
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Information Systems

Enhancing enterprise architecture models
using application performance monitoring

data

Christopher Janietz

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Information Systems

Enhancing enterprise architecture models using
application performance monitoring data

Erweiterung von Enterprise Architekturmodellen um
Daten aus dem Applikations Performance Monitoring

Author: Christopher Janietz
Supervisor: Prof. Dr. Florian Matthes
Advisor: M.Sc. Martin Kleehaus
Date: October 15, 2018

Ich versichere, dass ich diese Masterarbeit selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

München, den 23. Oktober 2018 Christopher Janietz

Acknowledgments

In the creation of this thesis a lot of people were involved whom I would like to thank
very much. First of my advisor Martin Kleehaus with whom I was able to exchange lots
of different ideas on the matter and helped me in conceptualizing them. Further I would
like to thank my colleagues and other supportive people in the company in which a lot
of the content of this thesis was created in. Finally I would like to thank my family and
friends who encouraged me to continue the journey, even if sometimes times were tough.
Especially I would like to thank namely Andreas Geroe, Emanuel Kechter, Dominik Pusch,
Ralf Hecktor, Josua Nuernberger and Maximilian Scheler.

vii

Abstract

With the advent of microservices, more and more parts of the overall architecture are not
designed upfront, but rather product of continuous evolution of the application landscape.
For this reason especially for the practice of enterprise architecture it becomes increasingly
difficult to cope with the amount of changes and reflect them accordingly in architecture
model designs. This thesis presents an automated approach to help integrate and update
these respective models from data that can be extracted from the runtime architecture.
More specifically the application performance management (APM) system and its capa-
bilities of runtime service instrumentation are used in an approach to build an integration
layer and thereby enhance information which is maintained in existing enterprise archi-
tecture tooling. This integration layer allows to explore information from both worlds on
the basis of a linked graph, enabling a new field of use cases and analysis capabilities to
explore.

ix

x

Contents

Acknowledgements vii

Abstract ix

Outline of the Thesis xiii

I. Introduction and Theory 1

1. Introduction 3
1.1. Motivation . 3

1.1.1. Terms and definitions . 4
1.1.2. Research goals . 5
1.1.3. Related work . 6

1.2. Foundations . 8
1.2.1. APM . 8
1.2.2. EAM . 12

II. Conceptualization 15

2. Conceptualization 17
2.1. Requirements . 17

2.1.1. General requirements . 17
2.1.2. Stakeholder requirements . 17

2.2. Prerequisites . 18
2.3. Product organization model . 20
2.4. Data integration automation . 22
2.5. Data integration workflow . 26

2.5.1. Creation workflow . 26
2.5.2. Read workflow . 26
2.5.3. Update workflow . 27
2.5.4. Deletion workflow . 28
2.5.5. Synchronization . 28

2.6. Enterprise graph . 28

xi

Contents

III. Implementation 31

3. Implementation 33
3.1. Architecture overview . 33
3.2. Technologies . 35
3.3. Unified data model . 36
3.4. Provider model . 37
3.5. Inferencing model . 40
3.6. Enterprise graph implementation . 42

3.6.1. Interface implementation . 42
3.6.2. Interface usage . 43

3.7. Synchronization . 45

IV. Evaluation, Limitations and Outlook 47

4. Evaluation 49
4.1. Case study: Multichannel retailer . 49
4.2. Application of APEAM . 50

4.2.1. Naming convention . 50
4.2.2. EAM integration workflow . 51

4.3. Interviews . 51
4.3.1. Questions and descriptions . 51
4.3.2. Results . 54

5. Limitations and Outlook 55
5.1. Limitations . 55
5.2. Outlook . 55

6. Conclusion 57

Appendix 61

A. Interview results 61
A.1. Interview: Backend Developer - Checkout . 62
A.2. Interview: Backend Developer - Search . 64
A.3. Interview: DevOps/SRE . 66
A.4. Interview: Product Owner . 68
A.5. Interview: Enterprise Architect . 69

Bibliography 71

xii

Contents

Outline of the Thesis

Part I: Introduction and Theory

CHAPTER 1: INTRODUCTION

This chapter presents an the motivation and overall goals for this thesis. It also lays the
foundations in terms of existing research and theory in the area of interest and the tools
which were utilized for the realization.

Part II: Conceptualization

CHAPTER 2: CONCEPTUALIZATION

This chapter describes different concepts and approaches to solving the identified prob-
lems. It lays the groundwork for the implementation of a prototype.

Part III: Implementation

CHAPTER 3: IMPLEMENTATION

This chapter shows how the prototype APEAM was realized as a result of the foundations
and in the context of a concrete application field.

Part IV: Evaluation, Limitations and Outlook

CHAPTER 4: EVALUATION

This chapter describes the context the research was conducted in and how the prototype
was applied and evaluated.

CHAPTER 5: LIMITATIONS AND OUTLOOK

This chapter shows the limits of the presented concepts and implementation and what
potential improvements could be made to the presented tool and what further research
options are open.

CHAPTER 6: CONCLUSION

This chapter concludes the thesis and gives a short overview on the results.

xiii

Part I.

Introduction and Theory

1

1. Introduction

1.1. Motivation

EAM (Enterprise Architecture Management) is a practice seen in large to mid-sized or-
ganizations which aims to document and manage the complexity of the IT landscape in
relation to the business requirements[6]. As there has been a continuous decrease of time
to market in the IT-industry in recent years, this discipline faces a multitude of new chal-
lenges. New software development practices such as microservices, as well as delegation
of architectural decisions to teams, makes architecture designs suffer more than ever from
the problem of capturing the full essence of an ever-changing landscape. Furthermore ag-
ile practices support an increasing deviation from architecture designs due to changing
business goals or technical implementation differences. The result of this is either missing
or outdated documentation [15].

To cope with the general complexities of enterprise architecture documentation, orga-
nizations use EA (Enterprise Architecture) tool support [16]. EA tools range from very
simple diagram software, such as Microsoft Visio, to complete EAM software suites such
as iteraplan or planningIT. While these EAM tools help with the capturing of model en-
tities, visualization and analysis of the architecture as a whole, they still require manual
input and therefore need to be kept up to date with changes occurring in the architecture,
which were not originally envisioned.

Even though this type of tool support exists and leaving the challenges of agile practices
out of the picture, the practice of EA has already been seeing the prescribed types of chal-
lenges in the past. A study in 2010, while agile and microservice architectures were not yet
popular, has found similar issues across the industry [19]. In the course of the evaluation
(4.3) in this research these type of issues could be validated up to this day and have lately
become even more complex with the advent of microservices.

In contrast to the developments in the EA and EAM tool domain, APM (Application
Performance Management) software has become more powerful and automated. Tools
such as dynatrace can discover whole runtime architectures just by the instrumentation of
the respective running software components. By simply comparing runtime architecture
as seen and discovered by the APM software to the one defined by the EAM software,
possibly differences can be identified.

At exactly this point, enterprise architecture documentation can then be augmented
with information from runtime instrumentation systems, to further gain access to infor-
mation, such as Domain association, which otherwise is not available from the runtime
alone. In this research ways to link these two types of system are explored. Both of these
type of information sources have inherently different goals when it comes to consistency
and liveliness. For this purpose, a model is established which allows to map from low
level monitoring information derived from service communication to high level architec-
ture descriptions, such as business domains. In a prototypical implementation, APEAM

3

1. Introduction

(Application Performance Enterprise Architecture Management) is presented, which sym-
bolizes the synthesis of both the APM and EAM world. Using the notion of an ”unified
service”, APEAM connects the description of services from both the EAM and APM per-
spective and maintains this type of reference. On the basis of these references, this research
further explores the notion of an ”enterprise graph”, which allows to query and traverse
resources owned by both the APM and EAM system.

By automating the process of identifying differences between both worlds and synchro-
nizing newly discovered services into the EAM repository, it further is possible to draw
conclusions in the differences between current and planned architecture. This research
defines workflows so that exactly this is possible.

For validating the proposed approach, the implementation is done and evaluated in the
context of a large European retailer, which is utilizing a microservice based architecture in
the context of a product based organization model. As exemplary data sources, dynatrace
is used as the APM and planningIT as the EAM software.

1.1.1. Terms and definitions

In this research terms will be used which could be interpreted in different ways and are
also used inconsistently by some of the involved software components. Due to this in the
following paragraphs definitions will be established which represent a consistent interpre-
tation, as used for this thesis, unless denoted otherwise. Whenever the definition of a term
is dependent on the context of the current section and therefore not the following defini-
tions it will be denoted in italics.

Runtime architecture. The runtime architecture is the architecture the way it is im-
plicitly given by the running software artifacts and their respective backings (e.g. Server,
Database, ...). It therefore will be considered the actual architecture. The term will usually
be used when referring to the architecture as discovered by the APM system.

Design architecture. In contrast the design architecture will be the architecture as orig-
inally envisioned by architects either before or after the implementation. This term is a
mixture of current and planned architecture but in relation to the architecture design in
the EAM tool.

Business Architecture. The business architecture is the high level architecture and
thereby describes the relationship between different business entities, such as Domains,
and their respective realization such as processes. Technical components in this level of
abstraction are at best described in the notion of a service or application.

Technical Architecture The technical architecture is the implementation or realization of
services. In this type of architecture, services are described in their relationship to certain
infrastructure components and other realization details.

Service. Service will be used as the umbrella term for a deployed software artifact, in-
dependent of the amount of instances. In the particular application scenario of this thesis

4

1.1. Motivation

it will can be summarized as a microservice.

Service discovery. The term ”Service discovery” will be used to refer to the existence
discovery of a service. Thereby aspects such as addressing the service for reaching its in-
terfaces is left out of the picture.

Application. An application will be considered as the aggregation of multiple services
to a certain ”application”. For example the application ”Webshop” will be the combina-
tion of a ”Product Display”, ”Checkout” and ”Payment” service. Different services might
occur in the context of different types of applications, which essentially is the idea of reuse
in microservice architectures.

API. API is very general term, which by itself only means that an interface exists for pro-
grammatic interaction between different software components. In this research the term is
narrowed down to HTTP interfaces which build on the concept of REST (Representational
state transfer) using JSON payloads.

1.1.2. Research goals

This research establishes three questions as result of the problems described in 1.1.
Q1. Due to an inherent disconnect between design of architectures and development of

the concrete software artifacts, the relationship between the actual deployed software and
the original architecture model element is immediately not apparent. As an example con-
sider the element of a ”Payment Service”. While this naming could be used for the model
element, deployed software artifacts hardly have any name at all other than for example
”application.jar”. In order to thereby define an automated process of integrating runtime
artifacts to the EAM repositories, the following question is raised. How to extract and map
coherent service and infrastructure topologies from enterprise architecture management and moni-
toring systems?

Q2. Monitoring data is by nature non-permanent, as it is an expression of many changes
in the runtime architecture and therefore in a stark contrast to EAM information, which is
rather static and expected to be stable. For this reason it becomes important to properly
identify how and in which part of the software lifecycle monitoring data is most complete,
resulting in the following question. How can this new feedback channel be sufficiently inte-
grated into the software and architecture lifecycle?

Q3. The integration of automation into EAM processes is a precedence and therefore
requires further some definitions on how to handle these new types of data. Thereby the
following question is raised. How can architecture differences be sufficiently presented to gain
knowledge on differences and react accordingly?

5

1. Introduction

Research Goal Discovery approaches
[20] Cloud migration Proprietary monitoring solu-

tion with plugins and manual
input

[5] Enhancing the EAM docu-
mentation

Instrumentation of clour re-
source

[4] Generation of runtime from
models

Discovery by design

[1] Generation of runtime from
models

Discovery by design

[2] Establish microservice archi-
tecture metamodel

Code analysis

[3] Discovery of runtime archi-
tecture

Plugin architecture with dif-
ferent reporters

[12] Discovery of microservice
runtime architecture

Runtime instrumentation

[8] Discovery of microservice
runtime architecture

Network monitoring,

[10] Discovery microservice run-
time architecture

Tracking of service calls

Figure 1.1.: Literature overview

1.1.3. Related work

To understand the state of the art in the field of service discovery in relation to the practices
of EAM, a literature research has been conducted. The terms ”service discovery”, ”au-
tomated enterprise architecture management”, ”enterprise architecture discovery”, ”real
time enterprise architecture management”, ”microservice architecture discovery” and ”en-
terprise architecture monitoring tools” were used in combination with the ”Google Scholar”
search engine. Overall this search resulted in 22 researches which bear resemblance to the
goals of this research. As to the definition of service discovery in 1.1.1, literature which
was related to more complex service discovery than simple existence has been neglected.
The amount of research specifically dealing with pure discovery of service existence could
therefore be narrowed down further to the papers described in the following. All papers
will be described by the primary goal of the discovery, their respective approaches for the
discovery and their difference in relation to this research. 1.1 gives an overview on all the
researches which were reviewed for describing the state of the art in architecture discovery
and enterprise architecture augmentation.

One of the goals for service discovery was cloud migration. As it would be desirable for
cloud migrations not to happen with a ”big bang”, but rather iterative, it thereby becomes
important to identify clusters of services as candidates for migration with minimal or no
dependencies. In the situation of an abundance of a well defined architecture documenta-

6

1.1. Motivation

tion, which also includes dependency relationships, this becomes a rather tedious process.
For identifying such candidates [20] describe a system which based on collected monitor-
ing metrics groups servers by their similarity. Comparable to this thesis monitoring data
is utilized but on a lower level, such as CPU, memory usage and process names. The iden-
tification of services and their relationships is not extracted from actual runtime calls but
rather verified manually and left to the user.

