
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Masters Thesis in Information Systems

Using Web Annotations to Represent
Relations between Structured and

Unstructured Information in Semantic Wikis

Shivguru Rao BhimasenaRao VisweswaraRao

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Masters Thesis in Information Systems

Using Web Annotations to Represent Relations between
Structured and Unstructured Information in Semantic

Wikis

Nutzung von Web Annotations zur Reprsentation von
Relationen zwischen strukturierten und

unstrukturierten Informationen in Semantic Wikis

Author: Shivguru Rao BhimasenaRao VisweswaraRao
Supervisor: Prof. Dr. Florian Matthes
Advisor: Daniel Braun
Date: July 15, 2018

I confirm that this master's thesis is my own work and I have documented all sources and
material used.

Munich, July 15, 2018 Shivguru Rao BhimasenaRao VisweswaraRao

Abstract

A semantic wiki is a wiki that has an underlying model of the knowledge described
in its pages. The knowledge model of a semantic wiki is typically available as an entity
model. The wiki we are considering in this thesis is hybrid wiki. Hybrid wikis combine
unstructured information in the form of wiki texts with structured information. Structured
information is usually represented in the form of key-value pairs. However, there is no
link between the structured and the unstructured information. Therefore, if a piece of
information is represented as both, structured and unstructured information, there is no
way to know if the information is consistent, unless checked manually.

Aim of this thesis is to check for any existing standards to represent links, provide a
way to create the links between structured and unstructured information and check for
consistency of the created links over time. As data source SocioCortex is used. SocioCortex
is an information system to organize semi-structured data within Enterprise Architecture
Management, employing a dynamic and collaborative Wiki-based approach. Thus data
is typically in the form of structured and unstructured information represented as Wiki-
pages.

The approach of this thesis is to review the existing standards to model and represent
web annotations like web annotation data model and JSON-LDs. Extending these models
to represent the link between structured and unstructured information. Further, explore
different ways to store the links so that it can be persisted and accessed across multiple
tools and environments. Finally, implementing a prototype demonstrate creation of links,
detecting changes to data which are linked and embedding links inside the HTML.

vii

viii

Contents

Abstract vii

Outline of the Thesis xv

1. Introduction 1
1.1. Motivation . 1
1.2. Research questions . 2

1.2.1. What should be the format of the link? 2
1.2.2. Are there any annotation standards to link data? 3
1.2.3. How can we store and retrieve links? 3
1.2.4. How to detect and handle the changes? 4

1.3. Purpose . 4
1.4. Contribution . 4

1.4.1. Comparison of existing standards . 5
1.4.2. Extension of standard . 5
1.4.3. Implementation of Prototype . 5

2. Foundations 7
2.1. Hybrid-Wikis and Meta Model . 7
2.2. Web Annotation Data Model . 8
2.3. JSON for Linked Data . 9

2.3.1. JSON-LD Data Model . 10
2.3.2. Embedding JSON-LD in HTML Documents 11

3. Related Work 13
3.1. Annotator.js Library . 13
3.2. Annotea project . 14
3.3. Entity RecOgnition in Context of Structured data (EROCS) 15

4. Extended Standard - JSON-LD for link creation 17
4.1. Web Annotation Data Model . 17
4.2. Annotating unstructured data . 20
4.3. Cross-Entity Links . 20
4.4. Link comments . 21

5. Prototype Implementation 23
5.1. Technical Foundation . 23

5.1.1. SocioCortex as a Hybrid Wiki source and storage for Links 23
5.1.2. Angular 5 Framework . 24

ix

Contents

5.1.3. Bootstrap 4 Library . 25
5.2. Architecture . 25

5.2.1. System Architecture . 25
5.2.2. Component Diagram . 26

5.3. Core Features . 28
5.3.1. Import Entity . 28
5.3.2. Display Wiki . 30
5.3.3. Create link . 31
5.3.4. Display link . 33
5.3.5. Link change detection . 35
5.3.6. Delete Links . 35

5.4. Data Storage and Access using SocioCortex API 36
5.4.1. SocioCortex API . 36
5.4.2. Link Storage in SocioCortex . 38

6. Conclusion 39
6.1. Summary . 39
6.2. Research questions revisited . 39

6.2.1. What should be the format of the link? 39
6.2.2. Are there any annotation standards to link data? 39
6.2.3. How can we store and retrieve links? 40
6.2.4. How to detect and handle the changes? 40

6.3. Future work . 40

A. Prototype Installation and QuickStart guide 43
A.1. Prototype Dependencies . 43

A.1.1. NodeJS . 43
A.1.2. Node Package Manager (npm) . 43
A.1.3. Angular Command Line Interface (CLI) 43

A.2. Installing and Running the Prototype . 44
A.2.1. Install prototype developer and production dependencies 44
A.2.2. Serve the prototype . 44
A.2.3. Deploy prototype application . 44

Bibliography 45

x

List of Figures

2.1. HybridWiki Meta Model[23] . 8
2.2. Web Annotation[18] . 9
2.3. JSON-LD Document . 11

3.1. RDF Triple Schema[20] . 15
3.2. Annotea Architecture . 15
3.3. EROCS Overview[25] . 16

4.1. Link Data Model . 18

5.1. SocioCortex Ecosystem[14] . 24
5.2. Angular Architecture[1] . 25
5.3. System Architecture . 26
5.4. Prototype Component Diagram . 27
5.5. Import Entity using ID . 29
5.6. Import Entity from Workspace . 30
5.7. Displayed Wiki with Structured and Unstructured Data 31
5.8. Create Intra-Entity Link . 32
5.9. Create Inter-Entity Link . 33
5.10. Create Inter-Entity Link . 34
5.11. Link . 35
5.12. SocioCortex API Structure[16] . 36
5.13. URI Schema . 37

xi

List of Figures

xii

Listings

2.1. JSON-LD representation of Person . 10
2.2. Embedded JSON-LD[9] . 12

3.1. Annotation Format[3] . 13

4.1. Web Annotation JSON-LD . 19
4.2. JSON-LD Link with Structured and Unstructured data 19
4.3. Span tag representing linked Unstructured data 20
4.4. Cross Entity Links . 20
4.5. JSON-LD with additional comments . 21

5.1. User Login . 37
5.2. Get Workspaces . 37
5.3. Get Entitytypes . 37
5.4. Get Entities . 37
5.5. Get Entity . 38
5.6. Update Entity . 38
5.7. Update Entity . 38

A.1. Installed Node version . 43
A.2. Installed npm version . 43
A.3. Installed Angular CLI . 44
A.4. Install Node Packages . 44
A.5. Install Node Packages . 44
A.6. Build development version . 44
A.7. Append Build Flag . 44

xiii

Listings

Outline of the Thesis
CHAPTER 1: INTRODUCTION

This chapter presents an overview of the thesis and it purpose. Research questions about
the thesis is discussed in detail.

CHAPTER 2: FOUNDATION

This chapter presents foundation about the concepts used in the thesis. It provides deeper
insights into the concepts of Hybrid Wikis and JSON-LDs

CHAPTER 3: RELATED WORK

This chapter presents the related work done relating to the topics of this thesis.

CHAPTER 4: EXTENDED STANDARD - JSON-LD FOR LINK CREATION

This chapter sets the foundation on how to extend the JSON-LD standard defined in Chap-
ter 2 for the purpose of annotating and linking structured and unstructured data. It also
provide insights into the link creation process.

CHAPTER 5: IMPLEMENTATION

This chapter presents the architecture and finer details about the implemented prototype.
It also contains the screen shots of the final prototype.

CHAPTER 6: CONCLUSION

This chapter presents the conclusion and future work of the thesis. It also provides a recap
of the research questions discussed in the Chapter 1.

xv

1. Introduction

Wikis contain information above a specific topic or a group of related topics. This infor-
mation is represented as free text, in the form of sentences and paragraphs. Some types
of information demands more structured and concrete representation along with an elab-
orated unstructured representation. In Section 1.1 the motivation to link related content
in the two above mentioned representations is provided. Further analysis of the problem,
enables us to answer some research questions about creation and storage of links in Sec-
tion 1.2. In Section 1.3, the solution space is discussed, where a standard is extended and
implemented as a prototype based on SocioCortex system.

1.1. Motivation

As wikis represent more and more information about specific topics, the need to search
for alternate representation of information arises. Information represented only in a struc-
tured layout, tabular format, cannot be used to convey the complete essence of the topic
as it is used to summarize the topic rather than explaining it in detail. On the other hand,
only unstructured information may make the reader miss some of the essential informa-
tion. Hence, the hybrid approach where structured and unstructured information is com-
bined, will provide a much better representation. As the information represented in both
structured and unstructured format is essentially similar, there comes the need to establish
link between related data but represented differently to maintain consistency and easily
detect changes to the information.

