edges
and the edge color and size represent how many of the survey participants of the team
have selected the dependency divided by the number of participants of the team. What
becomes immediately obvious in this graph is the large number of dependencies between
all teams. The teams can also not be divided based on the three clusters. At no point there
is a clear cut between the teams, as for example Maurya (2018) showed in his model (see
Figure 2.2.4). This happens partly due to the architecture (details in Section 4.3.3). But if
the number of indegrees is compared to the number of outdegrees (see Figure 10.2) for
each node than the difference between the BAS cluster and the ACC and MEL clusters
show a different image. The BAS cluster have a lot of indegree (node size in Figure 4.9)
edges but also a lot of outdegree edges. The ACC and MEL clusters both have some
indegree edges but a lot more outdegree edges. A good example is the FRM team hat
have 6 indegee edges but also an outdegree edge to nearly all teams.

66



4.3 Large-scaled agile adoption

Figure 4.9: Team dependencies without the GPL and ART teams - program overview.
Purple dots are BAS teams, green dots are MEL teams and orange dots are
ACC teams.

The impact of dependencies to other teams on the TWQ is tested in Chapter 7 in hypothe-
ses 7.

Other performance influence factors from the MTS research of Shuffler are shown in
Figure 2.20 such as personal background, language barriers, time-zone, or cultural
diversity cannot be fully applied in this case, since the teams in question are more
homogeneous. They have similar background, live in Germany, and speak fluent German.
Additional information about the survey participants is available in Section 5.1.1.

67



4 Case study

4.3.3 Architecture

Besides the people, the architecture of an application is essential for fast development
with fewer conflicts. It is also the backbone that is set at the beginning, but will remain
for the duration of the application life cycle. Bad software architecture can hardly be
removed afterwards without big re-factoring efforts. This is the case for traditional
development and also for agile development. Even if the idea of agile is that the current
issues should be solved, future progress should be kept in mind which means that the
developers and the architect team must work hand in hand to develop a stable and
maintainable system. As shown in Figure 4.2 the architecture decisions are mainly taken
by the two System Architects in a Community of Practical approach with the Tech Leads that
represent their teams in a two weekly architecture meeting as SPoCs. In these meetings
the current problems and interfaces are discussed so that the teams can communicate via
micro service architecture with each other, but team internal architecture problems are also
discussed so that they can receive advice from another perspective. The team tech leads
are chosen by the teams and each team has one or two that are appointed. The decision
is made based on the skills. A Tech Lead should have (1) development experience in the
used environment, (2) DevOps knowledge, (3) experience with Test Driven Development
(TDD) and automated testing and (4) the ability to work in a team and to communicate.
However, all team members are allowed to get in touch with the System Architect for
small questions and feedback if necessary.

If the Tech Leads were to be compared to the System Architects, one could say that the
Tech Leads focus on their team and the external dependencies of their team. Whereas,
the System Architects are also responsible for the overall system and the scaling of the
system, because they are responsible for discussion of the long term road map with
the test of the ART team. The second important focus lies on whether the Architectural
Principles are met and developed. In Section 10.1.1 a table of architectural principles
and the implementation status is shown. Nearly all of the requested principles are
completely or partially implanted. The most important ones are the systems which is
divided into modules that communicate over interfaces or the fact that each component
has a clear owner. This is due to the fact that a completely new system is developed and
experience and knowledge about the splitting of components and the infrastructure are
based on the first developed version. For an architectural model they use EAM Pattern
Catalog [67] to archive goals like a (1) co-develop domain model with business in a highly
integrated fashion, (2) development of new components as libraries or services deployed
in containers and (3) easy updates of single components (a detailed list is available in
Section 10.1.1). The overall success of the architecture is tracked by the System Architect
based on defined fitness functions for the most important topics. In the near feature they
want to integrate an architecture help status integrated into jQAssistant by visualizing the
latest connections between the components. The visualization should be automatically
checked or tested against a defined set of rules. Baldrich et al. (2018) demonstrated an
approach regarding how a test system can automatically check the architecture based on
rules that are easily accessible, readable, and flexible for adjustments [4]. If they are really

68



4.3 Large-scaled agile adoption

readable and understandable for everyone they should exceed the current documentation
that is done in a wiki system (Atlassian Confluence) based on Unified Modeling Language
(UML) and Architecture Decision Record (ADR) where also the decisions are written down.
The biggest challenges for the System Architects in this program are: (1) the massive unclear
and volatile non-functional requirements that lead to many redesigns with wasted time
which could be reduced had they been steady. One solution, in the future, is to use
assumptions and document them, then use them as a base for discussions to be able
to faster finalize a documented status that can be used by all teams to start working.
(2) The skills and the experience of many developers in the program. This leads to
two facts. The first one is that the system is based on the latest software technology
(Spring, Docker, single page application with Vue]S and PatternFly, ...) where some of
the used frameworks are only one or two years old which automatically leads to less
documentation and experience. The second factor is the background of the developers.
The older colleagues may have worked with Cobalt where they head a completely
different use case focus and environment. This can be compensated by investing some
of the PI time in training for the developers. (3) A key feature of the software is to
calculate financial data correctly based on input data based on the background laws and
regulations. All these calculations could not be redeveloped that is why a legacy software
is used to calculate some of the data. This legacy software is used at many code parts
in different ways and not via an interface. To solve this problem the legacy software
will be encapsulated behind an interface which is a more common way to communicate,
such as with other components, and that there is only one point that must be adjusted
in case of a change. (4) The system will be operated by one of the company owners
that have high knowledge in this area. This is helpful in many cases, but a consequence
is that they force many decisions that lead to problems in the architecture and could
nowadays probably be solved in a more modern way. In addition, it has been observed
that the data modeling should not be done by a single team that will provide the data
to the rest of the teams. The model should be done by each team as collaborative work.
Ideally, the developer of the model and the user should be the same person, which will
ensure automatic understanding of what the use case, without having to interpret the
requirements of the other teams. Another already implemented finding is, that the test
capacities should be integrated into the teams. At the beginning of the program, the
testers had their own team responsible for all tests and the automated testing. This caused
the same problem as the data model team. Only having a high level overview with no
further insight into the teams brings mistakes that could have been avoided.

69






5 Methodology

This chapter describes how the data that is used in Chapters 6 and 7 was collected. First,
in Section 5.1, the survey design and the parts are explained. Afterwards, the response
rate based on the team, roles, and other characteristics are shown.

5.1 Questionnaire design

This survey was a differentiated replication of the TWQ questionnaire from Hoegl and
Gemuenden (2001) (see Section 2.3) which was already adapted by Dingseyr in order
to compare agile development to traditional development (see Section 3.1). The same
questions are used as one part for this survey. With this case study it became necessary
to make adjustments because not only the team performance, but also the program
performance was analyzed. All questions had to be adjusted because the TWQ model is
based on the team level. In order to remain true to the questionnaire, the only change
to the questions was that the word "team" was replaced by the word "program" in most
cases. In seven questions the word "team" had to be first added to make clear whether
the question is related to the team or to the program. The full list with all questions is
available in Section 10.1.1.

Figure 5.1 gives an overview concerning the survey structure and the goals the survey
should answer. Since the original TWQ questionnaire consisted of 60 questions and
these have been doubled, the survey was split into two surveys. The first survey is
based on the team Level questionnaire. The second survey is the adaptation of the TWQ
questions to program level. In the bottom half of Figure 5.1, one can find the survey
components grouped into four areas. The first area deals with general information about
the participant. The role is used for two differentiations: (1) How does the evaluation
of performance differ between dev. team members, PO, SM, and program roles (e.g.:
SPO)? Program roles have to complete the survey several times if they want to perform
an evaluation for different teams. (2) Dev. team members are asked about all components
(TWQ facets, personal success, team performance) of the TWQ survey. All non-dev. team
members are only asked about the team performance, because they are not a direct part
of the team. This approach was also followed by Dingseyr. The experience and company
of the participants were required in order to use them as latent variables in the data
analysis, if the TWQ measurement model and outcome has a correlation to these factors.
The share of participants based on the experience is shown in Section 5.1.1 to compare
with the results from other studies. The second area is the main part of the survey. The
TWQ questions are based on the original survey by Hoegl and Gemuenden (2001) (see

71



5 Methodology

Section 2.3) for the survey on team level and with the adaption from team to program
level for the second survey. The area concerning team information was required to define
the participant’s current team. With this information the team size and team distribution
could be determined. The team dependency question was only part of the team survey
to understand how the teams interact with each other and if this could be an outcome
factor. The results are shown in Chapter 4.3.2. The last area was only part of the team
level survey and meant to collect additional information about the program and how
each team has adopted SAFe. The results of how the teams have evaluated the SAFe
events and artifacts on team and program level are shown in Chapter 4.3.2.

[
>
g (1) Team level (2) Program level
General information TWQ Questions _—| Team information SAFe
Role TWQ facets i Team Events
! «  Communication |
o) «  Coordination
> +  Balance of Member
Dev. team 2 Contributions Size Artefacts
. € «  Mutual Support
I - Effort
87 « Cohesion
Non dev. Team ' a Distribution
2 Personal success
8 *  Work Satisfaction
. = + Leami .
Experience I eamng Dependencies
| el
<
: Team performance
' «  Effectiveness
Company : «  Efficiency

Figure 5.1: Survey overview structure

The surveys were created as an online questionnaire in the software QuestBack ® and the
participants were notified about the survey via e-mail.

5.1.1 Participants

Both survey studies included four groups of respondents: (1) dev. team members, (2)
team leader = SM, (3) PO and (4) stakeholders. The maximum number of responses could
be 148 if all program members participated. In total, 122 questionnaires were filled out;
For the survey on team level 79 participants (54%) completed the full survey (details in
Table 5.1).

Swww.questback.com

72



5.1 Questionnaire design

Team Team size Dev.team PO SM Stakeholders SUM

GPL 2 0 0 0 1 1
RTE 2 1 0 0 2 3
SPO 5 0 0 0 1 1
SA 2 0 0 0 0 0
ACC 7 6 0 1 1 8
ANA 6 4 1 1 1 7
CRA 7.5 4 1 1 0 6
CRE 28 11 0 1 0 12
CRP 9 3 0 0 2 5
FRM 8 4 0 0 0 4
FWK 7 4 0 1 0 5
MDA 15 8 0 1 0 9
MET 8.5 2 1 1 0 4
PST 10 5 0 0 2 7
REP 8 0 0 0 0 0
SR 6 2 1 1 0 4
SYS 10 0 0 0 0 0
UIF 7 3 0 0 0 3
SUM 148 57 4 8 10 79

Table 5.1: Team level survey participants

On the program level the number was lower with 43 participants (29%) (details in Table
5.2). Participants who did not completely finish the questionnaire were excluded from
the analyses. In total 21 team members, 6 SM, 7 PO, and 9 stakeholder responses were
used in the analyses which results in a total of 43 valid data sets.

73



5 Methodology

Team Teamsize Dev.team PO SM Stakeholders SUM

GPL 2 0 0 0 1 1
RTE 2 1 0 0 3 4
SPO 5 0 0 0 1 1
SA 2 0 0 0 0 0
ACC 7 2 0 1 0 3
ANA 6 2 1 0 1 4
CRA 7.5 0 1 1 0 2
CRE 28 3 0 0 0 3
CRP 9 2 0 1 1 4
FRM 8 2 0 1 0 3
FWK 7 1 2 0 0 3
MDA 15 1 0 0 0 1
MET 8.5 0 0 2 0 2
PST 10 1 2 0 2 5
REP 8 2 0 0 0 2
SR 6 3 1 0 0 4
SYS 10 0 0 0 0 0
UIF 7 1 0 0 0 1
SUM 148 21 7 6 9 43

Table 5.2: Program level survey participants

The characteristics of the sample population can be found in Table 5.3 which were required
in the general information part of both surveys. This data was also analyzed if they had
an impact on the TWQ and PWQ in Chapter 7. Questions about the role, experience,
agile experience, and company were mandatory in the survey. The information of one’s
age and education were optional. The team size, geographical dispersion, and team
dependencies were calculated based on the team with data from the case study partner
or from the survey itself.

Team survey Program survey
Characteristic Category N Pct. N Pct.
Quality Assurance 1 1% 1 2%
Developer 55 70% 19 44%
UX Designer 1 1% 1 2%
Product Owner (PO) 8 10% 7 16%
Role Scrum Master (SM) 4 5% 6 14%
Product/Solution Manager | 1 1% 2 5%
RTE 2 3% 3 7%
Business Owner 2 3% 1 2%

74



5.1 Questionnaire design

GPL 0 0% 1 2%
Other 5 6% 2 5%
20 - 25 Years 6 8% 2 5%
26 - 30 Years 3 4% 1 2%
31 - 35 Years 15 19% 5 12%
36 - 40 Years 15 19% 3 7%
Age 41 - 45 Years 5 6% 4 9%
46 - 50 Years 12 15% 6 14%
50 - 60 Years 10 13% 5 12%
>60 Years 1 1% 0 0%
- 12 15% 17 40%
1 -2 Years 6 8% 4 9%
3 -5 Years 24 30% 9 21%
Experience 6 — 10 Years 22 28% 12 28%
11 - 15 Years 8 10% 6 14%
16 — 20 Years 6 8% 3 7%
>20 Years 13 16% 9 21%
1 -2 Years 46 58% 27 63%
Agile experience 3 -5 Years 26 33% |13 30%
6 — 10 Years 7 9% 3 7%
Owner 1 26 33% 12 28%
Owner 2 35 44% 23 53%
Company Freelancer 8 10% 2 5%
Direct 9 11% 5 12%
Other 1 1% 1 2%
A-level 3 4% 2 5%
Bachelor / Diplom 31 39% 9 21%
Education Master 25 32% 11 26%
Professor / PhD 3 4% 1 2%
Other 4 5% 2 5%
- 13 16% 18 42%
2 4 5% 5 12%
5 1 1% 1 2%
6 11 14% 8 19%
7 16 20% 7 16%
7.5 6 8% 2 5%
Team size 8 4 5% 5 12%
8.5 4 5% 2 5%
9 5 6% 4 9%
10 7 9% 5 12%

75



5 Methodology

15 9  11% |1 2%,
28 12 15% | 3 7%
1 11 14% | 8 19%
2 18 23% |10 23%
Team locations 3 11 14% 10 23%
4 15 19% 10 23%
5 15  19% 4 9%
8 9  11% 1 2%

Table 5.3: Characteristics of sample population for team and program level

5.1.2 Measures

The questionnaire was sent out after a careful development phase and a pre-test with
non-program members. Adjustments were made to improve the clarity of the points. We
used existing, validated scales from the literature to measure the factors. For all elements,
a 5-point Likert scale from 1 (strongly different) to 5 (strongly consistent) was used.
However, the scale was extended with an additional option of "don’t know" based on
the user feedback on the first day of the survey. Two participants mentioned that they
were not able to finish the survey because they did not have enough information. A good
example is the question Q64: "The team product proves to be stable in operation". The
product is currently under development and has not been released yet, so it is not clear
if it is stable of not. For the data analyses the "don’t know" answers were filtered out.
This means that the mean was calculated with 5 rather than 6 questions, if one of the
questions is answered with "don’t know". In total only fourteen questions were answered
with "don’t know" and in no case more than two answers are used from one participant
so that the results should be still valid.

76



6 Data analysis and Processing

This chapter will describe how the collected survey results are analyzed and what tech-
niques and tools are used to do that.

6.1 Modeling framework

The most frequently used approaches to data analysis, and the selected approach from
the original paper, are Principal Component Analysis (PCA) and Structural Equation Models
(SEM).