[5] approach the topic of cloud differently by using it as a source to identifying existing
resources and similar to this research using it as basis for enhancing the data in an EAM
software. It is done on the basis of metadata which is used to enhance descriptions of
resources hosted in the cloud. The main difference to this research is the manual efforts
which have to applied in initially capturing this metadata and keeping it up to date.

A complete different approach is taken by [4] and similarly by [1]. Their primary goal
is similar to the goal of this research, which is the synchronization between runtime and
design architecture. The approach taken however is different. As explained in the 1.1,
architecture in the world assumption of this thesis is result of many implicit decisions on
different levels of the software development lifecycle. In contrast the mentioned researches
consider the design to be done upfront and manifest itself in nothing but architecture mod-
els. Then all running artifacts are the result of generation from these models and changes
to the system architecture are always reflected in changes to these respective models. The
nature of generating code from models is framed by the term ”living models”. While this
idealistic approach is sensible in theory, it requires a lot design work and coordination up-
front and might result in models of complexity levels which are hard to cope with. With
the lessons that can be drawn from [19] it remains to be verified whether this can work in
practice, as no larger scale evaluations are presented.

In [3] the authors describe the notion of an ”enterprise topology graph”. An ”enterprise
topology graph” is thereby the technical documentation or otherwise technical architec-
ture of all components in the landscape. For the automation of keeping this graph up to
date, they describe a ”plugin” architecture with well defined interfaces for different data
sources to provide the respective data. While they consider different data sources to build
a whole picture of the technical architecture, in this research this task is completely del-
egated to the APM software. In a somewhat similar manner this thesis also talks about
the idea of a ”enterprise graph”, there are however some major differences. The ”enter-
prise topology graph” is only the technical architecture, while the enterprise graph in this
research also includes the business architecture. Further it also defines a structured API
interface and a possible transport to realize the graph.

The first descriptions of the term microservice architecture have only been seen as recent
as 2014 when coined by Martin Fowler and James Lewis[7]. It comes to no surprise, count-
ing in the time it takes for such practices to become popular, that only few research has
been done on the topic in relation to discovering architecture descriptions. When referring
to the architecture discovery in this context the term ”microservice architecture reverse en-
gineering” is used. [10], [8] and [12] are the first researches specifically dealing with this
topic.

Most of the papers reviewed do not concern themselves with documenting the architec-

7

1. Introduction

ture in any existing tool, but rather building their own type of documentation in contrast to
using existing EAM software[12][3]. For the part of identifying the services either custom
integration has to be built into the software [10][12] or requires manual efforts[5]. Overall
this research is the first to concern itself specifically with the synthesis of APM and EAM.

1.2. Foundations

1.2.1. APM

”Application performance management” (APM) or also ”application performance moni-
toring” is the practice of collecting, evaluating and interpreting performance of applica-
tions at runtime. Runtime describes the instrumentation point in the SDL (Software De-
velopment Lifecycle), implicating applications are already built into runnable artifacts and
deployed to some kind of infrastructure. APM is a part of the larger overall field of mon-
itoring. It separates itself from the realm of ”infrastructure monitoring” or ”traditional
monitoring” by the fact that it tries infer monitoring on a higher level of abstraction than
just raw metrics. Data like endpoint response errors, request amount and method call in-
strumentation is utilized by APM to gain insights.

There are different approaches to the collection of performance data, they can be di-
vided into active and passive collection from the perspective of the monitored application.
In the active collection process an application provides the data either by itself at different
inflection points or is being instrumented by a third-party system, which hooks into such
inflection points. This is the approach taken by many APM tools and respective agents.
The passive scenario describes the situation where an application offers monitoring data
by itself which then is collected and evaluated outside of the boundaries of the source ap-
plication. This approach is often seen by tools who are based on scripts like Nagios.

The implementation of passive monitoring mechanisms into applications by developers
is usually a secondary concern, as this information serves no value to the goal of imple-
menting a particular functionality. This is the reason the need increased for monitoring
tools which are more and more sophisticated to the point of what APM tools offer to-
day. Looking at applications developed in the enterprise area, patterns in frameworks,
programming languages and runtimes reoccur. In the Java world Stacks such as Java EE,
Spring Boot or other Frameworks are used and allow developers to use harmonized APIs
(Application Programming Interfaces) to handle platform concerns such as database ac-
cess, network calls or serving web requests. The similarity in theses lower level frame-
works is how APM monitoring solutions can hook into these known interfaces and collect
relevant instrumentation data without being specifically aware about implementation de-
tails of the higher-level business logic. This intrinsic monitoring data again allows to also
find details on level of business processes as these are represented partially or completely
by transactions or endpoint calls application wise. To this end however gaining these in-
sights how a process is related to the lower level technical details is only known to the
developers.

8

1.2. Foundations

Service discovery

Service discovery is a concern of application development in which one application wants
to talk to another application but is initially not aware of the route to address it. Such
a route can be either as simple as a hostname or as complex as a specific URI (Unique
Resource Identifier). The problem itself stems from the dynamic modern day applica-
tion environments such as seen with service distribution strategies in virtualized environ-
ments. In this case there is a disconnect between the deployment of services and their
connection to each other. Service discovery is becoming even more important with the
recent advancements in the domain of SOA (service-oriented architectures) and especially
microservice architectures which expect developers to design smaller application parts
instead of larger monolithic ones. In practice service discovery in large organizations is
based on more than one single solution. Development frameworks such as Eureka1 or
ZooKeeper2 aid developers in this process. This however poses a problem in software
solutions for which the code behind can not be customized or extended such as with stan-
dard software. Further many companies have legacy applications in their portfolio which
are either no longer maintained or do not map ideally to the service discovery concepts
and therefore are neglected. For the aforementioned reasons the service discovery and
registration mechanisms applied in practice are expected to be either incomplete or the
information is distributed across different tools.

As APM software strives to provide a complete picture of every service and its depen-
dencies, it needs to address similar concerns as service discovery in general does. Combin-
ing the fact that standard software as well self developed software are built on top known
software stacks, the APM monitoring agent is one of the few components present across
the software stack of a company. APM software is therefore a potential place with a whole-
some picture of the runtime architecture, which is up-to-date.

Alongside the discovery of existence of different software components different APM
solutions also allow to understand the communication patterns between them. The as-
sumption here is that these APM solutions are instrumenting instances on both ends of a
communication channel, e.g. a HTTP call or a JMS message. For a HTTP call in practice
it means, extra HTTP headers are added on the sending and evaluated on the receiving
end. A HTTP header then includes a unique identifier which is tracked across the chain of
calls between different software components and allows APM software thereby to identify
bottlenecks or errors. The methodology applied here is similar to the idea of distributed
tracing [17] for which the open source solution Zipkin 3 operates similarly.

Dynatrace

Dynatrace4 is one of leaders in the space of APM according to Gartner ([9]). As described
in 4.1 Dynatrace is also used as the APM solution in the company of this research’s case

1https://github.com/Netflix/eureka
2https://zookeeper.apache.org/
3https://zipkin.io/
4https://www.dynatrace.com/

9

1. Introduction

Figure 1.2.: Dynatrace Smartscape

study and is therefore the basis of the reference implementation in APEAM. Instead of the
solution known as ”dynatrace APM” this research specifically refers to ”Dynatrace” the
current solution, formerly known as ”Ruxit”. A few features about Dynatrace are stand-
ing out which at least today are distinguishable features when compared to other solutions
on the market such as AppDynamics5 or NewRelic6. The features relevant to this research
will be presented in the following paragraphs.

OneAgent. The dynatrace ”OneAgent” is a software component which can be installed
on any type of server. Due to the way it is designed to work, processes located on these
servers do not need to be configured for integration with or reporting to the agent. In-
stead the agent injects itself in processes of known technology patterns such as NodeJS,
Java, Python and others. While it can be controlled if some types of technologies or de-
ployments are ignored, dynatrace by default generates a complete environment picture by
using this mechanism. This is different to other APM solutions, e.g. AppDynamics, as
they require a manual integration which is configured on the application level.

Service backtrace. The service backtrace in dynatrace is the materialization of the dis-
tributed tracing concept. It allows to traverse relationships between different services. In
case of a problem with one service it can be traced back to an originating service based on
this mechanism.

Smartscape. The dynatrace ”Smartscape” is a visual representation of the discovered

5https://www.appdynamics.com/
6https://newrelic.com/

10

1.2. Foundations

components and their relationships towards each other. As such it can be seen as a vi-
sualization of the running technical architecture of a company, in case every infrastruc-
ture component is monitored with the ”OneAgent”. It is based on the ”Service back-
trace” information as well as the different components discovered by the ”OneAgent”.
The ”Smartscape” by itself makes a great basis on which to build or connect the business
architecture. As the ”Smartscape” by itself is generated from purely technical aspects, it
becomes hard to understand how to interprete it in practice. In 1.2 it can be seen that the
layers included are Applications, Services, Processes, Hosts and Datacenters. As the nam-
ing conventions used in dynatrace are relevant to the rest of this research, definitions of
these terms are provided here. The definitions are only for reference and are not applied
in this research unless specifically noted.

Application: Application is a wholesome picture of something a end user can use. It
therefore is typically seen as a web frontend with a an URL and instrumented with a
Javascript agent which is injected into the HTML payload of services who serve these
resources. Thereby the application is the manifestation of the consumption of different
services to offer a functionality, similar to the definition in 1.1.1.

Services: The term of services in dynatrace differs from the initial definition in 1.1.1.
Dynatrace considers an API interface controller to be a ”service”. The differentiation is
sensible from the perspective that an Application might consume more than one interface
of the same process group. What is framed as Service in this research therefore might have
multiple ”services” from the perspective of dynatrace.

Processes: Processes are the running instance of the same deployment artifact. The same
running artifacts build a Process Group in dynatrace and thereby allow to track the in-
stances of what this research frames as a service or what otherwise would be simply the
microservice.

Hosts: Hosts are instances of an operating system which runs these processes indepen-
dent of the fact whether there is a Docker layer in between or not.

Datacenters: Datacenters are used differently depending on the context dynatrace op-
erates in. For on premise deployments of virtual machines it for example is based on
VMware clusters, while for cloud applications it can be a deployment region.

Docker monitoring. As Docker has become a popular choice among the deployments
of applications, dynatrace offers the capability to also separate Process Groups on the basis
of which Docker Container and the respective Image they are deployed in.

User interface. All information which is discovered and interpreted by dynatrace is
available from the user interface. There visualizations such as the ”Smartscape” and the
”Service backtrace” can be viewed and also used in the context of discovering and inter-
preting incidents.

API. Dynatrace offers an API7 which allows to explore parts of the data which has been
collected and interpreted by dynatrace itself. This includes information about running
services and their topology, events in the monitoring system and metrics in general. The
API is however not complete when compared to the information available from the user

7https://www.dynatrace.com/support/help/dynatrace-api/

11

1. Introduction

interface. The user interface also uses an API of its own, which is different to the afore-
mentioned general API.

1.2.2. EAM

”Enterprise architecture” (EA) or ”Enterprice architecture management” (EAM) is an ap-
proach to information systems management in relation to the business [14]. It therefore
strives to document, plan and design repositories of model elements which are expressed
in different types of views on an architecture.

The processes in the EAM practice are based on collaboration and documentation which
can be aided by help of tool support. While such documentation can be practiced with
known information capture tools such as Wikis or Microsoft Excel and visualized using
diagramming tools such as Visio, EAM tools more specifically deal with known practices
in the area of EAM. As seen in [11] a lot of tools are available which offer special capabili-
ties tailored to the EAM practice.

Capabilities of this type of software include but are not limited to the following aspects.
The mentioned aspects are the relevant ones for this research, as they are expected in order
to support a few of the assumptions made.

Capturing of domain model. A domain model [6] is the expression of the business
capabilities of a company. Especially in the practice of ”domain-driven-design” which is
applied in the context of microservices[7] this type of model becomes even more relevant.
EAM tools therefore allow to design a domain model with different types of hierarchies.

Separation of architectures. As the process of EAM is about planning and capturing of
the existing, tools are able to separate between the design of a current or ”present” archi-
tecture and a ”planned” architecture. This assumption is important for this research as it
enables the ”present” architecture to be aided by automation while planning can be done
separately.

Approval model. In the course of the conception of architecture elements inside the
EAM tool there will be different working states of a model element. This is the result of
the process of acceptance of an architecture change in which different parties can review
and approve this process.

Workflows. Workflows allow to further control the aforementioned process. If a new
architecture element is created, the process of reviewing the change might include the re-
quirement to add missing data to enable the correct integration into different architecture
views. For example a new application might require the definition whether it is a self de-
veloped or standard solution.

Versioning. In the course of the development of the company architecture the associated
data of an architectural element is changing. Therefore in order to also be able to visualize

12

1.2. Foundations

and manage these type of changes such model elements can be versioned.

Metamodel customization. The way companies are structured is changing, for example
with the change from a business unit based company to a product based organization. Ide-
ally an EAM tool allows the metamodel to easily adapt to these type of structural changes
or differences, otherwise different workarounds will be required to bend the old to the new.

PlanningIT

The ”Alfabet IT Portfolio Management Suite” 8 also known as ”planningIT”, developed by
the company Software AG, is one of the popular choices among different tools specifically
built for practicing enterprise architecture management[11]. Its core capabilities include
managing different types of architectures of a company such as the technical and business
architecture. PlanningIT offers all of the aforementioned capabilities except for bigger
changes to the metamodel. Alongside these capabilities planningIT offers the following
which are relevant to this research.

Communication dependencies. In planningIT it is possible to capture the communica-
tion dependencies between different applications. The data which can be captured is as fine
granular as to the extent of the name of the interface and the applied transport protocol.

API. planningIT offers an API which allows to access the captured data and also modify
it. This API is HTTP-based and uses JSON for the transport encoding. Essentially it is a
managed interface which allows to execute SQL on behalf of planningIT on the backing
database.