A semantic wiki is a wiki with an underlying knowledge model to describe its pages.
Regular (syntactic) wikis consists of structured text along with hyperlinks. On the other
hand, semantic wikis captures and identifies information about data within pages and the
relationships between pages, which can be queried or exported like a database through
semantic queries.[12]

The knowledge model found in a semantic wiki is typically available in a formal lan-
guage, so that machines can process it into an entity-relationship model or relational database.
The formal notation may be included in the pages themselves, or it may be derived from
the pages or the page names or the means of linking. Usually semantic wikis are heavy
weight and has a fixed ontology, almost always.

Hybrid wikis has a lightweight semantic, comprising of a traditional wiki as a core com-
ponent. In contrast to the heavyweight approaches like semantic wikis, the hybrid wiki
does not annotate wiki content with semantic information with a fixed ontology, which is
regarded as a top-down (i.e., ontology first) approach. In contrast, it allows a data-model
to emerge from the content by enabling users to easily add structured content to any wiki
page in the form of attribute-value tags. This bottom-up approach is complemented with
the ability to establish certain constraints such as mandatory attributes or inheritance rela-

1

1. Introduction

tionships between types.[8]
Hybrid Wikis are usually divided in to unstructured data and structured data. Un-

structured data (or unstructured information) is information that either does not have a
predefined data model or is not organized in a predefined manner. Unstructured infor-
mation consists of free text in the form of paragraphs and can contain data such as dates,
numbers, and facts along with text-rich content. This results in irregularities and ambigu-
ities that make it difficult to understand using traditional programs as compared to data
stored in fielded form in databases or annotated (semantically tagged) in documents.[17]
Thus, some important information is also represented in a structured format. For the most
part, structured data refers to information with a high degree of organization, such that
inclusion in a relational database is seamless and readily search-able by simple, straight-
forward search engine algorithms or other search operations. Structured information in
hybrid wikis takes the form of a predefined attribute-values schema.

Most of the time, same information is represented in both structured and unstructured
format, in other words, same data different representation. Though, data is related there is
no link established between them. It forces us to manually monitor the changes to related
data. Hence, checking for data consistency is a tedious and manual process, more error
prone. Many times, the relationship between the data is lost and may loose the overall
meaning.

When a relationship is established between structured and unstructured information,
consistency checks becomes a lot more easier. Easiest way to establish this relationship is
through creation of links which contains references to structured attributes and parts of
unstructured data.

1.2. Research questions

Once the motivation to create links between structured and unstructured information is
established, below mentioned research questions needs to be answered. A link is a concept
which can take different meanings. In general context, link is a relationship established
between two things or situations, especially where one is related to the other. In the web
context, link or hyperlink is a reference to data that the reader can directly follow either by
clicking, tapping, or hovering. A hyperlink is a pointer pointing to an entire document or
to a specific element within a document.[24]

In the context of linking structured and unstructured information, link is an additional
information or meta-data that helps establishing relationship between relevant parts of
unstructured information and structured attribute values.

1.2.1. What should be the format of the link?

Once we have established the need for creating links, the first question that comes to our
mind is, in what format should link be represented. The format of the link should be
extensible and reusable as it is used in the web context. Links are additional information
added on top of the wiki document which does not affect the existing structure of the
document. In the web context, idea behind annotation is adding more information about

2

1.2. Research questions

selected text without changing the structure of the web document. Exploring the idea
behind web annotations and enhancing it to represent a link could be a feasible solution.

1.2.2. Are there any annotation standards to link data?

Web annotations are represented in the form of JSON objects. Structure of JSON objects
may vary from one implementation to another, depending on the type of data being anno-
tated and purpose of annotation. Different annotation tools have different ways of struc-
turing these JSON objects. In order, to understand the structure of these JSON objects
developers has to rely on the documentation of implementer. Here comes the need for a
serialization format which is easy to understand and self explanatory for the developers
who are trying to understand the structure of a JSON object.

JSON for linked data or JSON-LD is one such serialization format to represent linked
data. allows data to be serialized in a way that is similar to traditional JSON. JSON-LD is
designed to allow existing JSON to be interpreted as Linked Data without much changes.

JSON-LD satisfies following design goals[10]:

1. Simplicity: No extra processors or software libraries are required to understand and
use JSON-LD. The language provides developers with a very easy learning curve,
where developers only needs to know about JSON and context meta data provided
as the attribute ”@context”. Simply speaking, a context is used to map terms to inter-
nationalized resource identifiers, which provides additional details on the data that
is represented by a specific attribute.

2. Compatibility: A JSON-LD document should always be a valid JSON document. It
ensures that standard JSON libraries can seamlessly with JSON-LD documents.

3. Expressiveness: The syntax serializes directed graphs. It ensures that almost any
type of data can be expressed.

1.2.3. How can we store and retrieve links?

Links has to be stored in certain format for the purpose of persistence and retrieval. Hence,
storing and retrieving links needs to be easy and straight forward.

There are many storage and retrieval options to be considered:

1. Save links in a dedicated database. The retrieval of links should be done explicitly
by the software systems, which are designed to handled these links, when the HTML
document of the wiki is retrieved.

2. Embed links as part of the wiki document. If links are part of the wiki, retrieval is
implicitly taken care of when the wiki is retrieved. JSONs can be embedded as part
of HTML document using script type as ”application/json”. Though this is an effective
way to store links without effecting the structure of the HTML document, it might
raise some security concerns as additional information is added as part of original
HTML document and software systems which deal with such documents might flag
it as a security threat.

3

1. Introduction

1.2.4. How to detect and handle the changes?

Software systems capable of creating and handling links should also be able to detect
changes to the data to which it links. The underlying data changes can have adverse effects
on links as it can either completely invalidate links or loose the relationship between the
structured and unstructured data.

Detecting changes fairly straight forward, if exact state of the data linked at the time of
link creation is stored and compared with the current state of data. On the other hand
handling the changes is no that straightforward, as it is impossible to detect the reason
behind the data changes and the intention of the person responsible for the data changes.

1.3. Purpose

The purpose of this master thesis is as follows:

• Answer the research questions listed in Section. 1.2.

• Create a web based software system capable of following:

– Representing hybrid wikis with structured and unstructured data

– Manually create links between structured and unstructured data. Links can
contain additional comments about what it represents. Inter wiki links where
unstructured data of one wiki can be linked with structured data on another
wiki, also called as cross wiki document links.

– Store and retrieve links along with the wiki, either as part of the wiki itself or
separately in a dedicated database

– Detect and handle the changes to the links. Changes should be highlighted in
a way it is easy for the users to take well informed decision as to weather to
delete and recreate the link or maintain the current state of the link.

• Creating and handling links should not change the current representation of wiki.

• Use or extend an existing standard for linking. Doing so facilitates re-usability, which
enables other software systems which deals with the same wikis to handle the links.

1.4. Contribution

Once, purpose of the master thesis is established and clearly understood, its time to dig
deeper into the existing standards that allows the creation of links and also existing Hybrid
wiki systems which can be used as a source of wiki. Understanding the currently existing
Hybrid wiki systems will provide further insights in to the structure of hybrid wiki and
the relationship between structured and unstructured data of a wiki document.

4

1.4. Contribution

1.4.1. Comparison of existing standards

Current existing standards for creating and representing annotations are compared and
checked for the feasibility of using them to model the links. A way to combine the web
annotations with the JSON-LD standard should be established.

1.4.2. Extension of standard

JSON-LD is a generic format to represent a network of standards-based machine inter-
preted data across different documents and web sites. For the purpose of representing
links in hybrid wikis, JSON-LD standard has to be extended, where representation of struc-
tured and unstructured data is facilitated. In a standard hybrid wiki like SocioCortex, both
structured and unstructured data of a wiki page is part of same document. Linking parts
of same wiki document can be done by recognizing specific parts of wiki documents that
are linked and visualizing them as pseudo links.

1.4.3. Implementation of Prototype

Prototype is a web based software system capable of following:

• Representing hybrid wikis with structured and unstructured data

• Manually create links between structured and unstructured data. Links can contain
additional comments about what it represents. Inter wiki links where unstructured
data of one wiki can be linked with structured data on another wiki, also called as
cross wiki document links.

• Store and retrieve links along with the wiki, either as part of the wiki itself or sepa-
rately in a dedicated database

• Detect and handle the changes to the links. Changes should be highlighted in a way
it is easy for the users to take well informed decision as to weather to delete and
recreate the link or maintain the current state of the link.