PCA is used to structure, simplify, and illustrate extensive data sets by approximating a
large number of statistical variables with a smaller number of meaningful linear combi-
nations. In the survey it is used to group all survey questions for the six TWQ facets and
the performance factors to each one variable.

SEM is a statistical model that allows the estimation and testing of correlative relation-
ships between dependent variables and independent variables, and the hidden structures
between them. SEM is used to evaluate causal relationships between characteristics. The
aim is to investigate hypothetical causal relationships. Similar to regression analysis, the
question in which direction and to what extent one or more so-called exogenous variables
influence one or more endogenous variables is examined. Similar to factor analysis, it is
assumed that the characteristic of interest may not be observable, but rather represents
the "latent" basis for the observed behaviour or the expression of opinion or attitude of
the interviewee. The latter serves as indicators for the expression of the underlying basic
characteristics.

First of all, the basis for path analysis is a hypothesis that states: which characteristics
are influenced by variables. Complex contextual structures can be established in this
way, whereby characteristics can be simultaneously independent (i.e. influencing) and
influenced by others. Path analysis tests this hypothesis by measuring the degree of
influence and determining the degree of information of such a model.

The SEM consists of the four elements:

Indicator (item) These are observed variables. Usually the model recommends the use
of at least four indicators. For example, an indicator for "intelligence" is the "final
grade in the graduation". In Figure 6.1 the indicators of the latent exogenous
variable are the six TWQ facets (communication, coordination, balance of member
contribution, mutual support, effort, cohesion) on the left side and the indicators of
the latent endogenous variables are the work satisfaction, learning, effectiveness,

77



6 Data analysis and Processing

and efficiency on the right side. The latent exogenous variables ¢1 will be used in
Chapter 7 to evaluate what other factors have a direct influence on the TWQ.

Latent variable (factor) The unobserved variable is measured only by its indicators. In
Figure 6.1 the latent exogenous variable is the TWQ (for program level: PWQ) and
the latent endogenous variables are the team members’ success and performance
variables.

Measurement model The model is based on a confirmatory factor analysis and models
connections between the indicators and the latent variables. In Figure 6.1 the
measurement model of exogenous latent variables are the six TWQ facets and the
TWQ variable and the measurement model of endogenous latent variables are
the team members’ success and performance variables with the work satisfaction,
learning, effectiveness and efficiency as indicators.

Structural model This is the set of exogenous and endogenous variables and their
connections. In Figure 6.1 the TWQ, team members’ success, and performance are
combined with the structural model.

Team
members'
success

o Work satisfaction

1 )
v Learning

U I N

Balance of member A
(9 mnien ™ | o

Performance
V2 (team
n member)

A

2

Performance
(team leader)

Effectiveness_TM

Efficiency_TM

Effectiveness_TL

Efficiency_TL

13

A4
—> Mutual support

A5
(= eron g
(o9 coresion_|

Performance Effectiveness_PO
(product

owner) Efficiency_PO

®® ®O® @é ® ®

Effectiveness_SH

Performance
(stakeholder)

Efficiency_SH

Figure 6.1: SEM model causal model (without residual variables)

6.2 Data analysis

The data analysis was conducted with mainly two tolls: the basic analysis, filtering, and
the mapping of answers are completed in Excel; the SEM analysis was conducted in

78



6.2 Data analysis

SmartPLS # The data was analyzed according to the seven steps of the defined approach
of Backhaus et al. (2008) [3]. (1) Theoretical foundation and hypothesis formation: Logical
theoretical considerations about the cause-effect relationships of the relevant variables.
The hypotheses are formed according to these theoretical preliminary considerations.
Then the hypothesized constructs are connected to each other by means of a hypothesis
system [63]. (2) Method selection: The choice of method depends on the type of examina-
tion and the research objective. (3) Model formulation: The theoretical considerations
are transformed into a linear system of equations. In order to reduce the complexity,
the hypothetical correlations are graphically represented by means of a path system. (4)
Empirical elevation: To collect empirical data on the basis of which a solution to linear
SEM can later be found. (5) Parameter estimation (with the PLS procedure): First, a
factor analytical estimation of the factor loads (lambda coefficients) of the exogenous and
endogenous measurement model is performed as well as a calculation of the respective
factor values. The factor values are then used to perform a regression analysis in which
the exogenous variables form the independent variables and the endogenous variables
form the dependent variables. (6) Assessment of the estimation results: Then the model
structure is checked to determine how well it adapts to the empirical data. Various quality
criteria are available for evaluating the estimated results. (7) Modification of the model
structure: In all methodological efforts and attempts to achieve a good model fit, the
falsification of hypotheses is often even of higher value for theoretical development than
the elimination of parameters, because it challenges the theory-building process new. In
this context, particular attention should be paid to hypothesis testing and methodology.
Following this approach, the survey data is exported and for each participant the mean
for each of the six TWQ facets (communication, coordination, balance of member contri-
bution, mutual support, effort, cohesion) and for the work satisfaction, learning, effective-
ness, and efficiency are calculated. The reverse coded questions are turned to match the
scale for the mean. To check for unengaged responses three techniques are used: (1) check
the time to fill out the survey, (2) check the reverse coded items compared to the other
answers and (3) the standard deviation is proved to see if participants always answered
with the same answer for each question. None of the respondents must be excluded
based on these analyses. The results are filtered overall and for each team combined with
additional information such as the team name and potential latent exogenous variables
(size, age, ...) into a CSV file that was imported into SmartPLS. The missing values for
factors are excluded in the analysis. This must be done, because only the development
team members fill out the complete survey and the SM and PO could only answer the
performance questions. In SmartPLS the data is analyzed with the consistent PLS (PLSc)
algorithm. The algorithm performs a correction of reflective constructs’ correlations to
make results consistent with a factor-model. Factor analyses were performed to deter-
mine whether all six TWQ factors refer to the same latent construct. A non-rotational
Principal Component Analysis (PCA) was performed at the team level using aggregated

4Ringle et al. (2015). SmartPLS 3 Boenningstedt: SmartPLS GmbH, http://www.smartpls.com [87],
[77].

79


http://www.smartpls.com

6 Data analysis and Processing

responses from team members. To prove the correctness of the model a model fit is done
based on Hu and Bentler (1999) [60] and Browne and Cudeck (1993) [13] analyses is done
for both models and the sub models where the validity and reliability (R-square, P-value)
of the model is checked.

To compare the different influence factors to the model a multi-group analysis (MGA)
(Byrne et al. (2006) [16], and Floh (2006) [46]) is performed on the data, even if the number
of data-sets decreased by splitting. With MGA the data-set is split by grouping variable
(such as age) and than the model is tested with each data-set. Without the MGA the
model can answer if the age has an influence on the TWQ but not if this differs depending
on older to younger developers and if other factors are more or less relevant for them.

6.3 Data overview

The survey data results are processed as descried and based on this the following results
and KPIs for the data are generated. The data is only shown in this section but not
analyzed. The analyzes based on the research questions is done in Chapter 7. First the
model fit describes how the integrity of the data and the model are checked and how
reliable the data are.

6.3.1 Model fit

For each presented model the following metrics are checked to see if the model is valid.
The model fit refers to how well the proposed model correlation is between variables
in the data-set. The following thresholds listed determine goodness of fit (by Hu and
Bentler (1999) [60]): SRMR should be < 0.09; NFI should be above 0.9; p-value for the
model should be > 0.05. Additionally to these metrics SmartPLS calculates reliability
and validity metrics for each latent variable: (1) Cronbach’s alpha that gives the ratio of
observed variance to the variance of test values and is therefore a measure of internal
consistency and should be above 0.7, (2) average variance extracted (ave) is a measure of
the quality of how a single latent variable explains its indicators and should be above
0.5 and the composite reliability that checks the factor loadings and uniqueness from a
factor analysis and should be above 0.7. If the goodness fit measures and the metrics for
latent variables are fine the indicators connection to the latent variables are checked by
using the t-statistics. It is the ratio of the deviation of the estimated value of a parameter
from its hypothetical value to its error rate (higher is better: 99% is 2.58, 95% is 1.96 and
90% is 1.65). Only measurement models are used where the t-statistics is above 1.65. The
second measure is for collinearity statistics by the inner and outer Variance Inflation Factor
(VIF) that represent the ratio of variance in a model with multiple terms, divided by the
variance of a model with one term alone where the goal is to be as low as possible. Lower
than 3 is a good VIF. It is a measure of the factor by which the variance of a parameter
estimator increases when multicollinearity is present.

80



6.3 Data overview

6.3.2 Team level data

Table 6.1 shows the descriptive statistics for the 16 variables that are used to measure TWQ
based on the survey results for the SAFe team members’ success, team performance by
the team members, team leaders (SM), PO and stakeholder. Each variable is represented
as the arithmetic mean, the median and standard deviation of the individual items that
comprise the variable. To have an indication of the data quality the reliability factors
excess kurtosis (measure of the "tailedness"), skewness (measure of the asymmetry around
the mean), outer VIF and Alpha (Cronbach’s alpha) are also shown and highlighted in
green if they fulfill the criteria and orange if they don’t. The kurtosis and skewness are
not as expected between -1 and 1 for the performance of the team leader and PO based
on the number of participants (see Table 5.2).

Mean Median S.D. Kurtosis Skewness VIF Alpha

Communication 3.803 3.800 0.554
Coordination 3.733 3.750 0.759
Mutual Support 4364 4429 0.527 1.028 -1.091
Effort 3.667  3.625  0.747
Cohesion 3.706  3.600 0.640
Contribution 3716  3.667 0.731 [1=0907 " 0.081 | 3341 0516
Team member - success

Work Satisfaction 4.135 4.250

Learning 4.004  4.000
Team member - performance

Effectiveness 3.794  3.800
Efficiency 3.294  3.200

Team leader - performance

Effectiveness 3.945 4.000 0.509 -1.523
Efficiency 4.000 4200 0.743 4.410 -1.782

PO - performance

Effectiveness 3.667 3500 0544 [NOBSOMN 1056 4339 [H0IB52N

Efficiency 3400 4000 0993 -1.235  -1.680  4.339 109280

Stakeholder - performance
3.633
3.633

Effectiveness 4167 4300 0.435
Efficiency 4233 4400 0.522
Table 6.1: Means. medians. standard deviations. and reliability factors (Excess Kurtosis.
Skewness. Outer VIF. Alpha (Cronbach’s alpha)) of the variables at the team
level

Tables 6.2 and 6.3 show reliability factors and validity metrics for the data. All factors are
inside the expected range.

81



6 Data analysis and Processing

Saturated model Estimated model

SRMR 0.136
NFI

Table 6.2: Model fit metrics with the SRMR and NFI on team level

Alpha AVE Composite reliability

™Q ool 0745 0%6

TM Success

TM Performance
TL Performance

PO Performance
SH Performance

Table 6.3: Construct reliability and validity metrics with the Alpha (Cronbach’s alpha),
average variance extracted (AVE) and Composite reliability on team level

To compare the impacts depending on the available criteria for the MGA the following
spitting is used based on the team setup and the number of teams, team members and
survey participants. Table 6.4 shows the list of the case study dev. teams and into which
group these are classified for each influence factor. The following factors are analyzed in
Chapter 7: (1) team size, (2) team geographically dispersion based on the number of (2.1)
locations and how many team members are (2.2) located together, (3) company affiliation
based on the two company owners, (4) work experience in software development, (5)
agile work experience and (6) number of dependencies to other teams. The table also
show cross dependencies that must be taken into account in the analyzes. This is for
example the case between inexperienced in agile work experience and small teams.

82



6.3 Data overview

7’01 231 pue g'§ 2131 sepuapuadap (9) pue ‘¢ g aqe], ur aduarradxa oide (g)
‘T01 dqeL pue £F 2InSL{ Ul :uMmoO () ‘T°01 [qEL Pue §F 2ISL] ur uonnquysip (¢) pue suonedol (g) ‘¢ d[qeL Ul IS
(1) :99s sdnoig a3 noqe s[reldp 10 "YOIN 943 10§ paudisse are Aay} s193snyd /sdnoid yeym ur pue swresy ‘Adp Jo ISIT §'9 [qeL

"dop 11-8 s1eak $-¢ JleH/JTeH €/1=> sl Auey [rews 41N
‘dop 11 uey azowr - [ IUMQ ASOIN  ¢/7=> 'SIA awog a81e] SAS
‘dop g 03 dn S1edA 7=> 7 I_UMQ APISOIN  €/7=> "SI awog [rews YIS
"dop 11 ueyy azow - JIleH/3*H €/T=>s1d uIog WINIpajy d3d
‘dop 11-8 s1eak §- 7 UM ATISON 1= "SI Elirg) adre 1Sd
‘dop 11 ueyy axowr s1eak §- [ IUMQ AISOIN  ¢/1=> 'SI Auen wnIpd]N LA
‘dop 11 ueys azowr s1eak §- JTeH /ireH ¢/1=> 'siq Auey a8re VAN
‘dop 11 ueyy axowr s1eak p< [ IuMQ ASOIN  ¢/1=> 'SI Aue [rews MMA
‘dop 11-8 s1edk g=> 7 UM ATISOIN 1= "siq aup WNIpIN AR
‘dop g 03 dn s1eak g=> JIeH/ITeH €/7=>'s1a Auely wnipsiN.-— 30
‘dop 11-8 sreak $-7 JleH/JTeH ¢/c=>s10  Auep adre] E8)
“dop 11 ueyy azowr s1eak F< JTeH /e ¢/7=>siq dwog wnipa)N VI
‘dop g 03 dn s1edh -7 JreH/JreH €/7=>'siq  dwos [lews VNV
"dop 11-8 s1eak $-¢ TBUMQ ASOIN  €/¢> 'siId IwIoS [[ews OOV
sapuspuadag douarradxa oMy DUMQ uonnqgrysi(] SUONEdIOT] IZIS-WES], WEI[,

83



6 Data analysis and Processing

6.3.3 Program level data

Table 6.5 shows the descriptive statistics for the 16 variables on the program level survey.
The reliability factors are also shown as in Table 6.6 on program level. For the developers
all metrics are acceptable so that the results can be statistically used even if some of
the VIF metrics are a bit off. As for the team level the number of team leader and PO
participants (see Table 5.2) is a little bit low that is why the metrics for the performance
for both groups have only moderate reliability metrics.

Mean Median S.D. Kurtosis Skewness VIF  Alpha
Communication  3.317  3.000  0.609

Coordination 3.492 3500 0.743
Mutual Support 3448  3.000  0.758
Effort 3.400 3.500 0.838
Cohesion 3.317  3.000 0.609

Contribution 3.350 3.000 0.732
Team member - success

Work Satisfaction  3.550 3.500 0.776
Learning 3.533 3.500 0.991
Team member - performance

Effectiveness 3217 3500 0.873 -1.007 [WESOIO0TNN 3.395 [H0942N
Efficiency 3.067 3.000 0.987 [NS0MOTNE-0420 " 3.395 | 0915

Team leader - performance

Effectiveness 3.083 3.000 0.607 1.335 3.841
Efficiency 3333 4.000 0.745 3.841

PO - performance

Effectiveness 2714 3.000 0749 = 4447 -1968  7.857 [N0920M
Efficiency 2714 3000 0700  7.000 -2.646  7.857 0876
Stakeholder - performance

Effectiveness 3.444 3.000 0.926
Efficiency 3.000 3.000 1.155

3.233

3.233

Table 6.5: Means, medians, standard deviations, and reliability factors of the variables at
the program level

Tables 6.6 and 6.7 show reliability factors and validity metrics for the data. As for the
team level also the metrics on program level are inside the expected range. Only the
AVE and composite reliability indicator for the stakeholder performance is outside the
expected range, but in an acceptable range.