As defined in 1.1.1 and also seen with the APM tool dynatrace1.2.1, planningIT also has
its own type of definitions for some of the terms applied in this research. The ones with a
resemblance to this research are defined in the following.

Domain: A domain is part of the highest level of enterprise architecture in planningIT. It
is linked to defined business processes and applications.

Application: An application in planningIT is the only representation of any kind of soft-
ware, whether it is deployed as a tool on a client computer or a service in running on a
server. It therefore separates itself from the idea of an application in dynatrace. An ap-
plication offers a version descriptor which in turn requires every version change to be
captured as a ”new” application object.

ICT object: While applications are more of a raw resource in planningIT, the ICT (Infor-
mation Communication Technology) object is used to manage complexities of differing
versions of an application and therefore allows to link other relevant information, such as
associated processes, on a higher level.

Component: A component is more fine granular than an application. It is linked to an ICT
object and used to capture aspects such as frameworks or technologies which are applied
for the realization of a concrete application.

8https://www.softwareag.com/de/products/aris alfabet/it portfolio/default.html

13

1. Introduction

Device: A device in planningIT represents by default either a client or server device. It
can be used either in the context of an actual physical device or also to capture the idea of
a server including a virtual machine.

14

Part II.

Conceptualization

15

2. Conceptualization

2.1. Requirements

Before the concept for ”APEAM” and its prototype were built requirements were gath-
ered to define the boundaries of the implementation. The following sections define these
requirements.

2.1.1. General requirements

The general requirements were gathered by the analysis of the problem at hand and do
not necessarily relate to requirements of the stakeholders which are defined in the next
section. Rather these requirements relate to the research questions and the overall quality
expectations.

References only. When building an integration layer between two systems it seems
plausible to collect data initially from the source system and later copy it to the the tar-
get system. As inevitable result the integrating system becomes the owner of this data
in transit. In this research however the goal is to keep the data in the respective systems
and build only links between both of them. Therefore when later building views for both
linked systems in the integration layer, data is always ”live” and never copied.

Referential integrity. In this research existing information from the APM system is uti-
lized to insert data into the EAM system. As therefore data to some extent has to be copied
different kinds of responsibilities arise for the copying system, in this case APEAM. This
kind of referential integrity has to be maintained in relation to all aspects of CRUD (Create
Read Update Delete) from the source system.

Abstraction layer. This research was built in the context of the case study mentioned in
4.1 and two concrete tools in the space of APM and EAM. It however tries to generalize
across the capabilities expected from both of these tooling worlds, so that many of the
concepts introduced in this research could be applied with other types of tools, especially
in the realm of APM and EAM.

2.1.2. Stakeholder requirements

The implementation of this research was further driven by the requirements of different
types of stakeholders. The following paragraphs describes different stakeholders in terms
of their role inside an organization and how this research relates to them. Most require-
ments were gathered initially while some were added as a follow up from different stake-
holder interviews. Wherever this is the case it is explicitly noted.

17

2. Conceptualization

Enterprise architect. Due to the fact that one of the main goals of this research is the
enhancement of enterprise architecture models with live data, it should be apparent that
enterprise architects can therefore be considered the main stake holder and driver for re-
quirements. As evaluated by [3] and also from an interview in A.5 it becomes clear that
while enterprise architects might be interested in ”live” data, it is more important to them
that consistency is maintained and information communicated by different architectural
views does not become polluted by changing runtime information. It thereby becomes a
challenge to balance between correctness and liveliness. This results in the requirement
that changes to the EAM system should be transparent and also verifiable.

Software developer. The software developer, while not directly benefiting from en-
hancing the enterprise architecture models, is however the main source for changes to the
architecture and therefore the driver for the data which can be gather from the APM sys-
tem. Especially as explained in 1.1, when considering that a lot of decisions are driven by
the teams themselves rather than the enterprise architects. From interviews in A.3 and A.1
it became clear that the APM tool is used for some of the purposes enterprise architecture
management tools were originally meant for. Developers therefore do not concern them-
selves directly with such tool and keep the efforts spent there down to a minimum. For
this reason this research strives to keep the footprint or the tasks of developers down to a
minimum.

Operations. Operations is the practice of maintaining and running deployed software
artifacts. Nowadays this term often combined with the practices of DevOps or SRE (Site
reliability engineering). While the just mentioned two types of stakeholders are consid-
ered the primary types of stakeholders of APEAM being both source and target of the data
synchronization process, during the interview in A.3 it became apparent that the informa-
tion contained in APEAM is also relevant to some of the doings of operations. Operations
drives the way software is deployed to production and can therefore also define the rules
how software has to be ”prepared”, such as it would be the case for enforcing name con-
ventions. This is relevant to this research as it can to some extent control how data in the
APM can be gathered.

2.2. Prerequisites

For the implementation of the proposed software solution ”APEAM” as well as applying
the corresponding workflows certain organizational requirements exist. While these might
be considered limitations of the implementation itself, these prerequisites are rather an
explicit expression of the environment the proposed solution applies to.

Microservice architecture. As described in the motivation, the main goal of this work is
related to the discovery of microservice architectures, as these pose a problem in large or-
ganizations who try to apply enterprise architecture management practices. While many
of the applied techniques used here theoretically could also be used with typical applica-
tion based architectures, some of the conventions such as the proposed automation tech-
niques might not apply.

18

2.2. Prerequisites

Organizational model. More than the idea of building microservices themselves, who
are just a technical expression of slicing a bigger monolith into smaller parts this research
also applies to a organizational model which operates and builds on the basis of microser-
vices and domain driven design. The conventions used therefore apply to product based
organization types, which is explained further in 2.3. As microservices are built in prod-
uct teams that work in a domain context, this allows some of the inferencing techniques
applied here to infer the correct domain in terms of the business architecture. While this is
no strict requirement, some more manual work will be required when initially assigning
services to their respective domain.

EAM and APM software. The proposed software solution is very much dependent on
the existence of an enterprise architecture management software such as planningIT or it-
eraplan. The reason being APEAM is mainly functioning as an integration layer between
the worlds of APM and EAM. APEAM is neither persisting nor orchestrating information
it does not own itself. It only allows to traverse data in the EAM and APM domain in order
to allow the representation of an ”enterprise graph”.

Application programming interface. In this work both the APM software (dynatrace)
and EAM software (planningIT) provided an external facing API interface, which to some
extent and given later described restrictions, allowed to retrieve and also manipulate (in
terms of the EAM software) respective data in these systems. While this might be con-
sidered self explanatory it usually is not, especially in the realm of EAM tooling. Tools in
the realm of EAM consider themselves the absolute owner of information with import and
export mechanisms being rather file based than driven by an API [11].

Organization of model instance objects. To some extent the way data is organized in
both the APM and EAM system has to adhere to certain requirements of the proposed
metamodel in this research. In general, the metamodel of the proposed solution was ab-
stracted from the concrete meta models in the respective software solutions whom were
described in 1.2.1 and 1.2.2. However, the availability of certain types of objects is required
in order to fulfill the respective slot in the proposed metamodel, this is described in more
detail in 2.4. Different types of workarounds in theory could however be used to hide this
fact. For example when ”Product Teams” can not be expressed in the realm of the EAM
software they could instead be realized on the basis of authorization model and groups.

Referential consistency. The artifact recognition in this research is left to the APM soft-
ware, to prevent the breakage of model integrity across different deployments. This type
of consistency can only be maintained by the APM software as it is the only part which
can track the artifacts when operating at the edge where software is actually deployed.

Synchronization. One of the goals of APEAM is to synchronize or enhance the data that
is persisted inside the EAM software. For this process to work properly and consistently
the APM software has to adhere to two qualities. The first quality is the availability of
inferring changes in the architecture, the other one was mentioned before and is related
to the consistency of this data. For the first quality a software such as dynatrace offers
an event feed for whom changes in the architecture can be detected easily by interpreting

19

2. Conceptualization

certain types of events such as the addition of a new deployed artifact or the establishment
of a new connection between two services. For the synchronization to not take irreversible
actions in the EAM software, the EAM software should allow the versioning of data as
well as applying some kind of acceptance state model.

Workflow. The in the previous paragraph described qualities of the EAM software
should materialize itself in a proper workflow when working with possibly inconsistent
or further ”unacceptable” changes to the architecture models. Therefore a ”workflow ap-
proval model” should be offered by the EAM software itself. APEAM does not offer this
kind of quality and delegates it to the EAM system.

Completeness. One of the main requirements to both the EAM and APM software is
completeness. Completeness hereby describes the availability of information that maps
from both systems to each other. For example, when mapping a service from the instance
of APM software to the instance of the EAM software, the EAM software should be aware
of the domain the service should be correctly mapped to. When however, the information
of the domain model is spread across different instances of EAM tools or other sources, this
would require APEAM to identify the correct target. The same applies to the APM soft-
ware, where data about the environment could be spread across different types of APM or
other monitoring tools.

Liveliness. Liveliness has to some extent been described in terms of how data is made
available by the respective API interfaces already. The enterprise graph in APEAM is de-
signed to allow queries in both the worlds of EAM and APM based on the assumption
that the data is always up-to-date. This also applies whenever the synchronization will
be run. For an APM software this is an interesting problem as data typically is presented
in a time range based manner, therefore some data might only be visible for certain time
ranges. To avoid the problem of missing or loose data, APEAM therefore requires either
the APM software to offer a time range independent runtime architecture model or other-
wise a large enough time range so that consistency can be maintained. As an example the
pure existence of a service in the architecture should not solely be dependent on the fact
that a call to one of its interfaces has been made recently.

2.3. Product organization model

In the course of the development of APEAM it became apparent that the terminology used
in the APM and EAM system differs to some extent. This chapter gives a proper definition
of an organizational model in which these terms apply.

A product based organization tries build around the idea of a product which is the result
of domain driven development. In 2.1 such a product organization model can be seen.
Products are materializing themselves in the form of teams who build or maintain software
in the boundaries of a certain domain. Therefore the the term product and team can be
used interchangeable. As an example consider the team ”Basket” which covers part of the
domain ”Checkout”.

The responsibility of such a product team is then one or more microservices up to the

20

2.3. Product organization model

Figure 2.1.: Product Organization Model

decision of that team. Therefore the team ”Basket” might build a ”calculation” service,
for calculating a basket, as well as an ”aggregation” service, for collecting products in
a basket. As can be seen by the concept of ”Basket” the microservices belong to their
assigned domain boundary. The term basket can therefore also be seen as an abbreviation
term for the domain ”Checkout” in which it is used exclusively.

From observations made in the course of this research these teams often also maintain
”OOD” (Out of Domain) services. These services concern boundaries of a different domain
and are built for several reasons. As an example consider a payment processing service
which in this case is not be part of the domain ”Checkout”, but ”Debitor Management”
instead. The service however is related to the business process of checkout as a whole.
Due to the fact that the aim of product teams is to generalize functionality offered as much
as possible this payment service might lack capabilities which are tailored to a special
consumer interface such as a webshop. In this case the previously mentioned ”Basket”
team might build a payment adapter service to either optimize the API interfaces or the
whole payment orchestration process itself in the business process occurring as part of an
online purchase. Therefore, a ”payment gateway” or orchestration service might be built
which sits in between the responsibilities of both domains, but in this case would be part
of and maintained in the ”Checkout” domain.

Parts of the software of an enterprise is not built by the companies themselves but
bought as standard software, especially when this software is used for processes that do
not present any kind of advantages over competitors. In a strictly product based organi-
zation these types of software are also handled by product teams.

All services are characterized by the notion of an API interface. This enables products to

21

2. Conceptualization

exchange the software behind these interfaces whether it is standard software or self de-
veloped microservices. Standard software or legacy software is therefore also put behind
an API interface.

2.4. Data integration automation

Data integration describes the flow in which APEAM uses data originating from the APM
system and persists it automatically in a target system, in this case the EAM system. This
section defines how this mapping can be done in practice and what different options were
evaluated.

One of the main complexities is the proper linkage in each respective system and main-
taining these references. As the APM system has its own kind of view on a system archi-
tecture no further changes are required, as everything can be inferred from the communi-
cation architecture of the services and the infrastructure they are deployed on. As this data
is result of different types of instrumentation and therefore automated it is read only and
can not be changed. Therefore the APM is seen as read-only and therefore not candidate
for maintaining the references towards the EAM system.

The EAM system is the owner of the business architecture which is realized by different
services to be found in the APM system. The service essentially is the intersection between
both worlds and the way a link can be maintained. Therefore the service becomes the
desired object for updating and inserting into the EAM system. Looking at the data which
is linked to a service in the realm of the EAM system, it should be linked with the respective
business domains to maintain it properly. Afterwards a service can then be maintained by
other links such as a owning team or business processes it is used in, to name a few. These
links shall be added to enable architects to understand the context a service operates in,
without further consultation of the origin a service stems from. As also derived from
the requirements of enterprise architects, APEAM should able to infer respective domains
and/or teams from information already available without further annotation.

The problem now becomes where information such as team or domain can be inferred
from, as in software development it is not made explicit by known means. From the per-
spective of the APM system where service data is originating from, there is a limited
amount of data available which could be used for inferring this information. In the fol-
lowing paragraphs different approaches to solving this issue will be explained and rated
in terms of applicability. 2.2 describes possible data points to be used for this purpose
and should be available from APM systems, not requiring any specific implementations or
maintenance in the respective developed services.

Another source of data next to the data from the APM system could be any type of infor-
mation which is produced in the course of the software development lifecycle and could
possibly linked to data in the APM system. While these different tools can be great sources
of information, when starting from the APM system as source of data, deriving this link
can pose a problem. Examples for this data are shown in 2.3.