5

1. Introduction

6

2. Foundations

The Hybrid Wiki concept, SocioCortex platform and JSON-LD standard is integral to this
master thesis. They provide foundation to model structured and unstructured information
along with methods to conceptualize links. The SocioCortex system will play a crucial role
in this thesis, as it not only provides the information for creating links, but it also provides
a perfect environment to store created links. JSON for linked data specification provides
foundation to represent the links in hybrid wikis, these links are structured on the concepts
defined as a part of JSON-LD specification.

2.1. Hybrid-Wikis and Meta Model

Wiki-platforms are the side effects of the evolution of new web 2.0 paradigm. Underlying
principle behind wiki-platforms is collective intelligence.[22] Basically wikis are content
management systems for creating and editing content. Wikipedia, which has more than
5.2 million articles, in the English version, is the most famous instance of the wiki available
on the internet.

As these collaborative wiki systems find growing interest in enterprises, the question
arises, how to align the data with corresponding model. In the top-down approach data is
generated from the related model (model-first). In the bottom-up approach data is gener-
ated first, then model is aligned with the data (data-first). More details on these approaches
are provided by Reschenhofer et al.[23] A more collaborative approach is suggested in
”Hybrid-Wikis: Empowering Users to Collaboratively Structure Information” by Matthes
et al. This ”Hybrid-Wiki” approach supports the evolution of the model and its data in
a coherent and consistent manner.[21] It is called a hybrid wiki because it combines the
unstructured data with structured information.

The main goal of such hybrid wiki is to reduce the learning curve for non-expert users.
Without knowing much about the background, users should be able to enter structured
information. To solve this problem these contents are enriched with simple keyword-like
annotations by experienced users or experts. the user implicitly creates semantic, by fill-
ing data into fields, or create new fields in forms.[21] The corresponding data model of
a Hybrid-Wiki approach is depicted in Figure 2.1. The concept is developed by the chair
of Software Engineering for Business Information Systems (SEBIS) of the Technical Uni-
versity of Munich (TUM). It is based on the modeling framework of a former tool called
Tricia.[21]

Structure data of a wiki page can contain multiple attributes, while each attribute can
have a list of values. A Value is an abstract type, concrete Values might be StringValues or
LinkValues. Also a structured data can have multiples tags assigned to it. On the left side
of the diagram, the Wikipage, TypeTag, Attribute and Value are provided for structuring the
data in Hybrid-Wikis. On the right side TypeTagDefinition, AttributeDefinition and Validator

7

2. Foundations

are used to specify integrity constraints. So the creation of a TypeTagDefinition specifies the
values an user is urged to enter. While TypeTagDefinition and TypeTag and Attribute and
AttributeDefintion are loosely coupled, users only receive suggestions for new attributes or
tags. Thus new attributes can be created top-down.

Integrity constraints defined in AttributeDefinition can be specified using Validators. For
example, a MultiplicityValidator specifies how many values an attribute can have (at-least-
on, at-most-one, exactly-one, etc.). Validators are apparent by showing feedback messages
for violated integrity constraints. They are called ”soft validators”, while they only warn
users, but do not forbid the user to break them.[21]

Figure 2.1.: HybridWiki Meta Model[23]

In this hybrid-wiki approach, the terms Wiki and Pages corresponds to Workspace and
Entity respectively. A Workspace is a collection of related Entities. Each Entity has an as-
sociated EntityType. EntityType provides structure to the Enitity, which is a collection of
AttributeDefinition. These above mentioned concepts are used throughout the thesis.

2.2. Web Annotation Data Model

A web annotation is meta data associated with a web resource, like a web page. Using
an annotation system, a user can add, modify or remove information from a web resource
without modifying the resource itself.[20] Annotations are typically used to convey infor-

8

2.3. JSON for Linked Data

Figure 2.2.: Web Annotation[18]

mation about a resource or associations between resources. Simple examples include a
comment or tag on a single web page or image, or a blog post about a news article.

The web annotation data model specification describes a uniform structured model and
format so the annotations can be shared and reused across different hardware and software
platforms. Some of the common use-cases are modeled in a way that is simple and conve-
nient, at the same time enabling more complex requirements, including linking arbitrary
content to a particular data point or to segments of timed multimedia resources.

The specification provides a specific JSON format for easy creation and consumption of
annotations, which is based on the conceptual model that accommodates these use-cases
and the vocabulary of terms that represents it.[18]

2.3. JSON for Linked Data

JavaScript Object Notation (JSON) is a data serialization, messaging and data exchange
format. JSON for Linked Data (JSON-LD) is a lightweight syntax to serialize linked data in
JSON. It is designed to interpret JSON as linked data with minimal changes. The primary
intention behind JSON-LD is used to link data in web-based programming environments
and to store Linked Data in JSON-based storage engines.

In addition to all the features JSON provides, JSON-LD introduces:

• a universal identifier for JSON-objects with the help of Internationalized Resource
Identifier(IRIs).

• a way to differentiate keys shared among different JSON documents via a context. A
context provides a way to map terms to IRIs. It is meta-data, that provides informa-
tion about the data represented in the JSON-document.

9

2. Foundations

• a mechanism where a JSON-object can reference another JSON-object on different
web resource

• a way to annotate strings with other language

• a facility to represent one or more directed graphs, like a social network, in a single
document

The following JSON-LD, represents data about Person. Context provides mapping be-
tween the attribute terms and the schema behind those terms. The attribute values need
not be only an IRI, it can also contain simple string like name of a person. IRIs are a funda-
mental concept of Linked Data, for nodes to be truly linked, de-referencing the identifier
should result in a representation of that node.

1 {
2 "@context":
3 {
4 "name": "http://schema.org/name",
5 "image": {
6 "@id": "http://schema.org/image",
7 "@type": "@id"
8 },
9 "homepage": {

10 "@id": "http://schema.org/url",
11 "@type": "@id"
12 }
13 },
14 "name": "Manu Sporny",
15 "homepage": "http://manu.sporny.org/",
16 "image": "http://manu.sporny.org/images/manu.png"
17 }

Listing 2.1: JSON-LD representation of Person

2.3.1. JSON-LD Data Model

It is important to distinguish between the JSON-LD syntax, and the data model which is an
extension of the RDF data model. Resource Description Framework is a standard model
for data interchange on the Web.

Following summaries the data model[9]:

• A JSON-LD document is a collection of graphs which comprises of one default graph
and zero or more named graphs.

• The Default Graph is anonymous and may be empty

• Named Graph is a pair, consisting of IRI or blank node identifier and a graph.

• A graph is a labelled directed graph, which consists of a set of nodes connected by
edges.

• Every edge is an IRL or a blank node identifier and has a direction associated with it.

10

2.3. JSON for Linked Data

• A node can be an IRI, a blank node, a JSON-LD value, or a list.

• A graph must not contain unconnected nodes

• A JSON-LD value can bea typed value, a string, a number, true or false, or a language-
tagged-string

• A typed value consists of a value, which is a string, and a type, which is an IRI

• A language-tagged-string consists of a string and a non-empty language tag

• A graphical illustration of the data model is represented in the Figure 2.2

Figure 2.3.: JSON-LD Document

2.3.2. Embedding JSON-LD in HTML Documents

HTML script tags are not only used to add JavaScript Code but can also be used to embed
blocks of data in documents. This method can be used to embed JSON-LD content easily
inside an HTML document, by placing it in a script element with the type attribute set to
application/ld+json. Following code snippet, provides an example of embedded JSON-LD
as a part of HTML.