84



6.3 Data overview

Saturated Model Estimated Model

SRMR
NFI

Table 6.6: Model fit metrics with the SRMR and NFI on program level

Alpha AVE Composite reliability

PWQ oo o067 oo

TM Success

TM Performance
TL Performance

PO Performance
SH Performance

Table 6.7: Construct reliability and validity metrics with the Alpha (Cronbach’s alpha),
average variance extracted (AVE) and Composite reliability on program level

6.3.4 SEM model and factor loadings

Table 6.8 shows a compression of the factor loads of the surveys that are done by Hoegl
and Gemuenden (2001) [59], Lindsjern et al. (2016) [74] and the results based on the
survey on team and program level in the case study. Similar ladings are highlighted with
a background color. The full SEM model for all four datasets are shown in Figures: (1)
Figure 2.16 by Hoegl and Gemuenden, (2) Figure 3.1 by Lindsjern, Yngve, et al., (3) Figure
7.1 on team level and (4) Figure 7.2 on program level. This shows that the results are
comparable with the other two survey results. Even if they are little bit of. Interestingly,
the factor loadings are more equal to the Hoegl and Gemuenden results that are done
in traditional project environments. In comparison to the Lindsjern et al. results that
compared them in agile environment. But when it comes to the factor loads for the PO
and stakeholder the results match the agile results.

85



6 Data analysis and Processing

Hoegland 4 jsjornetal. TWQ PWQ

Gemuenden
Communication 0.88 0.84 0.82 0.84
Coordination 0.71 0.47 0.89 0.76
Mutual Support 0.89 0.87 0.84 0.80
Effort 0.82 0.74 0.87 0.91
Cohesion 0.89 0.90 0.92 0.87
Contribution 0.89 0.73 0.85 0.82
Team member
Success 0.93 1.00 0.79 0.79
Work Satisfaction 0.94 0.90 0.96 0.93
Learning 0.69 0.81 0.97 0.96
Team member
Performance 0.64 0.68 0.62 0.80
Effectiveness 0.86 0.96 0.95 0.96
Efficiency 0.74 0.75 0.91 0.96
Team leader
Performance 0.34 0.32 0.22 0.28
Effectiveness 0.74 0.90 0.97 0.97
Efficiency 0.79 0.70 0.92 0.96
PO
Performance 0.26 0.06 0.15 0.05
Effectiveness 0.80 1.04 0.94 0.98
Efficiency 0.76 0.64 0.89 0.99
Stakeholder (compared to PO results)
Performance - - 0.10 0.10
Effectiveness - - 1.00 0.12
Efficiency - - 0.88 0.68

Table 6.8: Factor loadings comparison between Hoegl and Gemuenden [59], Lindsjorn
et al. [74], TWQ and PWQ based on the survey. The background color show
similar loadings between the resultes.

86



7 Evaluation and results

This chapter combines the related work influence factors on the team and program
performance from Chapter 3 and then translates them into hypotheses that will be
answered by using the survey results from Chapter 6.

7.1 Is the TWQ model applicable

Before other additional influence factors can be evaluated it must be confirmed that the
overall TWQ model is applicable for the case study. This is done on on team level to prove
that the existing research results are also applicable for large-scale agile development and
that the results are comparable. The second part is to prove that the six facets and the
correlation to team performance and personal success from the TWQ model can be also
applied to the whole program.

Hypothesis 1 (H1): The TWQ model of Hoegl and Gemuenden is applicable
for assessing Team Work Quality in a large-scale agile development program

To test H1 the survey results (see Figure 7.1) on team level are compared with the existing
results from Hoegl and Gemuenden (2001) [59] and Lindsjern et al. (2016) [74] that are
shown in Figure 2.16 and Figure 3.1. Table 6.8 shows the factor loadings of all three models
to compare them more easily. The factor loadings of TWQ in the three surveys are highly
similar. But the facets loadings are more comparable with the Hoegl and Gemuenden
results that are done in traditional software projects as compared to the results from
Lindsjorn et al. that are done in an agile environment. Between both the largest difference
is that the data from the agile survey has a lower loading for coordination (0.47) than the
data from the traditional survey (0.71). For the case study partner the loading is now even
higher with (0.88). One reason for this may be that the program and the dependencies
create more complexity, which becomes relevant for TWQ. The second finding is that the
the coefficients in the agile survey are higher for team members’ success and performance
by the team members. The loadings for the team leader (PO) are nearly equal for all three
surveys. But the performance loadings for the POs (0.08) and stakeholders (0.06) are as
low as for the agile survey by Lindsjern et al. (0.06). So the role of the PO and stakeholder
in the SAFe program for each team is more comparable with a Scrum team where the
team is also in charge for the results and the performance.

Overall the loadings are comparable and this means that the TWQ model is also
applicable for team in a large-scale agile program.

87



7 Evaluation and results

Team
members'
success

Work satisfaction

7 .
079 Learning

Performance Effectiveness_TM

— 062 (team
@ Communication kg, member)
Coordination 087
Balance of member 0.85
) mmon |
0.84
—V Mutual support
0.87.
_' Effort 0.9
—> Cohesion

Efficiency_TM

Effectiveness_TL

Performance

(team leader) Efficiency_TL

Performance Effectiveness_PO
(product

owner)

®® ®O® @é ® ®

o B
© P
N

Efficiency_PO

Effectiveness_SH

Performance
(stakeholder)

Efficiency_SH

Figure 7.1: Standardized factor loadings and path coefficients for the survey results on
team level.

Hypothesis 2 (H2): The model of Hoegl and Gemuenden is applicable for
assessing Program Work Quality in a large-scale agile development program

Compared to Hypothesis 1, Hypothesis 2 tests if the TWQ model with the same six facets,
the team members’ success and the performance can be also applied on the program level.
As there are currently no research results available this is done by the results from the
adapted TWQ survey. As Table 5.2 shows the number of participants on for the program
survey is slightly low, which is nevertheless sufficient (see Table 6.5) for the results to be
used. To test H2 the survey results (see Figure 7.2) are compared to the factor loadings of
the TWQ model from Hoegl and Gemuenden [59] and Lindsjern et al. [74]. The factor
loadings of the surveys are shown in Table 6.8 and they also highly similar compared to
each other and also compared to the TWQ results from the case study. All six facets have
a loading higher than 0.70 and the only real difference is the same as for the TWQ case
study results compared to the agile environment (0.47) that the coordination is as high
(0.72) as for the traditional survey (0.71). Again, the reason may be that the coordination
effort for a SAFe program became more important and relevant than for a Scrum team.
In contrast, the performance loadings are more similar to agile environments. Although
the performance of the team members is very high (0.90) compared to all other results
with less than 0.70, the performance of the team leaders (PO) with 0.23 is lower than the
other results with more than 0.30.

All in all, the differences are all within the range and it can be confirmed, based on the
results, that the TWQ model is applicable not only for teams (H1) within the program,
but also for the whole program (H2).

88



7.2 Additional influencing factors and their impact on TWQ

Communication kg,
Coordination 076

0.93
Team

members'
success

079 0.96

Performance
(team
member)

0.80

0.97

0.28

Work satisfaction

Learning

Effectiveness_TM

Efficiency_TM

Effectiveness_TL

Balance of member 0.82
contribution
0.80
Mutual support
0.91
Effort 0.87
Cohesion

Performance

(team leader) Efficiency_TL

|
I

@é é@ ®® ®O® ®®

Performance Effectiveness_PO
(product

owner)

Efficiency_PO

Effectiveness_SH

Performance

(stakeholder) Efficiency_SH

Figure 7.2: Standardized factor loadings and path coefficients for the survey results on
program level.

7.2 Additional influencing factors and their impact on TWQ

The next hypotheses will use the collected data of the survey and evaluate whether
additional factors have an influence on the performance of the team and how they
interfere with the existing factors from the TWQ model.

Using the MGA with SEM, one can test if the proposed relationships are moderated by
other influence factors. Bootstrapping offers an efficient test of indirect effects (Preacher,
Rucker and Hayes (2007) [84]) as well as a direct test between two or three discrete values
of a moderator. The clustering of the teams is done based on the available teams (see
Table 4.3) and where the biggest difference is between the results, based on the mean
where at least two teams are part of the cluster with valid results.

Hypothesis 3 (H3): Team size has an impact on TWQ

Studies have been conducted (see Figures 2.5, 3.2 and 2.20) to evaluate the correlation
between team size and team outcome. These studies come to the same result: the larger
the team, the higher the process loss resulting in the productivity of the team sinking.
The same results are visible in Figure 7.3 where the mean of the team answers are split in
three groups based on the definition of Table 7.1.

89



7 Evaluation and results

Communication
4,50

Team Performance - Coordination
Efficiency \ 4,00
\A ~
Team Performance - 00 ~
Effectiveness / ~ \ ) Mutual Support
2 ===Small teams
| /- 2 //

/ 200 / // =|\ledium teams

, ( =| arge teams

Team meLnew:rer:isr;gsuccess - \\ \ % / // Effort
N7
~-7

Team members’ success - /

Work Satisfaction Cohesion

Balance of member -
Contribution

Figure 7.3: Mean results of the team survey on team level grouped by the team size.

Cluster  Condition  Survey participants Teams Team member

Small <=7 27 5 33
Medium >7 and <=9 19 5 41
Large >9 28 4 63

Table 7.1: Team size cluster definition for MGA with the number of participants, teams
and team members for each group.

All factor loadings are shown in Table 7.2. the clusters differ in the following way:

Communication is a bit higher for small (0.85) and medium (0.84) teams than the overall
results (0.82), but for large teams the factor loading is 0.55 lower (-0.27).

Coordination has similar results compared to communication. The small (0.91) and
medium (0.96) teams are almost equal. But both are higher than the overall factor
(0.89) loading. The large teams are lower with 0.70 which is -0.19 less.

Effort differs between all three sizes. The large (0.90) teams nearly match the overall
factor loading with 0.87, but the small teams are 0.76 lower, especially compared to
the medium teams with 0.99, the highest factor loading overall on effort.

Team members‘ success fluctuate between 0.66 for the medium size teams and 0.88
for the small teams. The large teams (0.71) and the overall (0.79) are in between.

Performance (team member) is nearly the same for the small (0.67) and the large (0.71)
teams compared to the overall (0.62) factor loading. However, the loading is

90



7.2 Additional influencing factors and their impact on TWQ

extremely low for the medium sized teams with only 0.20 which means that it has
no impact for this group on the TWQ.

Overall Small Medium Large

Communication 0.82 0.85 0.84 0.55
Coordination 0.89 0.91 0.96 0.70
Mutual support 0.84 0.87 0.82 0.81
Effort 0.87 0.76 0.99 0.90
Cohesion 0.92 0.95 0.93 0.89
Contribution 0.85 0.84 0.85 0.82
Success (TM) 0.79 0.88 0.66 0.71

Performance (TM) 0.62 0.67 0.20 0.71

Table 7.2: Comparison of factor loadings based on the team size.

To sumarize the results, the data shows that smaller teams overall have a better TWQ and
outcome on all factors compared to medium and large teams. The medium teams are
between the large and the small teams. Interestingly, the factor loadings are especially
different in communication and coordination. Other than expected, the loading for
coordination is lower for the largest teams than for the small and medium teams. One
would expect the opposite behaviour, when the communication and coordination effort
would have a greater influence, the bigger the team and the program is. The study from
Lindsjorn et al. (2018) compares the TWQ between small and large programs and how
the correlation between the factors changes. They show that the program size has no
impact on the communication and coordination [73]. In the case of a bigger program one
could assume a larger influence in the first moment. The second major deviation is the
influence of team members’ performance on the TWQ for medium-sized teams. In this
case the value is so low that it can be ignored and the team performance has no influence.
There is no clear explanation why there is no dependency.

Hypothesis 3 confirms the investigations from various research areas in terms of TWQ
and team size. For example, Hoegl (2005) reported that larger teams often suffer from
poor TWQ [58], and Gratton and Erickson (2007) reported that when the team size grows
to over 20 members, collaboration between members tends to decline [51]. With team size
increasing, it becomes increasingly difficult to coordinate interactions between members
because of the inherent complexities in interactions (Bradner et al. (2005) [12]).

91



7 Evaluation and results

Hypothesis 4 (H4): Team distribution has an impact on TWQ

As described by Espinosa et al. (2007) (see Section 3.1), distribution of teams creates
challenges in the program that can effect the TWQ. To consider the influence, the teams
are divided based on the number of locations and the team distribution factor ® according
to the criteria in Table 7.3 (details about the team distribution in Figure 4.8). Figure 7.4
shows the mean results of the survey answers for the teams. The first thing to observe is
that the teams working together in one place have very good results in all areas. This
is no surprise as it confirms the results from the TWQ and MTS research. In contrast,
in the middle of the diagram one can see the teams that are partially distributed have
an average score of 1.2 below compared to the teams that work together at one place.
This result confirms the scientific findings. Some surprising results are the results of the
teams that work in multiple places. The average scores are very good and even exceed
the results of the teams in one place.

Communication
5,00

Team Performance - Coordination

Efficiency
S0 e 5
250 "'&.
Team Performance - /‘(. .%-
; ot Lot : ‘-'?7’. Mutual Support o
Effectiveness 4( o e=Dis. <=1/3
N NS 4 —Dis. <=2/3
E Ny Dis. <3/3
o ) 4o ,{ «+++0ne location
l' ++++«Some locations
Team members' success * .‘_ v / ««e+eMany locations
u - X
Learning \ /" Effort
N, ks
3 P KX
N
Team members’ success - Cohesion

Work Satisfaction

Balance of member -
Contribution

Figure 7.4: Mean results of the team survey on team level grouped by the distribution.

To validate the result, not only is the number of locations taken into account, but also the
team distribution factor.

SNumber of team members working together at one place. This takes into account how many locations
there are and how many team members work in relation to the team size per location. Examples: 10
team members at one location = 100%; 10 team members at 10 locations = 10%; 10 team members with 5
persons each at two locations = 50%; 10 team members with the following breakdown: 2,2,2,4 = 28%.

92



7.2 Additional influencing factors and their impact on TWQ

Cluster Condition Survey participants Teams Team member
One 1 location 11 2 18

Some <= 3 locations 25 6 44.5
Many >3 locations 38 6 74.5

Dis. <=1/3 Team distr. <=1/3 21 4 37.5

Dis. <=2/3 Team distr. >1/3 and <=2/3 35 7 74.5

Dis. <3/3 Team distr. >2/3 and <1 7 1 7

Table 7.3: Team distribution cluster definition for MGA with the number of participants,
teams and team members for each group.

This also confirms the result. All factor loadings are shown in Table 7.4. the clusters differ
in the following way:

Effort has a similar behavior as coordination in the other direction. The teams at one
location (0.95), teams with >2/3 members at one location (0.94) and very distributed
teams (0.90) are higher than the overall factor loading with 0.87, but the teams that
are partly distributed are lower with 0.80.

Contribution factor loading is for teams at mostly one place higher with 0.96 compared
to overall (0.85), partly distributed (0.84) and very distributed (0.84).

Team members* success has the same result for teams at one place (0.76) and very
distributed teams (0.74) compared to the overall factor loading (0.75), but the partly
distributed teams have a high factor loading, 0.89, in comparison.

Performance (team member) has a lower factor loading for partly distributed teams
with 0.50. In contrast the very distributed teams (0.77) and the mostly at one located
teams (0.76) are higher than the overall factor loading with 0.62.