22

2.4. Data integration automation

Data element Example
Link/communication architecture
with other services

Service Basket talks to Service Or-
der

Link/communication architecture
with known backings

Service Basket talks to MongoDB
X1

Deployment artifact name bt-basket-calculation-service
Interface name (REST endpoints) POST on /basket/createBasket
Infrastructure Kubernetes Cluster 01
Hostname/Domain name bt-basket.development .environ-

ment.com
Technology Java, Spring Boot, ...

Figure 2.2.: Service data retrieved from an APM system

Tool Phase Possible source
Requirements tracking tool Requirements gathering/De-

velopment planning
JIRA

Code maintenance Development Git
CI/CD Tool Build / Deployment Jenkins
Artifact runtime Run Docker

Figure 2.3.: Service data retrieved from other tools

In the following paragraphs different strategies will be explained as a synthesis of dif-
ferent data sources and possible applications.

Artifact description. As a manual method, which requires effort by developers of ev-
ery service, a file can be established which describes certain metadata of the service itself.
Such metadata could therefore also include information of respective domain association
and the maintaining team. An exemplary format or way of realizing this is the software
Pivio1. The problem with this approach is, to maintain an acceptable source of data, the ex-
istence of such file has to be enforced by some part of the software development pipeline
such as a quality gate, otherwise it can possibly be neglected by developers. When not
used by the developers due to an intrinsic need, there could possibly still be discrepancies
due to a lack of updates, even with the existence of such file. Since the involved tools for
this approach would be the Code maintenance and the CI/CD tool, there is a lack of in-
volvement of the APM tool in this regard. So this data will not be available from the APM
system as it is not scraped by a monitoring agent. To make use of this data APEAM would
therefore need some publishing of the collected information. Solutions as the mentioned
Pivio publish this data via a REST interface and could be seen as an alternative solution
for discovering services next to the APM system.

1http://pivio.io/

23

2. Conceptualization

Name convention. When deploying services to production, teams need some kind of
way to reidentify their deployed services. As by default the data known to an APM sys-
tem as described in 2.2 includes at best names of a deployment artifact this becomes a
challenging task, when names such as ”application.jar” were used in the build process.
APM systems such as AppDynamics or Dynatrace therefore allow to rename identified
services in the user interface manually by users for proper reidentification. Also, for man-
ually configured monitoring agents, as it is the case for AppDynamics, it is possible to
specify the name beforehand in a configuration file. For some types of technology such as
the Java JAR file or the application name in the spring configuration, the name can also be
derived from the runtime. This approach however does not work for applications written
in NodeJS as the artifact typically is called ”index.js” and is spread across multiple files. In
this case the ”package.json” file could be used, however it is very often removed during
the course of packaging or deployment as it serves no further use later on. Leaving other
technologies such as .NET, Go or Ruby out of the picture, it should be apparent that the
name retrieval of an artifact is inconsistent across technologies and therefore also hard to
enforce.

There however is a type of runtime environment which has gained a lot of momentum
in the world of microservice development, which is Docker2. Docker is the only type
of runtime environment which works for all technologies and programming languages
at it is similar to a virtual machines by providing an operating system platform and is
supported for both Windows and Linux. It also enforces the idea of a single application per
image/container, which is not applied for virtual machines, who have to host an operating
system and its services as well. Further Docker maintains a versioning and artifact naming
system on the basis of a Docker image. A typical Docker image name has the following
structure:

<Registry>/<Artifact Name>:<Version>
test.registry.com/bt-basket-service:1

Images are a zipped up representation of the operating system configuration, all respec-
tive libraries and the application of interest as entry point. All running instances of such
an image are called container and can always be referred back to the original image name.

All of the reviewed APM systems (Dynatrace / AppDynamics / NewRelic) support
Docker integration, according to their web presence, and therefore allow to link running
instances of a service to a respective container and its image. When now being able to infer
the artifact name consistently for any type of application, there still remains one problem,
which is inferring the respective domain or team from this name.

From observing the names used by a lot of the teams of the company this research was
applied to in the case study 4.1 an implicit convention was inferred. Even before any estab-
lished or enforced conventions were present, a lot of similarities could be discovered that
were chosen by these teams to more easily maintain and identify their services. While it
might be possible they were inspired by already running services with this naming struc-
ture, it also seems to be intuitive by the way it is structured. As a result the following
naming convention was established for the artifact name:

2https://www.docker.com/

24

2.4. Data integration automation

<Team Name>-<Domain/Abbreviation>-<Function>?-<Type>?
bt-basket-calculation-service

All analyzed teams and services maintained some kind of team name in their artifact
name for reasons of re identification of deployed services. When leaving out reoccurring
and non relevant filterable terms, such as the company name, all teams maintained the
team name as the first word in the artifact name. As explained in 2.3 that team and prod-
uct go hand in hand the respective product can also be inferred from this convention. In a
well maintained business domain model where products/teams are associated with their
respective domains this would already allow to infer the domain a service belongs to and
associate, neglecting the rest of the convention. However as one team rarely maintains
only one service there is an interest to further split the naming. The first split here is the
domain abbreviation, which typically describes a word or function of a service in the re-
spective domain. For the domain ”Checkout” such a word would for example be ”basket”
and therefore be used as an abbreviation for this domain. In the context of a domain such
abbreviation allows to explain concepts or parts of the realization of the domain function
in the overall business context. As the name of a domain rarely is in a technically main-
tainable and compact manner such as Checkout, but instead complex and long such as
”Customer Attraction” including empty spaces, these abbreviations enable better suitable
representation in terms of the artifact name. The other two components ”Function” and
”Type” allow for further extension and separation but are not necessarily required for the
described goal of domain identification. The function could be used to further understand
the participation of a service in a certain business process. The service type allows to sepa-
rate artifacts with no special meaning to the domain context. For example deployments of
aiding tools such as a configuration database can be named ”utility” instead of ”service”
and then be filtered out. Due to the aforementioned existence of this convention, this is the
chosen approach for APEAM as it is already intrinsically motivated for software develop-
ers due to the fact that they are interested in finding the relevant monitoring data for their
services and it is already documented in the APM system.

Communication architecture. Looking at the communication architecture of a service,
as inferred by an APM system, some claims can be made. Claim 1: Services in the same
domain context often talk to each other more than they talk to services outside of their
context, when leaving out often re-utilized master data services, such as product data or
prices. Claim 2: Communication architecture of services of the same domain is very similar
in nature. This means for example that a basket service and a order creation service both
might talk to the customer service as well as the payment service.

If these claims could be proven true, it would mean that from observing the commu-
nication architecture of services as done by an APM, some heuristic could try to infer the
domain from existing services. Unfortunately, due to a scarcity of data these claims could
not be verified and require further research. Therefore this strategy was not integrated into
APEAM and left as an option to explore further.

Other APM data. The remaining data of the APM which was not mentioned in the
paragraphs before was identified not to be helping in the process of domain or team iden-
tification. The hostname very often is arbitrary or legacy due to the replacement of an

25

2. Conceptualization

older system with a newer service as an adapter in place. Endpoints, used backings, de-
ployment infrastructure and applied technologies are too generic and often the same for
most services.

Other software development lifecycle data. While all the other mentioned systems in
the lifecycle or even systems outside the boundaries of software development could be
used to identify the domain relationship of a service, they were not considered further as
the linking to the primary data source of this work, the APM, was not further explored.

2.5. Data integration workflow

After retrieving services from the APM system and identifying their association as ex-
plained in 2.4 the service still remains to be integrated into the EAM system properly. As
explained in the requirements2.1 their are different goals and restrictions to be considered.
This includes maintaining the CRUD lifecycle for the inserted service in the EAM system
as well as giving enterprise architects the possibility to control when or how this data is
actually integrated into effective architecture designs.

2.5.1. Creation workflow

In 2.4 the process of how a service is created is shown. After the retrieval and discovery of
a service from a source system, APEAM first has to check whether a reference towards the
EAM system has been already maintained, therefore it needs host its own representation of
a service in which this reference can be maintained. It builds on the foundation mentioned
in 2.2 that the source system, in this case the APM system is able to maintain consistency
for a deployed artifact except for the version. Looking at the way Docker image names
are built this restriction can also be fulfilled just by the image name convention. When
registering a service for the first time a timestamp is maintained which will be used by
the deletion flow in 2.5.4. If the service has not yet been inserted into the EAM system and
the inference association workflow was successful resulting in the extraction of the product
and/or domain name, it will be inserted as a draft service. The name for this service then is
only the extracted naming convention, not the actual technical name of the docker image.
The concept of ”draft” is a special state in respect to the requirement of maintainability
by enterprise architects and has to be maintained by the EAM system. From this point
on the EAM tool is in charge of all further proceedings, which includes applying changes
to possibly wrong domain associations and adding further information to a service which
can not be inferred from the runtime alone. APEAM will keep a technical reference which
allows it to be independent of any kind of change done inside the EAM system, making
also renaming possible.

2.5.2. Read workflow

The workflow of reading from either the EAM or APM system is not relevant to the intents
of data integration. It is however used in the context of the enterprise graph explained in
2.6.

26

2.5. Data integration workflow

Figure 2.4.: Service creation flow

2.5.3. Update workflow

When inserting a service to the EAM system minimal data is inserted and therefore has to
be kept updated. At best the inserted data includes the name of the service, the product
team and possibly a version. In case of changes to the main name of a service, e.g. the
Docker image, which also includes the inferred product team, it will inevitably be consid-
ered as a new service and therefore not require any types of update. Instead the creation
flow for a new service will be triggered and at some point the deletion flow will be occur-
ring for the old service which was renamed. The version of a service which can possibly
inferred also from the APM system when used with Docker images could be maintained
in the EAM system as well, which would result in retiring the old version and creating
a new one. As the implications of this are individual to the capabilities of the respective
EAM system it was chosen to be left out of the picture as it requires further research in
terms of feasibility.

27

2. Conceptualization

2.5.4. Deletion workflow

After the initial insertion of a service as explained in 2.5.1, APEAM is in charge of main-
taining the existence of the service. It does so by regularly checking the last seen timestamp
in relation to the APM system and comparing it to an availability threshold which can be
defined individually to the needs of different environments. When encountering a service
whose last seen timestamp is beyond this threshold APEAM will mark the service as to
be retired in the EAM system. This in turn allows other workflows for retirement of such
service to be run in the EAM system boundaries. If the created and referenced service
from APEAM has been removed in the EAM system it will be reinserted and APEAM will
replace the existing reference. In order to prevent further insertion of such service it is to
be marked with a state of ”Disapproved”, so that reinsertion will not occur and the service
will not become part of the overall architecture.

2.5.5. Synchronization

The process of synchronization essentially is the rerunning of the flow shown in 2.4 for
every service discovered. The process of synchronization shall be independent of a point in
time it is being run as defined by the prerequisites2.2. Essentially it becomes a balancing act
between the removal threshold of the deletion workflow2.5.4 and the time range applied
for discovering services from the APM system.

2.6. Enterprise graph

In [3] the ”Enterprise topology graph” was introduced. The idea is, as explained in 1.1.3
to represent the technical architecture of the whole company. This is similar to what the
dynatrace Smartscape does as explained in 1.2.1. In contrast to this, this thesis aims to
provide a wholesome picture on all enterprise resources, starting with the APM and EAM
source systems. Therefore this research defines the concept of an enterprise graph.

The basis is realized by connecting the respective data owning systems as presented
in the previous chapters. By owning the references into different systems all that is left
to realizing the enterprise graph is finding a way to transport and expose the respective
entities which are owned and exposed by the connected systems. As the presented system
does not own any other resource than the reference, all data exposed shall always be ”live”
and retrieved via the respective interfaces on traversal of the graph.

To the end of building such a graph it becomes necessary to define a generalized meta-
model on whose basis entities independent of the software behind can be integrated.
Alongside of mapping properties from the entities it also becomes necessary to enable
the traversal of entities which are not related to each other from the owning application
perspective but from the perspective of certain use cases or interests.

For example consider a domain entity such as ”Checkout” which is maintained and
owned by the EAM system. At runtime after the synchronization via the mechanisms
explained in 2.5 APEAM will be aware which services represent this domain inside the
APM system. Therefore a traversal of the graph would allow to explore starting from the
domain ”Checkout” traversing to the services linked to it in the EAM system and further
on the representation of these in the APM system. When now reaching the context of

28

2.6. Enterprise graph

the APM system a vast amount of data such as the hosts these services are running on
can be explored. When this research was conducted different options on data relevant
to be synced to the EAM system were considered. This included also information such as
exposed interfaces and thereby communication between services. However it was decided
that data at best remains with the system which it was originally created in and thus the
enterprise graph was born.

With the choice of the GraphQL technology in ?? and the examples in 3.6 this research
presents a concrete transport to realize the traversal of the graph.

29

2. Conceptualization

30

Part III.

Implementation

31

3. Implementation

3.1. Architecture overview

The architecture of APEAM is built on 4 main components, the APM system, the EAM
system, the respective monitored servers, their hosted services and the APEAM software
itself, as shown in 3.1. In the following paragraphs each of these components will be
described by its role in the whole system. This architecture is built around two concrete
tools, dynatrace as the APM and planningIT as the EAM tool.

APM system. The APM system hereby describes the source of the ”live” technical archi-
tecture data. It is represented by the application dynatrace. In the diagram there are two
types of APIs, the first one is the official REST API, which still is in active development
as the time of this writing. There also is an API that is solely meant to be used by the dy-
natrace user interface, which in the visualization is distinguished by the term ”Dynatrace
Frontend API”. As there is a discrepancy between the features and available data in the
official REST and the Frontend API, it was decided in order to build the proposed solu-
tion, to make use of the frontend API as well. The APM server is the actually processing
unit receiving data from one or more monitoring agents which are installed on respective
monitored servers. The APM server itself has a lot more integrations than shown in this
diagram, but the presented ones are sufficient to this cause.