11

2. Foundations

1 <script type="application/ld+json">
2 {
3 "@context": "http://json-ld.org/contexts/person.jsonld",
4 "@id": "http://dbpedia.org/resource/John_Lennon",
5 "name": "John Lennon",
6 "born": "1940-10-09",
7 "spouse": "http://dbpedia.org/resource/Cynthia_Lennon"
8 }
9 </script>

Listing 2.2: Embedded JSON-LD[9]

12

3. Related Work

3.1. Annotator.js Library

Annotator is an open-source JavaScript library using which we can easily add annotations
to any web page. An annotation consists of comments, tags, links and other additional
details. The new features and behaviours can be easily added to the library making it
extensible.Annotator has 3rd party plugins allowing the annotation for not just web pages
but also other file types like PDFs, EPUBs, videos, images and sound.[4]

An annotation is a JSON document which contains a number of fields that describe the
position and content of an annotation within the specified HTML document:[3]

1 {
2 "id": "39fc339cf058bd22176771b3e3187329", # unique id (added by backend)
3 "annotator_schema_version": "v1.0", # schema version: default v1.0
4 "created": "2011-05-24T18:52:08.036814", # created datetime in iso8601

format (added by backend)
5 "updated": "2011-05-26T12:17:05.012544", # updated datetime in iso8601

format (added by backend)
6 "text": "A note I wrote", # content of annotation
7 "quote": "the text that was annotated", # the annotated text (added by

frontend)
8 "uri": "http://example.com", # URI of annotated document (added

by frontend)
9 "ranges": [# list of ranges covered by

annotation (usually only one entry)
10 {
11 "start": "/p[69]/span/span", # (relative) XPath to start element
12 "end": "/p[70]/span/span", # (relative) XPath to end element
13 "startOffset": 0, # character offset within start

element
14 "endOffset": 120 # character offset within end

element
15 }
16],
17 "user": "alice", # user id of annotation owner (can

also be an object with an 'id' property)
18 "consumer": "annotateit", # consumer key of backend
19 "tags": ["review", "error"], # list of tags (from Tags plugin)
20 "permissions": { # annotation permissions (from

Permissions/AnnotateItPermissions plugin)
21 "read": ["group:__world__"],
22 "admin": [],
23 "update": [],
24 "delete": []
25 }

13

3. Related Work

26 }

Listing 3.1: Annotation Format[3]

Annotator uses XML Path Language (XPath) to indentify the starting and ending HTML
elements. XPath uses ”path like” syntax to identify and navigate nodes in the HTML
Document Object Model. In the above example, the relative XPath of the span element
wrapped inside another span inside the 69th paragraph element is the start element. It
also keeps track of the exact position of the annotated text inside the enclosing HTML
element using startOffset and endOffset attributes. This is an effective way to keep track
of the position of the annotated text, even for the texts ranging across multiple HTML
elements. Annotator uses proprietary JSON structure which does not follow any W3C
standard. In order to reuse this structure to represent a link, additional content has to be
added to the current JSON structure to accommodate the position of both structured and
unstructured data.

3.2. Annotea project

Annotea a RDF standard which enhances collaboration of documents via shared document
meta-data based on tags, bookmarks, and other annotations.[20] In this context annotation
mean comments, notes, explanations, or other types of external remarks that can be at-
tached to any Web document or a selected part of the document without actually needing
to touch the document. It is a predecessor to the web annotation data model proposed by
W3C. Annotea is part of the Semantic Web efforts. The annotation meta-data can be stored
locally or in one or more annotation servers and presented to the user by a client capable
of understanding this meta-data and capable of interacting with an annotation server with
the HTTP service protocol. Annotea standard is a predecessor to Web annotation data
model. [18]

Resource Description Framework (RDF) is a model to interchange data designed for the
web. Main feature of RDF is to facilitate merging of data even if the underlying schemas
differ. It supports the evolution of schemas over time without requiring to change all
the data consumers. RDF is an extention to the linking structure of the web, which uses
URIs to name the relationship between things as well as the two ends of the link referred
to as triple. Structured and semi structured data can be mixed, exposed and shared across
different applications using this simple structure. This linking structure contains a directed
and labeled graph. The edges represent the named link between two resources and nodes
are the resources.[11]

RDF provides a simple and flexible framework for describing properties of any Web
resource. In its most simple level, RDF provides (resource, property, value) triples. A
single triple is a statement that indicates that a resource has a given property with a given
value. The resource can be any Web resource identified by a URI. The value may be a
literal string or may be the URI of another Web resource.

14

3.3. Entity RecOgnition in Context of Structured data (EROCS)

Figure 3.1.: RDF Triple Schema[20]

In Annotea, annotations are described using a dedicated RDF schema and are stored
in dedicated annotation servers. The annotation server stores the annotations in an RDF
database. Users query this server to retrieve an existing annotation, post a new annotation,
modify an annotation or delete an annotation. HTTP protocol is used to communicate with
the annotation server.

Figure 3.2.: Annotea Architecture

3.3. Entity RecOgnition in Context of Structured data (EROCS)

Entity RecOgnition in Context of Structured data (EROCS) is a novel system for linking a
given text document, which is mostly unstructured, with relevant structured data. EROCS
views structured data as a set of entities and identifies the entities that best match the given
document. EROCS also embeds the entities in the document, effectively creating links
between the structured data and specific text within the document.[25]

Inputs to the EROCS system are a text document filtered to contain only relevant terms
and the given database, viewed as a set of entities and associated content information
(structured information). These entities are defined in terms of a collection of entity tem-
plates that specify the location of each entity and its context information in the relational
database. EROCS matches the context information of the current entity with the docu-

15

3. Related Work

ment and finds the entities that match best to the current entity along with their embed-
ding. This task performed by EROCS is similar in spirit to dictionary-based named-entity
recognition.[19]

Figure 3.3.: EROCS Overview[25]

16

4. Extended Standard - JSON-LD for link
creation

4.1. Web Annotation Data Model

Annotations convey information about a resource or association between resources. Sim-
plest example is a comment or a tag on a section of web-page or an image or a blog post.
Annotating, the act of creating associations between distinct information, is a pervasive
activity online in many guises. Web users makes comments on various online resources
using either built-in tools in the host website, external web-services or an annotation client.
In addition, there are a plenty of ”sticky note” systems and stand-alone annotation sys-
tems.

Web annotation data model specification describes a common approach to express these
annotations in a standard way. The world wide web consortium describes the data model
as ”an extensible, inter-operable framework for expressing annotations such that they can easily
be shared between platforms, with sufficient richness of expression to satisfy complex requirements
while remaining simple enough to also allow for the most common use cases, such as attaching a
piece of text to a single web resource”[10]. The primary aim of the model is to provide a stan-
dard description model and format and to facilitate the sharing of annotations between
systems. This interoperability is either for sharing with others, or exporting private an-
notations across devices or platforms. The shared annotations should be easily intigrated
into existing collections and reused without loss of significant information. This model
uses JSON-LD serialization for annotation documents.

The Web Annotation Data Model is defined using the following basic principles:[10]

• An Annotation is a directed graph that represents a relationship between resources

• There are two types of resources in this relationship, Bodies and Targets

• Annotations have 0 or more Bodies

• Annotations have 1 or more Targets

• The contents of Body and Target resources are related to each other, usually in the
direction from Body to Target

• Annotations, Bodies and Targets may have their own properties and relationships,
typically including creation and descriptive information

• The intention behind creating annotations is represented with the help of Motivation
resource

The web annotation data model is combined with extended JSON-LD standard to create
a new Link data model to store the link.

17

4. Extended Standard - JSON-LD for link creation

Figure 4.1.: Link Data Model

The attribute resources of Link data model are:

• ID: Identifier for the JSON-LD.

• Source: Represents linked structured data

– ID: Attribute ID of SocioCortex Wiki entity

– Value: Structured content at the time of creation

– DataPosition: Position of the value in the attribute value array (0 - by default)

– Parent: Represents the Wiki entity the unstructured data belongs to

– Type: Says if the structured data linked is part of same or different wiki entity.

• Body: This resource along with Target represents linked Unstructured data

– Type: Represents unstructured content type

– Format: Format of the linked unstructured content

– Value: Unstructured content at the time of creation

• Target: Represents the target HTML element of the linked unstructured content.

– Id: ID of the HTML selector

– Selector: Span Tag HTML selector that represent the linked unstructured con-
tent.

18

4.1. Web Annotation Data Model

• Type: Type of link (Same or related link)

• ID: Additional User comments

Following code snippet provides an example annotation based on the model.

1 {
2 "@context": "http://www.w3.org/ns/anno.jsonld",
3 "id": "http://example.org/anno1",
4 "type": "Annotation",
5 "body": "http://example.org/post1",
6 "target": "http://example.com/page1"
7 }

Listing 4.1: Web Annotation JSON-LD

The Web Annotation Data Model only provides a way to annotate certain parts of web
resources. It can be extended for our use case to represent relationship between two dif-
ferent types of resources, such as, structured and unstructured information. The Body and
Target resources are used to represent the Unstructured data to be annotated. The Source
resource points to the Structured data to be annotated. Hence, establishing a link between
structured and unstructured data in a single JSON-LD object.