Overall >2/3 Some Many
Communication 0.82 0.88 0.87 0.81

Coordination 0.89 0.90 0.93 0.82
Mutual support 0.84 084 084 083
Effort 0.87 094 0.80 0.90
Cohesion 0.92 096 0.95 0.92
Contribution 0.85 096 0.84 0.84
Success (TM) 0.79 0.82 0.90 0.73

Performance (TM) 0.62 0.76  0.50 0.77

Table 7.4: Comparison of factor loadings based on the team distribution.

93



7 Evaluation and results

The evaluations confirm hypothesis 4. The distribution of teams has an impact on TWQ
in most areas. What is particularly interesting is the result that teams in one place and
very distributed teams produce very good results. An explanation why completely
distributed teams may have such a good result is that digital communication tools and
digital documentation are used as common practice. Whereas, communication problems
can occur with partially distributed teams, as the majority of the team is located in
one place and analog meetings can be held. Obviously, the remote team members are
forgotten, which leads to gaps in knowledge. Unfortunately this correlation was not
found in any related work. However, this observation was confirmed in the interviews
with the RTEs and is also visible in the [ira boards of the teams. There are more comments
when the teams are completely distributed. Despite the large differences that can be
seen between the groups in the survey results in all categories, the factor loadings on the
TWQ differ only marginally. The biggest difference is in the performance and here the
difference of the two extreme values is only 0.27, and the overall loading is exactly in
between.

Hypothesis 5 (H5): Professional experience of team members has an impact
on TWQ

The hypothesis can be divided into two parts, since the experience in both software
development (Q2) and agile development (Q3) is a part of the survey. Unfortunately, the
hypothesis cannot be tested because there are problems with the available data for both
parts. The test, which is based on the average experience in software development, has
a very similar average result for nearly all teams (sum of average experience divided
by the number of team members). Even if one divides the teams by the areas of the
survey to observe a wider spread, there are not enough differences to divide the available
teams into clusters which can be used for an MGA analysis. The agile experience test has
enough different data sets that can be used for evaluation. The mean results are shown
in Figure 7.5, based on the breakdown in Table 7.5. The first impression may, however,
be somewhat confusing. If one were to interpret the results without reference, then the
teams with the lowest (<=2 years) agile experience have the best results and are even
slightly better than the teams with the most (>4 years) agile experience. Only teams with
two to four years of agile experience are outperformed. However, if one looks at the
teams in the context of the other available data in Table 6.4, it becomes immediately clear
that both groups: <=2 and >4 agile experience are all teams with the team size: small.

94



7.2 Additional influencing factors and their impact on TWQ

Communication
48

Team Pe_zr_formance - |4 Coordination
Efficiency \ 44
\ 42 o e cm—
v a 7 AN N
Team Performance - } ~— -2 years agile experience
Effectiveness // S\j N S Mutual Support
—2-4 years agile
’/ /- 3> P - // experience
==more than 4 years agile
’ ( / ) / experience
Team members

Effort

/
success - Learning \ \- /( //
//

—
-—
Team members’ /
success - Work / Cohesion
Satisfaction
Balance of member -
Contribution

Figure 7.5: Mean results of the team survey on team level grouped by the agile experience
if the the team member average.

Cluster Condition  Survey participants Teams Team member
2 years agile experience Avg. <=2 13 3 23

2-4 years agile experience >2 and <=4 50 7 81.5
more than 4 years agile exp. >4 11 2 14.5

Table 7.5: Team agile experience cluster definition for MGA with the number of partici-
pants, teams and team members for each group.

Therefore, it is not possible to test if there is a direct correlation between experience in
software development and TWQ. In the case of the correlation between agile experi-
ence and TWQ, one can even say that there is no correlation, since otherwise the agile
experience would have effected the results of hypothesis 3.

Hypothesis H6: Different company affiliations of team members have an
impact on TWQ

A specific test based on a possible influence factor for the case study partner is that the
company is owned and populated by the employees of the two parent companies that
have a different background (see Section 4.3 and Figure 4.7). So this test, in comparing
the background, mindset and motivation structure (mentioned in Sections 2.4.1 and 2.2.4)
of the teams is based on the assumption that team members from owner one have a
consulting company background and team members from owner two have a background
based on operation of computer centers. But the teams that include the team members

95



7 Evaluation and results

from owner one have less experience in software development with, on average, 3-5
years compared to the 11-15 years of the employees coming from owner two. However,
Figure 7.6 shows directly that, as with team size and distribution, there is an impact here.
The observed teams from the clusters are also equally distributed among the clusters of
the other hypotheses that there are no cross-dependencies that falsify the results. Based
on the data, it is clear that the teams perform better the greater the proportion of team
members provided by owner one.

Communication
4,50

Team Performance -

Efficiency Coordination

N
TeaénﬁPefformaﬂce - N mutual Support
ectiveness S /
r- 7 —Half/Half
l ’ / / ===|\lostly Owner 1
l k / e==\lostly Owner 2

Team members’ success -

Learning \

Effort

Team members’ success -

Work Satisfaction Cohesion

Balance of member -
Contribution

Figure 7.6: Mean results of the team survey on team level grouped by the companies the
people come from.

Cluster Condition Survey participants Teams Team member
Half/Half <=2/3 of one owner 42 7 80.5
Owner 1 >=2/3 TM of owner 1 9 3 25.5
Owner 2 >=2/3 TM of owner 2 23 4 31

Table 7.6: Team owner cluster definition for MGA with the number of participants, teams
and team members (TM) for each group.

The impact from the company affiliation to all factor loadings is shown in Table 7.7.
Clusters differ in the following way:

Mutual support has an overall score of 0.84 and the teams originating from mostly
owner two (0.81) and teams with mixed members (0.87) have a nearly similar factor
loading. In comparison, the teams originating from owner one have a low factor
loading with 0.59.

96



7.2 Additional influencing factors and their impact on TWQ

Team members* success show a similar result as mutual support. The factor loadings
overall (0.79), owner two (0.78) and half/half (0.82) are very similar. Only the factor
loading for teams that mostly come from owner one have a very low loading with
0.47 that is 0.32 lower than the overall result.

Overall Owner1 Half/Half Owner?2

Communication 0.82 0.77 0.82 0.87
Coordination 0.89 0.92 0.90 0.91
Mutual support 0.84 0.59 0.87 0.81
Effort 0.87 0.88 0.87 0.94
Cohesion 0.92 0.99 0.92 0.95
Contribution 0.85 0.82 0.84 0.95
Success (TM) 0.79 0.47 0.82 0.78
Performance (TM) 0.62 0.63 0.66 0.62

Table 7.7: Comparison of factor loadings based on the team members and which share is
provided by which owner.

The hypothesis can therefore be confirmed. There is visible influence of company affilia-
tion in this case study partner which has the direct and linear impact on team performance
and TWQ. However, the exact reason for the better performance cannot be exactly proved.
The team members of owner one have more professional experience and come from the
industrial background. This certainly has an influence on their performance, but the team
members of owner two have a mindset that is more in line with the agile approach. These
findings were also confirmed during the interviews. However, no interview partner
wanted to confirm the correlation between performance and company affiliation. The
personal background may also lead to a different interpretation of the survey scale. Based
on the available data, the performance ratings correspond to the ratings of the SM, PO
and stakeholders. The loadings are very similar between all groups and factors. Only the
teams originating from owner one are less dependent on mutual support and personal
success of the team members. Both factors have a personal character which might be
attributed to the background and mindset of the team members.

Hypothesis H7: The number of dependencies to other teams in the program
have an impact on TWQ

Dependencies to other teams cannot be avoided in programs, since the entire program
has the same goal and the teams have mutual dependencies. However, the program
can do something to limit the effect so that the dependencies do not result in too much
influence: (1) split the teams as effectively as possible in order to make dependencies
between teams as low as possible (example: Maurya (2018) [80]), (2) plan dependencies
between teams as well as in PI Planning, and (3) split dependencies between teams as

97



7 Evaluation and results

fairly as possible so that not all teams are dependent on a team that is a bottleneck. The
case study partner does seem to have successfully managed these points, since the mean
value of the dependencies is 10.4, min is 7, max is 13 and the standard deviation is 2.0.
This is reflected in Table 7.8, which shows that there are no large ranges that distinguish
the teams in comparable sizes. The interviews show that this results mainly to the use of
bounded contexts, which are also visible in Figures 4.9 and 10.2. Figure 7.7 shows the
mean values based on the clusters. It is immediately noticeable that all three clusters
overlap almost completely and that there are no large differences.

Communication

Team Performance - \
45

Efficiency Coordination

\ .
\7 =
Team Performance - //\3 § §
Effectiveness // \

Mutual Support
=Up to 8 dep.

A
// | > // —8-11 dep.

ea embers’ success - / dep.
Te , \\k\ / L e—=more than 11
Learnin
Ing \\ / Effor

NN

Team members’ success - /

Work Satisfaction Cohesion

Balance of member -
Contribution

Figure 7.7: Mean results of the team survey on team level grouped by the number of
dependencies of the teams.

Cluster Condition Survey participants Teams Team member
up to 8 dep. <=8 dependencies 16 3 21
8-11 dep. >8 and <=11 dep. 34 5 60
more than 11 dep. >11 dependencies 24 6 56

Table 7.8: Team dependencies cluster definition for MGA with the number of participants,
teams, and team members (TM) for each group.

The factor loadings differ completely between clusters. All loadings for teams with less
than 8 dependencies, have a loading higher than 0.9 and closer to 1.0 except the loading
for performance with 0.77. The loadings between the overall result and the two clusters
between 8 and 11 dependencies and with more than 11 dependencies are very similar. All
three clusters only differ in effort (overall = 0.87, >8 and <=11 = 0.74, >11 = 0.94). And the
value for performance of 0.28 is very low for the cluster with more than 11 dependencies.

98



7.2 Additional influencing factors and their impact on TWQ

Overall <=8 >8and<=11 >11

Communication 0.82 0.98 0.81 0.79
Coordination 0.89 0.99 0.76 0.82
Mutual support 084 095 0.82 0.74
Effort 0.87 0.98 0.74 0.94
Cohesion 0.92 0.98 0.90 0.95
Contribution 0.85 0.93 0.87 0.83
Success (TM) 0.79 0.97 0.75 0.68
Performance (TM) 0.62 0.77 0.65 0.28

Table 7.9: Comparison of factor loadings based on the number of team dependencies.

This hypothesis cannot be confirmed because the deviations are not visible. Nevertheless,
the hypothesis cannot be rejected either, because the range of dependencies between the
teams is very low. There are no teams in the dataset which, for example, only have two
dependencies or teams with 20 dependencies. Only with a larger spread of values can
the hypothesis can be refuted.

Summary of the evaluation results from H3 to H7

The available data confirm hypotheses 3, 4 and 6. Hypothesis 3 confirms that team size
has a direct impact on TWQ and performance. Hypothesis 4 confirms that there is a direct
correlation between the geographical distribution of teams and performance and TWQ.
Teams in one central location perform best, although teams with a complete distribution
achieve similar results. Only the teams that are partly located in one central location and
the rest of the team in different locations perform worse. For hypotheses 5 and 7, there
is not enough data available. However, this does not refute the hypotheses, which can
neither be confirmed nor refuted.

Hypotheses Test Result

H3 Team size has an impact on TWQ passed

H4 Team distribution has an impact on TWQ passed

H5 ProfeSS}onal experience of team members not enough data
has an impacton TWQ
Different company affiliations of team

He members have animpact on TWQ passed

7 The number of dependencies to other teams not enough

in the program have an impact on TWQ different data

Table 7.10: Overview of the hypotheses results

99






8 Discussion

This chapter summarizes key findings of the master thesis and shows the limitations of
the thesis to allow the reader to interpret the results.

8.1 Key findings
A large-scale agile program can be seen as a MTS

A large-scale agile SAFe program matches the defined characteristics of an MTS. This
allows the already existing scientific findings of the social sciences to be applied to
SAFe programs. There are interesting findings on coordination and leadership and other
influencing factors, which have also been confirmed on the basis of the hypotheses. The
challenges and success criteria of MTS and large-scale agile development overlap.

A big bang approach for the transformation from traditional development
models to large-scale agile development is feasible

The case study partner has proved that it is possible to move from traditional development
to large-scale agile development with almost 150 people in one project. The preparation
of the transformation is a very important part. All team members have to be trained on
the new model. Even if this binds resources, the investment will prove to be worth the
effort in time. Naturally, it is helpful to have an additional external coach to have all
questions regarding processes and procedures answered in the most efficient manner.

The TWQ model is applicable on a large-scale agile program for each team
and for the whole program

The same factors from the TWQ model effect not only traditional and agile teams, they
also effect large-scale agile teams. And this applies to not only each individual team but
also to the entire program. The influence factors for the teams are even more comparable
with a traditional project setup than the influences of a single agile team, because several
teams lead to an increased coordination effort. In contrast, the influence of POs and other
stakeholders is very low, as with small agile teams.

101



8 Discussion

The smaller the teams the more efficient they are, even if the number of
dependencies increase, due to the higher number of teams

The correlation between team size and performance is not surprising. In large-scaled
agile programs, a team behaves just like any other team. This effect can also be seen in
teams that are already large according to Scrum. The performance between teams up to
7 members, 8 to 9 members and more than 9 members becomes around 10% worse the
bigger the teams become. Between teams with 10 members compared to teams with 15
or even 28 members the performance decreases further, even if this percentage is not as
large. The team size is always a trade-off between small teams, which need a SM and
PO as well as add more dependencies to other teams which also effect performance, and
larger teams with less overhead and less dependencies. But hypothesis 7 has shown that
there is at least no direct loss in team performance if the number of dependencies increase
slightly (range 7 to 13).

The team should work completely distributed if it has to be geographically
distributed

If it is not possible for resource reasons that all team members work together as a team at
one location, one should take care not to place a larger part of the team at one location
and distribute the rest of the team at other locations. This only leads to the formation of a
subteam at one location with the other team members not receiving all the information.
This leads directly to a worse team performance. When the team needs to be split up,
all team members should be split up, so the team is always forced to communicate
electronically, which in turn allows all team members to receive the same information.
This makes the performance comparable to teams at a single location.

8.2 Limitations

The mixed methods of the presented research design, described in Section 1.3, lead to
limitations in all three used methods and the overall limitation of the thesis. The first
limitation is the limited time frame of the thesis due to the time frame of only nine months
when all relevant evaluations are done. The second limitation is that the influence of the
results of the case study and the survey is that it is a single-case study with one partner in
Germany. Because of this, the results are very specific to that company with side effects
that are probably not mentioned because the impact was not clear and there was no
other program to which to compare the results. To mitigate the risk of false results, the
survey questions are based and compared to the results of Hoegl and Gemuenden, and
Dingseyr if they have similar results. As for the surveys of Hoegl and Gemuenden, and
Dingseyr, the biggest limitation is the number of responses. All surveys are limited to the
number of participants between 100 and 300 which is very low for a SEM analysis. More
details about the survey results and the response rate are described in Chapter 5. For the
case study exploration and interviews, the potential threats are reduced by the approach

102



8.2 Limitations

of Runeson and Host (2009) [90]. If different understandings were raised, then more
stakeholders are asked to validate the statement. The literature review that is compiled
for challenges and success factors for large-scale agile transformation is limited to the
query that is used with the limitation that the main keywords "Performance" or "Success
factor" or "Challenge" must be in the tile. No other synonyms are used and based on the
number of search results, this is the limitation that had the highest impact on the query.
Changing from "Success factor" to "Success" has tripled the number of results. Another
limitation is due to the fact that large-scale agile development is quite a new research
area and that is why only results after 2010 are taken into account. For the literature
review about TWQ and MTS, only a forward and backward search was conducted to find
relevant results in Google Scholar. This limits the results regarding two factors: (1) The
results must be publicly available and listed in Scholar and (2) the original papers or a
reference must be correctly referenced.