Monitored servers. Monitored servers are infrastructure components on which the ser-
vices are deployed in the form of artifacts (e.g. a Docker Image or a JAR file). Dynatrace
”OneAgent” describes a software which is installed once on every server and injects itself
into all running applications, whether it is in a Docker container or on the host itself. It
could be considered ”invasive” as it does not have to be explicitly configured, for example
as an agent library for the Java runtime. In the diagram, services are represented by a run-
time, this is meant to abstract the technical implementation details which dynatrace uses
to understand different types of software. A runtime therefore is a known technology such
as Java or a NodeJS application for whom dynatrace has specific integrations. Services do
not necessarily need to be installed on the same server as might be concluded from the
diagram. They can be instrumented across the boundaries of multiple servers.

EAM system. The EAM system is the target system of the whole architecture. It is the
one, where data is not only retrieved but also inserted into. In this research it is repre-
sented by the software planningIT. PlanningIT has a server side component which is built
in .NET and therefore running on top of an IIS server. It exposes a ”REST-like” interface
which allows to retrieve and manipulate objects. The REST interface component is licensed
separately and therefore has to be bought as it is not part of the regular application pack-
age. Furthermore, there is a client library for Java server which allows to make calls to the
API. Unfortunately, the accompanying documentation was not sufficient as it advised a

33

3. Implementation

Figure 3.1.: APEAM Architecture Overview

newer version of the API which was not available during this implementation. Therefore,
the database behind planningIT which is based on MSSQL is of interest, as the ”V1” (ver-
sion 1) API is not a lot different to making SQL queries on the database itself, but wrapping
it into the object model of planningIT and therefore guaranteeing some types of validation.

APEAM system. While all previously defined components have been in existence in
the company of the case study, APEAM and all of its inner components are the result of
this research. The core component is the APEAM server, who is the orchestrating unit and
owner of all exposed interfaces.

While it tries to keep the data it owns and therefore persists to a minimum, it still main-
tains some link and update data in its own MongoDB based database. Further it exposes
an API interface on the basis of GraphQL. This interface more specifically represents the
enterprise graph explained further in 3.6. This graph API could further be used for a
frontend of APEAM, which allowing to do data maintenance and visualizations of the en-
terprise graph. In this prototype the frontend to the graph was represented by existing
tools mentioned in 3.2.

The API facade is an abstraction layer for talking to a generic APM or EAM system and

34

3.2. Technologies

therefore maintains the generalization of the proposed approach explained in 3.4.
The sync scheduler takes care of how and when to update data. The naming might

suggest it is time based, this is however only true to some extent as different kinds of
triggers are explored in 3.7

3.2. Technologies

The prototype APEAM server was implemented on the NodeJS1 runtime platform. Due to
the complexities of translating properties from different source and target systems, as well
as exposing them in a metamodel of its own, the choice was made to make use of proper
type enforcement. For this reason the code was implemented in Typescript2 which similar
to the programming language Java can enforce strict typing rules at transpilation time to
Javascript.

The backing database was chosen to be based on the idea of ”NoSQL” and the most pop-
ular choice3 in this area MongoDB4. The rationale was to keep the complexity of joining
down to a minimum. Overall the entities required for the implementation could be per-
sisted in a single collection. For using MongoDB in the prototype the library ”Typegoose”5

was used, an abstraction of the popular ”Mongoose”6 library, allowing to apply the capa-
bilities of Typescript in the context of constructing the persistence model. While possibly
counter intuitive with the ”enterprise graph” concept, the database was not chosen to be
graph based. The data which is actually exposed for the graph is not persisted at all by
APEAM and therefore a graph based database was of little help. In case there might be
extra metadata persisted by APEAM in the future the choice might be different.

The only API APEAM exposes is based on the GraphQL7 technology and is a transport
realization of the concept presented in 2.6. While there are multiple bindings for different
programming languages to use GraphQL in, it is native to the NodeJS ecosystem, which
further supported the initial platform choice. GraphQL itself is a query language only and
does not define any type of transport. For exposing the GraphQL API the ”Apollo Server”8

was used which exposed the interface on the default endpoint ”/graphql”. Alongside the
capabilities of querying a graph, GraphQL is self documenting. It allows to view the graph
metamodel which can be enhanced with descriptions by the implementer. To make use of
Typescript’s capabilities while constructing the GraphQL model, it was built on top of
a library called ”type-graphql”9. The GraphQL API is used not only for the purpose of
traversing and reading data, but also allows to control the syncing and persistence ca-
pabilities of APEAM. For the prototype no user interface was built. Instead two tools of
the GraphQL ecosystem were used to allow understanding and querying the graph. The

1https://nodejs.org/en/
2https://www.typescriptlang.org/
3https://db-engines.com/de/ranking
4https://www.mongodb.com
5https://github.com/szokodiakos/typegoose
6https://mongoosejs.com/
7https://graphql.org/
8https://github.com/apollographql/apollo-server
9https://github.com/19majkel94/type-graphql

35

3. Implementation

Figure 3.2.: Unified data model

first tool is ”GraphQL Voyager”10 which allows to explore the metamodel exposed by a
GraphQL API in a graph like relationship diagram. This tools aids in understanding how
the graph is constructed and how different entities and properties can be reached from a
query perspective. The second tool is the ”GraphQL Playground”11 which allows to actu-
ally query the graph and also supports the user in the construction of a query with possible
choices by auto completion.

3.3. Unified data model

For the purpose of abstraction, a unified data model was built that is generalizing the
entities of both the APM and EAM system. These entities can later be joined by reference
under the umbrella of a ”UnifiedService”.

The ”UnifiedService” as shown in 3.2 interface defines the holistic view on a service
in the landscape and is owned by the APEAM system itself. An example for such service
would be the ”bt-basket-calculation-service”. Important to note here is that for instances of
the unified service the naming convention is enforced inside of APEAM as the id property.
Therefore the creation of a unified service cannot happen unless such a name is provided
or inferred. The ”UnifiedService” holds multiple references, most notably one to the APM
service and one to the EAM service. A ”ServiceReference” can only associate with one
such service, however there can be multiple instances of ”ServiceReference” in a ”Unified-
Service”. This allows to connect an arbitrary amount of references to other systems where
an information about this particular service might reside. The type of a ”ServiceRefer-
ence” is not expressed by inheritance, but by an enumerable called ”ReferenceType”. This
was done so that persistence avoids the complexity of maintaining types, as the types are
expressed by a property instead by the type system itself.

The ”ServiceReference” maintains two types of timestamps. This helps processes such as

10https://github.com/APIs-guru/graphql-voyager
11https://github.com/prisma/graphql-playground

36

3.4. Provider model

Figure 3.3.: Persistence data model

the synchronization to validate whether a given service might still exist or not, as explained
in 2.5.4.

Any instance of a service in the ”ServiceReference” has to maintain an ”id” which allows
to exactly address the instance in the respective source system independent of any changes
made to it such as renaming. For example, in the APM service for this scenario it would
be the Docker image id such as ”eu.gcr.io/bt-basket-calculation-service”. In this case the
id neglects the version of the Docker image to allow tracking the service across different
versions or deployments. As explained in 2.5.3, the version was neglected as a concept for
this prototype. The interface ”EamDomain” in this diagram is only presented to show the
possibility of traversing any arbitrary data which is connected to the instances of a linked
service.

APEAM tries to keep the data it manages down to a minimum to avoid any type sync or
update conflicts that arise with managing data that is owned by a different system. While it
might be considerable to cache some types of data to enable more efficient querying of the
enterprise graph, the maintaining of own copies of objects should be avoided. APEAM
realizes these constraints by only saving the data of the ”UnifiedService” in the form of
the ”UnifiedServiceDAO”. The persisted entity maintains an unique index based on the
”serviceId” attribute and thereby preventing reinsertion of the same source service. All
instances of ”ServiceReference” are maintained as a list inside this object. Due to the fact
that the persistence is based on NoSQL, all data is maintained in the same entity and no
joining or other types of relationships are required. When extending the reference model
new targets with respective ids can simply be added to this array. 3.4 shows an example
how such service would be persisted in the database.

3.4. Provider model

The heart of the prototype is building the connector model for both the EAM and APM
system. In general, the abstraction model here defines providers which similar to 3.2, ab-

37

3. Implementation

1 {"_id": {"$oid": "5bc05fd7466fd767883fa395"},
2 "serviceId": "bt-basket-service",
3 "references": [{
4 "target": "APM",
5 "targetId": "eu.gcr.io/dev/bt-basket-service",
6 "createdAt": {"$date": "2018-10-12T08:48:23.492+0000"},
7 "lastSeenAt": {"$date": "2018-10-12T08:48:23.492+0000"}
8 },{
9 "target": "EAM",

10 "targetId": "APP-1543",
11 "createdAt": {"$date": "2018-10-12T08:48:24.001+0000"},
12 "lastSeenAt": {"$date": "2018-10-12T08:48:24.001+0000"}
13 }]}

Figure 3.4.: Persisted unified service

Figure 3.5.: Provider model overview

38

3.4. Provider model

stract the concrete instances and clients of the respective systems. The overall architecture
is shown in 3.5 and represents the goal of constructing an API facade as shown by the over-
all architecture in 3.1. The diagram is not complete in relation to all arguments or methods,
but illustrates the necessary parts to understand how the provider model is realized.

The ”UnifiedServiceProvider” is effectively an access facade to the database layer. This
abstraction would allow to exchange the way unified services are persisted or retrieved. It
is the core interface utilized by many processes and especially the GraphQL API in 3.6.

The ”APMServiceProvider” defines the abstraction to retrieve instances of services which
reside in the APM system. In this case the concrete implementation is the ”Dynatrace-
DockerApmServiceProvider”, whose name is related to the fact that it makes specifically
use of the Docker data in Dynatrace. In order retrieve data it utilizes two types of clients.
Most of the relevant data however is currently retrieved using the ”DynatraceFrontend-
Client”. The ”DynatraceFrontendClient” utilizes APIs which are yet only available to the
user interface of Dynatrace and therefore imitates the user interface in this regard. All
APIs utilized from the frontend client are JSON-based and use the HTTP transport. The
only special function in this client is the login process which based on a cookie and user
login data, generates a session that allows to query the respective APIs. The ”Dynatrace-
Client” utilizes the official API which allows to retrieve general data on services and their
relationships and can be used in combination with the data from the ”DynatraceFrontend-
Client” as the exposed entities are built on a shared model. The general Dynatrace API as
of this writing is not yet able to get data on Docker images, so the provider combines data
from both clients using the consistent ”SERVICE-<ID>” reference. Dynatrace generates a
unique service id for every service and manages to keep this id consistent across deploy-
ments.

The ”EAMServiceProvider” abstracts functionality that shall be provided by an EAM
system. For the relevant use cases this includes the possibility to enumerate all domains
as well as the services which are already described in the EAM system. For some of the
core functions of APEAM it must be possible to create and update a service and associate
respective data using this process. These capabilties are represent by ”createEamService”
and ”updateEamService”. For APEAM and planningIT the capabilities are realized by the
”PlanningItEamServiceProvider” which in the background utiltizes the ”EamPlanningIT-
Client”, an adapter for the ”PlanningItClient”. The ”PlanningItClient” exposes the basic
methods of the planningIT API, which is based on calls that execute SQL statements on
the MSSQL database and wraps them in the context of the planningIT Server and object
model. As these types of calls are by nature rather not concrete in terms of the model man-
aged by planningIT (e.g. POST /getobject ”SELECT FROM APPLICATION WHERE X”),
the ”EamPlanningITClient” encapsulates these queries to more meaningful methods such
as ”getApplications” or ”createApplication”. When building the prototype the planningIT
API unfortunately was not able to associate a domain with an application, for which a
workaround using direct database calls via the ”MSSQLClient” was realized.

These provider models build the foundation of all the processes that later are orches-
trated via the API. An implementer looking to utilize other software than planningIT or
Dynatrace must at least fulfill the provider interfaces.

39

3. Implementation

Figure 3.6.: Inferencing model

3.5. Inferencing model

The inferencing model was built to automate the association of a service as retrieved from
the APM system with its respective product, domain and function, as described in 2.4. The
inferencing is also run as part of the insertion of an EAM service to the EAM tool2.5.1. In
the actual implementation no unified service is created unless the inferencing chain was
run successfully, which also allows the ”serviceId” for the unified service to always be con-
sistent. The main goal is to identify these respective attributes based on different potential
information sources about that particular service. The implementation of the inferencing
model reflects the ability to integrate multiple sources by being based on the concept of a
chain. In this chain multiple sources can provide parts of the final result using the input
from previous elements which were run in this chain. This helps with problems such as
the scattering of information in an enterprise across multiple tools.

The general interface ”AssociationInferencer” represents the basis on which evaluation
is done. When an unknown service is discovered from the APM system which is repre-
sented by the ”ApmService” interface, the inferencer uses this object instance to retrieve
association data for the particular service in the ”evaluate” method.

In 3.6 the primary object of interest is the ”ServiceAssociation” as it represents the de-
sired result of the inferencing task. The three relevant attributes for fulfilling the name
convention is the name of the domain, represented by ”domain”, the name of the prod-
uct represented by ”product” and the ”serviceFunction” which represents the use case of a
particular service. An example for such as attributes would be, ”bt” as a short abbreviation
for the product ”Basket”, ”Checkout” for the domain and ”Calculation” for its respective

40

3.5. Inferencing model

function. While the ”ServiceAssociation” is the result, it also is the intermediate state object
which is run through the chain. For this reason the attributes are represented as optional,
which allows different types of inferencers to only add parts of the attributes. Further the
confidence is used to allow different types of heuristics to add information which may
have lower confidentiality that can be overruled later in the chain. The executor of the
inferencer is responsible to handle or discard partial results.