Following code snippet provides an example of such a link:

1 {
2 "@context": "http://www.w3.org/ns/anno.jsonld",
3 "id": "link_2", //ID of the span element embedded as unstructured data
4 "body": { // Represents unstructured content
5 "value": "2017 ",
6 "format": "text/plain",
7 "type": "TextualBody"
8 },
9 "source": { //Represents attribute in structured data linked

10 "id": "1t4b4rniixb8s", // Attribute ID from SocioCortex of the structured
data linked

11 "value": 2017,
12 "DataPositionSelector": 0 // Position of the value in the attribute array
13 },
14 "created": "2018-06-02T23:10:15.299Z",
15 "motivation": "describing",
16 "target": { // Target HTML element in the unstructured content
17 "id": "c7gt17zhps0l", // Entity ID from SocioCortex of the hybrid wiki
18 "selector": {
19 "value": "span#link_2",
20 "type": "CssSelector"
21 }
22 },
23 "type": { // Type of link
24 "id": 0, // 0 - same link, 1 - related link
25 "type": "Same Link"
26 },
27 "creator": { // Author who established the link
28 "name": "Shivguru Rao",
29 "type": "Person"
30 }

19

4. Extended Standard - JSON-LD for link creation

31 }

Listing 4.2: JSON-LD Link with Structured and Unstructured data

•

4.2. Annotating unstructured data

Locating structured information is straight forward as each AttributeKey of a structured
Entity in the hybrid wiki has a unique identifier. Where as, unstructured data is in the
form of free text, usually a collection of HTML elements with no proper structure.

Locating the position of text in the unstructured data can be narrowed down to the
deepest enclosing HTML element surrounding the text. But, locating text with in this
element has to be done by either counting the number of characters within the element
or surrounding the annotation text with an enclosing HTML element, without effecting
current HTML DOM structure.

Inline HTML element span can be used for this purpose, with a unique identifier, through
which the corresponding linked JSON-LD is identified. An example link span looks like:

1 2017

Listing 4.3: Span tag representing linked Unstructured data

4.3. Cross-Entity Links

Related data need not be present in the scope of a single Entity, rather it can span across
multiple Entities. The above link representation, does not facilitate for cross-entity links. To
overcome this shortcoming, additional information about the type of link has to be added
to the JSON structure along with the details of the Entity to which the structured data
belongs to inside the Parent resource.

An example which represent cross-entity links:

1 "source": {
2 "id": "1t4b4rniixb8s",
3 "value": 2017,
4 "parent": {
5 "id": "1rn347knpl6ii",
6 "name": "Q2-2017"
7 },
8 "DataPositionSelector": 0,
9 "type": "Inter Entity"

10 }

Listing 4.4: Cross Entity Links

20

4.4. Link comments

4.4. Link comments

Web annotations contain additional information in the form of comments, facilitated by
web annotation data model. Same feature can be extended to the link JSONs as well, by
using Commenting resource. An example link JSON-LD with additional comments:

1 {
2 "@context": "http://www.w3.org/ns/anno.jsonld",
3 "id": "link_2",
4 "body": {
5 "value": "2017 ",
6 "format": "text/plain",
7 "type": "TextualBody"
8 },
9 "commenting": "Cross-entity link between Q1-2017 and Q2-2017",

10 "source": {
11 "id": "1t4b4rniixb8s",
12 "value": 2017,
13 "parent": {
14 "id": "1rn347knpl6ii",
15 "name": "Q2-2017"
16 },
17 "DataPositionSelector": 0,
18 "type": "Inter Entity"
19 },
20 "created": "2018-06-02T23:10:15.299Z",
21 "motivation": "describing",
22 "target": {
23 "id": "c7gt17zhps0l",
24 "selector": {
25 "value": "span#link_2",
26 "type": "CssSelector"
27 }
28 },
29 "type": {
30 "id": 0,
31 "type": "Same Link"
32 },
33 "creator": {
34 "name": "Shivguru Rao",
35 "type": "Person"
36 }
37 }

Listing 4.5: JSON-LD with additional comments

21

4. Extended Standard - JSON-LD for link creation

22

5. Prototype Implementation

In the following chapter, the prototypical implementation is presented. The first section
explains the technical foundation for the implementation. The second part elaborates the
overall system architecture along with the component diagram. In the third section, core
features are explained in detail, which help us answer some of the research questions. In
the final section, the API used to retrieve and store the data and the database structure
used to store the created links is provided.

5.1. Technical Foundation

SocioCortex system is used as the back-end system and Angular 5 framework along with
Bootstrap 4 library is used to implement the front-end tool of the prototype implementa-
tion. Introduction to these systems and frameworks will provide the technical foundation.

5.1.1. SocioCortex as a Hybrid Wiki source and storage for Links

SocioCortex is a model based collaboration environment, which is a project of the chair
”Software Engineering for Business Information Systems (Sebis)” at the Technical Univer-
sity of Munich. They describe SocioCortex as ”The Social Information Modelling Platform
for Collaborative, Evolutionary Data and Process Management”.[13] SocioCortex uses Hy-
brid Wiki approach explained in Section 2.1. The complete SocioCortex ecosystem is pro-
vided in Figure 5.1. On the application side, there is the default client suite and the vertical
applications. In addition to these there are also content sources and identity providers
connected to SocioCortex. In the default client suite the application modeler, content man-
ager and visualizer is present. Some of the vertical applications are Spread-sheet 2.0 and
Lexalyze.[14]

SocioCortex provides an easily accessible and well documented REST API and encour-
ages people to implement their own applications on top of SocioCortex. The prototype of
this thesis uses SocioCortex as the source of hybrid wiki pages. Each wiki page contain
structured and unstructured information represented as an Entity inside a Workspace. So-
cioCortex is also used as a database to store the created links in the form of JSON-LDs. A
dedicated Entity is created to store and retrieve the links. The data storage and API usage
is elaborated in detail in Section 5.4.

23

5. Prototype Implementation

Figure 5.1.: SocioCortex Ecosystem[14]

5.1.2. Angular 5 Framework

Angular is a development platform used to build mobile and desktop front-end web ap-
plications in Typescript/JavaScript.[2] The basic building blocks of angular application are
modules and they provide a compilation context to for components. An app always has at
least a root module which is bootstrapped at the start of the application and collection of
feature modules loaded as required. /Components define views or templates, which contain
the set of screen elements built with HTML and CSS. Components contain the business logic
for the views it contain and provides them with the necessary data to render the content.
Every app has at least a root component. Components also uses services, which provide spe-
cific functionality not directly related to views. Services are injected as dependencies in the
components.[1] The architecture of the angular application, which explains how modules,
components, templates and services are related, is provided in Figure 5.2.

The architecture of the prototype front-end is based on the architecture of the angular
application, which is explained in detail in component diagram Section 5.2.2.

24

5.2. Architecture

Figure 5.2.: Angular Architecture[1]

5.1.3. Bootstrap 4 Library

Bootstrap is a front-end library which is used to design websites using HTML and CSS
based UI components.[7] Bootstrap provides a grid system, which divides the web page
into fluid rows and columns.[6] Bootstrap is responsive, as the contents are organized in
a web page based on the size of the screen in which it is rendered. Bootstrap provides an
extensive set of reusable UI components, some of the important components are: Navbar,
Button, Input, Modal, Popover. Implementation demonstrations can be found in the ex-
amples section of bootstrap website[5] and in the core features of the prototype explained
in Section 5.3. The layout of the prototype is generated using Bootstrap’s grid layout and
the components mentioned before are used extensively in the prototype implementation.

5.2. Architecture

In this section the overall system architecture of the Prototype along with the detailed
component diagram.

5.2.1. System Architecture

The system architecture is a client server architecture where the Angular 5 prototype appli-
cation is the client and the SocioCortex system is the server. The client and server interact
using RESTful API provided by SocioCortex. JavaScript Object Notation (JSON) is the data
exchange format used for the communication between the client and the server. Detailed
explanation of the API endpoints used is provided in Section 5.4.

The client application is implemented using Angular 5 Framework. Angular application
is made up of modules which contain hierarchy of components and related templates which

25

5. Prototype Implementation

forms the view of the application. Components also use reusable services to interact with
the server and use shared business logic and resources. The detailed component hierar-
chy is explained in Section 5.2.2. When the prototype is loaded on the browser, Angular
application is compiled into plain web application with HTML, CSS and JavaScript files.

Figure 5.3.: System Architecture

5.2.2. Component Diagram

Prototype consists of client web application implemented using Angular 5 Framework and
SocioCortex system as the data source and the database for links.

As explained in the technical foundation of Angular framework in Section 5.1.1, an an-
gular application consists of modules and components. Similarly, our prototype LinkerTool
consists of one default module App module. App module consists of hierarchy of components
and services which is depicted in the Figure 5.4.