103






9 Conclusion and future work

The last chapter of this thesis presents a short summary of the results that are evaluated
based on the research objectives. The second part presents an outlook for further work.

9.1 Summary

This section features conclusions made based on conducted research. The four research
questions asked in Section 1.2 will be answered for that purpose.

Research question 1: What positive and negative influence factors exist on
the team and program level in literature and which can be mapped to an agile
environment?

The literature review summarizes what has already been researched about agile and
large-scale agile development and the success factors in it. Based on other research in
this area, there are a number of influencing factors with positive and negative effects
on the project and teams. The same influences effect both the team (intra-team) and the
program level (inter-team), since individual agile teams also have external dependencies.
The likelihood increases only for large-scale agile projects due to external influences such
as conflicts and dependencies to other teams. The majority of the studies show the same
picture: that organization, communication, coordination, leadership, and mindset have
an influence on the project. Additionally there are also studies that focus on a specific
aspect, such as team split. Chow & Cao (2008) have grouped these factors into five
main groups that provide a good overview: organization, people, process, technical, and
project factors [20].

Research question 2: Can the multi-team system (MTS) concept be applied
for large-scale agile programs in order to adapt the existing research in this
area?

The comparison of the theory of large-scale agile development (in particular SAFe) with
the characteristics of MTS show that the two concepts overlap. There are small differences
in the leadership structure, which is rather rigid in MTS, and the duration of the MTS,
which is limited to the period of achievement of a common goal. However, these criteria
can be met by a large-scale agile project. A comparison of the existing MTS literature
shows that it can also be applied to a large-scale agile project. The same influencing
factors from RQ1 exist not only in the agile environment, but also in MTS studies. In

105



9 Conclusion and future work

addition, there are further detailed MTS studies related to the dependency between
different leadership styles and MTS performance, or the conflict between team goals and
MTS goals, which can also be applied to large-scale agile projects.

Research question 3: Can the teamwork quality (TWQ) model be applied
by the case study partner on the team level and are there any additional
significant factors that can be added?

The TWQ model is applicable for this case study partner and delivers very similar results
compared to the existing results of Hoegl and Gemuenden in the traditional development
environment and Dingseyr in agile environments. The result for the SAFe program
is a mix of both results. The coordination is relevant, as in traditional development,
but the influence of managers and stakeholders behaves more similarly from the agile
environment (not significant). Based on the data and the number of teams, the influence
of team size, geographical distribution and company affiliation could be confirmed. The
influence of the experience in software development and the agile environment and the
number of inter team dependencies could not be confirmed or rejected due to lack of
significant data.

Research question 4: Can the TWQ model be applied from the team level to
the program level?

The adapted TWQ survey on program level confirms, for this case study partner, that
the same six facets, performance and personal success can also be applied to a program.
It is important to note that this is only one program and therefore only an indication is
delivered, since several programs are required to offer direct proof.

9.2 Future work

The three areas which are considered in the master thesis, can be further investigated in
detail in further studies.

The first area is to use the analysis of MTS findings to evaluate their impact on SAFe
programs and performance. There are hundreds of studies and models from the military
area that focus on leadership and coordination and from the civilian area that focus on
communications and team set-up.

Hypothesis 1 confirmed that the same factors of the TWQ model can be applied to the
entire SAFe program of the case study partner. For this purpose, the TWQ questions were
adapted to the program. Until now, however, this result has only been confirmed for this
one case study partner. It is necessary to verify the results by conducting the same survey
in other large-scaled agile projects. If these other studies also show a similar result, then
other influencing factors such as the number of teams or how different languages effect
the project can also be analyzed. The comparison of the team results can also be used,
since there is a correlation between the team and the program. For example: How does

106



9.2 Future work

the number of teams effect the team and program? If it increases the performance of the
teams for the team tasks and the TWQ, does it have, at the same time, a negative effect
on the program success and the PWQ (see MTS Section 2.21)?

Finally, further influence factors on the performance and TWQ of the participating
teams are compared with hypotheses 3 to 7. These hypotheses should be verified in other
programs. The hypotheses that cannot be tested because of the data availability might
also be confirmed or refuted with more data from other programs. In addition to the five
hypotheses, there are other influence factors from the MTS and large-scale agile areas that
can be analyzed. To name just a few examples: the number of team changes, the length
of collaboration in these teams, the influence of different languages, and many more.

These findings allow the constantly growing number of large-scale agile programs to
be further optimized.

107






10 Appendix

10.1 Survey questionnaire

The following survey questions were used in the online survey at the case study partner
to get the results about the TWQ and the program-work quality.

General information

Q1

Q2

Which role description applies to you? (mandatory)
Welche Rollenbezeichnung trifft auf Sie zu?

"TO00000000OO0O

Gesamtprojektleitung (GPL)

Release Train Engineer (RTE)
System/Solution Architect/Engineer
Product/Solution Manager

Business Owner

Product Owner (PO)

Scrum Master (SM)

Entwickler // Developer

UX Designer

Qualitatskontrolle // Quality Assurance
Betrieb Hosting // Operation Hosting
Anderer / Other

How many years have you been working in the field of software
development? (mandatory)
Seit wie vielen Jahren sind Sie im Bereich der Softwareentwicklung tatig?

OOO0O00O

1 -2Jahre / Years

3 —5Jahre / Years

6 — 10 Jahre / Years
11 — 15 Jahre / Years
16 — 20 Jahre / Years
> 20 Jahre / Years

109



10 Appendix

How many years have you been working in the field of agile software
development? (mandatory)

Seit wie vielen Jahren sind Sie im Bereich der agilen Softwareentwicklung tatig?
1-2Jahre / Years

3 —5]Jahre / Years

6 — 10 Jahre / Years

11 — 15 Jahre / Years

16 — 20 Jahre / Years

> 20 Jahre / Years

Q3

OOO0O00O

Q4 | Associated company? (mandatory)
Zugehoriges Unternehmen?
Owner 1 / Company 1
Owner 1 / Company 2
Owner 1 / Company 3
Owner 1 / Company 4
Owner 2 / Company 1
Owner 2 / Company 2

OOO0O00O

Q5 | How old are you? (optional)
Wie Alt sind Sie?

20 — 25 Jahre / Years
26 — 30 Jahre / Years
31 - 35 Jahre / Years
36 — 40 Jahre / Years
41 — 45 Jahre / Years
46 — 50 Jahre / Years
50 — 60 Jahre / Years
> 60 Jahre / Years

OOO0O0O0O00O

Q6 | Education? (optional)

Ausbildung?

Abitur — A-level

Bachelor — Diplom — Fachausbildung
Master — Magister

Doktor — Professor — PhD

Anderer — Other

"O00O0

Q7 | Name and e-mail address for further questions. (optional)
Name und E-Mail Adresse fiir Riickfragen .

110



10.1 Survey questionnaire

Team information

Qs

Team member in? (currently) (mandatory)
Teammitgleid in? (zum aktuellen Zeitpunkt)

OOO0OO0O0OOOOOLOLOOOOOOOOOOO

GPL
RTE
SPO
SA
ACC
ANA
CRA
CRE
CRP
FRM
FWK
MDA
MET
PAR
PST
REP
SR
SYS
UIF
RTE
SPO
SA

111



10 Appendix

Q9 | To which teams does your team have dependencies? (multiselect)
Zu welchen Teams hat ihr Team Abhédngigkeiten?
ACC

ANA

CRA

CRE

CRP

FRM

FWK

MDA

MET

PAR

PST

REP

SR

SYS

UIF

RTE

SPO

SA

Odoooooooooooooood

10.1.1 Questions based on the TWQ model

The following questions are based on the questions that used by Hoegl and Gemuenden
(2001) [59] for the TWQ model and the same scaling is used. Each of the questions was
mandatory and Likert scaled (five-point answer scale). However, the scale was extended
with an additional option for "don’t know" based on the user feedback on the first day
of the survey. Two participants mentioned that they were not able to finish the survey
because they have nor information. A good example is the question Q64: "The team
product proves to be stable in operation". The product is currently under development
and not released yet, so it is not clear if it is stable of not.

Scale:

O Strongly disagree // trifft nicht zu

(O Disagree // trifft eher nicht zu

O Neither agree nor disagree // teils-teils

O Agree // trifft eher zu

O Strongly agree // trifft zu

(O (added) Don’t know // kann ich nicht beurteilen

112



10.1 Survey questionnaire

Communication
Q10 Team
Program
Qi1 Team
Program
Q12 Team
Program
Q13 Team
Program

There is frequent communication within the team

Es findet eine regelméfiige Kommunikation innerhalb des Teams statt
There is frequent communication within the program

Es findet eine regelméfliige Kommunikation innerhalb des Programms
statt

The team members communicate often in spontaneous meetings,
phone conversations, etc.

Die Teammitglieder kommunizieren oft in spontanen Meetings,
Telefonaten, etc.

The program members communicate often in spontaneous meetings,
phone conversations, etc.

Die Programmmitglieder kommunizieren oft in spontanen Meetings,
Telefonaten, etc.

The team members communicate mostly directly and personally
with each other

Die Teammitglieder kommunizieren meist direkt und personlich
miteinander

The program members communicate mostly directly and personally
with each other

Die Programmmitglieder kommunizieren meist direkt und personlich
miteinander

There are mediators in the team communication through whom
much communication is conducted

Es gibt Mediatoren in der Team Kommunikation, durch diese die
Kommunikation begleitet wird

There are mediators in the program communication through

whom much communication is conducted

Es gibt Mediatoren in der Programm Kommunikation, durch diese die
Kommunikation begleitet wird

113



10 Appendix

Q14

Q15

Q16

Q17

Team

Program

Team

Program

Team

Program

Team

Program

Relevant ideas and information relating to the teamwork is
shared openly by all team members

Relevante Ideen und Informationen zur Teamarbeit werden von
allen Teammitgliedern offen ausgetauscht

Relevant ideas and information relating to the teamwork in

the programm is shared openly by all program members
Relevante Ideen und Informationen zur Teamarbeit im Programm
werden von allen Programmmitgliedern offen ausgetauscht

Important information is kept away from other team members
in certain situations

Wichtige Informationen werden in bestimmten Situationen von
anderen Teammitgliedern ferngehalten

Important information is kept away from other program
members in certain situations

Wichtige Informationen werden in bestimmten Situationen von
anderen Programmmitgliedern ferngehalten

In the team there are conflicts regarding the openness

of the information flow

Im Team gibt es Konflikte um die Offenheit des
Informationsaustausches

In the program there are conflicts regarding the openness
of the information flow

Im Programm gibt es Konflikte um die Offenheit des
Informationsaustausches

The team members are happy with the timeliness in which

they receive information from other team members

Die Teammitglieder sind zufrieden mit der Aktualitat, mit der

sie Informationen von anderen Teammitgliedern erhalten

The program members are happy with the timeliness in which
they receive information from other program members

Die Programmmitglieder sind zufrieden mit der Aktualitat, mit
der sie Informationen von anderen Programmmitgliedern erhalten

114



10.1 Survey questionnaire

Q18 Team
Program
Q19 Team
Program
Coordination
Q20 Team
Program
Q21 Team
Program

The team members are happy with the precision of the
information they receive from other team members

Die Teammitglieder sind zufrieden mit der Qualitét der
Informationen, die sie von anderen Teammitgliedern erhalten

The program members are happy with the precision of

the information they receive from other program members

Die Programmmitglieder sind zufrieden mit der Qualitat der
Informationen, die sie von anderen Programmmitgliedern erhalten

The team members are happy with the usefulness of the
information they receive from other team members

Die Teammitglieder sind zufrieden mit dem Mehrwert der
Informationen, die sie von anderen Teammitgliedern erhalten

The program members are happy with the usefulness of the
information they receive from other program members

Die Programmmitglieder sind zufrieden mit dem Mehrwert der
Informationen, die sie von anderen Programmmitgliedern erhalten

The work done on subtasks within the team is closely harmonized
Die Arbeit an Teilaufgaben im Team ist eng aufeinander abgestimmt
The work done on subtasks within the program is closely
harmonized

Die Arbeit an Teilaufgaben im Programm ist eng aufeinander
abgestimmt

There are clear and fully comprehended goals for subtasks within
our team

Es gibt klare und vollstindig verstandene Ziele fiir Teilaufgaben in
unserem Team

There are clear and fully comprehended goals for subtasks
within our program

Es gibt klare und vollstindig verstandene Ziele fiir Teilaufgaben in
unserem Programm

115



10 Appendix

Q22 Team
Program

Q23 Team
Program

Mutual Support

Q24 Team
Program

Q25 Team
Program

Q26 Team
Program

The goals for subtasks are accepted by all team members
Die Ziele fiir die Teilaufgaben werden von allen
Teammitgliedern akzeptiert

The goals for subtasks are accepted by all program members
Die Ziele fiir die Teilaufgaben werden von allen
Programmmitgliedern akzeptiert

There are conflicting interests in our team regarding
subtasks/subgoals

In unserem Team gibt es Interessenkonflikte bei
Teilaufgaben/Unterzielen

There are conflicting interests in our program regarding
subtasks/subgoals

In unserem Programm gibt es Interessenkonflikte bei
Teilaufgaben/Unterzielen

The team members help and support each other as best they can
Die Teammitglieder helfen und unterstiitzen sich gegenseitig

so gut sie konnen

The program members help and support each other as best

they can

Die Programmmitglieder helfen und unterstiitzen sich
gegenseitig so gut sie konnen

If team conflicts come up, they are easily and quickly resolved
Treten Konflikte im Team auf, lassen sie sich leicht und schnell 16sen
If program conflicts come up, they are easily and quickly resolved
Treten Konflikte im Programm auf, lassen sie sich leicht

und schnell 16sen

Discussions and controversies in the team are conducted
constructively

Diskussionen und Kontroversen im Team werden konstruktiv
gefiihrt

Discussions and controversies in the program are
conducted constructively

Diskussionen und Kontroversen im Programm werden
konstruktiv gefiihrt

116



10.1 Survey questionnaire

Q27

Q28

Q29

Q30

Effort

Q31

Q32

Team

Program

Team

Program

Team

Program

Team

Program

Team

Program

Team

Program

Suggestions and contributions of team members are respected
Vorschldge und Beitridge von Teammitgliedern werden berticksichtigt
Suggestions and contributions of program members are respected
Vorschldge und Beitrdge von Programmmitgliedern werden
berticksichtigt

Suggestions and contributions of team members are discussed

and further developed

Vorschldge und Beitrage von Teammitgliedern werden diskutiert und
weiterentwickelt

Suggestions and contributions of program members are discussed
and further developed

Vorschldge und Beitrdge von Programmmitgliedern werden diskutiert
und weiterentwickelt

The team is able to reach consensus regarding important issues
Das Team ist in der Lage, einen Konsens tiber wichtige Themen

zu erzielen

The program is able to reach consensus regarding important issues
Die Programmmitglieder sind in der Lage, einen Konsens iiber
wichtige Themen zu erzielen

The team cooperate well

Das Team arbeitet gut zusammen

The program cooperates well

Die Programmmitglieder arbeiteten gut zusammen

Every team member fully pushes the teamwork

Jedes Teammitglied treibt die Teamarbeit voran

Every program member fully pushes the teamwork in the program
Jedes Programmmitglied treibt die Programmarbeit voran

Every team member makes the teamwork their highest priority
Jedes Teammitglied macht die Teamarbeit zu seiner obersten Prioritét
Every program member makes the teamwork in the program

their highest priority

Jedes Programmmitglied macht die Teamarbeit im Programm zu
seiner obersten Prioritat