ServiceAssociationInferenceChain. The main implementation is located in the ”Ser-
viceAssociationInferenceChain” utilizing multiple ”AssociationInferencer” instances in an
algorithm, which runs until a complete result with a 1.0 confidence has been retrieved or
the ”evaluate” method on all included inferencers has been executed. The arrangement
and types of inferencers provided to this chain allow for different priorities as composi-
tion patterns. For example when chaining the ”ManualAssociationInferencer” before the
”DockerIdAssociationInferencer” would prevent the second one to run in case the former
is already successful.

DockerIdAssociationInferencer. The ”DockerIdAssociationInferencer” is the main data
supplier which uses the naming conventions defined in 2.4 and the respective Docker im-
age of the APM service by trying to extract the relevant terms from the Docker image
names. Based on the APM service id the Docker image name is retrieved and cleaned. For
the cleanup filter words can be provided, which are removed from the image name. As
an example consider the image name ”eu.gcr.io/dev/corp/bt-basket-calculation-service”.
In the first stage the repository is removed, which is always based on an address, in this
case ”eu.gcr.io”. This is a regular Docker pattern and therefore applies on any self hosted
Docker image. Further based on the filter words, ”dev” and ”corp” are removed. These
type of words are often seen to provide different logical hierarchies to the storage of docker
images, but are not relevant to the cause of the actual image. This leaves ”bt-basket-
calculation-service” which is then handled based on the proposed naming convention.
Using splitting based on the separators ”-” and the arrangement, the terms ”bt”, ”basket”
and ”calculation” are extracted and used for building a ”ServiceAssociation”.

EamDomainFromProductInferencer. The ”EamDomainFromProductInferencer” is an
inferencer which can enhance but not fulfill the ”ServiceAssociation” object. If a ”Service-
Association” has been fulfilled to the extent that the product name is known, however the
respective business domain could not be determined, the ”EamDomainFromProductInfer-
encer” is able to utilize the EAM tool or any other source which manages associations of
product teams to respective domains. For example when for a service the product ”Basket”
is known, a lookup in which domain the product operates, can add the domain ”Check-
out” for this particular case. As it can not fulfill the whole ”ServiceAssociation” on its own
the term ”Association” was deliberately left out of the class name.

ManualInputAssociationInferencer. The ”ManualInputAssociationInferencer” is typi-
cally used as last element in the chain and allows an external party such as a user interface
to provide a definition for a respective ”ApmService”. For that reason the ”ManualIn-
putAssociationInferencer” retrieves data from some type of storage, which in this imple-
mentation is the MongoDB. If no data for a particular ”ApmService” could be found and

41

3. Implementation

the ”ServiceAssociation” attributes are not fulfilled, a call to the internal method ”register-
Request” is used, which creates a request object. This request object can then be fulfilled
at a later point in time with the proper association. The result of this mechanism is that
no service enters the management of APEAM unless either manually a association was
provided or the chain has already been successfully in extracting it before.

RelationshipAssociationInferencer. Finally the ”RelationshipInferencer” is based on
the ideas presented in 2.4 that relationships of interface calls, as they can be extracted from
the APM system, could potentially help in identifying the association of a service. This
idea remains to be explored further, but is another potential extension of the chain for
whom the heuristic confidence value could be applied for.

For the prototype which was applied in the case study the chain was sufficient by using
the ”DockerIdAssociationInferencer” and ”ManualInputAssociationInferencer”. While ini-
tially it was considerable to also make use of the ”EamDomainFromProductInferencer”,
their however was no proper way to infer this type of association properly as no data
source was available linking teams to domains yet.

3.6. Enterprise graph implementation

3.6.1. Interface implementation

In 2.6 the enterprise graph was conceptually described. The enterprise graph is the API
model which APEAM was built on and further enable benefits from being at the intersec-
tion of two systems. On the basis of a GraphQL schema it is possible to describe different
meta model elements, on whom later queries can be created.

The metamodel which was built for the enterprise graph API is independent of any of
the systems which were used to build the prototype. It is backed by the provider model
defined in 3.4. Based on the connections maintained by APEAM it is possible to use differ-
ent aspects as starting points for a query and traverse the graph into the respective other
system. For the prototype on the APM side it is possible to traverse into the infrastructure
hosts services are being run on and on the EAM side parent domains of domains can be
queried.

In order to allow data to be queried, resolvers have to defined and implemented on the
root level. Resolvers such as ”domain” or ”apmService” allow to query for an object or
collections of objects and work in a similar manner to Remote Proucedure Calls, as they
can also be parameterized with multiple arguments whom the implementation can use to
filter the amount of objects returned. All further traversal of the graph is done on behalf of
the implemented object types and selections on their properties, which can also again be
methods similar to the resolvers described before.

Alongside the concept of querying a graph, it is also possible to define ”Mutation” oper-
ations, which are, while being built on the very same query technique, are allowed to have
side effects. In general this differentiation is purely semantic and has to be applied by the
implementer correctly.

42

3.6. Enterprise graph implementation

1 query {
2 domain(name: "Checkout") {
3 name
4 services {
5 name
6 domain {
7 name
8 }
9 infrastructure {

10 hosts {
11 hostname
12 cpu(timerange: {from: "2018-10-12", to:

"2018-10-13"}) {
13 high
14 mean
15 low
16 }
17 }
18 }
19 }
20 }
21 }

Figure 3.7.: GraphQL Query for the domain model

3.6.2. Interface usage

In 3.7 an example for a simplified query can be seen. A query always starts with the term
”query” as defined by the GraphQL standard. All other parts of this query are individual
to this particular implementation. On the root level of a query different resolvers can be
defined, as the term ”domain” in this case. Similar to method calls, this resolver can be
used with different types of arguments which are predefined when initially designing the
schema. In this example the argument name was used to find a particular object with
the name ”Checkout”. Different types of properties on the original metamodel element
can then be selected if that object is found. In this case the property ”name” selects a
field of type ”String”, while ”services” selects an Array of the type ”Service” and thereby
again allows to select fields beneath this object. Using this kind of mechanism allows to
traverse the enterprise graph with a theoretically arbitrary depth. In practice however
query complexity, should be verified by the server. The result of the query is shown in 3.8
and follows the pattern how the initial query was structured, thereby allowing a consumer
to expect predictable result structuring.

Any extra data to be included in the enterprise graph has to defined in terms metamodel
representation. As an example when retrieving a service representation from the EAM sys-
tem, other entities such as ”Cost center” can not be retrieved by default. To this end the
enterprise graph is static and can only handle known metamodel entities. While in theory

43

3. Implementation

1 {"data": {
2 "domain": {
3 "name": "Checkout",
4 "services": [{
5 "name": "bt-basket-calculation-service",
6 "domain": {"name": "Checkout"},
7 "infrastructure": {
8 "hosts": [{
9 "hostname": "app01.docker.host.com",

10 "cpu": {
11 "high": 7.5,
12 "mean": 3.4,
13 "low": 2.1
14 }
15 }, ...]
16 }
17 }, ...]}}}

Figure 3.8.: GraphQL Result for the domain model

these representations could be generated by retrieving the metamodel from planningIT for
example, this approach was not taken due to a complexity in filtering relevant metamodel
attributes and leaving out technical ones such as the ”alfa instid”. Also the enterprise
graph shall serve as an abstraction from the concrete tool rather than just exposing every
property available.

In 3.9 a mutation type query can be seen. In this case an ”apmService” is initially selected
similar to a normal query, however on the selection of the service property, the server
will in the background try to create the unified service object by running the inferencing
process3.5. If the creation was successful the operation ”createEamService” is run on that

1 mutation {
2 apmService(id: "eu.gcr.io/dev/corp/bt-checkout-calculation-

service") {
3 service {
4 createEamService {
5 id
6 }
7 }
8 }
9 }

Figure 3.9.: GraphQL Mutation for creating an EAM service

44

3.7. Synchronization

object and inserts the service information to the EAM system. Similar to a regular query
then properties can be selected to view the result of this creation process, in this case the
”id” property of the service. The implementation then prevents any reinsertion on the first
successful run. Using this mechanism any type of consumer can run the inferencing and
service creation process. Alongside of creating an EAM service, it is also possible to link
an existing service maintained in the EAM system by using the method ”linkEamService”
on the service object.

3.7. Synchronization

The synchronization process is simple and was designed around orchestration already ex-
isting interfaces which were created for the enterprise graph in 3.6 as parts of the mutation.
The main goal of the synchronization process is to identify an APM service for whom no
unified service is existing already, try to create it and also its corresponding EAM service
in the process. It does so by initially querying the ”apmServices” list on the GraphQL
root model and then using the mutation API to create the unified service implicitly by a
call to ”service” and then running ”createEamService”, as seen in 3.9. In case the creation
fails a error will occur and the sync process can retry on the next trigger. If a problem
occurred in the inference association process, a user can help the process later on based on
the ”ManualInferenceAssociationInferencer” as described in 3.5.

The whole orchestration is run in the boundaries of the application server and therefore
is independent of the HTTP transport. The synchronization process itself is designed to
be idempotent as long as no changes have occurred in the architecture, therefore running
it multiple times has no further impact on the result. The identification of architecture
changes still is interesting to be run it at different points in time. For this reason and based
on the interviews in A different types of triggers were conceptualized. When the trigger
is aware of changes immediately when they occur, this could potentially give birth to the
concept of ”real-time” EAM as well. 3.10 gives an overview on different trigger options.
Most notable is the variant of event based triggers by either the EAM or APM system.

45

3. Implementation

Trigger type Source Description
Scheduled trig-
ger

Interval timer Default trigger running on a
schedule

Manual trigger GraphQL API Allows external tools such as
a CI/CD tool or a user to trig-
ger the scheduler

APM Event trig-
ger

APM system Whenever changes in the in-
frastructure are detected, an
event is raised which in turn
is being subscribed to by this
trigger

EAM Event trig-
ger

EAM system Whenever changes to the
metamodel such as adding
domains in the EAM system
are made

Figure 3.10.: Triggers for the synchronization process

46

Part IV.

Evaluation, Limitations and Outlook

47

4. Evaluation

4.1. Case study: Multichannel retailer

This section introduces the boundaries and the application space in which this research
has been conducted. The company is a large European retailer for electronics with an
Omnichannel presence. Omnichannel thereby describes the way of offering customers the
ability to buy products online or in brick and mortar stores as well as in a combination
of both channels. The company structure separates the IT organization as a separate ju-
ridical organization which acts as an IT service provider for the main company and all
other country branches. Lately this IT branch changed the organizational model towards a
”product-based” organization (2.3), where IT services are no longer delivered for business
units but rather as products in different domain contexts. Alongside the actual work in
product teams for the delivery part, all employees are organized in a ”chapter structure”??
which defines core capabilities from the perspective of the IT organization. For example
an employee might be working on the product ”Basket” but is hierarchical assigned to the
backend development chapter, which thereby defines the hierarchical structure in which a
employee is managed. This model originating from the company Spotify has seen adop-
tion also among other German companies, such as the Deutsche Telekom1.

Before the restructuring actually was started domain boundaries were defined by the
now former enterprise architecture unit of the company. The domain model itself is pri-
marily driven by customers, as it is the main source of revenue for retail companies. The
domain boundaries served as the basis for splitting the core applications into smaller units
(products).

Products are built by teams, organizing themselves usually in the SCRUM model, built
on a mixture of backend and frontend developers, agile support functions (SCRUM Mas-
ter/Agile coach) and the product owner. Due to the delegation of responsibilities a lot
of architectural decisions are done on a team level in terms of lower level technical archi-
tecture. This includes choice of technologies, microservice splits and others. Teams are
therefore free to act in the boundaries of their product, while still some of the program-
ming practices might be driven by the community in different chapters. This model was
introduced to enable the ability to innovate individually on the basis of different technol-
ogy approaches. When this research was done the new organizational model has however
been only been in place for about 3 months.

The former enterprise architecture unit now is organized as a chapter similar to the
aforementioned ”backend chapter”. In terms of overall architectural design decisions this
chapter kept the main responsibility. Enterprise architecture is further on seen rather as a
service that can be consulted by the different teams, especially when it comes to decisions
in relation to the domain boundaries and functional placements.

1https://www.welove.ai/de/blog/post/spotify-modell-im-einsatz-bei-telekom.html

49

4. Evaluation

As the former described product team structure does not properly apply to all types for-
mer applications, responsibilities or teams, there are exceptions in the path of the ongoing
transition. For example this means that central functions such as IT infrastructure man-
agement remain to be defined in terms of a product model. Also not all teams maintain
self developed software, but standard software. The expectation is however to hide such
facts behind API interfaces as shown in the product model described in 2.3.

The company uses ”dynatrace” as an APM solution for its core applications covering
about 40% of the whole application landscape, but especially the part of self-developed
software. The APM software is primarily managed by the DevOps division of the com-
pany, while access is open to other stakeholders and especially all product teams as well.
These product teams make use of it for problem analysis and overall improvement, as
shown by interviews 4.3. The APM solution is currently completely disconnected from
any higher-level context and reports problems on an application or resource level.

planningIT is used as an EAM solution, which is primarily managed by the architectural
division of the company. In the old business unit model of the company, ”Application
owners” were responsible for keeping details of the documented applications up to date.
This responsibility changed in the product-domain-model structure towards the product
owner and the respective team. In general what can be seen from this description is that in
the old as well as the new organizational model, many lower level changes to application
architecture were delegated to people outside of the EAM division, which as seen in the
interviews resulted in outdated, missing and wrong documentation.

4.2. Application of APEAM

The APEAM prototype was developed and applied in the environment of the company
described in the case study. This section explores the core capabilities in relation to the
established naming convention and the insertion process to the EAM system.