26

5.2. Architecture

Figure 5.4.: Prototype Component Diagram

A component controls a patch of screen called a view. It consists of a template with HTML
and angular related markup, CSS styling and the business logic corresponding to the view.
Various components that make the prototype application are:

• WikiComponent: Is in the top of the hierarchy, whose view cover the entire web
page. The main task of this component is to fetch the wiki pages and send the wiki
page object (Entity) to its children. All the event handlers(click on a link and hover
on a link) are registered in this component as well, when some changes are detected
to the current active wiki page object.

The children of the WikiComponent are:

– WikiListComponent: This component is the left most view of the wiki web
page in terms of the page layout. It keeps track of all the wiki pages imported
from SocioCortex and display them as a list. Upon selection of a wiki page
from the list it triggers the change event of current active wiki page, which is
propagated across the entire application.

– Unstructured Component: This component is the middle view of the wiki web
page. It is used to render the unstructured content of the wiki page. It is also
responsible for handling the creation of links.

– Structured Component: This component is the right most view of the wiki web
page. It is used to render the structured content of the wiki page in a tabular

27

5. Prototype Implementation

format. Structured data in the form of key-value pairs are rendered in a table of
two columns.

• LoginComponent: This component takes care of user authentication where it allows
users to login to the SocioCortex system and maintains the validity of the access
token once logged in.

A service is typically a class with a narrow, well-defined purpose. It should do some-
thing specific and do it well. A service is a singleton which usually contain shared re-
sources or business logic required across multiple components. Services has to be injected
in a component before use. Prototype consists of following services:

• ManageWikiService: This service is used to fetch the wiki page objects (Entities)
using SOcioCortex API and and them to the wiki list. It also keeps track of the current
active wiki page.

• ManageLinkService: This service is used to fetch all the links for a particular entity,
creation of a new link, deletion of links.

• LoginService: This service is used for user authentication management.

The SocioCortex system consists of wiki pages in the form of entities and these entities are
of particular entity type and they belong to a specific workspace. These entities are fetched
and modified with the help of SocioCortex API which is discussed in detail in Section 5.4.

5.3. Core Features

In this section, the features of the prototype are explained in detail. It also helps us answer
some of the research questions mentioned in Section 1.2.

5.3.1. Import Entity

An entity is a wiki page which consists of structured and unstructured information. This
section describes different ways in which an entity can be imported in the prototype.

An entity can be imported using two methods:

• Entity ID: Each entity has an entity ID. We can directly import an entity if we know
its ID. Figure 5.5 shows the UI for entering entity ID to fetch the entity object.

28

5.3. Core Features

Figure 5.5.: Import Entity using ID

• Workspace Name: An entity is of a specific entity type and belongs to a workspace.
Using workspace name all the entity types inside that. workspace is fetched. Using
entity type all the entities that belong to the entity type is fetched. Finally from the
entity name actual entity object is fetched. Figure 5.5 shows the UI for importing the
entity Q1-2017 of entity type Quarter Result which belongs to the workspace Apple
Quarter Results.

29

5. Prototype Implementation

Figure 5.6.: Import Entity from Workspace

Once the entity is imported all the links for this entity is also imported and stored as
part of imported entity object. How the links are stored and fetched from SocioCortex is
explained in detail in Section 5.4.

5.3.2. Display Wiki

Once the entity is imported it is stored in the list of entities.An entity object consists of un-
structured data in the form of HTML text and structured data in the form of attributes and
values. Figure 5.6 shows the rendered wiki page of entity Q1-2017. Entire web page is di-
vided into 3 vertical sections or columns. The left most section consists of list of imported
entities and is rendered using WikiListComponent. The middle section is where the un-
structured data is displayed along with entity name and person who has edited the entity
recently. This section is rendered and handled using UnstructuredDataComponent. The
source HTML structure is preserved and rendered as it is fetched. The right most section
is where the structured data is displayed in tabular format. StructuredDataComponent
is responsible for rendering and handling this section. While displaying the wiki, all the
links of the entity is embedded as part of HTML page.

30

5.3. Core Features

Figure 5.7.: Displayed Wiki with Structured and Unstructured Data

5.3.3. Create link

Creation of a link is done by selecting some text in the structured data section. A pop-up
is created with the list of attributes and its values shown as a hierarchical tree structure.
When the user selects an attribute and click on link button, JSON-LD for the link is created
and stored in SocioCortex. This JSON-LD is also added to the embedded JSON-LD which
is part of the HTML. Additional user comments can be added as a part of the link. The
entity to which structured and unstructured data belongs to is stored as part of JSON-LD
in order to differenciate between different entity types Three types of links can be created:

• Annotations: A simple web annotation can be created by not selecting any struc-
tured attribute to be linked to the selected unstructured data. Additional comment
has to be added to this type of annotations.

• Intra-Entity Links: Links where both structured and unstructured data belongs to
same entity. By default the structured data attributes of the same entity is loaded
while creating a link.

31

5. Prototype Implementation

Figure 5.8.: Create Intra-Entity Link

• Inter-Entity Links: Links where structured and unstructured data belongs to differ-
ent entities. In order to select a different entity, we need to fetch the structured data
attributes of different entity and is done by allowing users to select an entity through
workspace-¿entity type. -¿entity as discussed in section 5.3.1.

32

5.3. Core Features

Figure 5.9.: Create Inter-Entity Link

5.3.4. Display link

When the wiki is rendered the Linker service handles all the existing links for this wiki. In
the unstructured data section links are highlighted in yellow for links whose contents are
not changed since link creation and in red for links where structured or unstructured data
is changed after creation of the link. Change detection is explained in detail in the coming
section.

When we hover over the link in unstructured section corresponding attribute value in
the structured data section is also highlighted, if it is an Intra-Entity link. When a link is
clicked all details of the link is displayed as a popover next to the highlighted text in the
unstructured section. The popover contains details about following:

33

5. Prototype Implementation

• Type of link: Whether it is an Intra or Inter-Entity link. Same link if the content of
unstructured and structured data are same and similar link if they are different.

• Structured Content: Exact content of the structured attribute value linked. This will
be empty if it is a simple annotation.

• Unstructured Content: Exact content of the unstructured data linked.

• Created by: Name of the user who has created the link

• Created on: Data and time at which the link was created.

• Comments: Additional comments added by the users

• Variance: Variance or deviation is only calculated for the numeric type of data. Both
structured and unstructured contents are processed and converted in to numeric
type if possible. Firstly, currency is removed and words are checked if they are
of numeric equivalent (eg: mil = million = 1000000). If any numeric equivalent is
found, it is multiplied by the preceding numeric value to get a whole number. Once
the processing is done, if both the contents are numeric following formula is used to
calculate deviation. (Higher value - Lower Value)/Lower Value*100

Figure 5.10.: Create Inter-Entity Link

34

5.3. Core Features

5.3.5. Link change detection

One of the research questions of this master thesis is ”How to detect and handle the
changes?”. Change detection to the link contents is fairly straight forward, the unstruc-
tured link content is enclosed by a span tag and the value at the time of creation stored in
the link JSON-LD. These two values can be compared to check if there are any changed to
the unstructured data. Similarly, Attribute id and the location of the attribute value of the
structured content is stored as part of link JSON-LD, comparing the stored content with
the current attribute value will give the changes, if there is any.

During the rendering of wiki page all the links are checked for consistency and if there
are any changes, they are stored in the entity object. Corresponding unstructured content is
highlighted in red color instead of yellow. In the link details popover, old and new values
of the changed content are displayed.

Figure 5.11.: Link

5.3.6. Delete Links

In the link details view, a delete button is provided to delete the links. When a link
is deleted, the corresponding JSON-LD is removed from the embedded HTML and the
JSON-LDs are updated to SocioCortex. In the next section the storage and retrieval of
JSON-LDs is explained in detail.

35

5. Prototype Implementation

5.4. Data Storage and Access using SocioCortex API

In this section the API architecture of the SocioCortex API is explained along with the
endpoints used in the prototype implementation. The API

5.4.1. SocioCortex API

The API layer of SocioCortex is used to access the wiki pages (entities) as well as store the
links created in its own entity. In this Section the API endpoints used to build the prototype
is explained in detail along with the structure of the entities where the links are stored.

The API of the SocioCortex is designed in seven layers, each layer has a very specific
purpose. The endpoints provided by the first three layers (bottom-up) are used to develop
the prototype. Figure 5.12 defines the API structure of SocioCortex.

• Annotated Versioned Linked Content Graph: Provides a way to structure an un-
structured entity by adding new attributes or links to other entities.

• Multiple Dynamic Schemata: This layer introduces concepts to incrementally de-
sign data models by defining types, properties, and integrity constraints. Together
with the first layer, it implements the Hybrid Wiki concept.

• Role-Based and Discretionary Access Control: This layer provides user integration
and management along with authentication and authorization.