117



10 Appendix

Q33 Team
Program
Q34 Team
Program
Cohesion
Q35 Team
Program
Q36 Team
Program
Q37 Team
Program
Q258 Team
Program

The team put(s) much effort into the teamwork

Das Team hat viel Miihe in die Teamarbeit gesteckt

The program put(s) much effort into the teamwork in the program
Die Programmmitglieder haben viel Miihe in die Teamarbeit im
Programm gesteckt

There are conflicts regarding the effort that team members put
into the teamwork

Es gibt Konflikte beziiglich der Leistung, welche die Teammitglieder
in die Teamarbeit einbringen

There are conflicts regarding the effort that program members put
into the teamwork in the program

Es gibt Konflikte beziiglich der Leistung, welche die
Programmmitglieder in die Teamarbeit im Programm einbringen

The teamwork is important to the team

Die Teamarbeit ist wichtig fiir das Team

The teamwork in the program is important to the program members
Die Teamarbeit im Programm ist wichtig fiir das Programm

It is important to team members to be part of the team

Es ist wichtig, fiir die Teammitglieder, Teil des Teams zu sein

It is important to program members to be part of the program
Es ist wichtig, fiir die Programmmitglieder, Teil des Programms
zu sein

The team does not see anything special in this teamwork
Das Team sieht in der Teamarbeit nichts Besonderes

The program members do not see anything special in this
teamwork in the program

Die Teammitglieder sehen in der Teamarbeit im Programm
nichts Besonderes

The team members are strongly attached to the team

Die Teammitglieder sind stark mit dem Team verbunden

The program members are strongly attached to the program

Die Programmmitglieder sind stark mit dem Programm verbunden

118



10.1 Survey questionnaire

Q39 All team members are fully integrated in the team
Alle Teammitglieder sind vollstindig in das Team integriert
All program members are fully integrated in the program

Alle Programmmitglieder sind vollstindig in das Programm integriert

Team

Program

Q40 There were many personal conflicts in the team
Es gab viele personliche Konflikte im Team
There were many personal conflicts in the program

Es gab viele personliche Konflikte im Programm

Team

Program

Q41 There is mutual sympathy between the members of the team

Es besteht gegenseitige Sympathie zwischen den Mitgliedern

des Teams

There is mutual sympathy between the members of the program
Es besteht gegenseitige Sympathie zwischen den Mitgliedern

des Programms

Team

Program

Q42 The team sticks together
Das Team hélt zusammen
The program members stick together

Das Programm halt zusammen

Team

Program

Q43 The members of the team feel proud to be part of the team

Die Mitglieder des Teams sind stolz darauf, Teil des Teams zu sein
The members of the program feel proud to be part of the program
Die Mitglieder des Programms sind stolz darauf, Teil des

Programms zu sein

Team

Program

Every team member feels responsible for maintaining and
Team protecting the team

Jedes Teammitglied fiihlt sich verantwortlich fiir die

Aufrechterhaltung und den Fortbestand des Teams

Every program member feels responsible for maintaining and
Program protecting the program

Jedes Programmmitglied fiihlt sich verantwortlich fiir die

Aufrechterhaltung und den Fortbestand des Programms

Q44

119



10 Appendix

Balance of member - Contribution

Q45

Q46

Q47

Team

Program

Team

Program

Team

Program

The team recognizes the specific characteristics (strengths

and weaknesses) of the individual team members

Das Team erkennt die spezifischen Eigenschaften (Starken und
Schwiéchen) der einzelnen Teammitglieder

The program members recognize the specific characteristics
(strengths and weaknesses) of the individual program members
Die Programmmitglieder erkennen die spezifischen Eigenschaften
(Starken und Schwichen) der einzelnen Programmmitglieder

The team members contribute to the achievement of the team’s
goals in accordance with their specific potential

Die Teammitglieder tragen entsprechend ihrer spezifischen
Fahigkeiten zur Erreichung der Teamziele bei

The program members contribute to the achievement of the
program’s goals in accordance with their specific potential

Die Programmmitglieder tragen entsprechend ihrer spezifischen
Fahigkeiten zur Erreichung der Programmziele bei

Imbalance of member contributions cause conflicts in our team
Das Ungleichgewicht der Beitrdge der Teammitglieder fiihrt zu
Konflikten in unserem Team

Imbalance of member contributions cause conflicts in our program
Das Ungleichgewicht der Beitrage der Programmmitglieder fiihrt

zu Konflikten in unserem Programm

Team members’ success - Work Satisfaction

Q48

Team

Program

So far, the team can be pleased with its work

Bisher kann das Team mit seiner Arbeit zufrieden sein

So far, the program members can be pleased with its work
Bisher konnen die Programmmitglieder mit der Arbeit zufrieden
sein

120



10.1 Survey questionnaire

Q49

Q50

Q51

Team

Program

Team

Program

Team

Program

The team members gain from the collaborative teamwork

Die Teammitglieder profitieren von der gemeinsamen Teamarbeit
The program members gain from the collaborative teamwork
in the program

Die Programmmitglieder profitieren von der gemeinsamen
Teamarbeit im Programm

The team members will like to do this type of collaborative
work again

Die Teammitglieder werden diese Art der Zusammenarbeit
gerne wiederholen

The program members will like to do this type of collaborative
work again

Die Programmmitglieder werden diese Art der Zusammenarbeit
gerne wiederholen

We are able to acquire important know-how through this teamwork
Durch diese Teamarbeit sind wir in der Lage, wichtiges Know-how
zu erwerben

We are able to acquire important know-how through this
teamwork in the program

Durch diese Teamarbeit im Programm sind wir in der Lage,
wichtiges Know-how zu erwerben

Team members’ success - Learning

Q52

Q53

Team

Program

Team

Program

We consider this teamwork as a technical success

Wir betrachten diese Teamarbeit als echten technischen Erfolg

We consider this teamwork in the program as a technical success
Wir betrachten diese Teamarbeit im Programm als echten
technischen Erfolg

The team learn important lessons from this teamwork

Das Team kann aus dieser Teamarbeit wichtige Erkenntnisse ziehen
The program members learn important lessons from this
teamwork in the program

Die Programmmitglieder konnen aus dieser Teamarbeit im
Programm wichtige Erkenntnisse ziehen

121



10 Appendix

Q54

Q55

Team

Program

Team

Program

Teamwork promotes one personally

Teamarbeit fordert jeden personlich

Teamwork in the program promotes one personally
Teamarbeit im Programm fordert jeden personlich

Teamwork promotes one professionally

Teamarbeit fordert einen professionell

Teamwork in the program promotes one professionally
Teamarbeit im Programm fordert einen professionell

Team Performance - Effectiveness

Q56

Q57

Q58

Q59

Team

Program

Team

Program

Team

Program

Team

Program

Going by the results, this teamwork can be regarded as successful
Ausgehend von den Ergebnissen kann das Teamwork als
erfolgreich bewertet werden

Going by the results, this teamwork in the program can be
regarded as successful

Ausgehend von den Ergebnissen kann das Teamwork im Programm
als erfolgreich bewertet werden

All demands of the customers are satisfied in the team

Alle Anforderungen der Kunden an das Team sind erfiillt

All demands of the customers are satisfied in the program
Alle Anforderungen der Kunden an das Programm sind erfiillt

From the company’s perspective, all team goals are achieved
Aus Unternehmenssicht werden alle Teamziele erreicht

From the company’s perspective, all program goals are achieved
Aus Unternehmenssicht werden alle Programmziele erreicht

The performance of the team advances our image to the customer
Die Leistung des Teams fordert unser Image beim Kunden

The performance of the program advances our image to the customer
Die Leistung des Programms férdert unser Image beim Kunden

122



10.1 Survey questionnaire

Q60 The teamwork result is of high quality
Das Ergebnis der Teamarbeit ist von hoher Qualitat
The teamwork in the program result is of high quality

Das Ergebnis der Teamwork im Programm ist von hoher Qualitat

Team

Program

Qe61 The customer is satisfied with the quality of the teamwork result
Der Kunde ist mit der Qualitdt der Arbeitsergebnisse im Team
zufrieden
The customer is satisfied with the quality of the teamwork
Program results in the program

Der Kunde ist mit der Qualitdt der Arbeitsergebnisse im

Programm zufrieden

Team

Q62 Toam The team is satisfied with the teamwork result
Das Team ist mit dem Ergebnis der Teamarbeit zufrieden
The program members are satisfied with the teamwork
Program results in the program
Die Programmitglieder sind mit dem Ergebnis des Teamworks
im Programm zufrieden

Q63 The product produced in the team, requires little rework
Das im Team produzierte Produkt erfordert wenig tiberarbeitung
The product produced in the program, requires little rework

Das im Programm produzierte Produkt erfordert wenig iiberarbeitung

Team

Program

Q64 The team product proves to be stable in operation
Das Produkt des Teams erweist sich als stabil im Betrieb
The program product proves to be stable in operation

Das Produkt des Programms erweist sich als stabil im Betrieb

Team

Program

Q65 The team product proves to be robust in operation
Das Produkt des Teams erweist sich als robust im Betrieb
The program product proves to be robust in operation

Das Produkt des Programms erweist sich als robust im Betrieb

Team

Program

123



10 Appendix

Team Performance - Efficiency

Q66 Toam The company is satisfied with how the teamwork progresses
Das Unternehmen ist mit dem Fortschritt der Teamarbeit zufrieden
The company is satisfied with how the teamwork in the
Program program progresses
Das Unternehmen ist mit dem Fortschritt der Teamarbeit im
Programm zufrieden
Q67 Overall, the team works in a cost-efficient way
Team . -
Insgesamt arbeitet das Team kosteneffizient
Overall, the program works in a cost-efficient way
Program . ..
Insgesamt arbeitet das Programm kosteneffizient
Q68 Overall, the team works in a time-efficient way
Team . e
Insgesamt arbeitet das Team zeiteffizient
Overall, the program works in a time-efficient way
Program . o ppn s
Insgesamt arbeitet das Programm zeiteffizient
Q69 The team is within schedule
Team . .
Das Team ist im Zeitplan
The program is within schedule
Program s .
Das Programm ist im Zeitplan
Q70 Team The team is within budget
Das Team liegt im Rahmen des Budgets
Proeram The program is within budget
& Das Programm liegt im Rahmen des Budgets

124



10.1 Survey questionnaire

SAFe events

Q71 | In your opinion, which SAFe events are adapted?

Welche SAFe Events gibt es ihrer Meinung nach?

Existing Not Existing
Answers Gibtes  Gibt es nicht
Iteration Planning (Team Level)
Iteration Execution (Team Level)

Daily Stand-Up (Team Level)

Iteration Review (Team Level)

Iteration Retrospective (Team Level)
Backlog Refinement (Team Level)
Innovation and Planning Iteration
(Team Level)

PI Planning (Program Level)

System Demo (Program Level)

Scrum of Scrums (Program Level)

PO Synch (Program Level)

Community of Practice (Program Level)
Inspect & Adapt (Program Level)

OOO0O0O0O O OOOOOO
OOO0O0O0O O OCOOOOO

SAFe artefacts

Q72 | In your opinion, which SAFe artefacts are adapted?

Welche SAFe Artefakte gibt es ihrer Meinung nach?

Existing Not Existing
Answers Gibtes  Gibt es nicht
Iteration Planning (Team Level)
Iteration Execution (Team Level)

Daily Stand-Up (Team Level)

Iteration Review (Team Level)

Iteration Retrospective (Team Level)
Backlog Refinement (Team Level)
Innovation and Planning Iteration
(Team Level)

PI Planning (Program Level)

System Demo (Program Level)

Scrum of Scrums (Program Level)

PO Synch (Program Level)

Community of Practice (Program Level)
Inspect & Adapt (Program Level)

OOO0O0O0O O OOOOOO
OOO000O O OOOOOO

125



10 Appendix

Program setup

Area

Team

Location

Number of members

GPL

ART

P-Acc

P-Mel

XP-Bas

GPL

SA

RTE

SPO

ACC

FRM
PST
ANA

CRE

CRP

SR

CRA

FWK

Ismaning
Miinster
Karlsruhe
Frankfurt
Ismaning
Miinster
Bretten
Karlsruhe
Frankfurt
Miinster
Frankfurt
Miinster
Miinster
Miinster
Bretten
Frankfurt
Miinster
Karlsruhe
Frankfurt
Ismaning
Leinfelden-Echterdingen
Miinster
Cologne
Frankfurt
Miinster
Stuttgart
Bretten
Ismaning
Miinster
Karlsruhe
Cologne
Bretten
Karlsruhe
Ismaning
Munich

LN R R R N R R

W~ o _
Tt o

N

N e O B SRR e )
a1

NO a1

126



10.1 Survey questionnaire

MDA

MET

REP

SYS

UIF

Bretten
Karlsruhe
Cologne
Eschborn
Essen
Frankfurt
Ismaning
Munich
Bretten
Karlsruhe

Cluj-Napoca (Romania)

Ismaning
Bretten
Cologne
Miinster
Karlsruhe
Frankfurt
Ismaning
Bretten
Karlsruhe

Cluj-Napoca (Romania)

Frankfurt
Miinster

NN»PN»—‘&N)—‘»P)—‘N»—'\»—\U)N

N -

6.5

[ S U €0 =

Table 10.1: Program structure of the case study partner in March 2019 based on the teams

and the locations

Area Team Owner Sub-Company Number of members
ART SA° Ownerl Companyl 1
Owner2  Company 1 1
RTE Ownerl  Company 1 1
Owner2  Company 1 1
SPO Ownerl  Company 1 1
Company 3 1
Owner2  Company 1 3
GPL GPL Ownerl  Company 1 1
Owner2  Company 1 1
P-Acc  ACC Ownerl Companyl 2
Owner2  Company 1 5
FRM Owner2  Company 1 8

127



10 Appendix

P-Mel

XP-Bas

PST

ANA

CRE

CRP

SR

CRA

FWK

MDA

MET

REP

SYS

UIF

Owner 1
Owner 2
Owner 1
Owner 2
Owner 1
Owner 2

Owner 1

Owner 2
Owner 1

Owner 2
Owner 1
Owner 2

Owner 1

Owner 2
Owner 1

Owner 2

Owner 1

Owner 2

Owner 1

Owner 2
Owner 1

Owner 2
Owner 1

Owner 2

Company 1
Company 1
Company 1
Company 3
Company 1
Company 1
Company 2
Company 3
Company 1
Company 2
Company 1
Company 3
Company 1
Company 1
Company 2
Company 1
Company 1
Company 1
Company 2
Company 1
Company 2
Company 1
Company 1
Company 2
Company 1
Company 2
Company 1
Company 2
Company 4
Company 1
Company 1
Company 2
Company 2
Company 1
Company 2
Company 1
Company 1
Company 2
Company 4
Company 1

0.5
3.5

1.5
15.5

o i O E S OV )

128



10.1 Survey questionnaire

Table 10.2: Program structure of the case study partner in March 2019 based on the teams
and the company the members are provided

Architecture goals

The List 10.1 of goals is based on an interview in January 2019 with one of the case study
partners system architect. This is not a complete list, but is will provide a good overview
on which they are focused.