4.2.1. Naming convention

The naming convention introduced in 2.4 was the result of analyzing existing service data.
247 Docker images residing in the pre-production environment were considered for this
analysis. These Docker images are a mixture of utility tools and actual microservices. The
microservices again are a mixture of legacy applications and services created or migrated
into the context of the product based organization model. By maintaining filters for cer-
tain types of utility images, 40 docker images can be ignored based on their repository
or other reoccurring patterns, such as ”google containers”. This pattern for example is
used in utility software of Kubernetes clusters. By applying the presented convention, 153
running services can be identified with at least the team term leading in the name. Some
are however duplicates of the same microservice. These duplicates are the result ”feature-
branch” deployments and also can be filtered out automatically due to a name pattern in
the image name. Overall 52 services can not be associated properly of whom all are legacy
applications without any proper team association.

All services of teams operating under the domain umbrella were at least using the con-
vention of a leading team or product name, as it was added by the CI (Continuous Inte-

50

4.3. Interviews

gration)/CD (Continuous Deployment) pipeline and can not be controlled by the teams
themselves. When thereby maintaining proper domain association of teams in the EAM
tool all services can be associated automatically.

Docker is not the only way applications are deployed at the company, but however
applied across all microservice deployments, therefore giving a wholesome picture on all
applications developed as part of the product organization model.

4.2.2. EAM integration workflow

The automatic insertion of services to the planningIT tool and the associated workflows
were verified in the course of the interview(A.5) with one of the enterprise architects at
the company. Acceptance workflows for the addition of new applications to planningIT
were already in place and therefore allowed known processes to be applied to inserted
services. In practice however not all the details required in this process were known to the
architect. Therefore it was further the goal to enable teams in maintaining their services
as well. APEAM further associated authorization access to services for respective teams,
when already maintained as user groups in planningIT. The ability to change any property
about these services as well as updating the domain association was possible and still
enabled APEAM to maintain the reference and thereby keep the enterprise graph in tact.

The proposed model for service retirement in 2.5.4 was evaluated in terms of finding a
proper threshold for service retirement. In the time range this research was conducted in
no services were removed or disappearing in the APM system. As this type of consistency
was expected as defined in 2.2 and no services were actually removed an ideal value has
yet to be defined. Interviews were also not able to determine a proper value, as there was
no general consensus of how often or when services are retired.

4.3. Interviews

The proposed approach for the integration of an APM system with an EAM system was
evaluated at the company it was developed in. For this purpose, structured interviews
with multiple stakeholders were conducted after the implementation of the first proto-
type. In the course of the interviews five people were asked in personal interviews for
their background in the relevant disciplines to this solution, their first impression of the
solution itself, proposals for improvements and extensions as well possible applications
of it. The interviews were done in person due to the complexity of the questions, for the
possibility of a deeper understanding of the respective answers and because the amount
of interviewees was manageable. A few unstructured interviews were already conducted
at the beginning of the research and resulted in some of the requirements mentioned in
2.1.2.

4.3.1. Questions and descriptions

The questions addressed to the participants were framed, so that on the one hand a ba-
sis could be established to understand the background of each individual as it could be
affecting some of the answers in relationship to APEAM. All answers of the participants

51

4. Evaluation

were initially noted down and later put into written form, which was provided to every
participant and accepted. The questions were designed so they could potentially be ap-
plied to other companies than the ones used in this case study. This section presents an
overview of the questions and the rationale behind them. All interviews in the appendix
use shorthand convention to link answers to the questions such as GQ.

GQ1: Please describe your current role in the company and the context you are working in.
This question is to understand whether for the role at hand information of APEAM might
be considered non relevant. Further it allows to establish different perspectives on APEAM
and how potential extensions serve different needs.

GQ2: Have you worked with/developed microservices in the past?
This question allows to understand whether further question on microservices are rele-
vant, which are marked with MS. The question is also used because people who worked
with these type of services understand some of the problems at hand going along with
these type of architectures.

GQ3: Have you worked with APM software in the past and if so which APM software did you
use?
The data APEAM uses stems primarily from the APM system. For that reason it is relevant
which types of APM systems are used in practice and to which extent they are being used.
Similar to MS, APM is used to mark questions as a followup to this one.

GQ4: Have you used enterprise architecture tooling in the past and if so which tool did you use?
The other main data connector of APEAM is the EAM software. In the realm of EAM
tooling lots of very different types of tools are used. Knowing how exactly which tools
are utilized can help extending APEAM for certain usage patterns in the practice of EA.
Further questions to this topic are marked with EAM.

MS1: Do you practice domain driven design?
While microservices as presented by [?] strive for Domain-Driven-Design, this is not nec-
essarily practiced by engineers. This question can be interesting in relation to the relevancy
of the business architecture as presented with APEAM.

MS2: How often are software increments deployed to production?
This question helps in understanding how dynamic data in the APM system is and there-
fore helps in determining ideal refresh scenarios for the EAM data.

MS3:Is the deployment process automated and by which means?
When considering how to integrate APEAM into the software development and deploy-
ment lifecycle, this question helps in finding potential insertion points.

MS4: Are you aware of the external and internal dependencies of your services and their impli-
cations?
External dependencies hereby mean services outside of the own domain context, while in
contrast internal dependencies are inside the own domain context. The assumption here is

52

4.3. Interviews

that determining responsibilities outside of ones own domain context can be complicated
and there might be a lack of information.

MS5: Are conventions applied when naming a service and where are they used?
This question allows to understand where the data used for the inference of the nam-
ing convention of APEAM could be extracted from. This question helps to understand
whether the Docker assumption used in APEAM holds true as a source for the naming
convention. Further it allows to find new sources for defining the naming required for
creating the unified service entity.

MS6: Do you think the microservice architecture at your company reflects domain driven de-
sign?
If there already is an inherent trust issue in the current architecture designs it bears the po-
tential for applying APEAM to fail. The conventions of APEAMs automated components
build on the basis of defined conventions and the proper implementation of the product
based organization model.

APM1: How and do you trace back incidents to affected business units?
One of the potential use cases of APEAM is understanding the relationship of runtime
components to their respective overall business impact. APM software by itself cannot
fulfill this task completely as it lacks this specific information. It then is interesting to un-
derstand how this problem is handled in practice or whether it even can be considered
problem.

APM2: What information or data do you typically use in the APM software?
From understanding how the APM software is used in practice, potential integration points
for APEAM could be deducted, so that it more ideally integrates into the respective work-
flow.

APM3: Do you think that your APM solution ideally supports your daily routines?
Similar to the aforementioned question, this question can help in understanding whether
APEAM and its enterprise graph have a broader understanding about relevant informa-
tion required to fulfill certain tasks.

EAM1: How and by whom are architecture models kept up to date at your company?
This question helps in identifying different stakeholders of APEAM as well as processes
in which EA models are updated.

EAM2: Do you think the data in your APM tool is complete and if not what do you think is
missing?
One of the main goals of APEAM is to increase the trust in the data used in the EAM soft-
ware. For this to be relevant there to some extent has to be an inherent trust issue with the
existing solution, which this question validates.

EAM3: How is the information from your EAM models typically used?
This question helps in identifying which other types of use cases APEAM could poten-

53

4. Evaluation

tially fulfill if not done completely by the EAM tool itself already.

EAM4: What granularity level of the technical architecture do the model elements in your EAM
tool reflect?
While APEAM was primarily designed with the scope of connecting the entity of services,
a lot of other low level information could potentially be synchronized from the APM to
the EAM models. This question help in identifying further relevant entities.

APEAM1: How do you think APEAM could support some of your tasks and if so to what ex-
tent?
With this question a general idea of the practicalities of APEAM are achieved. In general
this question should be answered after a longer period of making use of APEAM, which
unfortunately could not be done in the scope of this research.

APEAM2: What do you see as potential usages of the Enterprise graph API?
The enterprise graph API bears a lot of potential use cases which can be identified from
different stakeholders using this question. Further this question help also in identifying
other potential data sources for APEAM.

APEAM3: Where do you think APEAM could be integrated into the current development pro-
cesses?
Different perspectives on where APEAM fits in the software development lifecycle not
only help potential points at which to synchronize the data, but also help in understand-
ing the different states APM data has from the perspective of the users.

4.3.2. Results

In general it can be seen that the feedback for the proposed solution has been positive.
Some of the necessary assumptions, such as the proposed naming conventions, were con-
sidered as feasible, especially due to the fact that they have been in place for some teams
already. The enterprise graph and its API was considered as one of the main features as
many of the interviewees were already proposing a lot of different use cases by attach-
ing further metadata and systems. Even for participants who were not directly interested
in the data residing in planningIT itself, the data exposed via the API was relevant for
applications such as monitoring.

54

5. Limitations and Outlook

5.1. Limitations

In the course of the development of APEAM a few assumptions were made or some restric-
tions deliberately applied in order to build a working prototype. These type of limitations
to the current implementation are explained in the following paragraphs.

Naming convention. The naming conventions which were established in 2.4 were only
validated in the context of the company the prototype was implemented in. Therefore
further validation is required, if the conventions make sense in other companies. Along-
side the option of other sources for inference of domain association could be evaluated as
present in the mentioned section.

Applicability across different tools. APEAM was designed to be independent of the
choice of APM or EAM tool, which is reflected by the provider model design in 3.4. To
this end however a few of the capabilities from the APM software dynatrace and the EAM
software planningIT were seen as given and not validated across other tools of choice in
the industry. While the provider model allows this data to originate also from outside the
boundaries of these respective types of tools there still remains to be proven whether all of
these capabilities can be fulfilled by other tools of the trade.

Long term application. APEAM was built as a prototype with multiple iterations and
changes in the time range this research was conducted in. To this end some of the concepts
as explained in 4.2.2 should be tested for a longer time especially when it comes to the
proper inclusion in the workflows of teams and architects.

5.2. Outlook

On the basis of the current capabilities of APEAM, the evaluation presented in ?? and other
matching open research questions some potential extensions of the current prototype are
summarized in the following paragraphs.

Extending the enterprise graph. As part of the evaluation extensions points for the en-
terprise graph were identified. In contrast to the topic of Enterprise graph generation, it
is very well possible to add more data source systems to the GraphQL layer. Overall many
of the following use cases are related to extending the enterprise graph in some specific
way.

55

5. Limitations and Outlook

Interface documentation. The APM system is capable of identifying exposed and called
interfaces of respective deployed services, as long as they are being called. Some EAM
tools, as e.g. planningIT, offer the ability to document technical interfaces between ser-
vices. To this end there is further sync potential. As there has been debate about where
and how to document interfaces for APIs [13][18], the enterprise architecture model repos-
itories can be one of the richest places due to the a better understanding in which domain
contexts and connections certain interfaces operate. APEAM could in this regard add fur-
ther sync mechanisms or help exposing this information in the context of the enterprise
graph.

Incident management. From the interviews it became apparent that especially the oper-
ational aspects of services and their domain relationship in turn is interesting in practice.
For that reason APEAM could utilize incident data as provided by the APM system and
traverse the graph for relating it to affected business domains.

Business process integration. Based on the link created by APEAM services can be
connected. On a more granular level however these services and their interfaces represent
different parts of an overall business process. Therefore based on the existing graph deeper
links could help in understanding these type of relationships to further analyse business
impact from any type of operational problem.

Technical architecture sync. Some EAM tools, as it is the case for planningIT, are ca-
pable of representing different types of architectures, including the technical architecture.
Therefore items such as infrastructure components can be documented as well. To this end
when enriching the EAM system with further real time information about these compo-
nents, different type of planning capabilities could be used.

56

6. Conclusion

The trend of developing larger applications in the form of microservices as well as the
accompanying practice of domain driven design pose new challenges to the practices of
enterprise architects. To provide a better tool support and drive the trend for automation
also in the EA domain, APEAM was proposed, a solution built on the foundations of exist-
ing tools in companies. By combining automatically discovered data from APM systems
and interpreting it to enhance information in an EAM tool, the presented problem could be
addressed by unifying the concept of a ”service” of both worlds and maintaining the rela-
tionship. To enable fully automated data integration, naming conventions and workflows
were introduced so that manual efforts could be kept to a minimum. These conventions
were verified and tested in the context of a large company. With the integration layer be-
tween both worlds in place, this research further introduced the notion of an ”enterprise
graph”. The ”enterprise graph” introduced the idea providing views on source systems
in a way, which allowed data to be integrated across entities originating from these source
systems and joining them for a single representation and thereby allowing new types of
use cases and analysis capabilities to be explored.

57

6. Conclusion

58

Appendix

59

A. Interview results

61

A. Interview results

A.1. Interview: Backend Developer - Checkout

GQ1: Backend developer working in the domain ”Checkout” on different services such as
the ”Basket” for online and offline.

GQ2: Working with microservices for about 2 years

GQ3: Currently using primarily dynatrace, also used AppDynamics in the past.

GQ4: Not worked with any type of EAM tool, but designed different software architec-
ture aspects in diagram tools

MS1: While when starting developing with the technical concept of microservices for
separation of concerns, domain driven design has only be applied recently with the intro-
duction of a domain based product organization.

MS2: Right now software increments are deployed with every commit that is merged to
the ”master” branch of the respective repository. However there lately have been ideas to
introduce an error budget for limiting teams with higher frequency of runtime breakage,
so this could potentially change.

MS3: The deployment process is currently automated by the build tool of the used cloud
provider. In the past build automation was done with the CI/CD tool ”Jenkins”. Both of
these tools can still be seen across teams in the company.

MS4: In general it can not be said that there is awareness for every interface due to the
fact that different aspects were developed by different team members. In case of a problem
in production however dynatrace helps in discovering the type of relationships.