Figure 5.12.: SocioCortex API Structure[16]

The SocioCortex instance running on server.sociocortex.com is used in the prototype to
retrieve and store the entities and links. General URI schema of a SocioCortex API endpoint
is:

36

5.4. Data Storage and Access using SocioCortex API

Figure 5.13.: URI Schema

List of API endpoints used and their purpose is explained below:[15]

• User Login: User credentials are sent to the server in the payload of a HTTP POST
request. A JWT token along with expiry date and user information is received after
successful authentication.

1 POST https://server.sociocortex.com/api/v1/jwt
2 BODY
3 {
4 "username":"$EMAIL@ADDRESS.com",
5 "password":"$PASSWORD"
6 }

Listing 5.1: User Login

• Get all Workspaces: List of all workspaces user has access to is sent back. Workspace
id and name are among the information sent back.

1 GET https://server.sociocortex.com/api/v1/workspaces

Listing 5.2: Get Workspaces

• Get all EntityTypes of a Workspace: List of all entitytypes that belongs to a given
workspace. Entitytype id and name are among the information sent back.

1 GET https://server.sociocortex.com/api/v1/workspaces/{workspaceid}/
entityTypes

Listing 5.3: Get Entitytypes

• Get all Entities in a Workspace: List of all entities that belongs to a given workspace.
Entity id and name are among the information sent back.

1 GET https://server.sociocortex.com/api/v1/workspaces/{workspaceid}/
entities

Listing 5.4: Get Entities

37

5. Prototype Implementation

• Get single Entity: Fetch a single entity using entity id. All the information about
an entity is retrieved along with unstructured data (content) and structured data
(attributes).

1 GET https://server.sociocortex.com/api/v1/entities/{entityid}/entities

Listing 5.5: Get Entity

• Update Entity: Provides a way to update an entity using HTTP PUT request. A
JSON object with the changed data is sent as a part of the request body. In the below
example, the content of the entity is changed.

1 PUT https://server.sociocortex.com/api/v1/entities/{entityid}
2 BODY
3 {
4 "content":"Chnaged content goes here"
5 }

Listing 5.6: Update Entity

• Update Attribute: Provides a way to update an attribute using HTTP PUT request.
A JSON object with the updated value is sent as a part of the request body.

1 PUT https://server.sociocortex.com/api/v1/attributes/{attributeid}
2 BODY
3 {
4 "values":[{
5 "id":"1d94htksgwy2i",
6 "name": "Shivguru Rao"
7 }]
8 }

Listing 5.7: Update Entity

5.4.2. Link Storage in SocioCortex

All created link JSON-LDs are stored in SocioCortex in a dedicated workspace Structured
Unstructured Annotations. Entity type Annotation with the only attribute AnnotationJ-
SON is created inside the workspace. For each entity whose data is linked using a proto-
type a corresponding entity is created in Structured Unstructured Annotations workspace
of type AnnotationJSON. The name of the newly created entity is the entity id of the linked
entity. JSON-LDs are stored as array of strings and every time a link is created or deleted
the complete array is updated. This is the best feasible solution to store the links as the
source structure of the unstructured data is not altered. Another way to store the link is
to embed it as part of the HTML and store it as a part of unstructured data content inside
script tag. Though it does not change the structure of the HTML document, it may cause a
security issue as unstructured content is stored as a part of database and if allowed it can
be vulnerable to security threats like cross site scripting (XSS) attacks.

38

6. Conclusion

In this chapter whole thesis is summarized and research questions of the thesis discussed
in Chapter 1 is revisited. Furthermore future enhancements and improvements are pro-
posed to the implemented prototype.

6.1. Summary

Wiki-platforms are the side effects of the evolution of new web 2.0 paradigm. Many of
these platforms are designed using hybrid wiki model, which mainly combines structured
and unstructured information. Many a time the data provided in the structured and un-
structured parts are related, though there is no link established between them. In this
thesis, we explore the existing JSON-LD standard to create web annotations and come up
with a way to extend it which represents links between structured and unstructured infor-
mation. A prototype tool is implemented based on SocioCortex HybridWikis to create and
maintain the links which answers the research questions mentioned in Section 1.2.

6.2. Research questions revisited

6.2.1. What should be the format of the link?

A link in a hybrid wiki is the meta data added on top of the existing data. In the web,
simplest way to add additional information to the existing web page is through web an-
notations. W3C has provided a standard for web annotations. The links we are trying to
create is similar in concept to the web annotations. Chapter 3 answers this question by
proposing a way to annotate structured and unstructured information using web annota-
tion data model.

6.2.2. Are there any annotation standards to link data?

Web annotations specified in the web annotation data model takes the structure of a JSON.
W3C also proposes a standard to represent linked data in the web ecosystem called JSON
for Linked Data (JSON-LD). JSON-LD revolves around the concept of context, which spec-
ify the additional information about the content of the JSON. JSON-LDs are typically used
to represent the linked web documents, in this use case it can also be used and extended
to represent the link between structured and unstructured information. Chapter 3 also
helps answer this question by specifying a way to represent structured and unstructured
information as part of linked JSON-LD document.

39

6. Conclusion

6.2.3. How can we store and retrieve links?

As links takes the form of JSON-LD documents it can be easily embedded as a part of
HTML web page without altering the overall structure of the HTML document. Embed-
ding the JSON-LDs provides the added benefit of single source of data. As the prototype
is a standalone tool, the link JSON-LDs for a wiki page is embedded as a part of the web
page. In order to persist the links it has to be stored somewhere. This problem is solved in
Chapter 5 Section 5.4.2, where a dedicated workspace and entity is created in SOcioCor-
tex to store the JSON-LDs. When a wiki page is loaded in the prototype, corresponding
links are also retrieved and embedded as part of web page which provides the best of both
worlds.

6.2.4. How to detect and handle the changes?

One of the important aspects of linking is to maintain consistency of information between
structured and unstructured data. Prototype provides a feature where the changes to the
linked data is detected and clearly highlighted to the users. Detection of changes in un-
structured data straight forward, as the data stored in the link is compared directly with
the content of the corresponding linked span. For structured data, changes are detected by
comparing the exact value of attributes in the corresponding linked entities (can be same
or different entity). We have to manually handle the changes in a tool where the contents
of the wiki pages can be changed.

6.3. Future work

Prototypical implementation of the thesis enables users to import a hybrid wiki page, cre-
ate and delete links and detect changes to the linked contents. Providing a way to edit the
contents of the wiki will come in handy when we want to change the wiki contents. In the
current implementation we have to handle the changes to the linked data manually using
3rd party tools. Edit feature can overcome this and helps maintain the consistency of data
easily.

As linked data in the unstructured content is surrounded by a span tag, cross element
linking is not straightforward. Selected content is detected by the range functionality of
the JavaScript and it will not detect the ranges for data that span across multiple HTML
elements, which makes the creation of links for contents that span across multiple HTML
elements challenging. Another possible enhancement would be to over come this problem
and enable cross HTML element linking, which can be further extended by allowing the
creation of overlapping links.

Finally, a great enhancement would be to provide a recommendation feature which pro-
cesses the structured and unstructured data and compute a list of possible related data that
can be linked together. Allowing automatic creation of links based on the computed list
would make a nice recommender system.

40

Appendix

41

A. Prototype Installation and QuickStart
guide

In this chapter, procedure to install the prototype along with all the dependencies are ex-
plained in detail.

A.1. Prototype Dependencies

A.1.1. NodeJS

Node.js is an open-source, cross-platform JavaScript run-time environment that executes
JavaScript code server-side. Download the Node.js pre-built installer for your platform,
from the Node.js website and install it on the system. Verify that you are running at least
Node.js version 8.x or greater by running the below listed command in a terminal/console
window. Older versions produce errors, but newer versions are fine.

1 node -v

Listing A.1: Installed Node version

A.1.2. Node Package Manager (npm)

npm is a package manager for the JavaScript programming language. It is the default
package manager for the JavaScript runtime environment Node.js. It consists of a com-
mand line client, also called npm, and an online database of public and paid-for private
packages, called the npm registry. The registry is accessed via the client, and the avail-
able packages can be browsed and searched via the npm website. The package manager
and the registry are managed by npm, Inc. npm is usually bundled with Node.js installer
which can be downloaded and installed as explained in Section A.1.1. Verify that you are
running at least npm version 5.x or greater by running the below listed command in a
terminal/console window. Older versions produce errors, but newer versions are fine.

1 npm -v

Listing A.2: Installed npm version

A.1.3. Angular Command Line Interface (CLI)

Angular cli is a command line interface to scaffold and build angular apps using nodejs
style (commonJs) modules. Not only it provides you scalable project structure, instead it
handles all common tedious tasks for you out of the box. Install the Angular CLI globally
using following command.