1. Break down complexity by forcing the system to be composed of manageable parts
with clear boundaries (bounded contexts)

2. Development of new components as libraries or services deployed in containers

3. Where possible, integration of existing components using a common integration
model; wrapping existing components into a service (and container)

4. Co-develop domain model with business in a highly integrated fashion

5. Horizontal scalability to accommodate large amounts of data and provide real or
near time analytic possibilities

6. Provide means to easily build simple standard Uls and support building complex
Uls without break in Ul architecture

7. Easy updates of single components
8. Built to run (decentralized logging, log analytic, monitoring baked in)
9. Built to be tested automatically, including Uls

10. Data/Metadata/Model Lineage baked in

Figure 10.1: Architecture goals from the case study partner in January 2019

Architecture principles

Table 10.3 is based on an interview in January 2019 with one of the case study partners
system architect based on the architecture principles catalogue version 2 from the chair
of Software Engineering for Business Information Systems (SEBIS) (Technical University
of Munich).

Architecture principle Status

129



10 Appendix

Applications do not cross business function boundaries
Applications rely on One technology stack

Changes to IT systems are only made in response to
business needs

Components have a clear owner

IT systems are standardized and reused throughout the
organization

IT systems are preferably open source

IT systems communicate through services

Application development is standardized

Vertical system section

Buy application when it does not provide a significant
competitive advantage in your core business

One codebase tracked in revision control, many deploys
Explicitly declare and isolate dependencies

Strictly separate build and run stages

Keep development, staging, and production as

similar as possible

Maximize benefit to the enterprise, concede own
preferences for the greater benefit of the entire enterprise
Common vocabulary and data definitions

Build application as independently as possible from the
underlying technology

Control technical diversity

Loose coupling of systems or services

The system must be divided into modules that

provide interfaces

Modules must be implemented as separate processes,
containers, or virtual machines to maximize independence
The system must have two clearly separated levels of
architectural decisions: Macro and Micro Architecture
Communication must use a limited set of protocols like
RESTful HTTP or messaging

Each module must have its own independent
continuous delivery pipeline

Operations such as configuration, deployment, log analysis,

tracing, monitoring, and alerting should be standardized
Modules must be resilient, they must compensate
unavailable modules or communication problems

completely implemented
partially implemented

completely implemented
completely implemented
completely implemented

completely implemented

completely implemented
partially implemented

completely implemented

not planned

partially implemented
partially implemented
completely implemented

partially implemented

not planned
partially implemented
partially implemented

completely implemented
completely implemented

completely implemented
completely implemented
not planned
completely implemented
completely implemented
partially implemented

partially implemented

Table 10.3: Implementation status of architecture principles from the case study partner

in January 2019

130



10.1 Survey questionnaire

Original TWQ survey questions
Questions that are used by Hoegl and Gemuenden (2001) for the TWQ model [59].

Communication (10 questions): (1) There was frequent communication within the
team. (2) The team members communicated often in spontaneous meetings, phone
conversations, etc. (3) The team members communicated mostly directly and per-
sonally with each other. (4) There were mediators through whom communication
was conducted (R). (5) Project-relevant information was shared openly by all team
members. (6) Important information was kept away from other team members in
certain situations (R). (7) In our team, there were conflicts regarding the openness
of the information flow (R). (8) The team members were happy with the timeli-
ness in which they received information from other team members. (9) The team
members were happy with the precision of the information received from other
team members. (10) The team members were happy with the usefulness of the
information received from other team members.

Coordination (4 questions): (11) The work done on subtasks within the project was
closely harmonized. (12) There were clear and fully comprehended goals for sub-
tasks within our team. (13) The goals for subtasks were accepted by all team
members. (14) There were conflicting interests in our team regarding subtasks/sub-
goals (R).

Balance of Member Contributions (3 questions): (15) The team recognized the spe-
cific potentials (strengths and weaknesses) of individual team members. (16) The
team members were contributing to the achievement of the team’s goals in accor-
dance with their specific potential. (17) Imbalance of member contributions caused
conflicts in our team (R).

Mutual Support (6 questions): (18) The team members helped and supported each
other as best as they could. (19) If conflicts came up, they were easily and quickly
resolved. (20) Discussions and controversies were conducted constructively. (21)
Suggestions and contributions of team members were respected. (22) Suggestions
and contributions of team members were discussed and further developed. (23)
Our team was able to reach consensus regarding important issues.

Effort (4 questions): (24) Every team member fully pushed the project. (25) Every team
member made the project their highest priority. (26) Our team put much effort into
the project. (27) There were conflicts regarding the effort that team members put
into the project (R).

Cohesion (10 questions): (28) It was important to the members of our team to be part
of this project. (29) The team did not see anything special in this project (R). (30)
The team members were strongly attached to this project. (31) The project was
important to our team. (32) All members were fully integrated in our team. (33)

131



10 Appendix

There were many personal conflicts in our team (R). (34) There was personal
attraction between the members of our team. (35) Our team was sticking together.
(36) The members of our team felt proud to be part of the team. (37) Every team
member felt responsible for maintaining and protecting the team.

Effectiveness (10 questions): (38) Going by the results, this project can be regarded
as successful. (39) All demands of the customers have been satisfied. (40) From
the company’s perspective, all project goals were achieved. (41) The performance
of our team advanced our image to the customer. (42) The project result was of
high quality. (43) The customer was satisfied with the quality of the project result.
(44) The team was satisfied with the project result. (45) The product required little
rework. (46) The product proved to be stable in operation. (47) The product proved
to be robust in operation.

Efficiency (5 questions): (48) From the company’s perspective one could be satisfied
with how the project progressed. (49) Overall, the project was done in a cost-efficient
way. (50) Overall, the project was done in a time-efficient way. (51) The project was
within schedule. (52) The project was within budget.

Work Satisfaction (3 questions): (53) After this project, the team members could draw
a positive balance for themselves overall. (54) The team members have gained
from the collaborative project. (55) The team members would like to do this type of
collaborative work again.

Learning (5 questions): (56) We were able to acquire important know-how through
this project. (57) We see this project as a technical success. (58) Our team learned
important lessons from this project. (59) Teamwork promotes one personally. (60)
Teamwork promotes one professionally.

(R) = reverse coded item

132



10.1 Survey questionnaire

Original TWQ survey results by Hoegl and Gemuenden

TWQ Items Mean S.D. Alpha
Communication 10 420 044 094
Coordination 4 404 059 085
Balance of Member Cont. 3 408 050 0.72
Mutual Support 7 413 055 093
Effort 4 391 059 094
Cohision 10 389 056 097
Effectiveness-TM 10 391 059 091
Efficiency-TM 5 376 077 0.86
Work Satisfaction 3 401 055 0.79
Learning 5 406 046 0.76

Table 10.4: TWQ survey results - Number of items, means, standard deviations (S.D.) and
reliabilities [59]

Team dependency graph

Compared to Figure 4.9 the node size is related to the outdegree edges in Figure 10.2.

Figure 10.2: Team dependencies without the GPL and ART teams - program overview
(outdegree)

133






Bibliography

[1] S. Ambler and M. Lines. “Scaling agile software development tactically: Disci-
plined agile delivery at scale.” In: Disciplined Agile Consortium, Tech. Rep. (2016).

[2] M. Aoyama. “Web-based agile software development.” In: IEEE software 15.6
(1998), pp. 56-65.

[3] K. Backhaus, B. Erichson, W. Plinke, R. Weiber, et al. Multivariate analysemethoden:
eine anwendungsorientierte einfiihrung. Vol. 11. Springer, 2006.

[4] L.R. Baldrich, M. Reichert, M. Zimoch, and J. Scheible. “jQAssistant: A QA Tool
for Definition and Validation of Software Architecture Rules.” PhD thesis. Ulm
University, 2018.

[5] T.S.Bateman, H. O’'Neill, and A. Kenworthy-U’Ren. “A hierarchical taxonomy of
top managers’ goals.” In: Journal of Applied Psychology 87.6 (2002), p. 1134.

[6] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, et al. “Manifesto for agile software
development.” In: (2001).

[7] K. Beck and E. Gamma. Extreme programming explained: embrace change. addison-
wesley professional, 2000.

[8] S.Bibb and ]J. Kourdi. A Question of Trust: The Crucial Nature of Trust in Business,
Work and Life - And How to Build It. Marshall Cavendish, 2007. ISBN: 9781904879213.

[9] P.M.Blauand W. R. Scott. “1962Formal Organizations.” In: San Francisco: Chandler
(1962).

[10] B. Boehm. “Get ready for agile methods, with care.” In: Computer 35.1 (2002),
pp- 64-69.

[11] B.Boehm and R. Turner. “Management challenges to implementing agile processes
in traditional development organizations.” In: IEEE software 22.5 (2005), pp. 30-39.

[12] E.Bradner, G. Mark, and T. D. Hertel. “Team size and technology fit: Participation,
awareness, and rapport in distributed teams.” In: IEEE Transactions on Professional
Communication 48.1 (2005), pp. 68-77.

[13] M. W. Browne, R. Cudeck, et al. “Alternative ways of assessing model fit.” In: Sage
focus editions 154 (1993), pp. 136-136.

[14] C.V.Bullen and J. F. Rockart. “A primer on critical success factors.” In: (1981).

[15] T.L.C.B.V.LeSS Framework Overview. https://less.works/less/framework/
index.html. 2019 (accessed March 23, 2019).

135


https://less.works/less/framework/index.html
https://less.works/less/framework/index.html

Bibliography

[16]

B. M. Byrne and S. M. Stewart. “Teacher’s corner: The MACS approach to test-
ing for multigroup invariance of a second-order structure: A walk through the
process.” In: Structural Equation Modeling 13.2 (2006), pp. 287-321.

E. Carmel. “Global software teams: collaborating across borders and time zones.”
In: (1999).

E. Carmel, J. A. Espinosa, et al. “Timeshifting—The Mother of All Solutions for
Time Zone Differences.” In: World Scientific Book Chapters (2018), pp. 99-109.

M. Ceschi, A. Sillitti, G. Succi, and S. De Panfilis. “Project management in plan-
based and agile companies.” In: IEEE software 22.3 (2005), pp. 21-27.

T. Chow and D.-B. Cao. “A survey study of critical success factors in agile software
projects.” In: Journal of systems and software 81.6 (2008), pp. 961-971.

P. Coad, J. d. Luca, and E. Lefebvre. Java modeling color with UML: Enterprise
components and process with Cdrom. Prentice Hall PTR, 1999.

L. Cocco, K. Mannaro, G. Concas, and M. Marchesi. “Simulating kanban and
scrum vs. waterfall with system dynamics.” In: International Conference on Agile
Software Development. Springer. 2011, pp. 117-131.

A. Cockburn. Crystal clear: a human-powered methodology for small teams. Pearson
Education, 2004.

A. Cockburn and J. Highsmith. “Agile software development, the people factor.”
In: Computer 34.11 (2001), pp. 131-133.

D. Cogburn, M. Hine, J. A. Espinosa, and A. Santuzzi. “Virtual Teams, Organiza-
tions, and Networks.” In: Proceedings of the 52nd Hawaii International Conference on
System Sciences. 2019.

D. Cohen, M. Lindvall, and P. Costa. “An introduction to agile methods.” In:
Advances in computers 62.03 (2004), pp. 1-66.

J. W. Creswell and V. L. P. Clark. Designing and conducting mixed methods research.
Sage publications, 2017.

J. N. Cummings, J. A. Espinosa, and C. K. Pickering. “Crossing spatial and tempo-
ral boundaries in globally distributed projects: A relational model of coordination
delay.” In: Information Systems Research 20.3 (2009), pp. 420-439.

D. Cyr, M. Head, H. Larios, and B. Pan. “Exploring human images in website
design: a multi-method approach.” In: MIS quarterly (2009), pp. 539-566.

T. A. De Vries, ]J. R. Hollenbeck, R. B. Davison, E. Walter, and G. S. Van Der
Vegt. “Managing coordination in multiteam systems: Integrating micro and macro
perspectives.” In: Academy of Management Journal 59.5 (2016), pp. 1823-1844.

L. A. DeChurch, C. S. Burke, M. L. Shuffler, R. Lyons, D. Doty, and E. Salas. “A
historiometric analysis of leadership in mission critical multiteam environments.”
In: The Leadership Quarterly 22.1 (2011), pp. 152-169.

136



Bibliography

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

J. Desjardins. TECHNOLOGYHow Many Millions of Lines of Code Does It Take?
https://www.visualcapitalist.com/millions—-1lines—-of-code/.

2017 (accessed March 16, 2019).

D.]J. Devine, L. D. Clayton, J. L. Philips, B. B. Dunford, and S. B. Melner. “Teams
in organizations: Prevalence, characteristics, and effectiveness.” In: Small group
research 30.6 (1999), pp. 678-711.

C. A. DiazGranados, A. J. Dunning, M. Kimmel, D. Kirby, J. Treanor, A. Collins, R.
Pollak, J. Christoff, ]. Earl, V. Landolfi, et al. “Efficacy of high-dose versus standard-
dose influenza vaccine in older adults.” In: New England Journal of Medicine 371.7
(2014), pp. 635-645.

K. Dikert, M. Paasivaara, and C. Lassenius. “Challenges and success factors for
large-scale agile transformations: A systematic literature review.” In: Journal of
Systems and Software 119 (2016), pp. 87-108.

T. Dingseyr and N. B. Moe. “Towards principles of large-scale agile development.”
In: International Conference on Agile Software Development. Springer. 2014, pp. 1-8.

T. Dingseyr, N. B. Moe, T. E. Faegri, and E. A. Seim. “Exploring software develop-
ment at the very large-scale: a revelatory case study and research agenda for agile
method adaptation.” In: Empirical Software Engineering 23.1 (2018), pp. 490-520.

T. Dingseyr, K. Rolland, N. B. Moe, and E. A. Seim. “Coordination in multi-team
programmes: An investigation of the group mode in large-scale agile software
development.” In: Procedia Computer Science 121 (2017), pp. 123-128.

P. E. Drucker. Management: Tasks, responsibilities, practices. truman talley Books,
1986.

K. M. Eisenhardt. “Building theories from case study research.” In: Academy of
management review 14.4 (1989), pp. 532-550.

J. A. Espinosa, N. Nan, and E. Carmel. “Do gradations of time zone separation
make a difference in performance? A first laboratory study.” In: International
Conference on Global Software Engineering (ICGSE 2007). IEEE. 2007, pp. 12-22.

J. A. Espinosa, N. Nan, and E. Carmel. “Temporal distance, communication pat-
terns, and task performance in teams.” In: Journal of Management Information
Systems 32.1 (2015), pp. 151-191.

J. A. Espinosa, S. A. Slaughter, R. E. Kraut, and J. D. Herbsleb. “Familiarity, com-
plexity, and team performance in geographically distributed software develop-
ment.” In: Organization science 18.4 (2007), pp. 613-630.

J. A. Espinosa, S. A. Slaughter, R. E. Kraut, and J. D. Herbsleb. “Team knowledge
and coordination in geographically distributed software development.” In: Journal
of management information systems 24.1 (2007), pp. 135-169.

137


https://www.visualcapitalist.com/millions-lines-of-code/

Bibliography

[45]

[46]

B. M. Firth, J. R. Hollenbeck, J. E. Miles, D. R. Ilgen, and C. M. Barnes. “Same page,
different books: Extending representational gaps theory to enhance performance
in multiteam systems.” In: Academy of Management Journal 58.3 (2015), pp. 813-835.

A. Floh and H. Treiblmaier. “What keeps the e-banking customer loyal? A multi-
group analysis of the moderating role of consumer characteristics on e-loyalty
in the financial service industry.” In: A Multigroup Analysis of the Moderating Role
of Consumer Characteristics on E-Loyalty in the Financial Service Industry.(March 26,
2006) (2006).

S. Fraser, A. Martin, R. Biddle, D. Hussman, G. Miller, M. Poppendieck, L. Ris-
ing, and M. Striebeck. “The role of the customer in software development: the
XP customer-fad or fashion?” In: Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications. ACM.
2004, pp. 148-150.