MS5: Right now no naming conventions are applied in the software itself. In the past
naming conventions were used to find deployed services based on Docker image names.
However the deployment automation now uses naming conventions and applies them on
the basis of the product organization.

MS6: I would say yes, however there are different maturity levels

APM1: This is not yet responsibility of the product teams, but will likely change soon.
Therefore right now the product owner knows at best about the affected units and appli-
cation operations.

APM2: While we would like to use the APM software for identifying improvements,
right now it is mostly used for error analysis. For this we mostly look at CPU, memory,
and requests to other respective services.

APM3: APM software by itself is great, but we currently are exploring capabilities of
runtime debugging in production, as offered by tools such as OverOps.

62

A.1. Interview: Backend Developer - Checkout

APEAM1: I could see APEAM help us in designing APIs which adhere better to domain
driven design. Right now there is general availability of good API collaboration tools other
than just working on the same documents, most of the tools we used did not allow to ex-
plore how APIs are in context to each other.

APEAM2: No specific use case for the enterprise graph

APEAM3: The most stable architecture can probably only be instrumented in the pro-
duction environment. For this reason I would recommend running it there, as there also
synthetic monitoring right now triggers most processes automatically.

63

A. Interview results

A.2. Interview: Backend Developer - Search

GQ1: Backend developer working in the domain ”Discovery” on services related to search-
ing and recommending products.

GQ2: Started working with microservices just recently and at this company for the first
time

GQ3: Started using dynatrace just recently

GQ4: Not worked with any type of EAM tool ever

MS1: To some extent we do, however there hardly is a lot of domain specific logic and
entities required in our domain context

MS2: Deployment is running on every push to the master branch, but only based on
accepted pull requests on sprint ending. However we use feature branch deployments
which deploy on every pushed commit.

MS3: Deployment process is automated by an internal orchestration of the a proprietary
cloud provider tool

MS4: We hardly know about many of our users due to the fact that the search API is
used across many different services in the company. For the most part we only consume
product data which is the only dependency as of now.

MS5: Based on our product name, naming conventions are applied on Docker Image
build

MS6: I can not really tell, as I hardly have access to this information

APM1: Our product owner is contact with stakeholders affected by outages or other
problems. However there might be services which use our service without our knowledge.

APM2: We just started using the APM software more, due to the nature of the criticality
of our service in terms of speed, we looking more into metrics such as response times for
different resources.

APM3: We have too little of history in using the APM tool yet to be able to answer this
question.

APEAM1: APEAM could help us understanding where many of the consumers of our
API are coming from and in which contexts the data is applied.

APEAM2: The enterprise graph could help us by maybe discovering the team members
of some of our consumers and inform the about changes automatically, such as deploy-

64

A.2. Interview: Backend Developer - Search

ments or temporary downtimes.

APEAM3: Our service is constellations are most stable in the production environment.
However in our integration test pipelines all of our dependencies could potentially be
discovered as well.

65

A. Interview results

A.3. Interview: DevOps/SRE

GQ1: Developer working in the company for about 8 years, now for the platform product
team for site reliability

GQ2: Not directly working in the context of microservice development, but however
running the base platform many microservices are running on

GQ3: Responsible for managing dynatrace and AppDynamics in the past

GQ4: Worked a lot with planningIT in the past

APM1: This has been and still is one of the main tasks that our product team fulfills. We
made use of a service responsibility registry when determining the relevant stakeholders.
However this registry is often lacking the latest information on new services or changes in
the responsibilities.

APM2: We utilize APM data to identify and solve all kinds of errors in the running
environments, as we are still the maintainers of quite a few non product based legacy
applications. Further on we want to use APM data to define error boundaries (”error bud-
gets”) for product teams, so that there are consequences for

APM3: We are very happy with our current APM solution. However we often still lack
information on some of the services which are automatically captured and reporting data
to the APM software, as we are not directly involved in the plans of the different product
teams.

EAM1: In the past the data was supposed to be kept up to date by application owners,
however usually different individuals of enterprise architecture unit tried to keep it up to
date based information they gathered with lots of effort.

EAM2: From the fact that I myself was not really consistent on keeping it up to date, I
would rather say no.

EAM3: The data from the model entities we were supposed keep up to date, was used
for capacity and budget planning. However as it has proven not to be reliable in the past
it was a rather tedious process.

EAM4: In the past there have been different levels of abstraction in planningIT. While
the business architecture as defined was rather stable, the technical architecture was usu-
ally drifting apart from reality.

APEAM1: APEAM bears a lot of potential when it comes to linking our findings to the
relevant teams/products.

APEAM2: As we do not utilize the API of planningIT in particular, APEAM could serve

66

A.3. Interview: DevOps/SRE

as the basis for retrieving the product team and other organizational data, such as affected
domains of certain outages.

APEAM3: As we are seeing lots of different services pop up in testing and development
environments already, we would like to see it running as early as possible in the develop-
ment lifecycle. We currently utilize the dynatrace event log to identify changes to artifacts,
which could also serve as the basis for running APEAM sync processes as well.

67

A. Interview results

A.4. Interview: Product Owner

GQ1: Product owner in the domain Checkout, responsible for the online and offline jour-
ney

GQ2: Working in a team which utilizes microservice architecture style

GQ3: We lately started utilizing the APM software, in particular dynatrace

GQ4: Not yet, but planningIT is currently being introduced as parts of the duties of a
product owner

APM1: As a product team in a business domain context we are aware of our sponsors,
however we also have operational responsibility for integrations to our dependencies we
lack this kinds of transparency right now. Usually a develop of the team can infer it from
erroneous network calls, but unfortunately this knowledge is usually a silo.

APM2: Personally I just use the dashboards to get an overview of the operational per-
formance of our services.

APM3: For the most part the APM software is not relevant to my daily routines, how-
ever the team is using it a lot and therefore I would say it supports at least our overall goals.

APEAM1: I can see the linkage of architectural changes to the respective user stories
as relevant. As user stories are also captured in the context of enabling some part of a
business process this could possibly enhance the business process documentation as well.
With the current implementation it should allow me to prevent bothering the team to help
me understand which changes were done recently.

APEAM2: The enterprise graph could be linked to JIRA and Confluence so that for cer-
tain deployed software components documentation can be more easily discovered. When
maybe also introducing some kind of versioning, we can add the deployment state and
JIRA tickets which aided the current artifact, as we already capture GIT commits in rela-
tionship to JIRA tickets.

APEAM3: When looking at the point the data is best captured, I would say as early as
our development environments so that other product teams could possibly be informed
about new consumers as this is not always communicated well.

68

A.5. Interview: Enterprise Architect

A.5. Interview: Enterprise Architect

GQ1: Architect who worked as developer in the past. Now working in a direct CTO re-
porting function as part of the EA team.

GQ2: Not worked with the actual development of microservices but worked on the con-
ception to some extent supporting different teams

GQ3: Not used this software, however considered when we were made aware of the
capabilities in seeing communication relationships between different services, due to the
fact that we are lacking transparency on this level.

GQ4: We use different tools for documentation, primarily a mixture of Confluence, Pow-
erPoint and planningIT right now.

EAM1: In the past we tried to delegate responsibilities for keeping data up to date to
the different teams, as it simply was not possible to cope with the amount of changes hap-
pening. In the current organizational model we try to establish this as a responsibility of
the product owner role.

EAM2: We consider it complete to the limits of what we are actually aware. But proba-
bly the data in the technical architecture is incomplete and probably also partially wrong.

EAM3: We utilized the data in different scenarios for our own planning scenarios, e.g.
when evaluating standard and individual software, migration planning and other types of
refactoring and restructuring projects. We however also supported other endeavors from
our stakeholders , such as team planning, budget planning or infrastructure planning.
With the product organizational model we also support the functional placement in the
different domain contexts.

EAM4: The metamodel elements in our architecture reflect a lot of different abstraction
levels, from interfaces of applications, up to country level business support structures, de-
pending on the different visualizations we build. This however is very much dependent
on the use case.

APEAM1: We see APEAM as a potential solution enhancing the representation of our
runtime architecture. Lately API management has become a very important topic and we
see potential extension points for APEAM here.

APEAM2: The enterprise graph is a worthwhile idea and we could think about building
visualization on the basis of it.

APEAM3: We work primarily on the more stable data from production environments,
which is therefore the ideal point in time and source for APEAM.

69

Bibliography

[1] Rama Akkiraju, Tilak Mitra, and Usha Thulasiram. Reverse Engineering Platform
Independent Models from Business Software Applications. 2012.

[2] N. Alshuqayran, N. Ali, and R. Evans. Towards Micro Service Architecture Recovery:
An Empirical Study. In 2018 IEEE International Conference on Software Architecture
(ICSA), pages 47–4709, April 2018.

[3] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann. Automated Discovery and Main-
tenance of Enterprise Topology Graphs. In 2013 IEEE 6th International Conference on
Service-Oriented Computing and Applications, pages 126–134, December 2013.

[4] Ruth Breu, Berthold Agreiter, Matthias Farwick, Michael Felderer, Michael Hafner,
and Frank Innerhofer-Oberperfler. Living Models - Ten Principles for Change-Driven
Software Engineering. Int. J. Software and Informatics, 5:267–290, 2011.

[5] M. Farwick, B. Agreiter, R. Breu, M. Häring, K. Voges, and I. Hanschke. Towards
Living Landscape Models: Automated Integration of Infrastructure Cloud in Enter-
prise Architecture Management. In 2010 IEEE 3rd International Conference on Cloud
Computing, pages 35–42, July 2010.

[6] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Profes-
sional, Boston, 1 edition edition, November 2002.

[7] Martin Fowler. Microservices, March 2014. https://martinfowler.com/
articles/microservices.html accessed on 09/30/2018.

[8] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Malavolta, L. Iovino, and A. D. Salle.
MicroART: A Software Architecture Recovery Tool for Maintaining Microservice-
Based Systems. In 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW), pages 298–302, April 2017.

[9] Gartner Inc. Application Performance Monitoring (APM) Suites Reviews.

[10] Martin Kleehaus, Ömer Uludag, Patrick Schäfer, and Florian Matthes. MICROLYZE:
A Framework for Recovering the Software Architecture in Microservice-Based Envi-
ronments. pages 148–162. June 2018.

[11] Florian Matthes, Sabine Buckl, Jana Leitel, and Christian M. Schweda. Enterprise ar-
chitecture management tool survey 2008. Techn. Univ. München, 2008.

[12] B. Mayer and R. Weinreich. An Approach to Extract the Architecture of Microservice-
Based Software Systems. In 2018 IEEE Symposium on Service-Oriented System Engineer-
ing (SOSE), pages 21–30, March 2018.

71

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

Bibliography

[13] Martin P. Robillard and Robert DeLine. A field study of API learning obstacles. Em-
pirical Software Engineering, 16(6):703–732, December 2011.

[14] Jeanne Ross, Peter Weill, and David C. Robertson. Enterprise Architecture as Strategy
— Creating a Foundation for Business Execution. May 2006.

[15] Dominik Rost, Matthias Naab, Crescencio Lima, and Christina von Flach Gar-
cia Chavez. Software Architecture Documentation for Developers: A Survey. In Khalil
Drira, editor, Software Architecture, Lecture Notes in Computer Science, pages 72–88.
Springer Berlin Heidelberg, 2013.

[16] Sascha Roth. Enterprise Architecture Visualization Tool Survey 2014. epubli, Berlin, 1
edition, April 2014.

[17] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. Dapper, a Large-Scale
Distributed Systems Tracing Infrastructure.

[18] S. M. Sohan, C. Anslow, and F. Maurer. SpyREST: Automated RESTful API Docu-
mentation Using an HTTP Proxy Server (N). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 271–276, November 2015.

[19] Katharina Winter, Sabine Buckl, Florian Matthes, and Christian Schweda. INVES-
TIGATING THE STATE-OF-THE-ART IN ENTERPRISE ARCHITECTURE MAN-
AGEMENT METHODS IN LITERATURE AND PRACTICE. MCIS 2010 Proceedings,
September 2010.

[20] Dannver Wu, Jinho Hwang, Maja Vukovic, and Nikos Anerousis. BlueSight: Auto-
mated Discovery Service for Cloud Migration of Enterprises. In Khalil Drira, Hong-
bing Wang, Qi Yu, Yan Wang, Yuhong Yan, François Charoy, Jan Mendling, Mohamed
Mohamed, Zhongjie Wang, and Sami Bhiri, editors, Service-Oriented Computing – IC-
SOC 2016 Workshops, Lecture Notes in Computer Science, pages 211–215. Springer
International Publishing, 2017.

72

	Acknowledgements
	Abstract
	Outline of the Thesis
	Introduction and Theory
	Introduction
	Motivation
	Terms and definitions
	Research goals
	Related work

	Foundations
	APM
	EAM

	Conceptualization
	Conceptualization
	Requirements
	General requirements
	Stakeholder requirements

	Prerequisites
	Product organization model
	Data integration automation
	Data integration workflow
	Creation workflow
	Read workflow
	Update workflow
	Deletion workflow
	Synchronization

	Enterprise graph

	Implementation
	Implementation
	Architecture overview
	Technologies
	Unified data model
	Provider model
	Inferencing model
	Enterprise graph implementation
	Interface implementation
	Interface usage

	Synchronization

	Evaluation, Limitations and Outlook
	Evaluation
	Case study: Multichannel retailer
	Application of APEAM
	Naming convention
	EAM integration workflow

	Interviews
	Questions and descriptions
	Results

	Limitations and Outlook
	Limitations
	Outlook

	Conclusion

	Appendix
	Interview results
	Interview: Backend Developer - Checkout
	Interview: Backend Developer - Search
	Interview: DevOps/SRE
	Interview: Product Owner
	Interview: Enterprise Architect

	Bibliography