43

A. Prototype Installation and QuickStart guide

1 npm install -g @angular/cli

Listing A.3: Installed Angular CLI

A.2. Installing and Running the Prototype

A.2.1. Install prototype developer and production dependencies

Clone or download the source code from the prototype repository. Navigate to the project
directory and install the node packages, which are the development and production de-
pendencies of the prototype using following command. Once all the dependencies are
installed the prototype is ready to be served as a web application.

1 cd StructuredUnstructuredLinker
2 npm install

Listing A.4: Install Node Packages

A.2.2. Serve the prototype

Go to the project directory and launch the server using following command. By default
the application will be served in at http://localhost:4200/.

1 cd StructuredUnstructuredLinker
2 ng serve --open

Listing A.5: Install Node Packages

A.2.3. Deploy prototype application

For the simplest deployment, build for development and copy the output directory to a
web server.

1. Start with the development build
1 ng build

Listing A.6: Build development version

2. Copy everything within the output folder (dist/ by default) to a folder on the server.

3. If you copy the files into a server sub-folder, append the build flag, –base-href and
set the ¡base href¿ appropriately. For example, if the index.html is on the server
at /my/app/index.html, set the base href to <base href=”/my/app/”> like this.
You’ll see that the <base href> is set properly in the generated dist/index.html. If
you copy to the server’s root directory, omit this step and leave the <base href>
alone.

1 ng build --base-href=/my/app/

Listing A.7: Append Build Flag

4. Configure the server to redirect requests for missing files to index.html.

44

Bibliography

[1] Angular architecture. https://angular.io/guide/architecture.

[2] Angular framework. https://en.wikipedia.org/wiki/Angular_
(application_platform).

[3] Annotation format. http://docs.annotatorjs.org/en/v1.2.x/
annotation-format.html.

[4] Annotator library. http://annotatorjs.org/.

[5] Bootstrap examples. https://getbootstrap.com/docs/4.0/examples/.

[6] Bootstrap grid layout. https://getbootstrap.com/docs/4.0/layout/
grid/.

[7] Bootstrap library. https://en.wikipedia.org/wiki/Bootstrap_
(front-end_framework).

[8] Hybrid wiki. https://wwwmatthes.in.tum.de/pages/1xy6w6pb8rf9j/
Hybrid-Wikis.

[9] Json-ld. https://www.w3.org/TR/json-ld/.

[10] Json-ld design goals. https://www.w3.org/TR/json-ld/
#design-goals-and-rationale.

[11] Rdf - semantic web standard. https://www.w3.org/RDF/.

[12] Semantic wiki. https://en.wikipedia.org/wiki/Semantic_wiki.

[13] Sociocortex. https://http://sociocortex.com/.

[14] Sociocortex: A social information hub. http://sebischair.github.
io/sociocortex_web/files/160209%20Michel%20SocioCortex%
20Eco-System.pdf.

[15] Sociocortex api. http://www.sociocortex.com/rest-api-tutorial/#_
updating_entities_and_entity_types.

[16] Sociocortex architecture. https://wwwmatthes.in.tum.de/pages/
13uzffgwlh8z4/SocioCortex-Model-Based-Collaboration-Environment.

[17] Unstructured information. https://en.wikipedia.org/wiki/
Unstructured_data.

45

https://angular.io/guide/architecture
https://en.wikipedia.org/wiki/Angular_(application_platform)
https://en.wikipedia.org/wiki/Angular_(application_platform)
http://docs.annotatorjs.org/en/v1.2.x/annotation-format.html
http://docs.annotatorjs.org/en/v1.2.x/annotation-format.html
http://annotatorjs.org/
https://getbootstrap.com/docs/4.0/examples/
https://getbootstrap.com/docs/4.0/layout/grid/
https://getbootstrap.com/docs/4.0/layout/grid/
https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)
https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)
https://wwwmatthes.in.tum.de/pages/1xy6w6pb8rf9j/Hybrid-Wikis
https://wwwmatthes.in.tum.de/pages/1xy6w6pb8rf9j/Hybrid-Wikis
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld/#design-goals-and-rationale
https://www.w3.org/TR/json-ld/#design-goals-and-rationale
https://www.w3.org/RDF/
https://en.wikipedia.org/wiki/Semantic_wiki
https://http://sociocortex.com/
http://sebischair. github.io/sociocortex_web/files/160209%20Michel%20SocioCortex%20Eco-System.pdf
http://sebischair. github.io/sociocortex_web/files/160209%20Michel%20SocioCortex%20Eco-System.pdf
http://sebischair. github.io/sociocortex_web/files/160209%20Michel%20SocioCortex%20Eco-System.pdf
http://www.sociocortex.com/rest-api-tutorial/#_updating_entities_and_entity_types
http://www.sociocortex.com/rest-api-tutorial/#_updating_entities_and_entity_types
https://wwwmatthes.in.tum.de/pages/13uzffgwlh8z4/SocioCortex-Model-Based-Collaboration-Environment
https://wwwmatthes.in.tum.de/pages/13uzffgwlh8z4/SocioCortex-Model-Based-Collaboration-Environment
https://en.wikipedia.org/wiki/Unstructured_data
https://en.wikipedia.org/wiki/Unstructured_data

Bibliography

[18] Web annotation data model. https://www.w3.org/TR/annotation-model/.

[19] W. Cohen and S. Sarawagi. ”Exploiting dictionaries in named entity extraction: Com-
bining semi-markov extraction processes and data integration methods.”. SIGKDD,
2004.

[20] Eric Prud’Hommeaux Jose Kahan, Marja-Riitta Koivunen and Ralph R. Swick. ”An-
notea: An Open RDF Infrastructure for Shared Web Annotations”. WWW10 Interna-
tional Conference, Hong Kong, 2001.

[21] C. Neubert Matthes, F. and A. Steinhoff (2011). ”Hybrid Wikis: Empowering Users to
Collaboratively Structure Information.”. ICSOFT (1) 11, pp. 250.

[22] Tim O’reilly. What is Web 2.0: Design patterns and business models for the next generation
of software. 2007.

[23] M. Bhat A. Hernandez-Mendez Reschenhofer, T. and F. Matthes. ”Lessons learned in
aligning data and model evolution in collaborative information systems.”. Proceedings
of the 38th International Conference on Software Engineering Companion, ACM, pp. 132.

[24] Byron Dom Soumen Chakrabarti and Piotr Indyk. ”Enhanced hypertext categoriza-
tion using hyperlinks”. ACM SIGMOD Volume 27 Issue 2, 1998.

[25] Prasan Roy Venkatesan T. Chakaravarthy, Himanshu Gupta and Mukesh Mohania.
”Efficiently Linking Text Documents with Relevant Structured Information”. 2006.

46

https://www.w3.org/TR/annotation-model/

	Abstract
	Outline of the Thesis
	Introduction
	Motivation
	Research questions
	What should be the format of the link?
	Are there any annotation standards to link data?
	How can we store and retrieve links?
	How to detect and handle the changes?

	Purpose
	Contribution
	Comparison of existing standards
	Extension of standard
	Implementation of Prototype

	Foundations
	Hybrid-Wikis and Meta Model
	Web Annotation Data Model
	JSON for Linked Data
	JSON-LD Data Model
	Embedding JSON-LD in HTML Documents

	Related Work
	Annotator.js Library
	Annotea project
	Entity RecOgnition in Context of Structured data (EROCS)

	Extended Standard - JSON-LD for link creation
	Web Annotation Data Model
	Annotating unstructured data
	Cross-Entity Links
	Link comments

	Prototype Implementation
	Technical Foundation
	SocioCortex as a Hybrid Wiki source and storage for Links
	Angular 5 Framework
	Bootstrap 4 Library

	Architecture
	System Architecture
	Component Diagram

	Core Features
	Import Entity
	Display Wiki
	Create link
	Display link
	Link change detection
	Delete Links

	Data Storage and Access using SocioCortex API
	SocioCortex API
	Link Storage in SocioCortex

	Conclusion
	Summary
	Research questions revisited
	What should be the format of the link?
	Are there any annotation standards to link data?
	How can we store and retrieve links?
	How to detect and handle the changes?

	Future work

	Prototype Installation and QuickStart guide
	Prototype Dependencies
	NodeJS
	Node Package Manager (npm)
	Angular Command Line Interface (CLI)

	Installing and Running the Prototype
	Install prototype developer and production dependencies
	Serve the prototype
	Deploy prototype application

	Bibliography