J. R. Galbraith. “Matrix organization designs How to combine functional and
project forms.” In: Business horizons 14.1 (1971), pp. 29-40.

H. H. Gerth. Essays in sociology. 1952.

Google. Google Scholar Cites - Teamwork quality and the success of innovative projects:
A theoretical concept and empirical evidence. https://scholar.google.fi/
scholar?cites=10586756228164766748&as_sdt=2005&sciodt=0, 5&
hl=en. 2019 (accessed February 10, 2019).

L. Gratton and T. J. Erickson. “Eight ways to build collaborative teams.” In: Harvard
business review 85.11 (2007), p. 100.

J. W. Guthrie Jr, H. A. Priest Jr, and E. Salas Jr. “The continued evolution of
team research: A theoretical model of performance in multiteam systems.” In:
Proceedings of the Human Factors and Ergonomics Society Annual Meeting. Vol. 49. 3.
SAGE Publications Sage CA: Los Angeles, CA. 2005, pp. 582-585.

J. R. Hackman. Groups that work and those that don’t. E10 H123. Jossey-Bass, 1990.

J. R. Hackman and R. J. Hackman. Leading teams: Setting the stage for great perfor-
mances. Harvard Business Press, 2002.

J. Hackman. The design of work teams. Inj. w. lorsch (ed.), Handbook of organizational
behavior (pp. 315-342). 1987.

J. D. Herbsleb and A. Mockus. “An empirical study of speed and communication
in globally distributed software development.” In: IEEE Transactions on software
engineering 29.6 (2003), pp. 481-494.

M. A. Hitt, B. W. Keats, and S. M. DeMarie. “Navigating in the new competitive
landscape: Building strategic flexibility and competitive advantage in the 21st
century.” In: Academy of Management Perspectives 12.4 (1998), pp. 22—-42.

M. Hoegl. “Smaller teams-better teamwork: How to keep project teams small.” In:
Business Horizons 48.3 (2005), pp. 209-214.

138


https://scholar.google.fi/scholar?cites=10586756228164766748&as_sdt=2005&sciodt=0,5&hl=en
https://scholar.google.fi/scholar?cites=10586756228164766748&as_sdt=2005&sciodt=0,5&hl=en
https://scholar.google.fi/scholar?cites=10586756228164766748&as_sdt=2005&sciodt=0,5&hl=en

Bibliography

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

M. Hoegl and H. G. Gemuenden. “Teamwork quality and the success of innovative
projects: A theoretical concept and empirical evidence.” In: Organization science
12.4 (2001), pp. 435-4409.

L.-t. Hu and P. M. Bentler. “Cutoff criteria for fit indexes in covariance structure
analysis: Conventional criteria versus new alternatives.” In: Structural equation
modeling: a multidisciplinary journal 6.1 (1999), pp. 1-55.

D. R.Ilgen, J. R. Hollenbeck, M. Johnson, and D. Jundt. “Teams in organizations:
From input-process-output models to IMOI models.” In: Annu. Rev. Psychol. 56
(2005), pp. 517-543.

V. Inc. Version One: The 12th Annual State of Agile Report (2017). https : / /
explore . versionone . com/ state - of —agile /versionone - 12th -
annual-state-of-agile-report. 2017 (accessed January 31, 2019).

K. G. Joreskog. “Testing structural equation models.” In: Sage focus editions 154
(1993), pp. 294-294.

H. F. Kaiser. “A note on the equamax criterion.” In: Multivariate behavioral research
9.4 (1974), pp. 501-503.

B. Kaplan and D. Duchon. “Combining qualitative and quantitative methods in
information systems research: a case study.” In: MIS quarterly (1988), pp. 571-586.

M. B. Ken Schwaber. Agile Software Development with Scrum -. London: Prentice
Hall, 2001. 1SBN: 978-0-130-67634-4.

P. Khosroshahi, M. Hauder, A. Schneider, and F. Matthes. “Enterprise architecture
management pattern catalog version 2. 0.” In: Tech. Rep. (2015).

G. Kim, ]J. Humble, P. Debois, and J. Willis. The DevOps Handbook:: How to Create
World-Class Agility, Reliability, and Security in Technology Organizations. IT Revolu-
tion, 2016.

R. Knaster and D. Leffingwell. SAFe 4.5 Distilled: Applying the Scaled Agile Frame-
work for Lean Software and Systems Engineering. Addison-Wesley Professional, 2018.

D. Leffingwell. Agile software requirements: lean requirements practices for teams,
programs, and the enterprise. Addison-Wesley Professional, 2010.

D. Leffingwell. Scaling software agility: best practices for large enterprises. Pearson
Education, 2007.

B. Linders et al. Getting Value out of Agile Retrospectives-A Toolbox of Retrospective
Exercises. Lulu. com, 2014.

Y. Lindsjorn, G. R. Bergersen, T. Dingseyr, and D. I. Sjeberg. “Teamwork Quality
and Team Performance: Exploring Differences Between Small and Large Agile
Projects.” In: International Conference on Agile Software Development. Springer. 2018,
pp. 267-274.

139


https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report
https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report
https://explore.versionone.com/state-of-agile/versionone-12th-annual-state-of-agile-report

Bibliography

[74]

Y. Lindsjern, D. I. Sjeberg, T. Dingseyr, G. R. Bergersen, and T. Dyba. “Team-
work quality and project success in software development: A survey of agile
development teams.” In: Journal of Systems and Software 122 (2016), pp. 274-286.

E. A. Locke and G. P. Latham. A theory of goal setting & task performance. Prentice-
Hall, Inc, 1990.

G. Lohan, M. Lang, and K. Conboy. “Having a customer focus in agile software
development.” In: Information Systems Development. Springer, 2011, pp. 441-453.

P.B. Lowry and J. Gaskin. “Partial least squares (PLS) structural equation modeling
(SEM) for building and testing behavioral causal theory: When to choose it and
how to use it.” In: IEEE transactions on professional communication 57.2 (2014),
pp. 123-146.

M. A. Marks, L. A. DeChurch, J. E. Mathieu, F. J. Panzer, and A. Alonso. “Team-
work in multiteam systems.” In: Journal of Applied Psychology 90.5 (2005), p. 964.

J. Mathieu, M. A. Marks, and S. J. Zaccaro. “Multi-team systems.” In: International
handbook of work and organizational psychology 2.2 (2001).

S. Maurya. Categorise Your Agile Teams To Manage Dependencies and Avoid Overlap-
ping Issues & Conflicts. https://we-are.bookmyshow.com/categorise—
your—agile—-teams—-to-manage—dependencies—and-avoid-overlapping—
issues—-conflicts-a566be68180e. 2018 (accessed March 23, 2019).

S. Misra and M. Omorodion. “Survey on agile metrics and their inter-relationship
with other traditional development metrics.” In: ACM SIGSOFT Software Engineer-
ing Notes 36.6 (2011), pp. 1-3.

B. Mullen and C. Copper. “The relation between group cohesiveness and perfor-
mance: An integration.” In: Psychological bulletin 115.2 (1994), p. 210.

NASA. Original Apollo 11 Guidance Computer (AGC) source code for the command
and lunar modules. https://github.com/chrislgarry/Apollo-11/.2019
(accessed March 16, 2019).

K. J. Preacher, D. D. Rucker, and A. F. Hayes. “Addressing moderated media-
tion hypotheses: Theory, methods, and prescriptions.” In: Multivariate behavioral
research 42.1 (2007), pp. 185-227.

N. Ramasubbu and R. K. Balan. “Globally distributed software development
project performance: an empirical analysis.” In: Proceedings of the the 6th joint meet-
ing of the European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering. ACM. 2007, pp. 125-134.

M. Ringelmann. “Recherches sur les moteurs animes: Travail de 'homme [Re-
search on 424 animate sources of power: The work of man].” In: Ann I'lnstitut Natl
Agron 2nd Ser 425 (1913), p. 12.

C. M. Ringle, S. Wende, and J.-M. Becker. SmartPLS 3. http://www.smartpls.
com. 2015.

140


https://we-are.bookmyshow.com/categorise-your-agile-teams-to-manage-dependencies-and-avoid-overlapping-issues-conflicts-a566be68180e
https://we-are.bookmyshow.com/categorise-your-agile-teams-to-manage-dependencies-and-avoid-overlapping-issues-conflicts-a566be68180e
https://we-are.bookmyshow.com/categorise-your-agile-teams-to-manage-dependencies-and-avoid-overlapping-issues-conflicts-a566be68180e
https://github.com/chrislgarry/Apollo-11/
http://www.smartpls.com
http://www.smartpls.com

Bibliography

[88] C.Robson. Real world research: A resource for social scientists and practitioner-researchers.
Wiley-Blackwell, 2002.

[89] W.W.Royce. “Managing the development of large software systems: concepts and
techniques.” In: Proceedings of the 9th international conference on Software Engineering.
IEEE Computer Society Press. 1987, pp. 328-338.

[90] P. Runeson and M. Host. “Guidelines for conducting and reporting case study
research in software engineering.” In: Empirical software engineering 14.2 (2009),
p- 131.

[91] I.Scaled Agile. About Scaled Agile Framework and History. https://www.scaledagileframework.
com/about/. 2019 (accessed January 31, 2019).

[92] 1. Scaled Agile. Scaled Agile Framework - Case Studies. https://www.scaledagileframework.
com/case-studies/. 2019 (accessed January 31, 2019).

[93] 1. Scaled Agile. Scaled Agile Framework - Essential SAFe Poster. https: //www .
scaledagileframework.com/posters/. 2019 (accessed January 31, 2019).

[94] A. Scheerer et al. Coordination in Large-Scale Agile Software Development. Springer,
2017.

[95] K. Schwaber. Agile project management with Scrum. Microsoft press, 2004.
[96] K. Schwaber and ]J. Sutherland. “The scrum guide.” In: Scrum Alliance 21 (2011).

[97] scrumguides.org. Definition of Scrum. https : //www . scrumguides . org/
scrum-guide.html. 2019 (accessed January 30, 2019).

[98] Scrum.org. Nexus Framework Poster. https://www.scrum.org/resources/
nexus-framework-poster. 2019 (accessed March 23, 2019).

[99] scrum.org. The Scrum Framework. https://www.scrum.org/resources/
scrum-framework-poster. 2019 (accessed January 30, 2019).

[100] S. SE. About SAP SE. https://www.sap.com/corporate/en.html. 2019
(accessed February 17, 2019).

[101] M. L. Shuffler, M. Jiménez-Rodriguez, and W. S. Kramer. “The science of multi-
team systems: A review and future research agenda.” In: Small Group Research 46.6
(2015), pp. 659-699.

[102] M. L. Shuffler, W. S. Kramer, D. R. Carter, A. L. Thayer, and M. A. Rosen. “Lever-
aging a team-centric approach to diagnosing multiteam system functioning: The
role of intrateam state profiles.” In: Human Resource Management Review 28.4 (2018),
pp- 361-377.

[103] M. G. Software. Daily Scrum Meeting. https://www.mountaingoatsoftware.
com/agile/scrum/meetings/daily - scrum. 2019 (accessed January 18,

2019).

[104] M. G. Software. SAFe Metrics. https://www.scaledagileframework.com/
metrics. 2019 (accessed February 10, 2019).

141


https://www.scaledagileframework.com/about/
https://www.scaledagileframework.com/about/
https://www.scaledagileframework.com/case-studies/
https://www.scaledagileframework.com/case-studies/
https://www.scaledagileframework.com/posters/
https://www.scaledagileframework.com/posters/
https://www.scrumguides.org/scrum-guide.html
https://www.scrumguides.org/scrum-guide.html
https://www.scrum.org/resources/nexus-framework-poster
https://www.scrum.org/resources/nexus-framework-poster
https://www.scrum.org/resources/scrum-framework-poster
https://www.scrum.org/resources/scrum-framework-poster
https://www.sap.com/corporate/en.html
https://www.mountaingoatsoftware.com/agile/scrum/meetings/daily-scrum
https://www.mountaingoatsoftware.com/agile/scrum/meetings/daily-scrum
https://www.scaledagileframework.com/metrics
https://www.scaledagileframework.com/metrics

Bibliography

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

H. N. (statista.com). German: Mangel an IT-Experten wird grifler. https://de.
statista.com/infografik/16584/zu-besetzende-it-stellen-in-
der-deutschen-gesamtwirtschaft/. 2019 (accessed March 16, 2019).

L. D. Steiner. “Group process and productivity (social psychological monograph).”
In: (2007).

A. L. Stinchcombe. “Bureaucratic and craft administration of production: A com-
parative study.” In: Administrative science quarterly (1959), pp. 168-187.

H. Takeuchi and I. Nonaka. “The new new product development game.” In:
Harvard business review 64.1 (1986), pp. 137-146.

A. Tashakkori and C. Teddlie. Sage handbook of mixed methods in social & behavioral
research. Sage, 2010.

O. Turel and C. Bart. “Board-level IT governance and organizational performance.”
In: European Journal of Information Systems 23.2 (2014), pp. 223-239.

O. Uludag, M. Kleehaus, X. Xu, and F. Matthes. “Investigating the role of architects
in scaling agile frameworks.” In: 2017 IEEE 21st International Enterprise Distributed
Object Computing Conference (EDOC). IEEE. 2017, pp. 123-132.

L. Vijayasarathy and D. Turk. “Drivers of agile software development use: Di-
alectic interplay between benefits and hindrances.” In: Information and Software
Technology 54.2 (2012), pp. 137-148.

J. Vom Brocke, A. Simons, B. Niehaves, K. Riemer, R. Plattfaut, A. Cleven, et
al. “Reconstructing the giant: on the importance of rigour in documenting the
literature search process.” In: Ecis. Vol. 9. 2009, pp. 2206-2217.

E. Weimar, A. Nugroho, J. Visser, A. Plaat, M. Goudbeek, and A. P. Schouten. “The
Influence of Teamwork Quality on Software Team Performance.” In: arXiv preprint
arXiv:1701.06146 (2017).

K. Weinkauf, M. Hogl, and H. G. Gemiinden. “Zusammenarbeit in innovativen
Multi-Team-Projekten: Eine theoretische und empirische Analyse.” In: Schmalen-
bachs Zeitschrift fiir betriebswirtschaftliche Forschung 56.5 (2004), pp. 419-435.

142


https://de.statista.com/infografik/16584/zu-besetzende-it-stellen-in-der-deutschen-gesamtwirtschaft/
https://de.statista.com/infografik/16584/zu-besetzende-it-stellen-in-der-deutschen-gesamtwirtschaft/
https://de.statista.com/infografik/16584/zu-besetzende-it-stellen-in-der-deutschen-gesamtwirtschaft/

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Research objectives
	Research approach

	Foundations
	Agile software development
	The agile manifesto
	Scrum

	Large-scale agile software development
	Large Scale Scrum
	Nexus
	Scaled Agile Framework
	Challenges and success and factors

	Teamwork quality
	Multiteam systems (MTS)
	Influence factors on MTS


	Related work
	Intra-team
	Inter-team

	Case study
	Case study design
	Case description
	Large-scaled agile adoption
	Program setup
	Team setup
	Architecture


	Methodology
	Questionnaire design
	Participants
	Measures


	Data analysis and Processing
	Modeling framework
	Data analysis
	Data overview
	Model fit
	Team level data
	Program level data
	SEM model and factor loadings


	Evaluation and results
	Is the TWQ model applicable
	Additional influencing factors and their impact on TWQ

	Discussion
	Key findings
	Limitations

	Conclusion and future work
	Summary
	Future work

	Appendix
	Survey questionnaire
	Questions based on the TWQ model


	Bibliography

